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Calculating Drag and Moments in an Unsteady Free

Stream Using the Unified Finite Airloads Theory

by William Hurley

whurley@wustl.edu

Advisor: Dr. Dave Peters

Abstract

The Unified Finite State Airloads theory (Unified Theory) developed by Dr. Dave

Peters and his former students was used to produce curves for moment and drag in an un-

steady free stream. Previous work has been done to show that the Unified theory exactly

matches Issacs for lift and CL in an unsteady free stream with a time varying angle of at-

tack (α). This report will demonstrate in detail how to calculate lift, drag, moment about

mid chord, and moment about quarter cord and their coefficients (CL, Cd, Cm, Cm(3/4))

using the Unified theory. A useful approximation to the Unified Theory, the Greenberg

Approximation, neglects the effect of the time varying free stream velocity on the wake.

The accuracy of the Greenberg approximation is quantified over the 3 cases of angle of

attack for each of the calculated loads.

Solution Procedure

The Unified theory obtains its equations for loads from satisfaction of the non-

penetration condition at the surface of the airfoil. Equations for circulatory lift, Lc,

and total bound vorticity Γ are necessary for loads calculations. For rigid body airfoil

motions and a free stream velocity that is not dependant on spacial position, the non-

circulatory lift Lnc is identical to both Issacs and Greenberg. Therefore the issue becomes

calculating circulatory lift. All of the following equations come from the work of Peters

and Johnson [1].

Lc = 2πρbu0(w0 +
1

2
w1 − w0) (1)

Γ = 2πb(w0 +
1

2
w1 − λ0 −

1

2
λ1) (2)

Where b is the semi chord (m), ρ is the air density ( kg
m3 ), u0 is the unsteady velocity

parallel to airfoil chord (m
s

), w0 and w1 are the first two terms in the Glauert series for

flow due to airfoil motion, and λ0 and λ1 are the first two terms in the Glauert series for

induced flow due to shed vorticies and gusts. Note that both Ln and Γ are both per unit

length from the assumptions of thin airfoil theory.
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The Gluert induced flow coefficients λn must satisfy the differential equations given

in eq. 3 and eq. 4. For n = 1, eq. 3 is used, and for n ≥ 2, eq. 4 is used.

b(λ̇0 −
1

2
λ̇2) + u0λ1 = Γ̇/π (3)

b

2n
( ˙λn−1 −

1

2
˙λn+1) + u0λn = Γ̇/(nπ) (4)

These differential equations only generate N equations for N+1 unknowns. Eq. 5 defines

the final equation required to eliminate the last unknown, λ0, from the above equations.

λ0 =
∑

bnλn (5)

Eq. 6 defines the values for bn when n 6= N .

bn = (−1)n+1 (N + n− 1)!

(N − n− 1)!

1

(n!)2
(6)

Eq. 7 defines the value for bn for when N = n.

bN = (−1)N+1 (7)

The previous equations provide a complete set of dimensional differential equations. Fol-

lowing the analysis of ref [1], N = 8 was chosen for the number of states. Increasing

the number of states N increases the fidelity of the calculation. It is most useful to non-

dimensionalize the differential equations above and put them into matrix form as shown

in eq. 8.

[A]λ̄∗n = −ū0(t)λ̄n + [C](w̄0 + w̄1/2)∗ (8)

Where ū0, λ̄n and w̄n have been normalized by the average free stream velocity (v0) and

()∗ is a derivative with respect to a non-dimensional time τ = v0t/b. For reference, the

[A] and [C] matrices are provided in the appendix for N = 8. An unsteady free stream

u0 and a time varying angle of attack α are inputted into eq. 8. The equation for the

free stream is shown in eq. 9.

ū0 = 1 + µsin(ωt) = 1 + µsin(kτ) (9)

k = ωb/v0 (10)

µ is the percent of the free stream velocity of the oscillations, k is the reduced frequency,

and ω is the angular velocity of the blade. 3 cases of angle of attack (α) were used.

Steady α, in phase α, and out of phase α.
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α = 1 (11)

α = sin(kτ) (12)

α = cos(kτ) (13)

For small motions in α and plunge h, where h is measured at a point ”a” near the airfoil

center we generate the following equations.

ω̄0 = ū0α + h∗ − aα∗ (14)

ω̄∗
0 = ū0

∗α + h∗∗ − aα∗∗ (15)

ω̄1 = α∗ (16)

ω̄∗
1 = α∗∗ (17)

Since oscillations are about the center, both h and a are 0. With the induced flow

coefficients solved for, one has everything needed to solve for lift, drag, moments and

their coefficients. Note that it could take multiple periods for the solution to come to

steady state. When defining the tspan for ODE45 in MATLAB, be sure that it is large

enough so that the solution is able to reach steady state. The final period should always

be taken to ensure accuracy. The following equations define the normalized versions of

circulatory lift Lc and circulatory lift coefficient CLc.

L̄c = ū0(ω̄0 +
1

2
ω̄1 − λ̄0) (18)

C̄Lc = (ω̄0 +
1

2
ω̄1 − λ̄0)/ū0 (19)

The following two equations define the normalized versions of drag D and drag coefficient

Cd.

D̄ = λ̄0(αū0 − λ̄0) (20)

C̄D =
D

ū20
=
λ̄0
ū0

(α− λ̄0
ū0

) (21)

Unlike moments and lift, Drag is non-linear so α was multiplied by 0.1 so that α stays in

the linear regime. The next two equations define the normalized versions moment about

the mid cord, M1/2, and its coefficient Cm1/2
.
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M̄1/2 = −1

8
ω1ū0 (22)

C̄M1/2
= −1

8
ω1/ū0 (23)

The final two equations define the normalized versions moment about the quarter cord,

M3/4, and its coefficient Cm3/4
.

M̄3/4 = −1

8
α∗ū0 (24)

C̄M3/4
= −1

8
α∗/ū0 (25)

Quantifying the Greenberg Approximation

If ū0 is set to 1 in on the left hand side of eqs. (3 and 4) so that the affect of the

unsteady free stream on the wake is neglected, one recovers the results of the Greenberg

Approximation. The Greenberg Approximation is computationally more efficient however

it has varying levels of accuracy depending on the percentage of the free stream velocity

of the oscillations (µ), and the reduced frequency (k). The Greenberg approximation was

compared to the exact calculation of the Unified theory using a two norm. The formula

for a two norm is given in eq. 26.

error =

√∫
(Greenberg − Unified)2dt∫

(Unified)2dt
(26)

The Greenberg approximation was quantified over a trade space of values of µ and

k for each individual force (Lift, Drag, Moment), and each case of α. Moment about

the quarter cord is always the same for Greenberg and the Unified theory so that data

was left out. Only data for normalized forces is included since they provide the same

information as the data for the coefficients.
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Table 1: Lift Tables

α = 1 µ = 0.2 0.4 0.6 0.8
k = 0.2 0.005 0.018 0.036 0.057

0.4 0.007 0.024 0.048 0.076
0.6 0.007 0.026 0.052 0.082
0.8 0.007 0.027 0.053 0.084

α = sin(kτ) µ = 0.2 0.4 0.6 0.8
k = 0.2 0.043 0.070 0.087 0.099

0.4 0.062 0.097 0.116 0.129
0.6 0.068 0.106 0.125 0.138
0.8 0.069 0.107 0.127 0.140

α = cos(kτ) µ = 0.2 0.4 0.6 0.8
k = 0.2 0.046 0.079 0.107 0.131

0.4 0.066 0.102 0.134 0.163
0.6 0.082 0.117 0.152 0.183
0.8 0.097 0.133 0.169 0.203

Table 2: Drag Tables

α = 1 µ = 0.2 0.4 0.6 0.8
k = 0.2 0.121 0.248 0.388 0.551

0.4 0.130 0.266 0.412 0.575
0.6 0.131 0.267 0.413 0.572
0.8 0.130 0.265 0.409 0.564

α = sin(kτ) µ = 0.2 0.4 0.6 0.8
k = 0.2 0.111 0.219 0.324 0.425

0.4 0.105 0.206 0.303 0.396
0.6 0.106 0.205 0.296 0.381
0.8 0.111 0.209 0.294 0.370

α = cos(kτ) µ = 0.2 0.4 0.6 0.8
k = 0.2 0.070 0.139 0.207 0.282

0.4 0.061 0.121 0.182 0.247
0.6 0.067 0.129 0.189 0.250
0.8 0.079 0.152 0.217 0.279
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Table 3: Moment(mid) Tables

α = 1 µ = 0.2 0.4 0.6 0.8
k = 0.2 0.005 0.018 0.036 0.057

0.4 0.007 0.024 0.048 0.076
0.6 0.007 0.026 0.052 0.082
0.8 0.007 0.027 0.053 0.084

α = sin(kτ) µ = 0.2 0.4 0.6 0.8
k = 0.2 0.042 0.069 0.086 0.098

0.4 0.059 0.094 0.114 0.128
0.6 0.064 0.102 0.122 0.136
0.8 0.065 0.103 0.124 0.138

α = cos(kτ) µ = 0.2 0.4 0.6 0.8
k = 0.2 0.045 0.076 0.104 0.129

0.4 0.061 0.095 0.127 0.156
0.6 0.073 0.106 0.139 0.171
0.8 0.084 0.116 0.151 0.187
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Appendix

Matrix [A] and [C] for eq. 8. The number of states was chosen to be N = 8.

[A] =



3
2
b1 + 1 3

2
b2 − 1/2 3

2
b3

3
2
b4

3
2
b5

3
2
b6

3
2
b7

1
2
b1 + 3

4
1
2
b2

1
2
b3 − 1

4
1
2
b4

1
2
b5

1
2
b6

1
2
b7

1
3
b1 + 1

3
1
3
b2 + 1

6
1
3
b3

1
3
b4 − 1

6
1
3
b5

1
3
b6

1
3
b7

1
4
b1 + 1

4
1
4
b2

1
4
b3 + 1

8
1
4
b4

1
4
b5 − 1

8
1
4
b6

1
4
b7

1
5
b1 + 1

5
1
5
b2

1
5
b3

1
5
b4 + 1

10
1
5
b5

1
5
b6 − 1

10
1
5
b7

1
6
b1 + 1

6
1
6
b2

1
6
b3

1
6
b4

1
6
b5 + 1

12
1
6
b6

1
6
b7 − 1

12
1
7
b1 + 1

7
1
7
b2

1
7
b3

1
7
b4

1
7
b5

1
7
b6 + 1

14
1
7
b7



[C] =
[
2 1 2

3
1
2

2
5

1
3

2
7

]T
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