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Abstract N-Glycanase 1 (NGLY1) is a cytoplasmic deglycosylating enzyme. Loss-of-function

mutations in the NGLY1 gene cause NGLY1 deficiency, which is characterized by developmental

delay, seizures, and a lack of sweat and tears. To model the phenotypic variability observed among

patients, we crossed a Drosophila model of NGLY1 deficiency onto a panel of genetically diverse

strains. The resulting progeny showed a phenotypic spectrum from 0 to 100% lethality. Association

analysis on the lethality phenotype, as well as an evolutionary rate covariation analysis, generated

lists of modifying genes, providing insight into NGLY1 function and disease. The top association hit

was Ncc69 (human NKCC1/2), a conserved ion transporter. Analyses in NGLY1-/- mouse cells

demonstrated that NKCC1 has an altered average molecular weight and reduced function. The

misregulation of this ion transporter may explain the observed defects in secretory epithelium

function in NGLY1 deficiency patients.

Introduction
NGLY1 deficiency (OMIM 615273) is a rare, autosomal recessive disorder caused by loss-of-function

mutations in the NGLY1 gene. Patients with NGLY1 deficiency have a variety of symptoms, including

developmental delay, seizures, liver dysfunction, central and peripheral nervous system abnormali-

ties, sweat gland abnormalities, and a lack of tears (alacrima) (Enns et al., 2014; Lam et al., 2017).

While the first NGLY1 deficiency patient was only recently identified (Need et al., 2012), there have

been rapid research advances thanks to the support of two patient organizations (NGLY1.org and

Grace Science Foundation). Even though a great deal has been learned about the genetic disorder

in a short amount of time, there are currently no cures or approved treatments for NGLY1

deficiency.

The NGLY1 gene encodes the N-Glycanase protein (NGLY1). NGLY1 functions as part of the

Endoplasmic Reticulum (ER) Associated Degradation (ERAD) pathway as evidenced by its association

with other ERAD components (Katiyar et al., 2005; McNeill et al., 2004; Park et al., 2001). The

ERAD pathway retrotranslocates misfolded proteins from the ER lumen to the cytoplasm where they

are degraded by the proteasome (reviewed in Qi et al., 2017). NGLY1 is localized to the cytoplasm

where it is thought to remove N-linked glycans from misfolded proteins prior to their degradation

(Hirsch et al., 2003). Recent evidence suggests that this deglycosylation is required for retrotranslo-

cation for at least some protein substrates (Galeone et al., 2020). Nevertheless, it remains unclear

whether NGLY1 is required to deglycosylate all misfolded proteins, or just a subset, or if it is
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necessary for protein degradation at all. It has been shown that model substrates can be degraded

regardless of glycosylation state (Hirsch et al., 2003; Kario et al., 2008). While a recent report

showed that ER stress markers were increased in NGLY1 -/- MEFs (Galeone et al., 2020), other

experiments such as RNAi knockdown (KD) of NGLY1 in Drosophila (Owings et al., 2018) and loss

of NGLY1 function in mouse, rat, and human cells (Asahina et al., 2020; Mueller et al., 2020;

Tambe et al., 2019) have shown no evidence of ER stress. ER stress is often observed when there

are mutations in proteins that are necessary for ERAD due to the accumulation of misfolded proteins

in the ER. It may be that NGLY1 is not necessary for ERAD, or it is involved in a non-canonical ERAD

function, or it may be deglycosylating cytoplasmic proteins for an entirely different purpose. These

hypothesized functions are not mutually exclusive.

NGLY1 has been shown to deglycosylate various exogenous model substrates such as TCR-a

(Hirsch et al., 2003) and RNaseB (Kario et al., 2008). To identify endogenous substrates several

mass spectrometry experiments have been performed (Fujihira et al., 2017; Hosomi et al., 2016;

Maynard et al., 2020; Zolekar et al., 2018). Yet, the first high-confidence substrate of NGLY1

deglycosylation, NRF1 (gene: NFE2L1), was discovered in a Caenorhabditis elegans genetic screen

(Lehrbach and Ruvkun, 2016). NRF1 mediates a proteasome ‘bounce-back’ response. NRF1 is con-

stitutively degraded by the proteasome through the ERAD pathway, until the proteasome is inhib-

ited or overwhelmed by protein load. During this proteasome stress, NRF1 accumulates and is

deglycosylated by NGLY1 (Tomlin et al., 2017). Rather than targeting the protein for degradation,

the deglycosylation activates NRF1 by converting asparagine to aspartic acid residues

(Lehrbach et al., 2019). NRF1 can then be imported into the nucleus to act as a transcription factor

for proteasome subunits. The lack of NRF1 activation in NGLY1-deficient patients likely explains

some of the disorder’s symptoms such as motor dysfunction (Kobayashi et al., 2011) and cognitive

deficits (Lee et al., 2011). Recently, it was found that the protein BMP4 is deglycosylated by NGLY1

when overexpressed in either Drosophila or mammalian cells (Galeone et al., 2020). BMP4 is a sig-

naling molecule and could explain several of the developmental symptoms of NGLY1 deficiency.

However, not all symptoms can be explained by these two targets and therefore there is a pressing

need to identify and validate more substrates of NGLY1 deglycosylation.

In addition to discovering new NGLY1 targets, there is a need to understand how background

genetic variants affect the number and severity of symptoms in patients. While the majority of

patients harbor two complete loss-of-function mutations in NGLY1 (He et al., 2015), there are many

symptoms such as seizures and scoliosis that are only reported in a subset of the patients

(Enns et al., 2014). All patients experience developmental delay, but it ranges from slightly below

average IQ to completely non-verbal (Lam et al., 2017). This variability based on background genet-

ics was also observed in the lab when an NGLY1 deficiency mouse model was crossed onto an out-

bred mouse strain which partially rescued the lethality of the model (Fujihira et al., 2017). In order

to identify components of the genetic background that affect the range of symptoms and severity of

disease, we have utilized a collection of genetically diverse Drosophila strains known as the Drosoph-

ila Genetic Reference Panel (DGRP) (Mackay et al., 2012). By crossing a fly model of NGLY1 defi-

ciency onto the panel, we recapitulated the variable phenotype seen in the human population. Here,

we report the results of this cross and a list of candidate modifier genes derived from the genome-

wide association (GWA) of the cross. To contextualize the candidate modifier list, we also performed

an evolutionary rate covariation (ERC) analysis to identify genes that are co-evolving with NGLY1.

Together these two genetic analyses have generated a list of genes that (1) may explain some of the

variation seen between NGLY1 patients, (2) may encode proteins that physically interact with NGLY1

in ERAD or other cellular processes, and (3) may be direct deglycosylation targets of NGLY1. The

top candidate modifier gene from the GWA is NKCC1, a conserved Na/K/Cl ion co-transporter. We

found that NKCC1 modifies multiple phenotypes in Drosophila, and in NGLY1 -/- mammalian cells,

NKCC1 displays abnormal average molecular weight and has reduced activity. The misregulation of

NKCC1 likely explains several prominent secretory epithelium-related phenotypes observed in

NGLY1 deficiency patients.
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Results

Variation in lethality associated with NGLY1 deficiency
We crossed a fly model of NGLY1 deficiency (Pngl in flies, hereon referred to as NGLY1) onto 163

strains of the DGRP in order to assess the effect of natural variation on loss of NGLY1 function. We

have previously validated this NGLY1 deficiency model where an NGLY1 RNAi reduces NGLY1 tran-

script by >95% when driven by the ubiquitous Tubulin-GAL4 driver transgene (Tubulin > NGLY1

RNAi) (Owings et al., 2018). In order to cross a ubiquitously expressed NGLY1RNAi onto the DGRP

strains in a single cross, we needed to overcome the lethality associated with loss of NGLY1

(Owings et al., 2018). To do this, a Tubulin-GAL80 transgene, which represses the effect of GAL4,

was crossed onto the Tubulin > NGLY1 RNAi background, such that RNAi is not expressed and flies

from this parent strain are healthy and viable (Figure 1A). This donor strain was crossed to each

DGRP strain to generate F1 flies that have both ubiquitous KD of NGLY1 and 50% of their genome

from each respective DGRP strain (Figure 1B). In this way, analyzing the F1 progeny was a direct

measurement of the dominant effect of the DGRP genetic variants on the NGLY1 KD phenotype.

The phenotypic outcome used for this screen was adult survival through eclosion. We simply

scored all adults emerging from each cross in the four balancer categories: CyO, Sb, double bal-

anced, or no balancers, with the no balancer flies being the NGLY1 KD. If no lethality is present,

Mendelian segregation should produce the expected 1:1:1:1 ratio of the genotypes. Given that

there is a very low level of lethality associated with each balancer, the largest balancer class is the

closest to the expected, and was used to calculate the ratio of lethality for NGLY1 KD. Results of the

screen reveal that survival to adulthood was strongly influenced by DGRP genetic background

(Figure 1B; Supplementary file 1), with proportion of surviving flies ranging from 0.0 to 0.967. Sur-

vival to adulthood was not correlated with efficiency of RNAi, as there was no difference in KD effi-

ciency in flies from either end of the phenotypic distribution (low surviving: 92.0% ± 3.7; high

surviving: 94.8% ± 3.7; p=0.4). There was no correlation between proportion of surviving flies and

the absolute number of flies in the balancer class (R2 = 0.02; p=0.14), indicating that the ratio is not

driven by the number of the balancer control flies.

Genome-wide association
We hypothesized that the observed variable survival to adulthood in NGLY1 KD flies was due to the

underlying genetic variation in the DGRP. Therefore, genome-wide association (GWA) analysis of the

fully sequenced DGRP was used to identify variants that associated with NGLY1 KD survival. We

used a linear mixed model to test 2,007,145 single-nucleotide

polymorphisms (SNPs; Supplementary file 2). We recognize that our study suffers from a multiple

Figure 1. Lethality phenotype of NGLY1 knockdown is highly modifiable by strain background. (A) Drosophila cross for NGLY1 knockdown in each

Drosophila genetic reference panel (DGRP) strain. (B) Proportion of NGLY1 knockdown flies surviving for each cross was calculated based on the

number eclosing compared to the expected number. Expected number was based on the largest control balancer class for each cross.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Ncc69 expression is not correlated with survival.
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testing problem, making it difficult to interpret the role of any single SNP identified. Instead, the

location of SNPs was used to identify candidate modifier genes. This type of approach has worked

well in the past for other disease models (Ahlers et al., 2019; Chow et al., 2013a; Chow et al.,

2013b; Lavoy et al., 2018; Palu et al., 2019) and provides an unbiased list of candidate genes that

can be functionally tested for interactions with NGLY1.

At a nominal p-value of p<10�5, 125 variants are associated with survival to adulthood. Of these

125 variants, 21 fall outside of a gene region (+/- 1 kb from the 5’ or 3’ UTRs) (Supplementary file

3). The remaining 104 variants map to 61 protein coding candidate genes (Table 1). Eighty-five of

these 104 variants are in noncoding regions (UTRs, introns, or upstream or downstream) and 19 are

in coding regions. Of these 19, 12 are synonymous changes and 7 are nonsynonymous (exp, hiw,

CG30048, SP2353, CG31690, Hrd3, and blue). When multiple testing correction is applied to all the

variants, the top 12 remain significant. Nine of these SNPs reside in an intron of the Ncc69 gene. All

nine SNPs are in strong linkage disequilibrium with each other, which is quite unusual for the DGRP.

When we analyzed Ncc69 expression levels using previously published RNAseq data from the DGRP

(Everett et al., 2020), we found there was no correlation with survival (Figure 1—figure supple-

ment 1).

Gene ontology (GO) enrichment analysis of the 61 candidate genes did not identify enrichment in

any biological process or molecular function. However, GO enrichment was identified for the cellular

component categories ‘cell periphery’ (GO:0071944; 19/61; q < 0.0016) and ‘plasma membrane’

(GO:0005886; 17/61; q < 0.004). At least 12/61 candidate genes are involved in protein homeosta-

sis: three are involved in ERAD (CG8405, CG42383, and Hrd3), six are ER resident or membrane pro-

teins (CG33012, CG30043, CG31690, CG4341, Hrd3, and CG8405), four are involved in

ubiquitination or the proteasome (hiw, blue, CG42383, and Hrd3), one regulates heatshock

responses (Hsromega), and one regulates N-linked glycosylation (sff).

Three of the identified ERAD genes already have known interactions with NGLY1. CG8405 is the

Drosophila ortholog of human TMEM259, which physically interacts with NGLY1 in co-immunopre-

cipitation experiments (Zhu et al., 2017). CG42383 is the Drosophila ortholog of human NSFL1C

(cofactor p47). NSFL1C and NGLY1 interact with the VCP/P97 AAA-ATPase complex involved in

delivering misfolded proteins from the ERAD complex to the proteasome for degradation

(Kondo et al., 1997; McNeill et al., 2004). Hrd3 is the Drosophila ortholog of SEL1L. SEL1L is a

component of the ERAD complex required for retrotranslocation of misfolded proteins from the ER

to the cytoplasm for degradation. Recently, the C. elegans orthologs of NGLY1 and SEL1L were

both identified as modifiers of NRF1 function (Lehrbach and Ruvkun, 2016). These candidate genes

are a proof-of-principle that this screen has identified functionally relevant modifiers.

The four candidate genes that encode ER resident proteins are particularly interesting. CG31690

and CG4341 are both Drosophila orthologs of human TMTC2, an ER transmembrane protein that

regulates calcium homeostasis. CG33012 and CG30043 are both Drosophila orthologs of human

ERMP1, an ER metalloprotease. It is striking that in both cases, both Drosophila orthologs of a single

human gene were identified as candidate modifiers, suggesting that the function of TMTC2 and

ERMP1 might be particularly important for NGLY1 lethality. It is not clear how these genes might

modify NGLY1 lethality, but their physical localization to the ER makes sense and suggests a possible

role in protein homeostasis as well.

Gene set enrichment analysis
The rank-order candidate modifiers identified in our GWA ignores the majority of the association

data by only considering one variant at a time, rather than all the variants associated with a particular

gene. Therefore, we performed a gene set enrichment analysis (GSEA), which assigns each variant to

the closest gene and generates a per gene metric for p-value enrichment (Palu et al., 2019;

Subramanian et al., 2005). Given a defined set of genes annotated with a certain GO function,

GSEA determines whether the members of that set are randomly distributed throughout the ranked

list or if they are found primarily at the top or bottom of that list. We identified 21 gene sets posi-

tively associated with the ranked gene list (�5 genes;>0.25 enrichment score; p<0.05) (Figure 2;

Supplementary file 4). These data suggest that these GO categories are closely linked to NGLY1

activity and variation in individual genes in these categories contribute to the distribution of lethality

observed in our screen.
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Table 1. Candidate modifier genes identified from GWA.

Rank order of candidate genes was established based on the most significant associated SNP in the respective gene.

Rank order Gene FBgn Human ortholog Periphery/membrane Proteostasis

1 exp FBgn0033668 — no no

2 Ncc69 FBgn0036279 NKCC1/2 yes no

3 CG5888 FBgn0028523 — yes no

4 CG16898 FBgn0034480 — no no

5 bru3 FBgn0264001 CELF2/3/4/5/6 no no

6 CG31690 FBgn0051690 TMTC2 no yes

7 CG7227 FBgn0031970 SCARB1 no no

8 CR44997 FBgn0266348 — no no

9 rgn FBgn0261258 Many no no

10 M6 FBgn0037092 GPM6A yes no

11 Rab26 FBgn0086913 RAB26 yes yes

12 Obp56i FBgn0043532 — no no

13 5-HT1A FBgn0004168 HTR1A yes no

14 CG33012 FBgn0053012 ERMP1 no yes

15 rst FBgn0003285 — yes no

16 CR43926 FBgn0264547 — no no

17 CG7337 FBgn0031374 WDR62 no no

18 hiw FBgn0030600 MYCBP2 yes yes

19 fid FBgn0259146 TRMT9B no no

20 nmo FBgn0011817 NLK no no

21 Sirup FBgn0031971 SDHAF4 no no

22 tst FBgn0039117 SKIV2L no no

23 Mdr50 FBgn0010241 many yes no

24 Cpr49Aa FBgn0050045 — no no

25 COX7C FBgn0040773 COX7C no no

26 Eip63E FBgn0005640 CDK14/15 yes no

27 CG30048 FBgn0050048 PKD1 no no

28 CG15040 FBgn0030940 — no no

29 SP2353 FBgn0034070 EGFLAM no no

30 Mf FBgn0038294 — no no

31 ome FBgn0259175 many no no

32 esn FBgn0263934 PRICKLE1-3 no no

33 haf FBgn0261509 many no no

34 dally FBgn0263930 GPC3/5 yes no

35 robo2 FBgn0002543 ROBO1/2/3/4 no no

36 Gyc32E FBgn0010197 NPR1/2 yes no

37 CG8170 FBgn0033365 many no no

38 CG8405 FBgn0034071 TMEM259 no yes

39 scaf FBgn0033033 — yes no

40 borr FBgn0032105 CDCA8 yes no

41 Syx7 FBgn0267849 STX7/12 yes no

42 DIP-delta FBgn0085420 many yes no

43 cv-c FBgn0285955 DLC1 yes no

Table 1 continued on next page

Talsness, Owings, et al. eLife 2020;9:e57831. DOI: https://doi.org/10.7554/eLife.57831 5 of 22

Research article Cell Biology Genetics and Genomics

https://doi.org/10.7554/eLife.57831


Some of the most significantly enriched categories such as nuclear transport, rRNA processing

and signal transduction are broad categories that could have wide reaching implications for NGLY1

function. These processes, however, are difficult to test and require long-term investigation, beyond

the scope of this study. Circadian rhythm, on the other hand, is a specific and testable category. The

enriched category for circadian rhythm function contains a number of genes that directly modulate

circadian rhythm, including, clock, period, timeless, and cycle. We hypothesized that if variation in

circadian rhythm function modifies lethality associated with loss of NGLY1 function then NGLY1

must affect the circadian rhythm. To test this, we knocked down NGLY1 in the LNv pacemaker neu-

rons in the central nervous system using the Pdf-GAL4 driver (Renn et al., 1999) and assayed rhyth-

micity of locomotor activity in constant darkness over 8 days in Drosophila Activity Monitors (DAM).

Compared to Pdf-GAL4/+ and UAS-NGLY1RNAi controls, flies with NGLY1 KD exhibited a signifi-

cantly longer period length (Figure 2—figure supplement 1), supporting the idea that NGLY1 func-

tion can affect sleep. Indeed it has been reported that patients with NGLY1 deficiency experience

disturbed sleep patterns (Enns et al., 2014; Lam et al., 2017).

Evolutionary rate covariation
Many of the GWA and GSEA results are intriguing, but appear far removed from the currently known

functions of NGLY1. We hypothesized that we could contextualize some of the gene and network

results by discovering which of them might be co-evolving with NGLY1. Therefore, we employed

evolutionary rate covariation (ERC) analysis (Wolfe and Clark, 2015). Gene pairs with high ERC val-

ues have correlated rates of substitution and are thought to function together in protein complexes

or related pathways. ERC analysis identified hundreds of protein-coding genes with integrated ERC

scores exceeding two with NGLY1 (column ‘sumnlogpvbest’ in Supplementary file 5). Of the 38

GWA candidates that have human orthologs, two were found in this group with elevated NGLY1

ERC values, CG4374 (many) and esn (PRICKLE1). While this overlap is not enriched above back-

ground, co-evolution suggests that these two genes might have a particularly important interaction

with NGLY1.

GO analysis was used to determine if there was enrichment in any biological pathways among

NGLY1 co-evolving genes. Among the top enriched pathways were ‘rRNA/ncRNA/ribosome

Table 1 continued

Rank order Gene FBgn Human ortholog Periphery/membrane Proteostasis

44 Snmp2 FBgn0035815 CD36/SCARB1 no no

45 Mer FBgn0086384 NF2 yes no

46 sba FBgn0016754 — no no

47 Hsromega FBgn0001234 — no yes

48 CCAP-R FBgn0039396 NPSR1 yes no

49 Hrd3 FBgn0028475 SEL1L no yes

50 blue FBgn0283709 NEURL4 no yes

51 CG6262 FBgn0034121 TREH no no

52 CG45186 FBgn0266696 SVIL no no

53 Spn FBgn0010905 PPP1R9A yes no

54 dnc FBgn0000479 PDE4A/B/C/D no no

55 CG4374 FBgn0039078 many no no

56 sff FBgn0036544 many no yes

57 CG42383 FBgn0259729 NSFL1C no yes

58 Dyb FBgn0033739 DTNB yes no

59 CG34371 FBgn0085400 — no no

60 CG4341 FBgn0028481 TMTC2 no yes

61 CG30043 FBgn0050043 ERMP1 no yes
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biogenesis/metabolism-related functions’ and ‘functions related to nuclear pore complex’. This is

particularly exciting as both processes overlap with the top GO enrichment categories observed in

the GSEA analysis, suggesting that the same functional categories that contribute to variation in

NGLY1-related lethality also appear to contain genes that co-evolve with NGLY1. The rRNA process-

ing category (GO:0006364) contained six genes overlapping between the two analyses. This overlap

is higher than expected, given two equally sized random groups of genes (GSEA: 23 genes; ERC: 37

genes; p<2.6�10�12). Among other ncRNA-related enriched GO categories from the ERC analysis

are ncRNA metabolic process (GO:0034660), ncRNA processing (GO:0034470), tRNA metabolic pro-

cess (GO:0006399), ribosome biogenesis (GO:0042254), and tRNA modification (GO:0006400). The

functions related to the nuclear pore included nuclear export (GO:0051168), nuclear pore organiza-

tion (GO:0006999), nuclear transport (GO:0051169), and nuclear pore complex assembly

(GO:0051292). While there was no overlap between ERC and GSEA for exact nuclear pore function

categories, GSEA results were enriched for functions related to nuclear import (GO:0042306 and

GO:0006606). Together, these observations suggest previously unknown roles for NGLY1 in ncRNA

and nuclear pore functions.

NGLY1 deficiency is part of a larger category of disorders known as Congenital Disorders of Gly-

cosylation (CDG), with NGLY1 being the only protein that actually deglycosylates substrates. There

are 151 known CDG genes. GO analysis of the ERC results identified enrichment of the GPI anchor

biosynthetic process, which contains several of these CDG genes, leading us to believe that other

CDG genes may have been ERC hits. However, the 151 CDG genes do not fall into one functional

Figure 2. Gene set enrichment analysis. Top significant ontological categories identified by GSEA. p-values are

indicated by red-to-blue gradient, with red the lowest p-values and blue the highest p-values. Gene number

identified in each category is indicated by the size of the circle.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. NGLY1 knockdown causes circadian rhythm defect.

Talsness, Owings, et al. eLife 2020;9:e57831. DOI: https://doi.org/10.7554/eLife.57831 7 of 22

Research article Cell Biology Genetics and Genomics

https://doi.org/10.7554/eLife.57831


GO category, therefore, we manually curated the ERC list and identified 26 CDG genes that co-

evolve with NGLY1 (see color coding in Supplementary file 5). This represents a significant overlap

above what is expected by chance (p<7.6�10�10). In particular, 5 of the 21 genes involved in

N-linked glycosylation and 9 of the 29 genes involved in GPI-anchor biogenesis are co-evolving with

NGLY1. The remaining 10 genes are spread across the CDG functional spectrum. The identification

of a number of CDG genes that co-evolve with NGLY1, suggests that NGLY1 function might be

important to the broader glycosylation pathways.

Genetic interaction between NGLY1 and Ncc69 in Drosophila
While these genetic analyses revealed many promising modifying and co-evolving genes which

should be investigated, we began by investigating Ncc69 because it was the top hit with a human

ortholog in our GWA analysis. Further, Ncc69 is a glycoprotein, making it a potential target of

NGLY1 deglycosylation. Ncc69 has two mammalian orthologs, NKCC1 and NKCC2. While Ncc69 is

ubiquitously expressed in Drosophila, NKCC1 (gene: SLC12A2) is highly expressed in secretory epi-

thelia and NKCC2 (gene: SLC12A1) is primarily expressed in the kidney (Delpire and Gagnon,

2018). In all cases, the protein is a 12-pass transmembrane cation-chloride co-transporter that brings

Na+, K+, and Cl- into the cell (Delpire and Gagnon, 2018). Mutations in NKCC2 are known to cause

type I Bartter syndrome (Simon and Lifton, 1996) and a recent clinical report shows homozygous

loss-of-function mutations in NKCC1 cause the novel disease Kilquist syndrome (Macnamara et al.,

2019).

To validate the genetic interaction observed between NGLY1 and Ncc69 in the GWA, we gener-

ated ubiquitous double knockdown (DKD) Drosophila and scored offspring that survived to eclosion

(Figure 3A). The fraction of KD flies was calculated from observed offspring of the balancer pheno-

type. NGLY1 KD caused a decrease in survival to ~25%, in accordance with our previous report of

this RNAi line (Owings et al., 2018). Ncc69 KD did not cause any significant decrease in survival

(c2=1.002, p=0.3168), as previously reported (Leiserson et al., 2011). The DKD, however, caused

complete lethality. This synthetic lethality confirms Ncc69 as a hit from the NGLY1 modifier screen.

KD of cation-chloride cotransporters in glia has been shown previously to cause seizures in Dro-

sophila (Rusan et al., 2014), and we wanted to test whether this phenotype could be modified by

NGLY1 KD. We performed single and double knockdowns of NGLY1 and Ncc69 in glial cells using

the repo-GAL4 driver. This Ncc69 RNAi line is the same as the one described above. Drosophila

Figure 3. NGLY1 and Ncc69 interact genetically in Drosophila. (A) Proportion of flies surviving to eclosion in ubiquitous knockdowns. NGLY1

knockdown (KD) are UAS-PnglRNAi/+; Tubulin-GAL4/+. Ncc69 KD are UAS-Ncc69RNAi/+; Tubulin-GAL4/+. NGLY1 Ncc69 double knockdown (DKD) are

UAS-PnglRNAi/+ UAS-Ncc69RNAi/Tubulin-GAL4/+. Four separate matings were performed for each cross with at least 40 offspring generated for the

balancer control for each. Fraction surviving is calculated compared to balancer offspring. Chi-square analysis was performed for the total number of

flies compared to expected Mendelian numbers. NGLY1 KD c2 = 109.7, p<0.0001; Ncc69 KD c2 = 1.002, p=0.3168, and NGLY1 Ncc69 DKD c2 = 186,

p<0.0001. (B) Bang sensitivity assay to assess seizures in glial knockdown flies. WT flies are attP2 and attP40. NGLY1 KD are UAS-PnglRNAi/+; repo-

GAL4/+. Ncc69 KD are UAS-Ncc69RNAi/+; repo-GAL4/+. NGLY1 Ncc69 DKD are UAS-PnglRNAi/+; UAS-Ncc69RNAi/ repo-GAL4. For each genotype, at

least 45 4- to 7-day-old females were used to calculate the percent seizing at a given time after vortexing. Repeated measures ANOVA

p-value=0.000176.
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were assessed for seizure phenotype using the bang sensitivity assay (Figure 3B). Control, wild-type

flies show immediate recovery, as expected. In NGLY1 KD flies, ~30% showed severe seizures in the

form of complete immobility 5 s following vortex. However, by 10 s following vortex, NGLY1 KD flies

were completely recovered. This is the first report of seizure phenotype in any NGLY1 deficiency

model, mimicking what is observed in patients. Ncc69 KD flies showed severe seizures with 75%

seizing at 5 s following vortex, in line with previous reports (Rusan et al., 2014). In the DKD, there

was a partial rescue of the severe Ncc69 phenotype. At all time-points between 5 and 60 s, the DKD

flies showed an intermediate phenotype relative to NGLY1 and Ncc69 single KDs, confirming a

genetic interaction between NGLY1 and Ncc69.

Functional analysis of NKCC1 in NGLY1 null MEFs
To understand the cell biology behind the genetic interaction that was observed in Drosophila, we

utilized NGLY1 knockout (-/-) mouse embryonic fibroblasts (MEFs) (jax.org/strain/027060). Fibro-

blasts should only express the ubiquitous ortholog, NKCC1 (Haas and Forbush, 1998). When the

membrane fraction of NGLY1 -/- MEFs was analyzed by immunoblot for NKCC1 there was a notice-

able shift in the average molecular weight of the band compared to wildtype, control cells (+/+)

(Figure 4A). Using the molecular weight marker to calculate the size of the proteins (un-cropped

blot in Figure 4—figure supplement 1), the upper limits of the bands were ~170 kDa for both +/+

and -/- cells (Figure 4B). The lower limit of the bands, however, were ~140 kDa for +/+ cells

and ~150 kDa for the -/- cells (Figure 4C).

To determine if a glycosylation event might be responsible for this size difference, cell lysates

were treated with deglycosylating enzymes (Figure 4D). PNGase F removes all N-linked glycans and

this treatment caused a large decrease in the molecular weight, to ~125 kDa in NKCC1 proteins

from both NGLY1 +/+ and -/- cells. The expected weight of mouse NKCC1 without any post-transla-

tional modifications is 130 kDa indicating that all post-translational modifications are likely N-linked

Figure 4. Endogenous NKCC1 is altered in NGLY1-deficient MEFs. (A) Control (+/+) and NGLY1 null (-/-) MEFs were grown to confluency and then

lysed to isolate the membrane and cytoplasmic fractions. Three separate membrane lysates for both genotypes were analyzed by immunoblotting for

NKCC1 compared to a molecular weight marker (MWM). Blot was used for molecular weight calculations of the upper-most limit (see un-cropped blot

in Figure 4—figure supplement 1) (B) And the lower-most limit (C) of the protein band. Red bar represents the mean. Two-tailed t-test was used to

calculate p-values. (D) Membrane lysates from MEFs were treated with N-Glycosidase F (PNGase F), O-Glycosidase (O-Gly), or Endoglycosidase H

(Endo H) for 1 hr then analyzed by immunoblot. Control (C)Samples were treated in all the same conditions but without the added enzyme. (E) MEFs

were treated with 500 nM bortezomib (Bz) or equal volume of vehicle control (DMSO) for 4 hr then lysed to collect membrane and cytoplasmic

fractions. Lysates were analyzed by immunoblotting for NKCC1. NRF1 was analyzed as a positive control of proteasome inhibition. Dark band at about

140 kDa in both (A), (D), and (E) is believed to be non-specific.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Full western blot of NKCC1 in NGLY1 +/+ and -/- MEFs.
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glycans. This is in accordance with the prediction of two canonical N-linked glycosylation sites

(Payne et al., 1995). The fact that there is no difference in molecular weight between the +/+ and

-/- after treatment indicates the difference observed in the untreated state was eliminated by the

PNGase enzyme. Treatment with O-Glycosidase had no effect on the molecular weight of the band

in either the +/+ or -/- lysates. Although O-Glycosidase does not cleave every type of O-linked gly-

can, these results coupled with the PNGase results indicate there are likely no O-linked glycans on

NKCC1. Finally, to determine the maturation state of the N-linked glycans Endoglycosidase H was

used. No change in molecular weight was seen, indicating the N-linked glycans are no longer in the

high-mannose state in both the +/+ and -/- cells.

The most well-studied substrate of NGLY1, NRF1, is degraded by the proteasome under normal

conditions, and only when the proteasome is stressed or inhibited does NRF1 become active.

Indeed, NGLY1 is thought to act in the ERAD pathway and therefore all its substrates may be regu-

lated in some way by proteasomal degradation. To test if NKCC1 abundance is affected by the pro-

teasome, MEFs were treated with the proteasome inhibitor bortezomib (Bz). As expected, there was

an increase in NRF1 abundance during proteasome inhibition (Figure 4E). However, there was no

noticeable increase in NKCC1 protein for either the +/+ or -/- MEFs, indicating proteasomal degra-

dation is not a major regulator of NKCC1.

Given the altered glycosylation state of NKCC1 observed in NGLY1 -/- MEFs, we wanted to

determine the functionality of NKCC1 in these cells. Previous reports have shown that inhibiting

N-linked glycosylation can decrease functionality for both NKCC1 (Singh et al., 2015) and for

NKCC2 (Paredes et al., 2006), and therefore, we hypothesized that the misglycosylation might also

decrease function. The NKCC proteins and the Na+/K+-ATPase can both transport Rb+ in place of

K+, so we incubated cells with radioactive 86Rb and measured cellular uptake. Cells were assayed in

the presence or absence of 10 mM bumetanide, an NKCC inhibitor, or 100 mM ouabain, a Na+/K+-

ATPase inhibitor, as compared to vehicle control. When the ouabain-sensitive and bumetanide-sensi-

tive activities were summed, they accounted for all of the 86Rb flux observed (Figure 5—figure sup-

plement 1). We found that bumetanide-sensitive 86Rb flux, but not ouabain-sensitive flux, was

impaired by ~50% in the -/- MEFs, indicating a specific defect in NKCC1 activity without impairment

in the Na+/K+-ATPase (Figure 5). We assayed ion transport activity under three conditions of iso-

tonic, hypertonic, or hypotonic baths. Although both hypertonic and hypotonic low chloride baths

can stimulate NKCC1 activity in other cell types (Darman and Forbush, 2002), we did not see any

Figure 5. NGLY1 -/- MEFs show decreased NKCC1-specific ion flux. (A) Bumetanide-sensitive 86Rb flux was measured in NGLY1 +/+ and NGLY1 -/-

MEFs to measure NKCC1 activity. Flux was examined in three bath conditions, isotonic (iso), hypotonic (hypo), and hypertonic (hyper). There was a

significant effect of genotype (p<0.0001) in two-way ANOVA, with no significant effect of condition (p=0.5756) or interaction (p=0.8075). Adjusted

p-values for Sidak’s multiple comparisons test between NGLY1 +/+ and NGLY1 -/- are shown in the figure. (B) Ouabain-sensitive 86Rb flux was

measured in NGLY1 +/+ and NGLY1 -/- MEFs to measure Na+/K+-ATPase activity in the same three conditions as in A. There were no significant effects

of genotype (p=0.0516), condition (p=0.3047) or interaction (p=0.4711) by two-way ANOVA, indicating the NGLY1 knockout has a specific effect on

NKCC1 activity without affecting Na+/K+-ATPase activity.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. 86Rb uptake in MEFs occurs through bumetanide-sensitive and ouabain-sensitive pathways.
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effect of bathing medium in the MEFs, consistent with a recent report of lack of hypertonic stimula-

tion of NKCC1 in human fibroblasts (Delpire et al., 2016). Together, these data demonstrate that

loss of NGLY1 results in a change in the glycosylation state of NKCC1 and a significant reduction in

NKCC1 function.

Discussion
Like many rare diseases, research into the pathogenesis of NGLY1 deficiency has been narrowly

focused, based on early hypotheses. This often limits how we understand the connection between a

particular disease and other pathways. For NGLY1 deficiency specifically, basic research and poten-

tial therapies have focused intensely on NRF1, the first well-established substrate of NGLY1 deglyco-

sylation. Motivated by the extensive phenotypic variation among NGLY1 deficiency patients, we

took advantage of natural genetic variation in Drosophila to identify modifiers of NGLY1 deficiency.

This unique screen demonstrated that (1) we can model the extensive phenotypic variation observed

and (2) that genetic variation can cause this phenotypic variability. Association analysis then identi-

fied a number of exciting candidate modifier genes. Here, we have validated the novel and con-

served modifier NKCC1 (Drosophila Ncc69), a new potential therapeutic target for NGLY1

deficiency.

A major advantage of screens is the identification of previously unanticipated biological connec-

tions. First, our association analysis of the lethality screen has generated a list of 61 genes that we

hope the scientific and patient communities will be able to use. Second, GSEA identified several

pathways, including rRNA metabolism and nuclear transport that are surprising based on known

NGLY1 functions. Third, ERC analysis identified genes that are coevolving with NGLY1 across the

animal kingdom, including both rRNA/ncRNA pathways and nuclear transport. It appears that rRNA

metabolism and nuclear transport are likely important to NGLY1 function, yet it remains unclear how

NGLY1 is connected to these pathways. Components of the ribosome and the nuclear pore are

often O-glycosylated. While there is no direct connection between NGLY1 and O-GlcNAcylation, we

have previously demonstrated that loss of NGLY1 impacts UDP-GlcNAc levels (Owings et al., 2018).

It is highly plausible that a misregulation of UDP-GlcNAc levels could affect O-GlcNAcylated pro-

teins. More work is needed to determine exactly how NGLY1 is connected to these unexpected

pathways. Finally, the ERC analysis also identified 26/151 known Congenital Disorders of Glycosyla-

tion (CDG) genes. While NGLY1 is also classified as a CDG, it is unclear why there might be co-evo-

lution with other CDG genes. Perhaps, there is a feedback mechanism, again, related to UDP-

GlcNAc biosynthesis that connects these genes. These results suggest that there is a previously

unknown connection between these loosely connected CDG genes.

When analyzing the list of modifier genes, it is apparent that many of the candidates are involved

in ERAD. This offers a proof-of-principle that this screen is well suited for identifying bona fide bio-

logically relevant modifiers. Several previous studies linked NGLY1 with the ERAD process

(Bebök et al., 1998; Katiyar et al., 2005; Park et al., 2001). Yet, NGLY1 does not appear to be

required for proper ERAD function (Hirsch et al., 2003; Misaghi et al., 2004). While perturbations

to ERAD often result in ER stress, we have previously reported that there was no functional or tran-

scriptome evidence for ER stress in a Drosophila model of NGLY1 deficiency (Owings et al., 2018).

Others have reported no ER stress in NGLY1 -/- human cells, mice, and rats (Asahina et al., 2020;

Mueller et al., 2020; Tambe et al., 2019). However, there is conflicting evidence for ER stress as it

was recently reported that ER stress markers were upregulated in NGLY -/- MEFs (Galeone et al.,

2020). Nevertheless, in our current screen, we did not identify any genes involved in canonical ER

stress responses, suggesting that ER stress might not play a large role in the pathogenesis of the dis-

ease. Here, we have reported that NKCC1 is altered in NGLY1 -/- cells, however we found that inhib-

iting the proteasome had no effect on the protein abundance. Thus, it may be that NGLY1 functions

to regulate proteins in various ways that are closely related to ERAD, but that do not result in direct

proteasomal degradation, and thereby, do not cause an accumulation of misfolded protein and ER

stress.

As with most hypothesis-free approaches, our analyses produced many exciting new avenues for

exploration. In order to keep our work relevant and translatable to the clinic, we have focused our

follow up experiments on genes with human orthologs. In this report we began with our top hit,

Ncc69 (human NKCC1/2), which encodes an SLC12 Na+/K+/2Cl- transporter. In cells derived from an
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NGLY1 -/- mouse model, we found that NKCC1 protein migrated at a higher average molecular

weight relative to +/+ cells. We found this altered glycosylation was accompanied by a ~ 50% reduc-

tion in NKCC1 activity.

NKCC1 contains two canonical N-linked glycosylation sites (Payne et al., 1995) similar to those

validated in NKCC2 (Paredes et al., 2006). As expected, both sites are in an extracellular loop, and

therefore, these sites face the lumen of the ER during protein translation and maturation. Because of

this arrangement, these two sites are not predicted to be accessible by NGLY1, which is localized to

the cytoplasm. However, recent work indicates that NGLY1 can deglycosylate proteins prior to their

complete retrotranslocation out of the ER (Galeone et al., 2020). NGLY1 is recruited to the cytosolic

surface of the ER where it deglycosylates BMP4, which is in fact necessary for its retrotranslocation

to the cytoplasm. Perhaps NKCC1 is being deglycosylated on one of its two canonical N-linked gly-

cosylation sites through a similar mechanism. Alternatively, it may be that NGLY1 is acting on a non-

canonical, cytoplasmic N-linked glycosylation site. Sequence analysis reveals three other asparagine

residue within the necessary N-X-S/T sequence for N-linked glycosylation, however, two are pre-

dicted to be in transmembrane domains; the third (human NKCC1 residue N168) is located in the

amino-terminal cytoplasmic tail of the protein. The recent Cryo-EM structure determined that the

amino-terminal tail is disordered and that the carboxy-terminal tail acts as a regulatory domain

(Chew et al., 2019). Although rare, there have been reports of cytosolic N-linked glycosylation,

including on the dog kidney Na+, K+-ATPase pump (reviewed in Hart et al., 2017). In all these

cases, and in our case here, the mechanism for cytoplasmic glycosylation remains unknown. Deter-

mining if one of the two canonical sites is altered or if a non-canonical, cytoplasmic site is altered is a

top priority for future work.

While we observe a glycosylation difference on NKCC1, and NGLY1 is a deglycosylating enzyme,

we cannot eliminate the possibility that this NKCC1 regulation is a secondary effect. NGLY1 may be

regulating an intermediary protein that in turn, regulates NKCC1. This was recently found to be the

case for aquaporins in NGLY1-deficient cells (Tambe et al., 2019). NGLY1 was found to regulate the

abundance of transcription factors Atf1/Creb1 independent of its enzymatic activity. Atf1/Creb1

then, in turn, regulates the transcription of several aquaporin subunits. Given that we show the abun-

dance of NKCC1 does not change, but rather NKCC1 has a molecular weight shift, it is likely that

the altered state is due to some difference in a post-translational modification. If this effect is sec-

ondary, it may be that NGLY1 is directly affecting Golgi-localized glycosyltransferases that in turn

modify the already present glycans. Or that NGLY1 is altering the function of a sialyltransferase,

thereby altering sialic acid residues on NKCC1 which are known to cause significant changes in

migration on SDS-PAGE. This hypothesis is supported by the fact that Endo H treatment did not

affect NKCC1 from either +/+ or -/- cells, indicating that NKCC1 has been fully processed through

the Golgi. Future work to test this hypothesis could entail mass spectrometry analysis to determine

the specific glycan structures on NKCC1.

Identification of targets and modifier genes should provide insight into the pathogenesis of a dis-

ease and help explain some of the patient phenotypes. When NRF1 was identified as the first target

of NGLY1, it provided insight into some of the molecular defects observed in NGLY1-deficient cells,

including deficits in proteasomal function and expression. These cellular phenotypes, however, did

not translate well into insight into the complex patient symptoms. In contrast, decreased NKCC1

activity may explain some of the prominent features of NGLY1 deficiency. NKCC1 functions in many

secretory epithelia, such as the salivary, sweat, and lacrimal glands, to allow basolateral ion uptake

and subsequent secretion (Delpire and Gagnon, 2018). Therefore, a decrease in NKCC1 activity

could well explain the alacrima and reduced saliva and sweat production seen in NGLY1 deficiency.

Strikingly, a recent clinical report describes a patient with a homozygous deletion in NKCC1 (null)

who has many overlapping features with NGLY1 deficiency patients, including absence of saliva,

tears, and sweat (Kilquist syndrome) (Macnamara et al., 2019). The NKCC1 null mouse also displays

defects in salivation (Evans et al., 2000). Other notable, but perhaps less specific, features in the

NKCC1-deficient child, including developmental delay and gastrointestinal problems, also overlap

with those observed in NGLY1 deficiency. The NKCC1-deficient patient also had severe hearing loss,

cochlear defects, and abnormal auditory brainstem responses (ABRs). Several patients with missense

mutations in NKCC1, rather than complete loss-of-function mutations, display bilateral sensorineural

hearing loss (McNeill et al., 2020). NGLY1 deficiency patients do not have severe hearing loss, but

do report abnormal ABRs. This difference may be explained by a 50% reduction in NKCC1 activity,

Talsness, Owings, et al. eLife 2020;9:e57831. DOI: https://doi.org/10.7554/eLife.57831 12 of 22

Research article Cell Biology Genetics and Genomics

https://doi.org/10.7554/eLife.57831


rather than complete loss of activity. The overlap in a majority of the symptoms between this new

syndrome and NGLY1 deficiency strengthens the case for both a genetic and functional connection

between NGLY1 and NKCC1.

NKCC1 may be a promising target for the development of NGLY1 deficiency therapies. Given

that it is a transporter and partially exposed to the extracellular space, NKCC1 could be particularly

amenable to modulation by small molecules. Based on our work reported here, we predict that

increasing function of NKCC1 may ameliorate some symptoms. Quercetin, a flavonoid, is a readily

available molecule that has been shown to enhance NKCC1 activity (Asano et al., 2009;

Nakajima et al., 2011). These studies demonstrated that quercetin significantly increased 86Rb

uptake in cell culture and that this increase was bumetanide-sensitive, indicating specificity to

NKCC1. This is similar to other studies showing flavonoids increasing the activity of channels, such as

the flavonoid genistein increasing activity of the cystic fibrosis transmembrane conductance regula-

tor (CFTR) (Sugawara and Nikaido, 2014), and several flavonoids targeting cardiovascular channels

(Scholz et al., 2010). These quercetin studies, however, are in the context of normal functioning

NKCC1 protein. In our study, NKCC1 is altered from the WT state and it is unknown whether querce-

tin would be able to modulate the activity of an altered NKCC1. Strikingly, however, quercetin was

recently discovered in a drug screen to provide benefit to NGLY1-deficient C. elegans (Iyer et al.,

2019). These results coupled with our discovery of NKCC1 as a NGLY1 substrate offer an exciting

new avenue of treatment for NGLY1 deficiency patients. Targeted studies are needed to determine

if quercetin or other molecules could specifically enhance NKCC1 function in the context of NGLY1

deficiency.

In this study, we took a series of unbiased approaches in Drosophila to identify modifiers of

NGLY1 deficiency. This resulted in a number of new insights into the potential pathogenesis of

NGLY1 that we hope others will also investigate. With rare diseases like NGLY1 deficiency, unbiased

and forward genetic approaches are an efficient method for expanding possible avenues of investi-

gation and therapeutic development. This study also highlights the power of using model organisms

like Drosophila to uncover pathways and genes that can be validated in mammalian systems and tar-

geted for therapeutic development.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Gene
(Drosophila
melanogaster)

Pngl GenBank ID:35527
Dmel_CG7865

Gene
(Drosophila
melanogaster)

Ncc69 GenBank ID: 39410
Dmel_CG4357

Gene
(Mus musculus)

NGLY1 GenBank ID: 59007

Gene
(Mus musculus)

NKCC1 GenBank ID: 20496 Slc12a2

Genetic
reagent
(Drosophila
melanogaster)

Pngl-RNAi Bloomington
Drosophila
Stock Center

RRID:BDSC_54853 y1 v1; P{y+t7.7
v+t1.8=TRiP.
HMJ21590}attP40

Genetic
reagent
(Drosophila
melanogaster)

Tubulin-GAL4 Bloomington
Drosophila
Stock Center

RRID:BDSC_5138 y1 w*;
P{w+mC = tubP-
GAL4}LL7/TM3,
Sb1 Ser1

Genetic reagent
(Drosophila
melanogaster)

Tubulin-GAL80 Bloomington
Drosophila
Stock Center

RRID:BDSC_5190 y1 w[*];
P{w[+mC]=tubP-GAL80}LL9 P{w[+mW.hs]=FRT(w[hs])}2A/TM3, Sb1

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(Drosophila
melanogaster)

Drosophila
Genetics
Reference Panel

Bloomington
Drosophila
Stock Center

Set of 194 strains,
example strain:
BDSC:55014,
RRID:BDSC_55014

Genetic reagent
(Drosophila
melanogaster)

Pdf-GAL4 Bloomington
Drosophila
Stock Center

RRID:BDSC_6899 P{w[+mC]=Pdf-
GAL4.P2.4}X, y1 w[*]

Genetic reagent
(Drosophila
melanogaster)

UAS-Pngl-RNAi Bloomington
Drosophila
Stock Center

RRID:BDSC_42592 y1 sc* v1 sev21;
P{y+t7.7 v+t1.8=TRiP.
HMS02424}attP40

Genetic reagent
(Drosophila
melanogaster)

UAS-Ncc69-RNAi Bloomington
Drosophila
Stock Center

RRID:BDSC_28682 y1 v1; P{y+t7.7
v+t1.8=TRiP.
JF03097}attP2

Cell line
(Mus musculus)

Mouse embryonic
fibroblasts (MEF)

Jackson Labs Primary line from
mouse #027060,
https://www.jax.
org/strain/027060

Antibody Anti-NKCC1
(Rabbit polyclonal)

Cell Signaling Cat#14581,
RRID:AB_2798524

IB: 1:1000

Antibody Anti-TCF11/NRF1
(Rabbit
monoclonal)

Cell Signaling Cat#8052,
RRID:AB_11178947

IB: 1:1000

Antibody IRDye 800CW
Goat-anti-rabbit

Abcam Cat#216773 IB: 1:10,000

Commercial
assay or kit

Cell Fractionation
Kit

Cell Signaling Cat#9038

Chemical
compound,
drug

Bortezomib EMD Millipore Cat# 179324-69-7

Software,
algorithm

Genome Wide
Association

Chow et al., 2016

Software,
algorithm

Gene Set
Enrichment
Analysis

Subramanian
et al., 2005

Software,
algorithm

Evolution
Rate Covariation

Clark et al., 2012

Software,
algorithm

R https://www.
r-project.org/

Drosophila lines
Flies were maintained at 25˚C on a 12 hr light/dark cycle and raised on a standard diet based on the

Bloomington Stock Center standard medium with malt. All flies were aged 3–5 days old for experi-

ments. For the DGRP screen, the following D. melanogaster stocks were used: PnglRNAi (Blooming-

ton Drosophila Stock Center: 54853) and Tubulin-GAL4 driver (5138). The Tubulin-GAL80 strain was

provided by Dr. Carl Thummel (University of Utah). The DGRP strains are available at the Blooming-

ton Drosophila Stock Center. To measure circadian rhythm, the following stocks were used: a w- Ber-

lin control strain, a w; Pdf-GAL4 strain (outcrossed to w- Berlin), and a yv; UAS-PnglRNAi strain

(Bloomington stock center #42592). For bang sensitivity assays, the following stocks were used:

UAS-PnglRNAi (BL #54853), UAS-Ncc69RNAi (BL #28682), and repo-GAL4. These stocks were obtained

from the Bloomington Stock Center and Adrian Rothenfluh (University of Utah) respectively.

DGRP screen
Virgin females from the DGRP strains were fed yeast overnight and then crossed with males from

the donor strain UAS-PnglRNAi/Cyo,Tubulin-GAL80; Tubulin-GAL4/TM3,Sb in two replicate bottles.
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Progeny were collected and scored for the four balancer classes: CyO, Sb, double balanced, or no

balancers, with the no balancer flies being the NGLY1 KD. This cross should produce the expected

1:1:1:1 ratio of the four genotypes. Given that there is always a very low level of lethality associated

with each balancer, the largest balancer class was considered the closest to the expected number.

We scored at least 200 flies per DGRP cross. Males and females were combined for a single count.

To calculate the proportion of NGLY1 KD flies by generating a ratio of NGLY1 knockdown/largest

balancer class. This metric was used for the GWA.

Genome wide association
GWA was performed as previously described (Chow et al., 2016). DGRP genotypes were down-

loaded from the website, http://dgrp.gnets.ncsu.edu/. Variants were filtered for minor allele fre-

quency (�0.05), and non-biallelic sites were removed. A total of 2,007,145 variants were included in

the analysis. The proportion of NGLY1 KD flies surviving was regressed on each SNP. To account for

cryptic relatedness (He et al., 2014; Huang et al., 2014), GEMMA (v. 0.94) (Zhou and Stephens,

2012) was used to both estimate a centered genetic relatedness matrix and perform association

tests using the following linear mixed model (LMM):

y¼ aþ xbþ uþ �

u~MVN�nð0;lt ^ð�1ÞKÞ
"~MVN�nð0;t ^ð�1ÞI�nÞ

where, as described and adapted from Zhou and Stephens, 2012, y is the n-vector of proportion

lethality for the n lines, a is the intercept, x is the n-vector of marker genotypes, b is the effect size

of the marker. u is a n x n matrix of random effects with a multivariate normal distribution (MVN_n)

that depends on l, the ratio between the two variance components, t̂(�1), the variance of residuals

errors, and where the covariance matrix is informed by K, the calculated n x n marker-based related-

ness matrix. K accounts for all pairwise non-random sharing of genetic material among lines. e, is a

n-vector of residual errors, with a multivariate normal distribution that depends on t̂(�1) and I_n, the

identity matrix. Genes were identified from SNP coordinates using the BDGP R54/dm3 genome

build. An SNP was assigned to a gene if it was +/- 1 kb from a gene body.

Gene set enrichment analysis
GSEA was run to generate a rank-list of genes based on their enrichment for significantly associated

polymorphisms as previously described (Palu et al., 2019). Polymorphisms within 1 kb of more than

one gene were assigned to one gene based on a priority list of exon, UTR, intron, and upstream or

downstream. Genes were assigned to GO categories, and calculation of enrichment score was per-

formed as described (Subramanian et al., 2005). Only gene sets with �5 genes,>0.25 enrichment

score, and a p<0.05 were considered.

Evolutionary rate covariation
ERC is a method to examine the similarity of evolutionary histories of pairs of genes (Clark et al.,

2012). The method examines the variation over time of a gene’s rate of sequence evolution. Using

estimates of evolutionary rate over the branches of a gene’s phylogenetic tree, the method meas-

ures the correlation between genes of these branch-specific rates. Genes within correlated rate vari-

ation tend to be functionally related and have been used to discover new genes within pathways

and diseases (Brunette et al., 2019; Priedigkeit et al., 2015; Raza et al., 2019).

ERC values in this study were taken from a compilation of ERC correlations calculated separately

for three taxonomic groups: 62 mammals, 39 non-mammalian vertebrates, and 22 Drosophila spe-

cies. Mammal and non-mammalian vertebrate alignments were taken from the multiz alignment

available from the UCSC Genome Browser (Haeussler et al., 2019). For each alignment, we filtered

out low-quality orthologs containing fewer than 50 non-gap amino acid sites or less than 70% non-

gap sites and removed alignments with fewer than 15 species. Alignments were made for the Dro-

sophila species after downloading protein-coding genome sequences from FlyBase and NCBI.

Orthologous groups were identified using Orthofinder and alignments made with PRANK

(Emms and Kelly, 2015; Löytynoja and Goldman, 2008). For each amino acid alignment, we esti-

mated branch lengths using aaml in the phylogenetic analysis using maximum likelihood (PAML)
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package (Yang, 2007). ERC values (correlation coefficients) for all genes with NGLY1 were calculated

using the RERconverge package (Kowalczyk et al., 2019). We report the ERC results for the mam-

malian group as the negative log of their p-values for each gene pair (Supplementary file 5

‘nlogpvbest1’). Each gene pair also incorporated results from the vertebrate and Drosophila datasets

by summing their negative log p-values, when orthologs were present for their respective datasets

(Supplementary file 5 ‘sumnlogpvbest’). The resulting taxonomically integrated results of ERC with

NGLY1 were sorted and used for gene set enrichment analysis (GSEA).

Drosophila circadian rhythm assay
Male flies with the following genotypes were used in circadian rhythm assays: w/Y;Pdf-GAL4/+, yv/Y;

UAS-PnglRNAi/+, and yv/Y; Pdf-GAL4/UAS-PnglRNAi/+. Two- to 5-day-old flies were entrained for at

least 3 days to a 12 hr light: 12 hr dark regimen (LD) within a Drosophila Activity Monitor (DAM; Tri-

Kinetics, Waltham, MA) filled with standard fly food. After entrainment, flies were monitored in com-

plete darkness (DD) for 8 days. The data was collected in 30 min bins, and analyzed for period

length using ClockLab, Version 6. Graphs were generated and one-way ANOVA performed, with

Tukey’s multiple comparison of all three genotypes, using GraphPad Prism, Version 8.

Drosophila seizure assay
The Bang Sensitivity Assay (BSA) was performed on the following genotypes: UAS-PnglRNAi; repo-

GAL4, UAS-Ncc69RNAi; repo-GAL4, and UAS-PnglRNAi/+; UAS-Ncc69RNAi/repo-GAL4. Females 4–7

days old were assayed. Flies were not exposed to CO2 for 3 days prior to BSA testing. Flies were

flipped into empty vials and allowed to rest for 2 hr. They were then vortexed on a Thermo Scientific

LP Vortex Mixer for 10 s at maximum speed. The vortexed flies were filmed for 60 s. The video was

used to score seizures at 5, 10, 30, and 60 s.

Mammalian cell culture and proteasome inhibition
MEFs were generated by Jackson Laboratory (Bar Harbor, Maine) from NGLY1 knockout mice and

littermate controls (C57BL/6J-Ngly1em4Lutzy/J, #027060). MEFs were immortalized in the laboratory

of Dr. Hamed Jafar-Nejad (Baylor College of Medicine) and then gifted to us. MEFs were grown in

DMEM (Gibco 11965) supplemented with 10% fetal bovine serum (FBS) and penicillin/streptomycin

in 5% CO2 at 37˚C. For proteasome inhibition, MEFs were incubated with 500 nM bortezomib (EMD

Millipore) or an equivalent volume of DMSO as a vehicle control, for 4 hr under standard conditions.

Western blotting
MEFs were grown to 80–90% confluency then collected. Cell pellets were weighed and then resus-

pended in a proportional volume of phosphate buffered saline (PBS). Equivalent volumes of resus-

pension were always used for each lysis. Cells were lysed using a cell fractionation kit (Cell Signaling

Technologies, #9038) with each buffer supplemented with 1 mM PMSF and 1x protease inhibitor

cocktail (Cell Signaling Technologies, #5871).

Lysates were separated by SDS-PAGE on 3–8% Tris-acetate gels (BioRad #3450129) for 2.5 hr at

150V, then transferred to PVDF membrane by wet transfer at 50V for 1 hr. Membranes were blocked

in either 5% milk or 5% BSA according to the recommendations of the primary antibody manufac-

turer. Primary antibodies were as follows: anti-NKCC1 (Cell Signaling Technologies #14581), anti-

TCF11/NRF1 (Cell Signaling Technologies #8052). Membranes were incubated in primary antibody

at 1:1000 in blocking buffer overnight. IRDye secondary antibody (Abcam #216773) was used for

infrared detection at 1:10,000 dilution in blocking buffer for 1 hr. Membranes were scanned on an

Odyssey CLx (Li-cor) and analyzed with the accompanying software, Image Studio.

Deglycosylation reactions
MEFs were lysed in the same manner as described for western blotting. The membrane fraction was

then incubated with one of the three deglycosylation enzymes: O-Glycosidase (New England Biol-

abs, #P0733), PNGase F (New England Biolabs, #P0704), Endoglycosidase F (New England Biolabs,

#P0702) according to the manufacturer’s directions. Reactions were incubated at 37˚C for 1 hr. Con-

trols were treated with all the same buffers and reaction conditions but without the added enzyme.
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Rb+ flux assay
20,000 cells/well of immortalized MEFs from control or Ngly1 -/- mice were seeded into a 96-well

plate. The following day, media was removed and the cells were washed with 1x PBS. Of pre-incuba-

tion medium (in mM, 135 Na gluconate, 5 K gluconate, 1 Ca gluconate, 1 Mg gluconate, 15 HEPES

pH 7.4, 5 glucose), 100 ml was added to each well and the cells were incubated for 30 min at 37˚C.

Next, 100 ml of pre-incubation medium containing either DMSO, bumetanide, or ouabain was added

to each well to achieve final concentrations of 0.1% (DMSO), 10 mM (bumetanide), or 0.1 mM (oua-

bain) and incubated for 30 min at room temperature. Then, 150 mL of medium containing DMSO

(0.1%), bumetanide (10 mM) or ouabain (0.1 mM), as well as 86Rb (10 mCi/ml), was added to each

well. Three different media were used. Isotonic media contained (in mM): 140 NaCl, 5 KCl, 2 CaCl2,

1 MgCl2, 5 glucose, 15 HEPES pH 7.4. Hypertonic medium was the same as isotonic medium, with

the addition of 75 mM sucrose. For hypotonic medium, isotonic medium was diluted 1:2 in water.

The cells were incubated for 7 min at room temperature. Medium was removed and the cells were

washed three times with ice-cold 1x PBS. Cells were lysed in 100 ml 2% SDS and incubated for 15

min at room temperature. Radioactivity was measured in a liquid scintillation counter.
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Huang W, Massouras A, Inoue Y, Peiffer J, Ràmia M, Tarone AM, Turlapati L, Zichner T, Zhu D, Lyman RF,
Magwire MM, Blankenburg K, Carbone MA, Chang K, Ellis LL, Fernandez S, Han Y, Highnam G, Hjelmen CE,
Jack JR, et al. 2014. Natural variation in genome architecture among 205 Drosophila melanogaster genetic
reference panel lines. Genome Research 24:1193–1208. DOI: https://doi.org/10.1101/gr.171546.113,
PMID: 24714809

Iyer S, Mast JD, Tsang H, Rodriguez TP, DiPrimio N, Prangley M, Sam FS, Parton Z, Perlstein EO. 2019. Drug
screens of NGLY1 deficiency in worm and fly models reveal catecholamine, NRF2 and anti-inflammatory-
pathway activation as potential clinical approaches. Disease Models & Mechanisms 12:dmm040576.
DOI: https://doi.org/10.1242/dmm.040576, PMID: 31615832

Kario E, Tirosh B, Ploegh HL, Navon A. 2008. N-linked glycosylation does not impair proteasomal degradation
but affects class I major histocompatibility complex presentation. Journal of Biological Chemistry 283:244–254.
DOI: https://doi.org/10.1074/jbc.M706237200, PMID: 17951257

Katiyar S, Joshi S, Lennarz WJ. 2005. The retrotranslocation protein Derlin-1 binds peptide:n-glycanase to the
endoplasmic reticulum. Molecular Biology of the Cell 16:4584–4594. DOI: https://doi.org/10.1091/mbc.e05-04-
0345, PMID: 16055502

Kobayashi A, Tsukide T, Miyasaka T, Morita T, Mizoroki T, Saito Y, Ihara Y, Takashima A, Noguchi N, Fukamizu
A, Hirotsu Y, Ohtsuji M, Katsuoka F, Yamamoto M. 2011. Central nervous system-specific deletion of
transcription factor Nrf1 causes progressive motor neuronal dysfunction. Genes to Cells 16:692–703.
DOI: https://doi.org/10.1111/j.1365-2443.2011.01522.x, PMID: 21554501

Kondo H, Rabouille C, Newman R, Levine TP, Pappin D, Freemont P, Warren G. 1997. p47 is a cofactor for p97-
mediated membrane fusion. Nature 388:75–78. DOI: https://doi.org/10.1038/40411, PMID: 9214505

Kowalczyk A, Meyer WK, Partha R, Mao W, Clark NL, Chikina M. 2019. RERconverge: an R package for
associating evolutionary rates with convergent traits. Bioinformatics 35:4815–4817. DOI: https://doi.org/10.
1093/bioinformatics/btz468, PMID: 31192356

Lam C, Ferreira C, Krasnewich D, Toro C, Latham L, Zein WM, Lehky T, Brewer C, Baker EH, Thurm A, Farmer
CA, Rosenzweig SD, Lyons JJ, Schreiber JM, Gropman A, Lingala S, Ghany MG, Solomon B, Macnamara E,
Davids M, et al. 2017. Prospective phenotyping of NGLY1-CDDG, the first congenital disorder of
deglycosylation. Genetics in Medicine 19:160–168. DOI: https://doi.org/10.1038/gim.2016.75, PMID: 27388694

Lavoy S, Chittoor-Vinod VG, Chow CY, Martin I. 2018. Genetic modifiers of neurodegeneration in a Drosophila
Model of Parkinson’s Disease. Genetics 209:1345–1356. DOI: https://doi.org/10.1534/genetics.118.301119,
PMID: 29907646

Lee CS, Lee C, Hu T, Nguyen JM, Zhang J, Martin MV, Vawter MP, Huang EJ, Chan JY. 2011. Loss of nuclear
factor E2-related factor 1 in the brain leads to dysregulation of proteasome gene expression and
neurodegeneration. PNAS 108:8408–8413. DOI: https://doi.org/10.1073/pnas.1019209108, PMID: 21536885

Lehrbach NJ, Breen PC, Ruvkun G. 2019. Protein sequence editing of SKN-1A/Nrf1 by peptide:n-glycanase
controls proteasome gene expression. Cell 177:737–750. DOI: https://doi.org/10.1016/j.cell.2019.03.035,
PMID: 31002798

Lehrbach NJ, Ruvkun G. 2016. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic
protease DDI-1. eLife 5:e17721. DOI: https://doi.org/10.7554/eLife.17721, PMID: 27528192

Leiserson WM, Forbush B, Keshishian H. 2011. Drosophila Glia use a conserved cotransporter mechanism to
regulate extracellular volume. Glia 59:320–332. DOI: https://doi.org/10.1002/glia.21103, PMID: 21125654
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