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Abstract 

Scientists have long used the unsteady vortex lattice method (UVLM) to simulate flapping wing 

flight. However, until recently, there has not been an available open-source UVLM solver designed 

explicitly for this field. Ptera Software is the only open-source UVLM solver that can simulate 

flapping wing aerodynamics without the modifications required by other open-source solvers. This 

report documents the next step in the software’s development: validation of its results. Comparing 

Ptera Software’s output to high-fidelity experimental data of the pressures on a flapping wing robot 

shows that the simulated results predict the trends and magnitudes of the net lift over time with 

good accuracy. The present results demonstrate that Ptera Software correctly implements the 

UVLM and can simulate flapping wing flight with reasonable accuracy under this method’s 

assumptions. 

Introduction 

Animals are better at flying than any human invention. While animals may not be able to fly as 

fast as a jetliner or carry as much weight as a cargo plane, they fly with higher maneuverability, 

adaptability, and grace than anything aerospace engineers have invented before or after the Wright 

brothers took off from Kitty Hawk. In the words of aerodynamicists McMasters and Henderson, 

“…humans fly commercially or recreationally, but animals fly professionally” (Shyy et al., 2007). 

These advantages indicate that natural flight is a rich area for research that could improve human 

flying machines. Unfortunately, analyzing how animals fly is extremely difficult. When I first 

became interested in natural flight, I assumed that the simplistic methods used to analyze 

conventional aircraft would be applicable. Instead, I realized that the high performance of flying 

animals is matched by the complexity of the aerodynamic mechanisms they utilize. Thankfully, I 

could begin my research on the foundations laid by other aerodynamicists who have worked 

tirelessly to unlock the secrets of flapping wing flight. 

One of the tools discovered by these researchers is the unsteady vortex lattice method (UVLM). 

This tool, described in more mathematical detail in the literature (Katz & Plotkin, 2001) than I will 

discuss here, is a well-established algorithm for analyzing unsteady aerodynamics. It has also been 

used before to simulate flapping wings. As a final advantage over other methods, the UVLM also 

strikes a favorable balance between accuracy and the computational time required to run the 

simulations. For these reasons, I selected it as my tool of choice in exploring natural flight. 

Unfortunately, I quickly stumbled into a roadblock. While many papers have been written using 

the UVLM to analyze flapping wings, I could not find any commercial or open-source UVLM 

programs capable of doing so without significant modifications to their source code. Therefore, I 

decided to write my own. 
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After a few months of work, I released Ptera Software, the only open-source UVLM designed to 

analyze flapping wings. It is free to use, and I hope that it will inspire further research into the field 

of animal aerodynamics and continue to improve as a community of scientists uses and modifies 

it. For more information on Ptera Software, or to download the source code, visit the project page 

on GitHub. 

This paper documents the next step in Ptera Software’s development: validating its results against 

experimental results. The first step in this process was reviewing the literature to find appropriate 

experimental data. Next, I used Ptera Software to emulate the experimental setup that produced 

this data. Finally, I ran Ptera Software’s UVLM solver on this emulation and compared my 

simulated findings against those from the original experiment. 

Literature Review 

Analyzing Flapping Wings with the UVLM 

The literature has demonstrated that the UVLM can accurately predict the aerodynamic forces and 

moments exerted on flapping wings by comparing their results to data gained experimentally. For 

example, researchers Fritz and Long validated plunging and pitching UVLM simulations against 

experimental data and analytical solutions (Fritz & Long, 2004). These experiments have been 

corroborated by Lambert and Dimitriadis, who found that the UVLM accurately modeled the 

forces on a flapping micro air vehicle (MAV) as long as the flow around its wings remained 

attached (Lambert & Dimitriadis, 2014). 

The UVLM has also been used to simulate the flapping wing flight of real animals. For example, 

Gardiner et al. used the UVLM to study the flight of barnacle geese (Gardiner et al., 2013). 

However, the researchers did not provide experimental data that validated their simulated results. 

Some authors have even used a modified form of the UVLM to simulate the flight of insects 

(Nguyen et al., 2016). 

Almost every paper in this field uses a home-grown code developed by each researcher’s 

laboratory. There is no widely accepted, easily accessible framework for conducting low-fidelity 

flapping wing research. Therefore, once validated, Ptera Software could aggregate each 

institution’s disparate advances and eliminate the barrier to entry of developing a solver for those 

newly interested in this field. 

Experimental Data for Validation 

To validate the theoretical results produced by Ptera Software, I needed experimental data to use 

as a benchmark. I found this data in “Experimental and Analytical Pressure Characterization of a 

Rigid Flapping Wing for Ornithopter Development” (Yeo et al., 2011). This paper details the 

https://github.com/camUrban/PteraSoftware
https://github.com/camUrban/PteraSoftware
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analysis of a robotic ornithopter, an umbrella term for any type of flapping wing aircraft. Yeo et 

al. mounted their ornithopter to a test stand within a wind tunnel, as shown in Figure 1. 

While flapping in the wind tunnel, the authors gathered aerodynamic data from the robot via an 

array of nine differential pressure sensors mounted on one of the wing halves. The sensors 

measured the difference in pressure between the wing’s lower and upper surfaces. 

 

Figure 1: Robotic Flapping Wing Robot in Wind Tunnel (Yeo et al., 2011) 

I chose the data from their paper to validate Ptera Software for three reasons. (1) The data provided 

by this paper is well suited for comparison with the data from the UVLM. By using pressure 

sensors instead of a more traditional force sensor, Yeo et al. bypassed the experimental 

confounding factor of separating aerodynamic and inertial loads. (2) Yeo et al. analyzed forward 

flapping wing flight along with hovering flapping wing flight. Forward flapping wing flight data 

is critical because the traditional UVLM is not the proper tool for analyzing hovering flapping 

wing flight due to the prevalence of separated flow under hovering conditions. Flow separation is 

a viscous phenomenon where a fluid ceases to follow the curvature of a surface. A real-world 

example of this is an aircraft stalling at too steep an angle of attack for its airspeed. As the UVLM 

is an inviscid solver, it cannot account for separation. However, flow separation is significantly 

less prevalent during forward flapping wing flight because the effective angle of attack is reduced. 

Therefore, I use the forward flapping wing flight case for my validation. (3) The University of 

Michigan, where this research took place, is a well-respected institution for the study of 

aerodynamics, which lends credence to the quality of the data collected. 

Methodology 

After I selected the experimental data to use for the validation, it needed to be processed, and the 

geometry of Yeo et al.’s robotic ornithopter modeled in Ptera Software. Additionally, I had to 



7 

 

 

check the results for convergence with respect to temporal and spatial discretization. The steps of 

this procedure are shown in Figure 2. 

 

Figure 2: The process of running the validation study 

Extracting Experimental Results, Geometry, and Kinematics 

I chose to validate against the experiment referred to in Yeo et al., 2011 as case C. The data from 

this run is shown in Figure 3, reprinted from Yeo et al., 2011, which contains five subplots. The 

upper left subplot is a sketch of the nine pressure sensors’ approximate positions on the 

instrumented wing. The lower left subplot shows Yeo et al.’s measured versus predicted wing flap 

angle during the test. Each of the right three subplots displays the cycle-averaged pressure data for 

three of the nine sensors. The upper right, middle right, and lower right subplots show the data for 

the “blue,” “orange,” and “green” sensors, respectively. The upper left subplot can be used to 

identify each sensor’s color and number designations. 
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Figure 3: Data from Flapping Wing Robot at Flight Condition of Interest (Yeo et al., 2011) 

Since Yeo et al. did not provide the raw data in tabulated form, I used the popular data analysis 

tool WebPlotDigitizer to extract approximated raw pressure data from screenshots of Figure 3’s 

pressure plots that I uploaded to the tool’s website (Rohatgi, 2020). After appropriately scaling the 

axes, the program automatically detected the positions of the graph’s data points, and compiled 

them into a downloadable comma-separated values (CSV) file. 

Modeling Experimental Geometry 

The second step was to model the geometry of Yeo et al.’s robotic wings in Ptera Software. I first 

saved a plot from Yeo et al., 2011 of the wing’s shape and sensor locations, reprinted here as 
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Figure 4. Then, I uploaded the plot to WebPlotDigitizer, which provided interpolated coordinates 

of the wing planform’s curve, shown in Figure 4 as a solid black line.  

 

Figure 4: The geometry of the robotic half wing (Yeo et al., 2011) 

I was then able to discretize the wing in the spanwise direction into any number of uniformly-

spaced wing cross sections. As shown in Figure 4, the experimental wing planform extends to a 

smooth tip. I did not design Ptera Software to analyze wings with a tip chord length of zero. So, to 

avoid the possibility of numerical errors, I sliced off the outermost five millimeters of the wingtip 

so that the last wing cross section had a non-zero chord length. For more details on this process, 

see the code in Appendix A. 

From Figure 4, I also extracted the approximate areas upon which each pressure acts. The figure 

represents these areas as the green rectangles around each of the ports.  Using this data, the normal 

force on each rectangle is simply the pressure at its port multiplied by its area. The lift on each 

panel is the vertical component of this force at that particular time step, which I calculated by 

multiplying the normal force by the cosine of the current flapping angle. Finally, the total lift on 

the robot is the sum of the lift forces on each rectangle multiplied by two (because there are two 

wing halves, and only one has pressure sensors). 

While necessary, the pressure data and the geometry dimension extraction step introduces potential 

errors into my validation because the results are approximate. Future work would allow for 

collaboration with Yeo et al. to rerun this validation study with the exact experimental data. 
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Modeling Experimental Kinematics 

The third step is to model the experimental kinematics. In a separate paper, the authors of 

“Experimental and Analytical Pressure Characterization of a Rigid Flapping Wing for Ornithopter 

Development” analyzed the same robot’s flapping mechanism to characterize the flapping angle 

as a function of time (Yeo et al., 2012). They found that the flapping was experimentally repeatable 

and well modeled by a fourth-order Fourier series. Figure 5 shows the Fourier series’ coefficients, 

and the lower left subplot in Figure 3 displays a comparison between the experimental and modeled 

kinematics of the flapping. 

 

Figure 5: The Fourier series coefficients for the flapping angle equation (Yeo et al., 2012) 

Using these Fourier series coefficients and the flapping frequency of the test I was emulating, I 

wrote a Python function that Ptera Software used to simulate the flapping kinematics. 

Determining Temporal Convergence 

The UVLM is a time-stepping simulation, and the fourth step in setting up the study is picking 

how much time to simulate. During each time step, the wing sheds a new row of ring vortices into 

its wake. The panels on the wing experience the effect of the panels in the wake during the next 

time step. If the simulation were allowed to run for an infinitely long time, there would be an 

infinitely long sheet of wake panels stretching behind the wing. At this point, the pressure vs. time 

graphs for each subsequent flapping cycle would be identical. We would say that the system has 

reached a quasi-steady state (quasi because the pressure distributions are still varying over each 

flap cycle, but this variation is constant from one flap cycle to another). 

However, simulating for an infinitely long time is impractical. Thankfully, as the wake ring 

vortices get further away from the wing, their effects decrease rapidly. Therefore, there should be 

some number of flap cycles, after which additional flap cycles produce only a negligible difference 

in the pressure vs. time functions. 
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I found this threshold to be three flap cycles. I determined this after running several test simulations 

for one, two, three, and four flap cycles with different spatial discretizations and observing that 

there was qualitatively no difference in the results for two and three cycles. 

Determining Spatial Convergence 

The final step in running the experiment in Ptera Software is to determine how to arrange the wing 

panels. Ptera Software’s implementation of the UVLM first turns a wing into a 2D surface and 

then discretizes it into an array of rectilinear panels. Generally, the more panels used, the more 

accurate the result. Additionally, I weighed several other considerations before choosing the 

number of panels and determining their shape. 

• Spacing: In many steady vortex solvers, the panels are smaller and more tightly grouped 

near the wing’s leading edge, trailing edge, root, and tip. Researchers use this spacing 

scheme because the pressure gradient is usually higher at these locations. However, most 

unsteady solvers use a uniform spacing, at least in the chordwise direction, so that the wake 

panels are roughly the same area as wing panels that shed them. This choice satisfies the 

wake transport equation, one of the governing laws of the UVLM (Binder et al., 2017). 

While not required by the wake transport equation, I used uniform spacing for the spanwise 

panels to reduce the code required to run these cases. Future work should revisit this 

decision. 

• Aspect Ratio: The panel’s aspect ratio is its average chordwise dimension divided by its 

average spanwise dimension. This value should be kept near one to reduce computational 

error (Guidelines for QFLR5 v0.03 XFLR5 Analysis of Foils and Wings Operating at Low 

Reynolds Numbers, 2009). 

• Computation Time: The computation time increases dramatically with the number of 

panels, specifically with the number of chordwise panels. Therefore, I used the smallest 

number of panels required to achieve convergence. 

Based on the above principles, I decided to space my panels uniformly, keep their aspect ratios as 

close to one as possible, and design a small study increasing the number of chordwise panels from 

a bare minimum amount until I saw qualitative convergence. I saw this convergence after reaching 

five chordwise panels with 18 spanwise panels.  
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Results 

 

Figure 6: A close-up, slow-motion animation of the simulated experiment’s wings. The wing 

panel colors represent the magnitudes of the pressures. Hot colors indicate higher pressures on 

the lower surfaces and vice versa. Click to launch the video. 

 

Figure 7: A slow-motion animation of the simulated experiment’s wings and wake. The wing 

panel colors represent the magnitudes of the pressures. Hot colors indicate higher pressures on 

the lower surfaces and vice versa. The white vortex rings represent the wake shed from the 

trailing edge. Click to launch the video. 

https://www.youtube.com/embed/92DiZW2vWGk?feature=oembed
https://www.youtube.com/embed/Mp-EJZHOn6Y?feature=oembed
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Figure 8: The net simulated and experimental lift across the entire wing over a flap cycle 

normalized from zero to one. The simulated lift values comprise those calculated during the final 

flap. 

Discussion 

Simulation Computational Time 

The simulation of the fully converged configuration took just under 22.5 minutes to run on my 

laptop, which has an Intel® Xeon® E3-1505M v5 CPU running at 2.81 GHz base speed and 15.3 

GB of usable RAM. This converged configuration used a prescribed wake, five uniformly spaced 

chordwise panels, 18 uniformly spaced spanwise panels, and simulated three flap cycles. I 

discretized these cycles into 224 time steps, the difference in time between each being roughly 4.1 

milliseconds. On the last time step, Ptera Software was analyzing a total of 4,104 ring vortices. 

For reference, this translates to multiple calculations involving matrices with hundreds of 

thousands of elements during each of the later time steps. 

While 20 minutes is a reasonable amount of computational time for this simulation type, I plan to 

significantly reduce it with small changes to Ptera Software’s source code. For example, I will 

modify Ptera Software to detect symmetric geometry and operating conditions, such as the two 

sides of the flapping wing in this validation study. Once detected, the software would copy the 

results of any required computations from one of the sides to the other. Additionally, I will modify 
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Ptera Software to compute the panels’ pressures only during the last flap cycle. Finally, I could 

parallelize large parts of the program to take advantage of CPUs with multiple cores. 

These modifications will reduce the computational time to the point where Ptera Software’s users 

could run large scale optimization studies. 

Simulation Results 

Figure 6 and Figure 7 are embedded links to the videos produced by the simulation. These visuals 

are useful in determining quickly if something obvious is wrong with the solver. For example, the 

videos show that the wing is the correct shape and is flapping as expected. Additionally, the 

pressures on two wing halves look symmetric throughout, as they should be given that the sides of 

the robot are identical and experienced identical conditions.  

Figure 8 shows that the fully converged simulation models the experimental lift trends and 

magnitudes relatively well. The simulated lift had a mean absolute error (MAE) of 0.0291 N over 

the flap cycle with respect to the experimental lift. The root mean square (RMS) of the 

experimental lift values is 0.0717 N. 

I chose MAE as an accuracy metric instead of mean absolute percent error (MAPE) because both 

the experimental and simulated lift trends oscillate around 0 N. A percent error method is ill-

equipped to deal with values near zero, so I chose this error-based approach instead. 

Inaccuracies 

The two noticeable inaccuracies in the simulated lift trend are an overall right phase shift and an 

overestimation of the lift force magnitude in the first and final quarter of the flap cycle. The phase 

shift, while a smaller effect than the magnitude differences, is more difficult to explain. Previous 

papers have discussed how procedures for averaging experimental data over a cycle could affect 

the observed phase (Lambert et al., 2017). However, without access to the raw experimental data 

from Yeo et al., it is impossible to investigate this further. 

The negative lift magnitude overestimation during the first and last quarter of the flapping cycle is 

likely caused by flow separation. Flow separation, an aerodynamic phenomenon where the 

streamlines of a fluid detach from a surface, is created by viscosity. As the UVLM assumes the 

fluid is inviscid, it cannot predict this behavior. As shown in Figures 6 and 7, the wing starts its 

cycle halfway through the upstroke. Therefore, the separated flow conditions correspond to the 

wing’s upstroke. During the upstroke, the wing experiences a highly negative effective angle of 

attack, likely caused the flow on the wings’ lower surfaces to separate due to a strong adverse 

pressure gradient. 
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Additionally, inconsistencies in Yeo et al., 2011 may have contributed to inaccuracies in my 

results. In the report, the authors wrote on two separate occasions that the free stream velocity for 

the case I simulated was 2.9 m/s. However, in a later section, this was changed to 2.8 m/s. I chose 

to use the more frequently cited value, 2.9 m/s, for my study. Future work should include 

contacting the original authors to resolve this inconsistency. 

The literature documents work to modify the UVLM to correct for flow separation effects. The 

most promising attempt modified the UVLM to begin shedding vortex rings off the wing’s leading 

edge after a certain effective angle of attack was reached (Roccia et al., 2013). Future work should 

implement this method in Ptera Software and analyze its results. 

Limitations 

While this study’s results are promising, researchers should use Ptera Software with an 

understanding of when its assumptions lose validity. For example, the UVLM assumes inviscid, 

irrotational, and incompressible flow. While no real flow exactly satisfies these requirements, in 

practice, they imply that Ptera Software will only produce accurate results for objects operating at 

relatively high Reynolds numbers, with attached flow, and whose airspeed is much lower than the 

speed of sound. 

Additionally, this software is in its early stages of development. It should not be used to make 

safety-critical design choices. For situations where high reliability is necessary, run preliminary 

studies in Ptera Software to iteratively approach a workable solution, then use a more well 

established and higher fidelity simulation to check the result. 

Conclusions 

Based on the results of this validation study, I conclude that Ptera Software accurately implements 

the UVLM. I made this conclusion based on good agreement between the trends and magnitudes 

of Yeo et al.’s experimental data, and Ptera Software’s simulated results of the total lift force on a 

flapping wing robot 

The simulated and experimental lift force time histories differed in two noticeable ways. (1) The 

simulated force plot leads the experimental force plot by a slight phase shift. (2) The simulated 

results show the wings producing a significantly more negative lift force during the first and last 

quarter of the flap cycle, which corresponds to the robot’s upstroke. The phase shift may be due to 

errors in how Yeo et al. cyclically averaged their experimental results. To investigate this further 

would require access to the researchers’ raw data. The difference in magnitude is most likely due 

to flow separation on the wings’ bottom surfaces during its upstroke. 
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Future work should increase the speed of Ptera Software using various computational techniques, 

such as parallel processing and symmetry analysis. Additionally, a collaboration with the 

experimental study’s original authors could improve this study’s results. Such a collaboration 

would provide access to the actual wing geometry and raw data, eliminating any error associated 

with my attempts to extract this data from the paper and eliminating errors from the typos in the 

original document. Finally, Ptera Software should be modified to account for flow separation using 

a leading-edge vortex scheme described in the literature (Roccia et al., 2013). The inclusion of 

leading-edge vortices could increase Ptera Software’s accuracy for all use cases and expand its 

capabilities to analyze hovering flapping wing flight. 

In the words of statistician George Box, “All models are wrong, but some are useful.” In this spirit, 

researchers should only use Ptera Software within the bounds of the UVLM assumptions. 

Additionally, more well-established simulation tools or hand calculations must support any safety-

critical engineering decisions informed by Ptera Software’s results. Despite these limitations, Ptera 

Software has proved to be a powerful tool for simulating the dauntingly complex aerodynamics of 

flapping wing flight. It has the additional benefits of being free to use, open-source, and designed 

to simulate flapping wings out of the box. For these reasons, Ptera Software is an excellent choice 

for the research and analysis of volant locomotion and ornithopter development. 
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Appendix A: Validation Source Code 

“““This script runs a validation case of Ptera Software’s UVLM. 

 

I first emulate the geometry and kinematics of a flapping robotic test 

stand from “Experimental and Analytical Pressure 

Characterization of a Rigid Flapping Wing for Ornithopter Development” by 

Derrick Yeo, Ella M. Atkins, and Wei Shyy. 

Then, I run the UVLM simulation of an experiment from this paper. Finally, 

I compare the simulated results to the 

published experimental results. 

 

WebPlotDigitizer, by Ankit Rohatgi, was used to extract data from Yeo et 

al., 2011. 

 

More information can be found in my accompanying report: “Validating an 

Open-Source UVLM 

Solver for Analyzing Flapping Wing Flight: An Experimental Approach.” 

""" 

 

# Import Python’s math package. 

import math 

 

# Import Numpy and MatPlotLib’s PyPlot package. 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Import Ptera Software 

import pterasoftware as ps 

 

# Set the given characteristics of the wing in meters. 

half_span = 0.213 

chord = 0.072 

 

# Set the given forward flight velocity in meters per second. 

validation_velocity = 2.9 

 

# Set the given angle of attack in degrees. Note: If you analyze a 

# different operating point where this is not zero, 

# you need to modify the code to rotate the experimental lift into the wind 

# axes. 

validation_alpha = 0 

 

# Set the given flapping frequency in Hertz. 

validation_flapping_frequency = 3.3 

 

# This wing planform has a rounded tip so the outermost wing cross section 

# needs to be inset some amount. This value is 

# in meters. 

tip_inset = 0.005 

 

# Import the extracted coordinates from the paper’s diagram of the 

# planform. The resulting array is of the form 
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# [spanwise coordinate, chordwise coordinate], and is ordered from the 

# leading edge root, to the tip, to the trailing 

# edge root. The origin is the trailing edge root point. The positive 

# spanwise axis extends from root to tip and the 

# positive chordwise axis from trailing edge to leading edge. The 

# coordinates are in millimeters. 

planform_coords = np.genfromtxt( 

    "Extracted Planform Coordinates.csv", delimiter="," 

) 

 

# Convert the coordinates to meters. 

planform_coords = planform_coords / 1000 

 

# Set the origin to the leading edge root point. 

planform_coords = planform_coords - np.array([0, chord]) 

 

# Switch the sign of the chordwise coordinates. 

planform_coords = planform_coords * np.array([1, -1]) 

 

# Swap the axes to the form [chordwise coordinate, spanwise 

# coordinate]. The coordinates are now in the geometry 

# frame projected on the XY plane. 

planform_coords[:, [0, 1]] = planform_coords[:, [1, 0]] 

 

# Find the index of the point where the planform x-coordinate equals the 

# half span. 

tip_index = np.where(planform_coords[:, 1] == half_span)[0][0] 

 

# Using the tip index, split the coordinates into two arrays of leading 

# and trailing edge coordinates. 

leading_coords = planform_coords[:tip_index, :] 

trailing_coords = np.flip(planform_coords[tip_index:, :], axis=0) 

 

# Set the number of flap cycles to run the simulation for. The converged 

# result is 3 flaps. 

num_flaps = 3 

 

# Set the number of chordwise panels. The converged 

# result is 5 panels. 

num_chordwise_panels = 5 

 

# Set the number of sections to map on each wing half. There will be this 

# number +1 wing cross sections per wing half. 

# The converged result is 18 spanwise sections. 

num_spanwise_sections = 18 

 

# Set the chordwise spacing scheme for the panels. This is set to uniform, 

# as is standard for UVLM simulations. 

chordwise_spacing = "uniform" 

 

# Calculate the spanwise difference between the wing cross sections. 

spanwise_step = (half_span - tip_inset) / num_spanwise_sections 

 



20 

 

 

# Define four arrays to hold the coordinates of the front and back points 

# of each section’s left and right wing cross 

# sections. 

front_left_vertices = np.zeros((num_spanwise_sections, 2)) 

front_right_vertices = np.zeros((num_spanwise_sections, 2)) 

back_left_vertices = np.zeros((num_spanwise_sections, 2)) 

back_right_vertices = np.zeros((num_spanwise_sections, 2)) 

 

# Iterate through the locations of the future sections to populate the wing 

# cross section coordinates. 

for spanwise_loc in range(num_spanwise_sections): 

    # Find the y coordinates of the vertices. 

    front_left_vertices[spanwise_loc, 1] = spanwise_loc * spanwise_step 

    back_left_vertices[spanwise_loc, 1] = spanwise_loc * spanwise_step 

    front_right_vertices[spanwise_loc, 1] = ( 

        spanwise_loc + 1 

    ) * spanwise_step 

    back_right_vertices[spanwise_loc, 1] = (spanwise_loc + 1) * spanwise_step 

 

    # Interpolate between the leading edge coordinates to find the x- 

    # coordinate of the front left vertex. 

    front_left_vertices[spanwise_loc, 0] = np.interp( 

        spanwise_loc * spanwise_step, 

        leading_coords[:, 1], 

        leading_coords[:, 0], 

    ) 

 

    # Interpolate between the trailing edge coordinates to find the x- 

    # coordinate of the back left vertex. 

    back_left_vertices[spanwise_loc, 0] = np.interp( 

        spanwise_loc * spanwise_step, 

        trailing_coords[:, 1], 

        trailing_coords[:, 0], 

    ) 

 

    # Interpolate between the leading edge coordinates to find the x- 

    # coordinate of the front right vertex. 

    front_right_vertices[spanwise_loc, 0] = np.interp( 

        (spanwise_loc + 1) * spanwise_step, 

        leading_coords[:, 1], 

        leading_coords[:, 0], 

    ) 

 

    # Interpolate between the trailing edge coordinates to find the x- 

    # coordinate of the back right vertex. 

    back_right_vertices[spanwise_loc, 0] = np.interp( 

        (spanwise_loc + 1) * spanwise_step, 

        trailing_coords[:, 1], 

        trailing_coords[:, 0], 

    ) 

 

# Define an empty list to hold the wing cross sections. 

validation_airplane_wing_cross_sections = [] 
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# Iterate through the wing cross section vertex arrays to create the wing 

# cross section objects. 

for i in range(num_spanwise_sections): 

 

    # Get the left wing cross section’s vertices at this position. 

    this_front_left_vertex = front_left_vertices[i, :] 

    this_back_left_vertex = back_left_vertices[i, :] 

 

    # Get this wing cross section’s leading and trailing edge x coordinates. 

    this_x_le = this_front_left_vertex[0] 

    this_x_te = this_back_left_vertex[0] 

 

    # Get this wing cross section’s leading edge y coordinate. 

    this_y_le = this_front_left_vertex[1] 

 

    # Calculate this wing cross section’s chord. 

    this_chord = this_x_te - this_x_le 

 

    # Define this wing cross section object. 

    this_wing_cross_section = ps.geometry.WingCrossSection( 

        x_le=this_x_le, 

        y_le=this_y_le, 

        chord=this_chord, 

        airfoil=ps.geometry.Airfoil(name="naca0000",), 

        num_spanwise_panels=1, 

    ) 

 

    # Append this wing cross section to the list of wing cross 

    # sections. 

    validation_airplane_wing_cross_sections.append(this_wing_cross_section) 

 

    # Check if this the last section. 

    if i == num_spanwise_sections - 1: 

        # If so, get the right wing cross section vertices at this position. 

        this_front_right_vertex = front_right_vertices[i, :] 

        this_back_right_vertex = back_right_vertices[i, :] 

 

        # Get this wing cross section’s leading and trailing edge x- 

        # coordinates. 

        this_x_le = this_front_right_vertex[0] 

        this_x_te = this_back_right_vertex[0] 

 

        # Get this wing cross section’s leading edge y-coordinate. 

        this_y_le = this_front_right_vertex[1] 

 

        # Calculate this wing cross section’s chord. 

        this_chord = this_x_te - this_x_le 

 

        # Define this wing cross section object. 

        this_wing_cross_section = ps.geometry.WingCrossSection( 

            x_le=this_x_le, 

            y_le=this_y_le, 
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            chord=this_chord, 

            airfoil=ps.geometry.Airfoil(name="naca0000",), 

            num_spanwise_panels=1, 

        ) 

 

        # Append this wing cross section to the list of wing cross 

        # sections. 

        validation_airplane_wing_cross_sections.append( 

            this_wing_cross_section 

        ) 

 

# Define the validation airplane object. 

validation_airplane = ps.geometry.Airplane( 

    wings=[ 

        ps.geometry.Wing( 

            symmetric=True, 

            wing_cross_sections=validation_airplane_wing_cross_sections, 

            chordwise_spacing=chordwise_spacing, 

            num_chordwise_panels=num_chordwise_panels, 

        ), 

    ], 

) 

 

# Delete the extraneous pointer. 

del validation_airplane_wing_cross_sections 

 

# Initialize an empty list to hold each wing cross section movement object. 

validation_wing_cross_section_movements = [] 

 

# Define the first wing cross section movement, which is stationary. 

first_wing_cross_section_movement = ps.movement.WingCrossSectionMovement( 

    base_wing_cross_section=validation_airplane.wings[0].wing_cross_sections[ 

        0 

    ], 

) 

 

# Append the first wing cross section movement object to the list. 

validation_wing_cross_section_movements.append( 

    first_wing_cross_section_movement 

) 

 

# Delete the extraneous pointer. 

del first_wing_cross_section_movement 

 

 

def validation_geometry_sweep_function(time): 

    """ This function takes in the time during a flap cycle and returns the 

    flap angle in degrees. It uses the flapping 

    frequency defined in the encompassing script, and is based on a 

    fourth-order Fourier series. The coefficients were 

    calculated by the authors of Yeo et al., 2011. 

 

    :param time: float or 1D array of floats 
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        This is a single time or an array of time values at which to 

        calculate the flap angle. The units are seconds. 

    :return flap_angle: float or 1D array of floats 

        This is a single flap angle or an array of flap angle values at the 

        inputted time value or values. The units are 

        degrees. 

    """ 

 

    # Set the Fourier series coefficients and the flapping frequency. 

    a_0 = 0.0354 

    a_1 = 4.10e-5 

    b_1 = 0.3793 

    a_2 = -0.0322 

    b_2 = -1.95e-6 

    a_3 = -8.90e-7 

    b_3 = -0.0035 

    a_4 = 0.00046 

    b_4 = -3.60e-6 

    f = validation_flapping_frequency 

 

    # Calculate and return the flap angle(s). 

    flap_angle = ( 

        a_0 

        + a_1 * np.cos(1 * f * time) 

        + b_1 * np.sin(1 * f * time) 

        + a_2 * np.cos(2 * f * time) 

        + b_2 * np.sin(2 * f * time) 

        + a_3 * np.cos(3 * f * time) 

        + b_3 * np.sin(3 * f * time) 

        + a_4 * np.cos(4 * f * time) 

        + b_4 * np.sin(4 * f * time) 

    ) / 0.0174533 

    return flap_angle 

 

 

def normalized_validation_geometry_sweep_function_rad(time): 

    """ This function takes in the time during a flap cycle and returns the 

    flap angle in radians. It uses a normalized 

    flapping frequency of 1 Hertz, and is based on a fourth-order Fourier 

    series. The coefficients were calculated by the 

    authors of Yeo et al., 2011. 

 

    :param time: float or 1D array of floats 

        This is a single time or an array of time values at which to 

        calculate the flap angle. The units are seconds. 

    :return flap_angle: float or 1D array of floats 

        This is a single flap angle or an array of flap angle values at the 

        inputted time value or values. The units are 

        radians. 

    """ 

 

    # Set the Fourier series coefficients. 

    a_0 = 0.0354 
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    a_1 = 4.10e-5 

    b_1 = 0.3793 

    a_2 = -0.0322 

    b_2 = -1.95e-6 

    a_3 = -8.90e-7 

    b_3 = -0.0035 

    a_4 = 0.00046 

    b_4 = -3.60e-6 

 

    # Calculate and return the flap angle(s). 

    flap_angle = ( 

        a_0 

        + a_1 * np.cos(1 * time) 

        + b_1 * np.sin(1 * time) 

        + a_2 * np.cos(2 * time) 

        + b_2 * np.sin(2 * time) 

        + a_3 * np.cos(3 * time) 

        + b_3 * np.sin(3 * time) 

        + a_4 * np.cos(4 * time) 

        + b_4 * np.sin(4 * time) 

    ) 

    return flap_angle 

 

 

# Iterate through each of the wing cross sections. 

for j in range(1, num_spanwise_sections + 1): 

    # Define the wing cross section movement for this wing cross section. The 

    # amplitude and period are both set to one because 

    # the true amplitude and period are already accounted for in the custom 

    # sweep function. 

    this_wing_cross_section_movement = ps.movement.WingCrossSectionMovement( 

        base_wing_cross_section=validation_airplane.wings[ 

            0 

        ].wing_cross_sections[j], 

        sweeping_amplitude=1, 

        sweeping_period=1, 

        sweeping_spacing="custom", 

        custom_sweep_function=validation_geometry_sweep_function, 

    ) 

 

    # Append this wing cross section movement to the list of wing cross 

    # section movements. 

    validation_wing_cross_section_movements.append( 

        this_wing_cross_section_movement 

    ) 

 

# Define the wing movement object that contains the wing cross section 

# movements. 

validation_main_wing_movement = ps.movement.WingMovement( 

    base_wing=validation_airplane.wings[0], 

    wing_cross_sections_movements=validation_wing_cross_section_movements, 

) 
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# Delete the extraneous pointer. 

del validation_wing_cross_section_movements 

 

# Define the airplane movement that contains the wing movement. 

validation_airplane_movement = ps.movement.AirplaneMovement( 

    base_airplane=validation_airplane, 

    wing_movements=[validation_main_wing_movement,], 

) 

 

# Delete the extraneous pointers. 

del validation_airplane 

del validation_main_wing_movement 

 

# Define an operating point corresponding to the conditions of the 

# validation study. 

validation_operating_point = ps.operating_point.OperatingPoint( 

    alpha=validation_alpha, velocity=validation_velocity, 

) 

 

# Define an operating point movement that contains the operating point. 

validation_operating_point_movement = ps.movement.OperatingPointMovement( 

    base_operating_point=validation_operating_point, 

) 

 

# Delete the extraneous pointer. 

del validation_operating_point 

 

# Calculate the period of this case’s flapping motion. The units are in 

# seconds. 

validation_flapping_period = 1 / validation_flapping_frequency 

 

# Calculate the time step (in seconds) so that the area of the wake ring 

# vortices roughly equal the area of the bound 

# ring vortices. 

validation_delta_time = ( 

    validation_airplane_movement.base_airplane.c_ref 

    / num_chordwise_panels 

    / validation_velocity 

) 

 

# Calculate the number of steps required for the wing to have flapped the 

# prescribed number of times. 

validation_num_steps = math.ceil( 

    num_flaps / validation_flapping_frequency / validation_delta_time 

) 

 

# Define the overall movement. 

validation_movement = ps.movement.Movement( 

    airplane_movement=validation_airplane_movement, 

    operating_point_movement=validation_operating_point_movement, 

    num_steps=validation_num_steps, 

    delta_time=validation_delta_time, 

) 
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# Delete the extraneous pointers. 

del validation_airplane_movement 

del validation_operating_point_movement 

 

# Define the validation problem. 

validation_problem = ps.problems.UnsteadyProblem( 

    movement=validation_movement, 

) 

 

# Delete the extraneous pointer.  

del validation_movement 

 

# Define the validation solver. 

validation_solver = 

ps.unsteady_ring_vortex_lattice_method.UnsteadyRingVortexLatticeMethodSolver( 

    unsteady_problem=validation_problem, 

) 

 

# Delete the extraneous pointer. 

del validation_problem 

 

# Define the position of the coordinates of interest and the area of their 

# rectangles. These values were extracted by 

# digitizing the figures in Yeo et al., 2011. 

blue_trailing_point_coords = [0.060, 0.036] 

blue_trailing_area = 0.072 * 0.024 

blue_middle_point_coords = [0.036, 0.036] 

blue_middle_area = 0.072 * 0.024 

blue_leading_point_coords = [0.012, 0.036] 

blue_leading_area = 0.072 * 0.024 

orange_trailing_point_coords = [0.05532, 0.107] 

orange_trailing_area = 0.07 * 0.02112 

orange_middle_point_coords = [0.0342, 0.107] 

orange_middle_area = 0.07 * 0.02112 

orange_leading_point_coords = [0.01308, 0.107] 

orange_leading_area = 0.07 * 0.02112 

green_trailing_point_coords = [0.04569, 0.162825] 

green_trailing_area = 0.04165 * 0.015 

green_middle_point_coords = [0.03069, 0.176] 

green_middle_area = 0.06565 * 0.015 

green_leading_point_coords = [0.01569, 0.1775] 

green_leading_area = 0.071 * 0.015 

 

# Run the validation solver. This validation study was run using a 

# prescribed wake. 

validation_solver.run(prescribed_wake=True) 

 

# Call the software’s animate function on the solver. This produces a GIF. 

# The GIF is saved in 

# the same directory as this script. Press “q,” after orienting the view, 

# to begin the animation. 

ps.output.animate( 
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    # Set the unsteady solver to the one we just ran. 

    unsteady_solver=validation_solver, 

    # Show the pressures in the animation. 

    show_delta_pressures=True, 

    # Set this value to False to hide the wake vortices in the animation. 

    show_wake_vortices=True, 

) 

 

# Create a variable to hold the time in seconds at each of the simulation’s 

# time steps. 

times = np.linspace( 

    0, 

    validation_num_steps * validation_delta_time, 

    validation_num_steps, 

    endpoint=False, 

) 

 

# Discretize the time period of the final flap analyzed into 100 steps. 

# Store this to an array. 

final_flap_times = np.linspace( 

    validation_flapping_period * (num_flaps - 1), 

    validation_flapping_period * num_flaps, 

    100, 

    endpoint=False, 

) 

 

# Discretize the normalized flap cycle times into 100 steps. Store this to 

# an array. 

normalized_times = np.linspace(0, 1, 100, endpoint=False) 

 

# Pull the experimental pressure vs. time histories from the digitized 

# data. These data sets are stored in CSV files 

# in the same directory as this script. The pressure units used are inAq 

# and time units are normalized flap cycle times 

# from 0 to 1. 

exp_blue_trailing_point_pressures = np.genfromtxt( 

    “Blue Trailing Point Experimental Pressures.csv”, delimiter=”,” 

) 

exp_blue_middle_point_pressures = np.genfromtxt( 

    "Blue Middle Point Experimental Pressures.csv", delimiter="," 

) 

exp_blue_leading_point_pressures = np.genfromtxt( 

    “Blue Leading Point Experimental Pressures.csv”, delimiter=”,” 

) 

exp_orange_trailing_point_pressures = np.genfromtxt( 

    “Orange Trailing Point Experimental Pressures.csv”, delimiter=”,” 

) 

exp_orange_middle_point_pressures = np.genfromtxt( 

    “Orange Middle Point Experimental Pressures.csv”, delimiter=”,” 

) 

exp_orange_leading_point_pressures = np.genfromtxt( 

    “Orange Leading Point Experimental Pressures.csv”, delimiter=”,” 

) 
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exp_green_trailing_point_pressures = np.genfromtxt( 

    “Green Trailing Point Experimental Pressures.csv”, delimiter=”,” 

) 

exp_green_middle_point_pressures = np.genfromtxt( 

    "Green Middle Point Experimental Pressures.csv", delimiter="," 

) 

exp_green_leading_point_pressures = np.genfromtxt( 

    “Green Leading Point Experimental Pressures.csv”, delimiter=”,” 

) 

 

# Interpolate the experimental pressure data to ensure that they all 

# reference the same normalized time scale. 

exp_blue_trailing_point_pressures_norm = np.interp( 

    normalized_times, 

    exp_blue_trailing_point_pressures[:, 0], 

    exp_blue_trailing_point_pressures[:, 1], 

) 

exp_blue_middle_point_pressures_norm = np.interp( 

    normalized_times, 

    exp_blue_middle_point_pressures[:, 0], 

    exp_blue_middle_point_pressures[:, 1], 

) 

exp_blue_leading_point_pressures_norm = np.interp( 

    normalized_times, 

    exp_blue_leading_point_pressures[:, 0], 

    exp_blue_leading_point_pressures[:, 1], 

) 

exp_orange_trailing_point_pressures_norm = np.interp( 

    normalized_times, 

    exp_orange_trailing_point_pressures[:, 0], 

    exp_orange_trailing_point_pressures[:, 1], 

) 

exp_orange_middle_point_pressures_norm = np.interp( 

    normalized_times, 

    exp_orange_middle_point_pressures[:, 0], 

    exp_orange_middle_point_pressures[:, 1], 

) 

exp_orange_leading_point_pressures_norm = np.interp( 

    normalized_times, 

    exp_orange_leading_point_pressures[:, 0], 

    exp_orange_leading_point_pressures[:, 1], 

) 

exp_green_trailing_point_pressures_norm = np.interp( 

    normalized_times, 

    exp_green_trailing_point_pressures[:, 0], 

    exp_green_trailing_point_pressures[:, 1], 

) 

exp_green_middle_point_pressures_norm = np.interp( 

    normalized_times, 

    exp_green_middle_point_pressures[:, 0], 

    exp_green_middle_point_pressures[:, 1], 

) 

exp_green_leading_point_pressures_norm = np.interp( 
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    normalized_times, 

    exp_green_leading_point_pressures[:, 0], 

    exp_green_leading_point_pressures[:, 1], 

) 

 

# Find the normal force time history on each of the experimental panels in 

# Newtons. 

exp_blue_trailing_normal_forces = ( 

    248.84 * exp_blue_trailing_point_pressures_norm * blue_trailing_area 

) 

exp_blue_middle_normal_forces = ( 

    248.84 * exp_blue_middle_point_pressures_norm * blue_middle_area 

) 

exp_blue_leading_normal_forces = ( 

    248.84 * exp_blue_leading_point_pressures_norm * blue_leading_area 

) 

exp_orange_trailing_normal_forces = ( 

    248.84 * exp_orange_trailing_point_pressures_norm * orange_trailing_area 

) 

exp_orange_middle_normal_forces = ( 

    248.84 * exp_orange_middle_point_pressures_norm * orange_middle_area 

) 

exp_orange_leading_normal_forces = ( 

    248.84 * exp_orange_leading_point_pressures_norm * orange_leading_area 

) 

exp_green_trailing_normal_forces = ( 

    248.84 * exp_green_trailing_point_pressures_norm * green_trailing_area 

) 

exp_green_middle_normal_forces = ( 

    248.84 * exp_green_middle_point_pressures_norm * green_middle_area 

) 

exp_green_leading_normal_forces = ( 

    248.84 * exp_green_leading_point_pressures_norm * green_leading_area 

) 

 

# Convert each experimental panel’s normal force time history to a lift 

# time history by finding the vertical component 

# given the wing’s sweep angle at each time step. 

exp_blue_trailing_lift_forces = exp_blue_trailing_normal_forces * np.cos( 

    normalized_validation_geometry_sweep_function_rad(normalized_times) 

) 

exp_blue_middle_lift_forces = exp_blue_middle_normal_forces * np.cos( 

    normalized_validation_geometry_sweep_function_rad(normalized_times) 

) 

exp_blue_leading_lift_forces = exp_blue_leading_normal_forces * np.cos( 

    normalized_validation_geometry_sweep_function_rad(normalized_times) 

) 

exp_orange_trailing_lift_forces = exp_orange_trailing_normal_forces * np.cos( 

    normalized_validation_geometry_sweep_function_rad(normalized_times) 

) 

exp_orange_middle_lift_forces = exp_orange_middle_normal_forces * np.cos( 

    normalized_validation_geometry_sweep_function_rad(normalized_times) 

) 



30 

 

 

exp_orange_leading_lift_forces = exp_orange_leading_normal_forces * np.cos( 

    normalized_validation_geometry_sweep_function_rad(normalized_times) 

) 

exp_green_trailing_lift_forces = exp_green_trailing_normal_forces * np.cos( 

    normalized_validation_geometry_sweep_function_rad(normalized_times) 

) 

exp_green_middle_lift_forces = exp_green_middle_normal_forces * np.cos( 

    normalized_validation_geometry_sweep_function_rad(normalized_times) 

) 

exp_green_leading_lift_forces = exp_green_leading_normal_forces * np.cos( 

    normalized_validation_geometry_sweep_function_rad(normalized_times) 

) 

 

# Calculate the net experimental lift. This is the sum of all the lift on 

# each of the experimental panels multiplied by 

# two (because the experimental panels only cover one of the symmetric wing 

# halves). 

# Note: this list of lift forces is with 

# respect to the body axes. I will later compare it to the simulated lift 

# in wind axes. This does not matter because the 

# operating point is at zero angle of attack. If the angle of attack is 

# changed, the experimental lift forces must be 

# rotated to the wind frame before comparison with the simulated lift 

# forces. 

exp_net_lift_forces = 2 * ( 

    exp_blue_trailing_lift_forces 

    + exp_blue_middle_lift_forces 

    + exp_blue_leading_lift_forces 

    + exp_orange_trailing_lift_forces 

    + exp_orange_middle_lift_forces 

    + exp_orange_leading_lift_forces 

    + exp_green_trailing_lift_forces 

    + exp_green_middle_lift_forces 

    + exp_green_leading_lift_forces 

) 

 

# Get this solver’s problem’s airplanes. 

airplanes = [] 

for steady_problem in validation_solver.steady_problems: 

    airplanes.append(steady_problem.airplane) 

 

# Initialize matrices to hold the forces and moments at each time step. 

sim_net_forces_wind_axes = np.zeros((3, validation_num_steps)) 

 

# Iterate through the time steps and add the results to their respective 

# matrices. 

for step in range(validation_num_steps): 

    # Get the airplane at this time step. 

    airplane = airplanes[step] 

    # Add the total near field forces on the airplane at this time step to 

the 

    # list of simulated net forces. 

    sim_net_forces_wind_axes[ 
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        :, step 

    ] = airplane.total_near_field_force_wind_axes 

 

# Initialize the figure and axes of the experimental versus simulated lift 

# plot. 

lift_figure, lift_axes = plt.subplots(figsize=(5, 4)) 

 

# Get the simulated net lift forces. They are the third row of the net 

# forces array. 

sim_net_lift_forces_wind_axes = sim_net_forces_wind_axes[2, :] 

 

# Interpolate the simulated net lift forces to find them with respect to the 

# normalized final flap time scale. 

final_flap_sim_net_lift_forces_wind_axes = np.interp( 

    final_flap_times, times, sim_net_lift_forces_wind_axes[:] 

) 

 

# Plot the simulated lift forces. The x-axis is set to the normalized 

# times, which may seem odd because we just 

# interpolated so as to get them in terms of the normalized final flap 

# times. But, they are discretized in exactly the 

# same way as the normalized times, just horizontally shifted. 

lift_axes.plot( 

    normalized_times, 

    final_flap_sim_net_lift_forces_wind_axes, 

    label="Simulated", 

    color="#E62128", 

    linestyle="solid", 

) 

 

# Plot the experimental lift forces. 

lift_axes.plot( 

    normalized_times, 

    exp_net_lift_forces, 

    label="Experimental", 

    color="#E62128", 

    linestyle="dashed", 

) 

 

# Label the axis, add a title, and add a legend. 

lift_axes.set_xlabel("Normalized Flap Cycle Time",) 

lift_axes.set_ylabel("Lift (N)",) 

lift_axes.set_title("Simulated and Experimental Lift Versus Time",) 

lift_axes.legend() 

 

# Show the figure. 

lift_figure.show() 

 

# Delete the extraneous pointers. 

del airplanes 

del steady_problem 

del sim_net_forces_wind_axes 

del step 
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# Calculate the lift mean absolute error (MAE). The experimental and 

# simulated lift comparison here is valid because, 

# due to the interpolation steps, the experimental and simulated lifts 

# time histories are discretized so that they 

# they are with respect to the same time scale. 

lift_absolute_errors = np.abs( 

    final_flap_sim_net_lift_forces_wind_axes - exp_net_lift_forces 

) 

lift_mean_absolute_error = np.mean(lift_absolute_errors) 

 

# Print the MAE. 

print( 

    "\nMean Absolute Error on Lift: " 

    + str(np.round(lift_mean_absolute_error, 4)) 

    + “N” 

) 

 

# Calculate the experimental root mean square (RMS) lift. 

exp_rms_lift = np.sqrt(np.mean(np.power(exp_net_lift_forces, 2))) 

 

# Print the experimental RMS lift. 

print("Experimental RMS Lift: " + str(np.round(exp_rms_lift, 4)) + " N") 
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