
The Jackson Laboratory The Jackson Laboratory 

The Mouseion at the JAXlibrary The Mouseion at the JAXlibrary 

Faculty Research 2020 Faculty Research 

9-11-2020 

The case for open science: rare diseases. The case for open science: rare diseases. 

Yaffa R Rubinstein 

Peter N Robinson 

William A Gahl 

Paul Avillach 

Gareth Baynam 

See next page for additional authors 

Follow this and additional works at: https://mouseion.jax.org/stfb2020 

 Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons 

https://mouseion.jax.org/
https://mouseion.jax.org/stfb2020
https://mouseion.jax.org/fac_research
https://mouseion.jax.org/stfb2020?utm_source=mouseion.jax.org%2Fstfb2020%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=mouseion.jax.org%2Fstfb2020%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=mouseion.jax.org%2Fstfb2020%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Yaffa R Rubinstein, Peter N Robinson, William A Gahl, Paul Avillach, Gareth Baynam, Helene Cederroth, 
Rebecca M Goodwin, Stephen C Groft, Mats G Hansson, Nomi L Harris, Vojtech Huser, Deborah 
Mascalzoni, Julie A McMurry, Matthew Might, Christoffer Nellaker, Barend Mons, Dina N Paltoo, Jonathan 
Pevsner, Manuel Posada, Alison P Rockett-Frase, Marco Roos, Tamar B Rubinstein, Domenica Taruscio, 
Esther van Enckevort, and Melissa A Haendel 



Review

The case for open science: rare diseases

Yaffa R. Rubinstein,1 Peter N. Robinson,2 William A. Gahl,3 Paul Avillach,4

Gareth Baynam,5 Helene Cederroth,6 Rebecca M. Goodwin,7 Stephen C. Groft,8

Mats G. Hansson,9 Nomi L. Harris,10 Vojtech Huser,11 Deborah Mascalzoni,12

Julie A. McMurry,13 Matthew Might,14 Christoffer Nellaker,15 Barend Mons,16

Dina N. Paltoo,7 Jonathan Pevsner,17 Manuel Posada,18 Alison P. Rockett-Frase,19

Marco Roos,20 Tamar B. Rubinstein,21 Domenica Taruscio,22 Esther van Enckevort

,23 and Melissa A. Haendel13

1Special Volunteer in the Office of Strategic Initiatives, National Library of Medicine, Bethesda, Maryland, USA, 2The Jackson Labo-

ratory for Genomic Medicine, Farmington, Connecticut, USA, 3Undiagnosed Diseases Program and Office of the Clinical Director, Na-

tional Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, USA, 4Department of

Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA, 5Western Australian Register of Developmental

Anomalies and Telethon Kids Institute, Perth, Australia, 6Wilhelm Foundation, Brottby, Sweden, 7Department of Health and Human

Services, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA, 8NCATS, National Institutes of Health,

Bethesda, Maryland, USA, 9Center for Research Ethics and Bioethics, Uppsala Universitet, Uppsala, Sweden, 10Department of Envi-

ronmental Genomics & System Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA, 11Department of Health

and Human Services, NCBI, National Institutes of Health, Bethesda, Maryland, USA, 12Center for Research Ethics and Bioethics, Upp-

sala University, Sweden and EURAC Research, Bolzano, Italy, 13Linus Pauling Institute, Oregon State University, Corvallis, Oregon,

USA, 14Hugh Kaul Precision Medicine Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA, 15Nuffield De-

partment of Women’s and Reproductive Health, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University

of Oxford, Oxford, UK, 16Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands, 17Department of Neu-

rology, Kennedy Krieger Institute and Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Balti-

more, Maryland, USA, 18Rare Diseases Research Institute & CIBERER, Instituto de Salud Carlos III, Madrid, Spain, 19Joshua Frase

Foundation, Ponte Vedra Beach, Florida, USA, 20Human Genetics, Leiden University Medical Center, Leiden, Netherlands, 21Children

Hospital at Montefiore/Albert Einstein College of Medicine—Pediatrics, Bronx, New York, USA, 22National Centre for Rare Diseases, Isti-

tuto Superiore di Sanit�a, Rome, Italy and 23Department of Genetics, University Medical Center Groningen, University of Groningen, Lei-

den, Netherlands

Corresponding Author: Yaffa R. Rubinstein, PhD, Special Volunteer in the Office of Strategic Initiatives, National Library of

Medicine, 5504 Manorfield Rd. Rockville, MD 20853, USA; yaffa.rubinstein@nih.gov

Yaffa R. Rubinstein, Peter N. Robinson, and Melissa A. Haendel authors contributed equally to this work.

Received 21 February 2020; Revised 30 May 2020; Editorial Decision 17 June 2020; Accepted 23 June 2020

ABSTRACT

The premise of Open Science is that research and medical management will progress faster if data and knowl-

edge are openly shared. The value of Open Science is nowhere more important and appreciated than in the

rare disease (RD) community. Research into RDs has been limited by insufficient patient data and resources, a

paucity of trained disease experts, and lack of therapeutics, leading to long delays in diagnosis and treatment.

These issues can be ameliorated by following the principles and practices of sharing that are intrinsic to Open
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Science. Here, we describe how the RD community has adopted the core pillars of Open Science, adding new

initiatives to promote care and research for RD patients and, ultimately, for all of medicine. We also present rec-

ommendations that can advance Open Science more globally.

Key words: open science, ontology, FAIR data, common data elements, rare disease patients, data standards

INTRODUCTION

In the United States, a rare disease (RD) is defined as one that affects

fewer than 200,000 persons; for Japan, it is fewer than 50,000; and

for South Korea, fewer than 20,000. In contrast, Europe and Austra-

lia define rare as 1 in 2000 individuals.1,2 Taken together, RDs rep-

resent a public health problem; �10% of people eventually present

with an RD.2–4 Roughly 5000–8000 RDs have been described, but

the number of RDs is estimated to exceed 10,000.5 Most RDs are se-

vere and chronic and some are life-threatening. RDs, which are of-

ten inherited, frequently present in childhood and can have

deleterious long-term effects. Patients with RDs often face diagnos-

tic delays; it can take 7 years or more to reach an accurate diagno-

sis.6,7 Delayed or inaccurate diagnoses hinder the development of

effective treatment plans, preclude prognoses and genetic counsel-

ing, create skepticism among relatives, colleagues, and physicians,

and exclude patients from a community of individuals with similar

experiences. Appropriate information and medical expertise on RDs

are often insufficient, and access to care is difficult. Because many

RDs affect multiple organ systems, care can be fragmented across

several specialties. Electronic health records (EHRs) are not well

suited for recording and sharing information about RDs; it remains

difficult to stratify patients into useful classifications and to identify

individuals with specific RDs8,9 (Figure 1).

Programs have been established to accelerate the diagnosis of

very RDs, identify new RDs, and provide improved RD patient care.

One such program was the NIH Undiagnosed Diseases Program

(UDP),10–13 which expanded to the Undiagnosed Disease Network

(UDN). This NIH-funded consortium includes 12 clinical sites and

analytical cores around the United States14,15; both the UDN and

the UDP provide multidisciplinary clinical evaluations, research col-

laborations, and translational validations for RD patients. The

UDN uses many hundreds of open data resources that have helped

inform many diagnoses, illustrating the success of Open Science for

diagnosing RD patients. Similar RD diagnostic initiatives in other

countries have been instantiated in Japan in 2015 (Initiative on Rare

and Undiagnosed Disease [IRUD]16) in Western Australia in 2013

(Rare and Undiagnosed Diseases Diagnostic Service, RUDDS), and

in other countries. The Undiagnosed Diseases Network Interna-

tional (UDNI), established in 2014, is dedicated to discovering new

diseases and defining standards for sharing data and best practices

in RD programs throughout the world.11 With the Cross-Border

Healthcare Directive (2011/24/EU), the European Union established

a mandatory framework to foster cooperation addressed to RDs

within European Reference Networks.17 Despite these laudatory

efforts to coordinate internationally, there are not enough programs

worldwide to provide the care needed for the many RDs patients. In

addition, RD patients often lack a supporting community that

shares the same disease, despite the many support groups such as the

National Organization for Rare Disorders (NORD), European Or-

ganization for Rare Diseases (EURORDIS), and Coordination of

Rare Diseases at Sanford (CoRDS).

OPEN SCIENCE AND MAKING DATA FAIR

Individually, RDs are rare, and so any one physician, researcher, or

institution will not accrue sufficient experience, data, or knowledge

to effectively treat or research RDs. Therefore, progress in diagnos-

ing, treating, and understanding a particular RD requires the synthe-

sis of all available data from multiple institutions.

To facilitate this exchange of data, the field has started to em-

brace the principles of Open Science. The premise of Open Science is

that research will progress faster if data and knowledge are openly

shared with proper data safety measures and ethical frameworks.18

Open Science, an umbrella term for a wide range of activities from

basic biological research to clinical research, makes it easier for sci-

entists and clinicians to share and access knowledge, resources,

tools, and data. Open Science considers scientific knowledge a prod-

uct of social collaboration that belongs to the community; hence,

the public should have access to it at little or no cost.

Lay summary

Open Science refers to the practice of openly sharing scientific resources (eg, publications, data, findings, knowledge, soft-

ware) and making them accessible to the general public, including lay people as well as professionals By enabling access to

information from a range of sources, specialties, and geographical locations, Open Science can accelerate our understand-

ing of the underlying causes of diseases, helping to reduce the time needed to develop new treatments and thereby improve

the quality of life for all people.

There are thousands of rare diseases (RDs), each one affecting relatively few people. Cumulatively, RDs affect millions

across the globe, but because each disease is so rare, an individual doctor or researcher may encounter very few patients

with the condition. RD research can therefore particularly benefit from data sharing, which is a pillar of Open Science. Rec-

ognizing the potential for a faster path to diagnosis and treatment, many RD patients and their families have been eager to

share their data despite privacy challenges. In this article, we address some of the important developments, resources, and

technologies that have been initiated and/or utilized by the RD community, along with a set of recommendations for advanc-

ing Open Science. The RD community—patients, advocates, physicians, and scientists—has led the way toward openness,

collaboration, and data sharing, demonstrating that they are thought leaders in Open Science.
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In a very real sense, Open Science means open data. To be open,

the data need to be FAIR, that is, Findable, Accessible, Interopera-

ble, and Reusable (FAIR) for humans and machines.19 These FAIR

Guiding Principles,20 adopted in 2014, are followed by many organ-

izations world-wide, including the G20, NIH, and IRDiRC (the In-

ternational Rare Disease Research Consortium). Many projects,

such as the European Joint Programme on Rare Diseases, are now

working on the implementation of FAIR. Germany, France, and The

Netherlands decided to support communities in organizing Global

Open FAIR implementation networks. The RDs GO FAIR Network

was established to foster implementation in the RD domain.21 Also

important are factors specifically related to data reusability, such as

traceability (eg, provenance and attribution), data licensing, and

connectedness of the data.22–24

FAIR data stewardship is challenging, because it requires a wide

range of expertise: knowledge of the domain, local IT systems, local

and cloud storage systems, local and global data access policies,

machine-readable formats for data and knowledge, and software for

communication between FAIR resources. Making data FAIR should

be considered a team effort. There is no comprehensive suite of tools

for a stakeholder to make data FAIR; ELIXIR’s “service bundles”

may provide that in the future, but teams of experts are needed.

The FAIR principles require data to be prepared for reuse. More-

over, for diseases with low prevalence, sparsity of data necessitates

that data are prepared for analysis across multiple sources. Current

lack of interoperability is an obstacle for Open Science.25 Data sci-

entists must go through a laborious and error-prone process of find-

ing data, assuring access and permissions, and making data

compatible and optimally reusable. By experience, this post hoc

data preparation may take up a substantial part of their time,26 and

inevitably leads to an inability to address certain research questions.

Open Science needs international collaboration, infrastructure, and

good data stewardship to address the costly inefficiency caused by

data that are not prepared for reuse.

Sharing data can be problematic in general, but particularly in

the RD domain, because of (1) ethical and legal constraints that can

differ among institutes, regions, and countries, (2) the scale of the

distribution of RD data, and (3) hesitation of scientists to share data

that are precious to their careers. The FAIR principles can provide

an alternative approach to centralizing data, especially clinical data,

from multiple sources for analysis. When data are FAIR “at source,”

distributed analysis can be effectively performed, with only the re-

sult of the analysis leaving the source and the data secure and pri-

vate. In principle, all source data are available, enabling analyses

ranging from counting how many patients show certain conditions

to distributed machine learning to predict treatment outcomes.

Some computer algorithms will be too demanding for distributed

analysis, but even in that case, application of the FAIR principles

will prepare data for efficient analyses.

Another significant challenge is data licensing. Integrative ana-

lytical platforms aimed at facilitating RD research and mechanism

and drug discovery, such as the Monarch Initiative,27 the NCATS

Biomedical Data Translator,28–30 and the Gabriella Miller Kids First

Data Resource Portal,31 rely on the ability to integrate and redistrib-

ute data from other third-party public knowledge sources. The more

FAIR-ready these sources are, the more the integrated data may be

effectively applied for RDs. However, a recent study evaluating

more than 50 data sources suggested that current licensing terms

may significantly impede the use, reuse, and redistribution of data.

The lack of legal data redistribution is a fundamental problem for

RDs, for which maximal utility must be garnered from all possible

knowledge sources. Custom licenses constitute the largest single

class of licenses found in these data resources, suggesting that the

providers either did not know about standard licenses or believed

that standard licenses did not meet their needs.22,23 The (Re)usable

Data Project32 aims to help data providers evaluate the impact of

their licensing terms on downstream users, and is already assisting

RD data providers to improve their reusability.

Despite these challenges, the benefits of FAIR outweigh the cost of

implementation. Theoretically, the additional time to make data com-

patible for multi-source analysis by a data analyst is zero when data

are already FAIR.33 Considering that RD data sets are precious and

(a) (b)

Figure 1. Rare diseases. (A) RDs are individually rare but collectively impact �10% of the population. Here, RDs are represented in the classic aphorism, “When

you hear hoofbeats, think of horses, not zebras”—in other words, look for the most common disease that matches the symptoms, not the rarest one. It was origi-

nally used by Theodore Woodward, professor at the University of Maryland School of Medicine in the 1940s. (B) Defining RDs requires carefully matching a

patient’s spectrum of phenotypes with the phenotypic profile of candidate diseases, here represented by a single color-feature. Each zebra (patient) has a constel-

lation of phenotypes that may match none, some (dashed lines), or all (solid lines) of the phenotypes of other zebras. The diagnosis of RDs often involves recogni-

tion of phenotypic patterns and is aided by computational phenotype analysis.
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reused often, the efficiency gain multiplies quickly. The RD commu-

nity was the first community in Europe to embrace the concept of a

“Bring Your Own Data” workshop (BYOD) aimed at learning how

to make data interoperable. BYODs for RD registry managers have

been organized by the Istituto Superiore di Sanit�a since 2015,34 and

are planned to continue as part of an annual summer school at least

until 2023 with support from the European Joint Program on Rare

Diseases (EJPRD). Inspired by the feedback from these BYODs, “RDs

GO FAIR” was created to foster adoption of FAIR principles toward

a critical mass of FAIR data resources.17 Through interdisciplinary

collaboration fostered by RDs GO FAIR and others, and activities of

ELIXIR, BBMRI (Better Biology Makes Reality Interesting), the NIH,

the EJPRD, NORD, and EURORDIS, we expect gradual maturation

of guidelines, supporting tools, FAIR data stewardship (including in

patient organizations), and for-profit and not-for-profit service pro-

viders. A FAIR ecosystem thus brings about an Open Science environ-

ment where new analysis possibilities can be explored under well-

defined and transparent conditions for sensitive data.

OPEN SCIENCE IN THE RARE DISEASE FIELD

RD patient empowerment and resources
Patients, families, and their advocates are key stakeholders that have

not always been sufficiently engaged in many biomedical research

initiatives.35 Engaging patients as partners in product development

is important to better understand the patient perspectives and the

pathogenesis of the disease. Patients and caregivers are often the

best advocates for raising awareness and describing the clinical man-

ifestations and the daily progress of the disease and treatments.36

Engagement of patients and other stakeholders (such as caregivers,

advocacy organizations, and clinicians) in clinical research can help

to ensure that research efforts address relevant clinical questions and

patient-centered health outcomes.37 Numerous RD programs and

organizations exist, including the NIH Rare Disease Clinical Re-

search Network (RDCRN),38 the EURORDIS-Rare Diseases Eu-

rope,39 Patient-Centered Outcomes Research Institute (PCORI),40

the Genetic Alliance,41 NORD,42 and the Innovative Medicine Ini-

tiative (IMI).43

Many patients and their families look for ways to improve dissem-

ination of their data and help catalyze research in their RD in a hope

for faster and better diagnosis and treatment. There are many inspir-

ing examples of individual patient or a parent who with little resour-

ces but with much determination, they established a foundation for

their RD, shared their data and created a successful collaboration be-

tween scientific researchers and patient organizations. A few to men-

tion are: Syndromes Without A Name USA (SWAN),44–47 Ngly1.org

foundation,48,49 the Chordoma Foundation,50 the Castleman Disease

Collaborative Network,51 the Joshua Frase Foundation,52 the Cystic

Fibrosis Foundation,53 and the PXE International.54 In all of these

cases, there has been not only a patient or parent creating research

programs and collaborations but also data sharing and data reutiliza-

tion to support diagnosis and discovery. These foundational patient-

scientist collaborations are a clear window into what will become the

de facto standard, that is, Open Science, international collaborations

involving patients, clinicians, researchers, and data technologists in a

global venue.

The diversity of the aforementioned activities has contributed to

the mention of the importance of patient engagement in RD clinical

trials in the US Food and Drug Administration (FDA)’s 2019 draft

guidance document for industry.35 The role of patients’ and parents’

support groups is growing beyond the boundaries of individual na-

tional initiatives aimed at raising public awareness and promoting

medical care and social benefits.

Common data elements
Open access to data is not sufficient to make the data useful to sci-

ence; data must also be structured, documented, interoperable, and

curated. The magnitude of this task has led to the development of

programs and software that helps automate data curation, data inte-

gration, and data mining; it has also underscored the need for ma-

chine learning and language processing.8,55–58 Health data comes

from many different sources, and many different people produce,

curate, and use the data. Integration is obstructed when systems and

studies use different words to describe the same objects or concepts,

use the same words intending different meanings, or use different

data formats or structures.

Common data elements (CDEs) are a universal language that

describes the data collected in a study. CDEs make data meaningful by

structuring and defining commonly used, community shaped, recom-

mended measures, and assessment instruments. Using CDEs when first

collecting biomedical data makes it easier to develop meaningful analyses

and research projects. When data is associated with CDEs, they can be

more readily analyzed and reused to accelerate research into disease path-

ogenesis and therapeutic development. Although some CDEs were origi-

nally developed to address the needs of a specific research domain or

clinical application, many CDEs address universal concepts of interest to

a wide variety of domains for a variety of data collection purposes, such

as demographic characteristics of research participants. In many cases,

CDEs related to RDs may be broadly applicable for collecting data about

other diseases, or for rapidly pivoting to collecting well-defined data criti-

cal for research related to emerging diseases, such as lung function meas-

ures that might have been developed for people with cystic fibrosis, and

might be leveraged for use with patients with COVID-19. Identifying and

reusing existing CDEs paves the way for smoothly finding, interpreting,

and exchanging data. Unambiguous definitions are critical. For compara-

bility among sources, CDEs should describe not only the data to be col-

lected, but also rich metadata, that is the manner in which the data are

collected and how the data are recorded. CDEs should define the parame-

ter space for the data point and, instead of using natural language, they

should encourage the use of standardized terminologies and ontologies.

While consistency of data collection and the use of CDEs within an indi-

vidual study are essential for maintaining data quality and enabling analy-

sis, consistency of data collection across multiple studies brings additional

value by promoting data sharing.59

Nevertheless, despite potential benefits and the extensive use of

CDEs across clinical research studies, there are some challenges.

There may be differences across studies in the interpretation and im-

plementation of the data elements; researchers must ensure that

CDEs are valid in different populations recruited for a study (eg,

participants may have different cultural and linguistic backgrounds).

Adoption of CDEs can be inhibited by existing research practices

and legacy data systems. Conversely, use of clinical research data be-

yond the original purpose for which it was collected requires that

researchers ensure that the collected data and its use is consistent

with the informed consent and research ethics.

Data collection and annotation with a well-defined, controlled

vocabulary and terms allow describing the meaning of data in a hu-

man and machine-readable way, enable data harmonization and

meta-analyses, and enhance data sharing. Lack of standardization

hinders data sharing and interoperability, so the use of CDEs is par-
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ticularly critical for research and clinical care for people with RDs.

The National Institutes of Health (NIH) Common Data Element Re-

pository (CDE-R), developed and hosted by the US National Library

of Medicine (NLM), is a platform for identifying related data ele-

ments in use across diverse areas, for harmonizing data elements,

and for linking CDEs to other existing standards and terminolo-

gies.60,61 NLM and others across NIH work to ensure that formal

vocabularies used to describe people, health problems, and health

care processes are sufficiently robust to encompass the full range of

health and disease across all populations and all communities.62–75

The CDE-R contains many CDEs developed for and by the RD re-

search community, the Global Rare Diseases Registry Data Reposi-

tory (GRDR).76,77 The PhenX toolkit is a catalog of measurement

protocols, developed with a robust community consensus proto-

col.78 PhenX notes that its protocols can be used to combine studies

to increase statistical power, enable comparisons of studies to vali-

date results, and increase the impact of individual studies. PhenX

has been used for the application of standardized measures in many

clinical research studies, many of which are submitted to dbGaP.

PhenX contains a collection of measures for Rare Genetic Condi-

tions79 that, while very useful, would require significant expansion

beyond their current remit of 10 per domain to be relevant to the

10 000 RDs that exist. PhenX also allows the creation of clinical

data collection forms in standardized tools such as REDCap,80

which prospectively is a great advantage in standardizing data. All

of the aforementioned efforts help support improved interoperabil-

ity of clinical data across studies; they are critically important for

RDs, for which data from one study or a different RD may help in-

form others.

Many RDs lack consistent identifiable terms, limiting literature

searches, registry interoperability, and comparability in clinical infor-

mation systems. Despite the advances in the creation of CDEs, many

RDs lack a comprehensive set of disease definitions, associated pheno-

types, genetic variations, treatments, prognoses, and other disease

characteristics. However, CDE-development efforts that involve mul-

tidisciplinary collaboration, including informatics expertise, can ad-

dress some of these challenges by identifying synonymy, clearly

defining terms, and achieving consensus of key stakeholders for adop-

tion of the CDEs. For example, this process was used to develop

CDEs and guidance for health information exchange of newborn

screening orders and results for lysosomal storage disorders. We now

detail ongoing efforts to address this gap; the next steps would be to

implement such components into CDEs, clinical systems such as

EHRs, clinical decision support tools, and RD registries.

Data collected for RD research typically includes laboratory

measurements, clinical observations, imaging, genomics and other

’omics data, as well as patient-reported outcomes (PROs). However,

one of the biggest challenges for RD diagnosis is that RDs are not

well-represented in terminologies typically used within EHRs, diag-

nostic settings, or other clinical information systems. The aforemen-

tioned CDEs for RD are intended to address this issue, but

standardized ontologies are still lacking for use in those CDEs and

clinical systems. Ontologies provide precise definitions of terms and

relationships between different terms, which makes it possible to

provide better quality checks, remove ambiguity, and provide much

greater computability and utility in diagnostic or other algorithms.

Precision medicine would greatly benefit from improved logical rep-

resentation of clinical terminologies for classifying patients9; simply

put, RD diagnostics requires it.

The Human Phenotype Ontology
The Human Phenotype Ontology (HPO) provides a structured, com-

prehensive, and well-defined set of terms that describe phenotypic

abnormalities seen in human disease. It also provides a collection of

disease-phenotype annotations, that is, computational assertions

that a disease is associated with a given phenotypic abnormality.

The HPO was created to enable “deep phenotyping,” that is, cap-

ture of symptoms and phenotypic findings using a logically con-

structed hierarchy of phenotypic terms.81,82 The HPO is a flagship

project of the Monarch Initiative, an international consortium dedi-

cated to developing integrative semantic technologies for disease di-

agnosis and mechanism discovery.27,83–85 The HPO allows

algorithms to match sets of patient phenotype profiles in a “fuzzy”

non-exact manner to gold standard RD profiles, other patients, and

model organisms, greatly facilitating diagnosis.86–88 The HPO has

therefore become the de facto standard for representing clinical phe-

notype data for diagnosis for rare genetic diseases by the 100 000

Genomes Project,89 the UDP,13,90 and Undiagnosed Diseases Net-

work (UDN), as well as thousands of other clinics, laboratories,

tools, and databases59,91,92; it is also a IRDiRC (International Rare

Diseases Research Consortium) Recognized Resource.93

Although the focus of the HPO has, to date, been on RDs, it has

been extended to provide a computational foundation for

phenotype-driven analysis of genomes and other translational re-

search on complex human disease.91 For example, many of the labo-

ratory data recorded in EHRs for RD patients are expressed in an

exact manner, such as measurements captured using the Logical Ob-

servation Identifiers Names and Codes (LOINC) standard for identi-

fying medical laboratory observations. Recent efforts have been

made to support interoperability between HPO and LOINC, such

that direct measurements can be converted into HPO codes and

used for diagnostic purposes.94

Deep phenotyping can be time-consuming and may miss key

phenotypic features because they are not assessed (eg, phenotypes in

internal organs that are only observable if a CT is performed) or not

reported (eg, an inconsolable child or heavy snoring may not be

documented in a clinical setting). Patients could therefore provide

informative contributions to their computable phenotype profiles;

however, the “terminology gap” between medical professionals and

patients can limit patient participation both in research studies and

in clinical phenotyping. Current patient vocabularies provide broad

consumer equivalents for clinical findings, medical procedures and

equipment but are not well integrated with research terminologies.

For undiagnosed patients and those with RDs, affected individuals

themselves are an especially critical source of phenotyping informa-

tion. These patients accumulate a clear, firsthand knowledge about

their condition, first from observing how the condition progresses

daily, but also from multiple clinician evaluations and from other

families and patients with similar conditions. In some cases,

patients’ self-phenotyping combined with additional investigations

has led to clinical diagnoses.95

To address these issues, the HPO was further developed to allow

capture of patient-generated phenotypic profiles for use in diagnos-

tic and patient community settings (registries, forums, clinics, and

patient websites). To achieve this, a patient-centered lexicon of rele-

vant terms was developed and added to the HPO.59,91,92 These

terms are frequently referred to in plain language but can also in-

clude clinical terms (eg, Myopia [HP: 0000545] has a lay synonym

“Near-sightedness”). Since the lay translation of the HPO uses the

same logical infrastructure as the HPO itself, patient-generated phe-

notyping data can be readily combined with clinical phenotyping
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data to prioritize variants, improve diagnostic rates, and examine

expressivity, penetrance and disease progression. Formal evaluation

of the diagnostic capabilities of the lay HPO is in progress, and

includes an informatics comparison against the gold-standard HPO

disease annotations used in genomic diagnostics for patients with

RDs. The lay HPO is expected to serve as a resource that will allow

patients and families to become more effective partners in transla-

tional research, empowering families to achieve an accurate diagno-

sis and enabling people to improve the lives of others with RDs by

increasing medical knowledge through their personal perspectives.

The lay HPO should also enable RD patients to share their pheno-

typing profiles openly on the web using standards such as Pheno-

packets (see below), which allows the use of informatics to support

open querying for similar patients to improve diagnosis.

Databases to share rare disease knowledge
While the HPO81 has become a global ontological standard for rep-

resenting phenotypic attributes of RDs, community coordination of

RD disease terminology is still emerging. Different terminological

and database resources have been developed that describe RDs. The

Online Mendelian Inheritance in Man (OMIM) began in the early

1960s by Dr. Victor A. McKusick as a catalog of Mendelian traits

and disorders and has since become a global standard for documen-

tation of Mendelian diseases.96,97 OMIM provides highly curated

knowledge on genes and genetic diseases, phenotypes, and the rela-

tionships between them. Each disease listed in OMIM has a current

summary of information based on expert review of the biomedical

literature. Orphanet was established in France by the INSERM

(French National Institute for Health and Medical Research) in

1997, and provides the community information and nomenclature

on RDs; it is focused on improving the visibility of RDs in health

and research information systems, particularly in Europe. The

ORDO98 Orphanet rare disease terminology, an IRDiRC Recog-

nized Resource,93 has been successfully used in the RD-Connect

Sample Catalogue,99,100 which is an open data repository with infor-

mation about biological samples from RD patients that are available

to scientists for (re-)use. Disease infoSearch (diseaseinfosearch.org)

is a crowdsourced database of thousands of diseases that helps

patients find resources and studies, and integrates information from

numerous sources, such as the NIH Genetic and Rare Diseases Infor-

mation Center (https://rarediseases.info.nih.gov/). These RD-

spanning databases are complemented by gene-, disease-, and/or

locus-specific databases. For example, both the Human Genome

Variation Society (HGVS)101 and the Leiden Open Variation Data-

base (LOVD) list approximately 1500 expert-curated locus-specific

mutation databases.102

Approaches to discovering the genetic basis of disease include

linkage studies, genome-wide association studies, and a variety of

designs involving next-generation sequencing including whole-

exome and whole-genome sequencing. The majority of software

used for these analyses are open access, greatly facilitating the pace

of discovery. The results of many studies are also readily available.

For example, the National Human Genome Research Institute

(NHGRI)-EBI GWAS catalog reports over 70,000 variant-trait asso-

ciations from >5000 studies.103 GenBank has freely released DNA

sequence data since 1982.104 ClinVar is a public archive of reports

of the relationships among human variations and phenotypes, with

supporting evidence.105 The Genome Aggregation Database (gno-

mAD) is an aggregation and harmonization of exome and genome

sequencing data from a variety of large-scale sequencing projects.

Summary data are available for the wider scientific community

based on genomic sequences of over 140,000 individuals. Also, the

Database of Genotypes and Phenotypes (dbGaP) at NIH and the Eu-

ropean Genome-phenome Archive (EGA) at EBI.106 These are exam-

ples of resources that are facilitating major progress in the discovery

of genes and their functional characterization, leading to progress

toward improved diagnosis and treatment.

Recently, major knowledge sources on RDs such as Orphanet,

OMIM, ClinGen, MedGen, GARD, NCI Thesaurus, and others

have been working together to harmonize disease definitions in a

new ontology called “Mondo”,107,108 meaning “world”. While

Mondo is still in development, the new ontology already provides a

computational framework for defining RDs based upon logical rep-

resentation of a variety of attributes such as phenotypes, genetic var-

iants, treatment, onset, frequency, etc. Algorithmic and manual

curation efforts have been used to align these RD terminologies,

yielding preliminary estimates that the total number of RDs may ex-

ceed 10,000, that is, many more than the �7000 estimated during

the inception of the Orphan Drug Act.109 More than half of these

RDs can be found in three or more resources, whereas �4 K are

unique to a given source. This preliminary analysis suggests that

there could be a substantially higher number of RDs than currently

assumed, with obvious implications for diagnostics, drug discovery

and treatment. However, it should be emphasized that much more

rigorous analysis is needed to establish the accuracy of this estimate.

Because RD patient presentations are heterogeneous and may

not perfectly match existing disease definitions based on very small

populations, it is critically important to share patients’ phenotypic

information to support diagnosis, matchmaking, patient registries,

communities, and target drug development. Further, despite the sub-

stantial improvements in exome analysis that have revealed numer-

ous new rare Mendelian disease genes, the specific causal gene

cannot be identified for more than half of patients.109 For these

patients, evidence for causality depends on identifying other affected

individuals with a similar phenotype and functionally impactful var-

iants in the same candidate gene. In order to support this n-of-1 pa-

tient matching, the Global Alliance for Genomics and Health

(GA4GH) initiated the Matchmaker Exchange (MME).110 MME is

a federated network connecting different patient databases contain-

ing genomic and phenotypic data using a common application pro-

gramming interface and allowing data exchange among them. MME

has helped diagnose thousands of patients globally, by connecting

these regional resources in a data sharing network that preserves pri-

vacy and maintains clinical review of potential matches and subse-

quent diagnoses.

While the MME has significantly advanced diagnostic potential

for very RD patients, it does depend upon a patient being registered

within a participating MME database. To increase computability of

the phenotype data and to maximize potential open data sharing of

patient phenotype information, the GA4GH created Phenopackets.

Phenopackets is a standard file format for sharing phenotypic infor-

mation that enables structured data sharing of information about a

participant’s phenotype, such as clinical diagnosis, age of onset,

results from lab tests, and disease severity.111 It can link to separate

files containing a patient’s genetic sequence and pedigree, if avail-

able. Phenopackets are expected to standardize phenotypic data ex-

change within medical and scientific settings. This will allow

phenotypic data to flow among clinics, databases, clinical labs, jour-

nals, and patient registries in ways that are currently feasible only

for more quantifiable data, like sequence data. As more Phenopack-

ets for RD patients are shared, clinicians, biologists, RD registries,
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and disease and drug researchers will build more complete models

of disease and match similar patients (Figure 2). In addition, the use

of Phenopackets to better represent and share the heterogeneity of

RD presentation will lend itself well to drug repurposing. However,

repurposing drugs similarly relies on sharing knowledge that has al-

ready been generated but may otherwise be difficult to access for

those trying to repurpose.112 Monarch’s RD diagnosis tool Exom-

iser113,114 now takes Phenopackets as input, and Phenopackets are

being adopted for projects such as the Japanese Agency for Medical

Research and Development’s BioBank Network (biobank-search.-

megabank.tohoku.ac.jp) as well as SOLVE-RD (solve-rd.eu), the

RD project of the European Commission.

RD registries
Registries are considered key instruments for developing RD clinical

research, enhancing patient care and health planning, and improving

social, economic, and quality-of-life outcomes115,116 for the analysis

of the natural history of RDs.117 Traditionally, registries have been

either population-based or hospital-based. The former aim to cap-

ture all cases from a specific population and are focused on incident

cases, seeking to describe the natural history of diseases.118 The lat-

ter provide responses to different clinical questions, serving as a

source of patients for clinical trials and identifying and analyzing

biomarkers as clinical prognosis factors.119 Both strategies are valid

and are complementary because each can control for different types

of biases.

Defining a standardized set of data elements is a key function

and a key challenge for all registries120; the process of standardiza-

tion is closely linked to the original sources of information used. The

primary source of information is the patient and/or the physician

collecting information directly from the patient; these sources have

been used for centuries. However, standardizing the phenotype is

not simple because we want the data collected to represent the

patient’s clinical course. Standards such as CDEs, PROs,121 and

ontologies such as HPO82 are not used by most registries; those that

use them often do so in an ad hoc manner. Therefore, the main chal-

lenge for capture and reuse of registry data is transforming the

physician’s free text or bespoke encoding into a standardized form.

Specifically, how can the reliability between observers and within

observers be guaranteed in an RD registry.122 Is the phenotype col-

lected at a single point enough to define the full natural history of

the disease? How long should be the follow-up period for each spe-

cific RD? How can a registry help in the analysis of natural and tem-

poral variability of diseases? In fact, the only way to provide valid

health outcomes is to guarantee the quality of all procedures in-

cluded in the registry123; the use of ontologies instead of classical

registry-specific standardization provides added value. Such stan-

dardization uses strict definitions, controls all parameters for each

data element, and provides a high level of certainty about the data

already collected and saved. Conversely, ontologies allow clinicians

a certain level of confidentiality and flexibility because the terms are

probabilistically linked. Ontologies and related standards facilitate

data sharing among registries and improve interoperability between

clinical and research systems.

Other secondary sources of information such as EHRs124 can

provide some structured information are usually well standardized.

EHRs can provide some information for certain types of registries,

but since they have been built for other purposes with different crite-

ria, they are not always appropriate for the aims of registries (EHRs

typically contain a problem list functionality, while standardized

and structured capture of symptoms is almost never available). RD

registries have the capacity to reveal new disease genes, modifier

variants, and new or very rare phenotypes, as well as the assessment

of biomarkers, new treatments, and the impact of the implementa-

tion of health measurements. However, maximizing a registry’s abil-

ity to address unmet needs of RD patients requires data sharing and

phenotypic and omics data, by researchers. Well designed and man-

aged registries are regularly used for these purposes, but they must

adapt their methods by collecting data directly from the EHR to

identify the phenotypes instead of searching and recording specific

data elements.

At early stages of registry planning, patient groups can provide

support both as advisors and as partners. Patient groups can propose

the creation of registries to healthcare institutions and work in a

partnership. These outstanding, emerging possibilities should be

carefully considered.125 As a recent example, several patient associa-

tions have contacted the Italian National Health Institute to estab-

lish and maintain disease-specific registries, and formal agreements

have been signed between each association and the Institute. Fur-

ther, the use of standardized registry software such as NORD’s Nat-

ural Histories Patient Registry Platform, RDconnect’s Registry

Finder126 Coordination of Rare Diseases at Sanford (CoRDS), and

the Program for Engaging Everyone Responsibly (PEER), are all

examples of improved interoperability and data sharing and evolu-

tion with the standards over time. Ideally, such platforms will even-

CURRENTLY WITH PHENOPACKETS... IN THE FUTURE ...

Phenopackets provides a format for integrating 
an individual's genomic data and phenotypic 
information that can be used for electronic data 
exchange.

Phenopackets will enable a whole network of 
phenotypic data exchange that improves our 
ability to understand, diagnose, and treat 
diseases.

Many healthcare systems still rely on manual 
entry of phenotypic data, making it difficult to 
exchange information electronically in a 
standard way.

Figure 2. Phenopackets provide a mechanism for structured, de-identified, patient-level phenotype data sharing for computational use across the globe and in dif-

ferent information systems. Image credit: GA4GH Communications Team.
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tually robustly support both patient-generated individual content

and synchronization with EHR data—something that is likely to im-

prove clinical trial efficacy, recruitment, and engagement.

In general, early engagement of patient groups can substantially

contribute to the success of the registry. The patient’s general contri-

bution will assure that the Registry meets the patient’s needs and

priorities, as well as their own data sharing wishes More specifically,

patient engagement supports recruitment, relevance to patient

healthcare, and the transparency of the process.127 Nevertheless, ro-

bust guidance on this issue is still insufficient and approaches to

meet the challenge should be refined. Methods of engagement may

vary based on the registry’s aim and many other factors. However,

direct participation of the Registry governance at several levels is

suitable for engaging patient partners in decision-making. Patient

engagement in registries is an evolving field that presents both op-

portunities and challenges. Early engagement in the planning phase,

consistent engagement throughout the registry functioning, rele-

vance to patient needs, empowerment of each team component as

well as transparency will create a tool that will both serve the

patients and society and provide novel and integrated know-how.

Simply put, RD registries are key to maximizing data sharing, pa-

tient communication across the globe for RD communities, delineat-

ing disease mechanisms, and promoting drug discovery; however,

they are challenged in interoperability, maintenance, multi-model

data types and sources, and governance.

Facial imaging, an artificial intelligence technology for

RD research and diagnostics
The ability of artificial intelligence (AI) technologies to integrate and

analyze data from different sources can be used to overcome some

of the RDs’ challenges.128,129 In recent years, there have been signifi-

cant advances in disease diagnosis as a result of new technologies for

collecting and analyzing data. Researchers and clinicians are using

these technologies to diagnose rare genetic diseases by scanning a

person’s face or a photograph. AI can also be applied to speech

structure and patient movement.129

The eagerness of the RD patients and their advocates to share

their data and collaborate, despite the many privacy concerns, has

facilitated the implementation of state of the art technologies in di-

agnosis and improving quality of life. Such new technologies include

the ability to diagnose rare genetic diseases by scanning a person’s

face or a photograph. Many RDs are manifested in a distinctive and

recognizable facial phenotype, such as Noonan syndrome and Cor-

nelia de Lange syndrome.130,131 Algorithms that analyze facial

images have matured in recent years so that they predict several hun-

dred RDs with a high degree of accuracy.20 Three-dimensional facial

analysis (3DFA), an evolving deep phenotyping application, pro-

vides detailed representation and analysis of the RD phenotypes that

can generate biological insights. In the RD domain, 3DFA is increas-

ingly being implemented primarily for diagnostic purposes132–134

but also for monitoring existing and trial therapies.133,135,136

Advanced facial analysis platforms such as Cliniface,137 FACE2-

GENE,138 FaceBase,139 and DeepGestalt130 can point doctors in the

direction of specific disorders or genes that could be responsible for

the patient’s symptoms, potentially reducing the number of diagnos-

tic tests needed to confirm the diagnosis. Facial analysis can also of-

fer greater diagnostic certainty when the genetic causation remains

undetermined or when molecular testing is unavailable, for example,

in resource poor environments. AI and other analytic approaches

provide objective analysis of phenotypes and the association of

phenotype and genotype to streamline diagnostics, including ge-

nomic sequence interpretation.129,140 The application of facial

analysis to RD diagnosis and care will require open source

approaches as well as platforms that facilitate pre-competitive

tools and partnerships, and that can be integrated with multi-

omics initiatives.

An example is the Cliniface 3D facial analysis platform.137 Clini-

face 3D tools have been shared for integration in multi-omics plat-

forms for RD research, including through the Personalized Medicine

Center for Children at the Telethon Kids Institute, and it is being

prepared for partnership with the National Rare Diseases Registry

System of China.141 Cliniface has been implemented across multiple

research and clinical environments, including state-wide for the

Western Australian Health Department, and is being increasingly in-

tegrated with the Patient Archive knowledge management plat-

form142 which is connected to MME.110 Cliniface converts 3D

facial images to text-based descriptions, specifically HPO terms.

Converting face-to-text reduces the risk of individual identification,

mitigating against the inherently identifying nature of facial data.

These text-based descriptions can be shared through MME or

Phenopackets, and they can be incorporated into text-based diag-

nostic support algorithms.

One of the most promising resources for facial data sharing is

the Minerva Initiative.143 While it was originally launched for 2-D

data sharing, the underlying principles are intentionally extensible

to 3-D data. The initiative includes a research data resource (Mi-

nerva Image Resource—MIR) and an open research consortium

(Minerva Consortium—MC) which allows the sharing of identifi-

able patient data, such as facial photographs and collaborative re-

search projects on RD. It operates in the spirit of Open Science to

enable precision public health. The Minerva Initiative has the fol-

lowing objectives: to build a community of researchers and clini-

cians, to continue to develop ethical structures and provisions for

working on identifiable clinical images, and to deliver secure data

sharing among consortium members. It has been constructed to

align with the goals and objectives of the GA4GH.144 The Minerva

Consortium (MC) is an international network of clinicians and

researchers, from both public and private organizations. The public

website Minerva&Me allows anyone around the world to partici-

pate directly in the Minerva Initiative.145 Initiatives such as the Mi-

nerva Initiative are poised to lead the way in terms of not only

amassing data but also using integrative technologies for accessing

and using data at the point of care.

While 3DFA was originally developed for RD diagnostic applica-

tions, it can also be applied to treatment monitoring for both rare

and common diseases, as demonstrated in a new project traversing

specialties at the Perth Children’s Hospital and Western Australia’s

premier clinical trials facility, Linear Clinical Research. In addition,

while 3DFA is yielding translational insights into innovations for di-

agnosis, treatment, and monitoring in the RD domain, it also exam-

ines the overlap between rare and more common diseases and,

therefore, mechanistic research. Notably, population-level studies

demonstrated that common genetic variations (polymorphisms)

were associated with discrete patterns of facial variation. Notably,

these facial signatures recapitulated the characteristic facies of the

respective genetic syndrome due to rare genetic variation (patho-

genic variants).146 An example of a common disease that is poised

for 3D facial translational research is obstructive sleep apnea (OSA).

OSA is a condition seen in RDs such as mucopolysaccharidoses,

where it regularly has an earlier onset than in the general popula-

tion. These findings highlight the overlap between common and rare
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phenotypes, with implications for possible reciprocal (rare-common)

insights.147

Data acquisition, analysis, and sharing mechanisms for identifi-

able facial data are key to RD diagnosis and research, but special-

ized approaches are required to simultaneously facilitate more Open

Science while respecting patient privacy.

Telemedicine
Developments in modern communication technology such as tele-

medicine have created new opportunities for the delivery of health

services to remote areas and unprivileged communities. Telemedi-

cine refers to communication tools for medical care delivery at a dis-

tance, including telephones, smart phones, interactive televideo,

“store-and-forward” images and medical record transmission via

personal computers, and remote monitoring.148 High-speed tele-

communications systems, in addition to the invention of devices ca-

pable of capturing and transmitting images and other data in digital

form, have facilitated better sharing, collaboration, and efficiency in

telemedicine. As a result, health professionals can communicate

faster, more widely, and more directly with other clinicians and

patients regardless of location.

Access to medical care is a major concern for RD patients and

their families not only in rural areas and developing countries.

Among the main issues are a lack of physicians specialized in RD

treatment; concerns about sharing personal information and the se-

curity of personal information, few programs and resources to sup-

port low socioeconomic families with travel accommodation, as

well as loss of income associated with obtaining care from specialists

at long distances.149

RD and undiagnosed patients are usually dispersed over a large

geographical area, yet they require multidisciplinary experts. As a

result, a correct diagnosis may be delayed, and ready access to ongo-

ing care is limited. Thus, telemedicine can profoundly change pa-

tient care for individuals with RD and directly address challenges of

geography, travel burden, and access to experts; it can provide open

access and global data sharing. Telemedicine can increase patient ac-

cess to health care services otherwise unavailable149 as well as for

patients in developing countries and rural/remote area.150 If utilized

to its potential, telemedicine may open the way for more equitable

distribution of knowledge and medical care throughout the

world.149,150 In 2020, the Mayo Clinic plans to serve 200 million

patients, many of them from outside the United State and most of

them remotely.149

Telemedicine can revolutionize the way in which healthcare is

delivered and allow the home to become a preferred place of care.

The advantages of this approach are patient satisfaction, reduced

travel requirements to health care providers, clinics and hospitals,

early intervention for disease progression, support for caregivers,

and economic benefits associated with reduced hospitalization

rates.151

In addition to the increased connectivity between providers and

patients, telemedicine also provides a means for researchers to con-

nect to potential participants. Mobile and wearable medical devices

enable patients to share and transmit a wealth of digital health data

to databases contributing to patient registries, natural history stud-

ies, and clinical trials. Telemedicine has already been used and

proven its value for chronic non-RDs, such as congestive heart fail-

ure and chronic obstructive pulmonary disease152 as well as some

RDs, such as mesothelioma,153,154 cystic fibrosis,155 diabetes,156–159

Prader–Willi syndrome,160 and juvenile idiopathic arthritis.161 As

promising as telemedicine sounds, it cannot be a replacement for in-

person examination. There are significant limitations and barriers

that need to be addressed and overcome, including quality of

patient-clinician interaction, insurance coverage, reimbursement for

services, privacy and legal issues of state licensure laws and liability

concerns.

Providing care through telemedicine technology may not work

for every organization. However, with the move toward personal-

ized medicine, incorporating telemedicine into the health system can

offer benefits to physicians and patients.162 Examples for reductions

in use of services are hospital admissions/re-admissions, length of

hospital stay, and emergency department visits that translate into re-

duced mortality.152 To increase the uses and implementation of tele-

medicine, more resources and studies are needed to evaluate the net

value, visibility, and access for patients and the health care pro-

viders.

Telemedicine can emerge as an important component of the

health care delivery system that relies on sharing medical informa-

tion, knowledge and collaboration, which are the building blocks

necessary to facilitate Open Science. RD patients and their families

seem to more enthusiastically share personal information and col-

laborate because they desperately want to find the correct diagnosis,

experts, and treatment.

In the context of global health, telemedicine is beginning to have

an important impact on many aspects of healthcare, especially in de-

veloping countries and in rural areas, opening the way for distribu-

tion of knowledge and medical care throughout the world.150

Although Open Science can aid the RD community, the RD commu-

nity can be instrumental for Open Science and aid to further the de-

velopment of Open Science by adopting and incorporating

telemedicine and new technologies into health care delivery.

Ethical and legal considerations
We have demonstrated the significant need for Open Science prac-

tice to share data and collaborate in support of RD diagnosis, re-

search, and patient care. Open Science creates some dilemmas and

opposing forces with regards to privacy and ethical concerns. Expe-

rience with the RD patients and their families has demonstrated that

their eagerness for adequate diagnosis and treatment override the

privacy concerns. Nevertheless, as new technologies, and systems

are developed and implemented, the ethical and legal challenges in-

crease.163,164

Global data sharing creates significant challenges for the respon-

sible stewardship of the growing number of large and complex data-

sets, including oversight, accountability, and data management.

Ethical and legal frameworks are required to protect the rights of af-

fected individuals, while still sharing data appropriately to promote

progress in RD research and health care. For example, before in-

creasing the availability and dissemination of RD patient data, scien-

tists must consider participant protections and appropriate data use,

consent, and participant understanding of data sharing, ownership,

reuse, analysis and the generation of new or derived data, among

other concerns.

A number of international organizations165 have devoted consid-

erable attention and resources to developing regulatory frameworks

for open data production, dissemination and use. The frameworks

have resulted in national policies on Open Science, and documents

such as the international accord Open Data in a Big Data World,166

the Open Science policy by the European Commission,167 and the

National Academies of Science “Open Science by Design: Realizing
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a Vision for 21st Century Research”,168 which recommends that

data be made FAIR based on legal and ethical considerations. The

Biobanking and BioMolecular Resources Research Infrastructure-

European Research Infrastructure Consortium (BBMRI ERIC) is

building an international Code of Conduct for health research, with

the aim of contributing to the proper application of the regulation,

taking into account the specific features of processing personal data

in the area of health research in order to clarify and specify certain

rules of the General Data Protection Regulation (GDPR) for those

who process personal data for scientific research in the area of

health.169 Similarly, the NIH Genomic Data Sharing Policy170

includes provisions for the sharing of large-scale genomic data while

taking into account participant protections and limitations on data

use based on the consent of the study participants. All of these

efforts emphasize the importance of good data practices in the shar-

ing, dissemination, and re-use of biomedical data, particularly con-

sidering issues of privacy, confidentiality, intellectual property and

security.165 Clinical trial data sharing has been particularly challeng-

ing when it involves the pharmaceutical industry or other entities

with IP interests. With the extremely small RD cohorts, it is

especially important to coordinate and to share results globally. The

Vivli (https://vivli.org/) program aims to support sharing and reuse

of clinical research data, including individual participant-level data

from completed clinical trials globally. Medical journals generally

require clinical trials to be posted on clinicaltrials.gov, and FDAAA

requirements include submission of the data of both positive and

negative studies. However, for RDs, it is especially important to

share trial information as trials are being designed and launched, so

that different studies can be aligned and patients can be recruited

from around the world. PAGs for each RD have been successful in

doing so, and approaches such as those attempted in OpenTrials

(https://opentrials.net/) are laudatory but are not yet established

enough to support the RD community.

Approaching ethical challenges from an international standpoint

is central to the promise of Open Science.171

Addressing Indigenous rights and interests in genomic and other

data sharing is critical for equitable scientific translation. While In-

digenous experiences with genetic research have been shaped by a

series of negative interactions, there is increasing recognition that

equitable benefits can only be realized through greater participation

of Indigenous communities. Issues of trust, accountability, return of

benefit and equity will need to be addressed. In this context, it is no-

table that the Research Data Alliance International Indigenous Data

Sovereignty Interest Group172 developed the CARE Principles for In-

digenous Data Governance. These principles identify Collective ben-

efit, Authority to control, Responsibility, and Ethics to be used

alongside other data centric principles.

While critically important and relevant to all health care domains,

endeavors such as these do not specifically take into account the spe-

cial Open Science needs of RD patients and caregivers. RD advocacy

and methods for robust and informed data sharing must be developed

alongside policies and secure infrastructure that are specifically

designed for sharing data about RD patients—who by their very rarity

have a much greater likelihood of re-identification or even a desire to

share identified data. Toward the end of supporting genomic health

ethics for all types of genetic diseases, the GA4GH has created a

“Framework for Responsible Sharing of Genomic and Health-Related

Data”. It contains foundational principles and core elements for re-

sponsible data sharing and is guided by concern for human rights, in-

cluding the right to benefit from the progress of science, as well as

privacy, non-discrimination, and procedural fairness. This is pivotal

for RD patients, since traditional medical privacy laws around the

world may not adequately support the Open Science strategies that

RD diagnosis and research necessitates.

The best practices and ethical-legal considerations for FAIR data

sharing in the context of RDs are still evolving. A necessary im-

provement in the management of data in a FAIR-er direction is the

annotation of patient data with Ethical Legal Social Issue (ELSI)

requirements and choices as determined at the time of collection.

This could constitute a great addition to the quality of data that

could be transferred along with the data itself. This means that if a

certain dataset was collected under the condition of a specific use

(eg, cancer research only in Europe) this information should travel

with the data, ensuring sustainable and ELSI reusability of the data.

While the promises of the Open Science paradigm and the FAIRifi-

cation of data are key to effective research, especially in RD, compli-

ance with existing regulatory requirements and ethical norms is

necessary to ensure long-term sustainability of data stewardship.

New perspectives, understanding and challenges introduced by

rapidly developing machine learning approaches increase the neces-

sity of open data sharing to realize the public good, but simulta-

neously can give rise to new ethical and legal dilemmas. Among the

challenges already becoming apparent are the potential risks for re-

identification, incidental/secondary findings, and biases for equita-

ble access to algorithmically assisted decision making. Particularly

in the context of RD, implications of new machine learning will in-

fluence the best practices and acceptable frameworks for FAIR data

sharing in the coming years.

A ROADMAP FOR OPEN SCIENCE IN RARE
DISEASES

To accelerate the diagnosis and care of RD patients, we propose a

set of recommendations to advance Open Science:

1. Create shared RD definitions, models, and governance.

2. Consider how to realize the FAIR principles in all aspects of the

RD data lifecycle for any given RD, clinical system, or research

initiative.

3. Create metrics for successful compliance with RD-GO FAIR.

4. Support RD tools that enable patients to share their own data

in a well-informed manner and establish standards for consis-

tent representation of phenotype data (eg, Phenopackets and

HPO) as well as genotype and pedigree data.

5. Adopt new standards for registries to support interoperability

and data sharing internationally.

6. Develop methods to create “proxy” data to share representa-

tions or subsets of personally identifiable data (such as facial

images) in a deidentified manner.

7. Establish networks of controlled-access data that can be

searched using diagnostic algorithms for research on RDs.

8. Increase centers specializing in RDs, train more clinicians in di-

agnosing and treating RDs, and create improved clinical

decision-making guidelines related to RDs.

9. Create opportunities for patients to be better informed and en-

courage patient engagement with the scientific community to

increase openness and data sharing.

10. Welcome and attribute openly-developed novel technologies

and interventions in RD clinical settings.

A fundamental component of addressing the RD public health

challenge involves improvements in ethical Open Science, whose
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core principles are data sharing and collaboration. RD families and

their advocates, as well as RD physicians and scientists, have led the

way toward openness, data sharing, and collaboration to find diag-

noses, treatments, and improved quality of life. Despite privacy con-

cerns, institutional policies, and technological barriers, the RD

community has demonstrated that they are thought leaders in Open

Science, forging the way forward for the world.
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88. Schulz MH, Köhler S, Bauer S, Vingron M, Robinson PN. Exact score

distribution computation for ontological similarity searches. BMC Bioin-

formatics 2011; 12: 441.

89. Chief Medical Officer annual report 2016: Generation Genome.

GOV.UK. https://www.gov.uk/government/publications/chief-medical-

officer-annual-report-2016-generation-genome Accessed June 30, 2018.

90. Bone WP, Washington NL, Buske OJ, et al. Computational evaluation of

exome sequence data using human and model organism phenotypes

improves diagnostic efficiency. Genet Med 2016; 18 (6): 608–17.
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