
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

Biology Faculty Publications & Presentations Biology 

3-2014 

HP1a: a structural chromosomal protein regulating transcription HP1a: a structural chromosomal protein regulating transcription 

Joel Eissenberg 

Sarah C.R. Elgin 
Washington University in St. Louis, selgin@wustl.edu 

Follow this and additional works at: https://openscholarship.wustl.edu/bio_facpubs 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Eissenberg, Joel and Elgin, Sarah C.R., "HP1a: a structural chromosomal protein regulating transcription" 
(2014). Biology Faculty Publications & Presentations. 232. 
https://openscholarship.wustl.edu/bio_facpubs/232 

This Article is brought to you for free and open access by the Biology at Washington University Open Scholarship. It 
has been accepted for inclusion in Biology Faculty Publications & Presentations by an authorized administrator of 
Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/385969441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/bio_facpubs
https://openscholarship.wustl.edu/bio
https://openscholarship.wustl.edu/bio_facpubs?utm_source=openscholarship.wustl.edu%2Fbio_facpubs%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=openscholarship.wustl.edu%2Fbio_facpubs%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/bio_facpubs/232?utm_source=openscholarship.wustl.edu%2Fbio_facpubs%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


HP1a: A Structural Chromosomal Protein Regulating
Transcription

Joel C Eissenberg1 and Sarah C R Elgin2

1Edward A. Doisy Department of Biochemistry & Molecular Biology Saint Louis University School
of Medicine Doisy Research Center 1100 South Grand Blvd. St. Louis, MO 63104

2Department of Biology Washington University in St. Louis Campus Box 1037 One Brookings
Drive St. Louis, MO 63130-4899

Abstract

Heterochromatin Protein 1 (HP1a in Drosophila) is a conserved eukaryotic chromosomal protein

that is prominently associated with pericentric heterochromatin and mediates the concomitant gene

silencing. Mechanistic studies implicate HP1 family proteins as “hub proteins,” able to interact

with a variety of chromosomal proteins through the chromo-shadow domain, as well as recognize

key histone modification sites (primarily H3K9me2/3) through the chromo domain. Consequently,

HP1 plays many important roles in chromatin architecture and impacts both gene expression and

gene silencing, utilizing a variety of mechanisms. Clearly, HP1 function is altered by context, and

potentially by post-translational modifications. Here, we report on recent ideas as to how this

versatile protein accomplishes its diverse functions.
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The versatile HP1 family proteins

Heterochromatin Protein 1a (HP1a) was initially identified as a protein predominantly

associated with heterochromatin by using immunofluorescent staining of the polytene

chromosomes of Drosophila, screening monoclonal antibodies prepared against a collection

of tight-binding nuclear proteins [1]. The gene encoding HP1a was first identified in

mutagenesis screens for dominant suppressors of heterochromatic position effect variegation

(reviewed in [2]). These and subsequent studies implicated HP1a in position-effect

variegation (PEV), the heterochromatin-mediated silencing of euchromatic genes

abnormally displaced to heterochromatin via rearrangement or transposition. Comparison

with a second protein involved in stable silencing, Polycomb (Pc), identified a homologous
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domain, the “chromo” domain, subsequently shown to bind specific post-translational

modifications of the histone H3 N-terminal tail: trimethylated lysine 27 (H3K27me3) in the

case of Pc, and di- or trimethylated lysine 9 (H3K9me2/3) in the case of HP1a. Genetic and

biochemical analyses indicate that direct binding of the modified histone tail by HP1a or Pc

is utilized to promote gene silencing (Box 1). Analysis of the full HP1a sequence identified

a second related motif, the chromo-shadow domain, which homodimerizes to form a

platform capable of binding a variety of proteins. This two-domain structure allows HP1a to

link a targeted histone post-translational modification (histone mark) physically with the

non-histone proteins that it binds. We consider this to be the defining role of HP1 proteins,

and hence for purposes of this review will define an HP1 protein as having an N-terminal

chromo domain (CD), flexible hinge region (H), and C-terminal chromo-shadow domain

(CSD) (see Fig. 1A). In addition to protein binding activities, the hinge region has been

reported to bind nucleic acids, suggesting additional structural interactions. (See [2,3] for

reviews with original citations.)

As the genomes of Drosophila melanogaster and other eukaryotes were sequenced, it

became evident that (a) the HP1 protein family is highly conserved, being found in

organisms from the yeast Schizosaccharomyces pombe to humans, and that (b) most

genomes have several homologues of this protein (reviewed in [4]). In D. melanogaster, five

paralogues have been characterized: HP1a, the protein described above; HP1b, found in both

heterochromatin and euchromatin; HP1c, primarily euchromatic; HP1d, the product of the

rhino gene, expressed only in the female germline; and HP1e, expressed in the male

germline. While orthologous genes for the first four are found in all Drosophila genomes

sequenced through 2012, the HP1 family members expressed exclusively in the male

germline differ in different species, suggesting a dynamic evolutionary process that could

reflect karyotype evolution [5]. Genes encoding proteins containing only an HP1-related

chromo domain (e.g., Oxpecker) or only an HP1-related chromo-shadow domain (e.g.,

Umbrea) have also been identified [5]. While these derived proteins (where tested,

expressed in the germline) are certainly of interest, they do not meet the definition of HP1

family proteins, and should not be labeled as such.

This review focuses on HP1a of Drosophila melanogaster, the best-studied of these

proteins, and its well-studied homologues in other species, primarily Swi6 from S. pombe

and human HP1α/HP1β/HP1γ. No HP1 orthologs are found in the budding yeast

Sacccharomyces cerevisiae, which does not utilize either H3K9 or H3K27 methylation,

instead relying on the SIR protein complex for domain silencing [6]. HP1a orthologues are

found in many fungi and most animals, and appear to have similar functions in

heterochromatin structure in the organisms mentioned (S. pombe, flies, mammals). This role

of HP1a is highly conserved, as shown by the observation that ectopic expression of two of

the three human HP1-coding genes (Cbx3/HP1γ and Cbx5/HP1α) can significantly enhance

heterochromatic silencing in flies [7]. The chromo domain of M31, a mouse homologue, can

functionally replace that domain in Swi6, the S. pombe homologue [8]. However, in some

species the homologous protein is best described as “HP1a like.” In Caenorhabditis elegans,

the chromosomes are holocentric; consequently there is no equivalent of “pericentric

heterochromatin,” but the distal portions of the chromosome arms show an enrichment for
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H3K9me1/2/3 [9]. The C. elegans HP1a homologue, HPL-2 (Heterochromatin Protein-Like

2), is required for developmental regulation of key genes, behaving more like Polycomb in

this regard [10]. Nonetheless, HPL-2 plays a role in maintaining the long-term silencing

triggered by a piRNA-dependent foreign RNA response, suggesting heterochromatin

formation [11]. In vitro, HPL-2 binds both H3K27me2/3 and H3K9me2/3 [12], but the

mechanism of HPL-2 targeting in vivo remains unclear. Rather than using the H3K9me3/

HP1a and H3K27me3/Pc complexes as generally distinct and different silencing systems, as

seen in flies [13], worms may have a more complex heterochromatin structure, as loss of any

of several histone methyltransferase (HMT) activities (methylating K9, K27 or K36) causes

partial release of silencing of a tandem repeat array [14]. Further, many of the mammalian

Cbx proteins, as well as plant LHP1 (Like Heterochromatin Protein-1), fail to discriminate

between H3K9me3 and H3K27me3 (reviewed in [15]). Arabidopsis LHP1 appears to be

restricted to promoting Polycomb-group silencing [16]. While pericentric heterochromatin

in Arabidopsis is enriched in H3K9me2 (and 5-methylcytosine; 5mC), no HP1a orthologue

has been identified that localizes specifically to these domains in plants. Thus, the

mechanism of HP1a/H3K9me3 domain silencing conserved among S. pombe, flies, and

mammals, while widespread, appears not to apply in all eukaryotes.

HP1a is a versatile chromosomal protein. As mentioned above, it was first described in D.

melanogaster as a protein localized to heterochromatin, and is required in a dosage-

dependent manner for silencing of PEV reporters. Drosophila HP1a binds H3K9me2/3

through its chromo domain, and binds SU(VAR)3-9, one of the HMTs that methylates

histone H3 on K9, through its chromo shadow domain. This combination suggests a

mechanism for heterochromatin spreading and perhaps epigenetic inheritance, as first shown

in S. pombe (reviewed in [3]). HP1a is essential in flies, necessary for genome integrity and

the stability of repetitious sequences [17]. It plays multiple roles at telomeres, being

involved in telomere capping, elongation, and silencing of telomere-associated repeats

(reviewed in [18]). HP1 family proteins have been implicated in the mechanism of

scheduled DNA replication, where they bind Chromatin Assembly Factor-1 [19,20], and in

double strand break repair [21]. All of these roles can be interpreted as the result of HP1a

contributing to a chromatin state that promotes a compact assembly and/or promotes

transcriptional silencing, which we discuss next. However, HP1a can also contribute to a

chromatin state that promotes gene expression, and a discussion of this will follow.

The Role of HP1a in Silencing

A major role of HP1a is in the assembly and maintenance of heterochromatin, a relatively

condensed form of chromatin that promotes gene silencing. Indeed, formation of

heterochromatin may be an ancient defense designed to silence transposable elements,

which can otherwise wreak havoc in the genome (summarized in [22]). The most detailed

evidence for the role of HP1 family proteins in controlling heterochromatin transcription

comes from studies in fission yeast. S. pombe has two HP1 family proteins, Swi6 and Chp2.

Swi6 is the more abundantly expressed of the two and contributes in greater degree to

silencing at the heterochromatic mat locus in a dose-dependent fashion [23]. Interestingly,

Chp2 overexpression displaces Swi6 and causes loss of silencing, suggesting that both

proteins compete for the same binding sites. Both proteins participate in excluding RNA
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polymerase II (Pol II) from heterochromatic domains and in transcriptional silencing at

centromeric repeats [24]. Similarly, HP1a has been shown to decrease gene expression in

PEV in Drosophila, with a loss of associated Pol II (reviewed in [3]). How is this

accomplished? A number of alternative mechanisms have recently been proposed.

Histone modification

Assembly of heterochromatin in most eukaryotes appears to depend on core histone

deacetylation and histone H3K9 di- and tri-methylation. HP1a facilitates this process by

reading the K9 methyl mark and recruiting relevant enzymes to the site. This can include

5mC DNA methylation, common in mammals. The process of heterochromatin formation

can be considered a cascade of chromatin modifications; for example, H3K9 must be

deacetylated before it can be methylated (the mark read by HP1a) (see [3] for an

illustration). In Drosophila, the histone deacetylase and histone methyltransferase can be

recovered as a complex [25]. However, there is growing evidence that these steps in histone

modification can occur as distinct events. For example, the two S. pombe HP1a orthologues,

Swi6 and Chp2, exist in distinct complexes, both of which promote silencing. Chp2

associates with SHREC histone deacetylase, required for H3K14 deacetylation, a shift that

limits Pol II access to the template. Swi6 is required for the RNAi-dependent silencing

mechanism, which utilizes local transcripts for targeting and recruits the H3K9 HMT Clr4

([26]; see [27] for review). These dual pathways also occur in Neurospora crassa. Here,

H3K9me3 binds HP1 in a complex that directs DNA methylation, resulting in silencing. A

distinct HP1 complex works in parallel to cause silencing by maintaining histone

hypoacetylation [28].

Why should these changes promote silencing? The chromatin fiber is continually in flux,

with relatively unstable nucleosomes (generally marked by the core histone variants H2A.X

and H3.3) around the transcription start sites (TSS), where accessibility is detectable as a

nuclease hypersensitive site (HS site). Core histone acetylation (particularly in the N-

terminal tails of histones H3 and H4) is prominently associated with the active state,

presumably because this modification neutralizes electrostatic interaction between the acidic

DNA and basic histones, facilitating unfolding of the chromatin fiber. Indeed, comparing the

same transgene in heterochromatin to the gene in its normal home in euchromatin in

Drosophila has shown a loss of HS site accessibility and a more regularly spaced

nucleosome array at the heterochromatic copy. Accessibility is partially restored by HP1a

depletion, confirming that the effect is due to heterochromatin packaging (see [3] for

original citations). A model based on histone turnover makes sense here; the histone

deacetylase Clr3 (required for silencing in S. pombe) can inhibit histone turnover and

promote nucleosome occupancy across heterochromatin domains, while Epe1, which

promotes the active state, promotes histone exchange [29]. Thus, histone hypoacetylation,

by itself, can promote silencing. What about the role of H3K9me2/3? The presence of any

methyl groups precludes acetylation at this residue, and binding of HP1a could interfere

with demethylation and subsequent acetylation, thus contributing to a stable heterochromatin

state. In addition, HP1 can provide a binding platform for proteins that further drive

assembly and maintenance of the heterochromatin state, such as H3K9 methyltransferase.

However, in some mammalian systems, the HP1 proteins are not required to maintain
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silencing of endogenous retroviruses (the test applied for heterochromatin formation in this

study); the HMT is sufficient, suggesting that H3K9me3 might block transcription by other

mechanisms [30].

Chromatin fiber condensation

HP1a binding also suggests mechanisms for chromatin fiber condensation to promote

silencing, presumably also by blocking pol II access. Because HP1a forms homodimers

through the CSD, leaving the two CDs available to bind H3K9me3, HP1a dimers could

crosslink the nucleosome array (Fig. 2A). Crosslinking adjacent nucleosomes could impose

uniform nucleosome spacing, which is observed in heterochromatin; crosslinking two turns

of a 30nm fiber could preclude the unwinding necessary for transcription. Indeed,

sedimentation analysis comparing human HP1α binding to unmethylated or H3K9

trimethylated nucleosome arrays shows significantly higher array self-association with the

methylated arrays, an effect requiring the CSD [31]. Recent work in S. pombe has suggested

that Swi6 binds more effectively to H3K9me3 by dimerizing through CD-CD contacts [32].

This leaves the two CSDs available to dimerize with two additional Swi6 molecules,

creating a tetramer that could bridge to nearby H3K9-methylated nucleosomes (see Fig. 2B).

The importance of the CD-CD contacts in tetramer formation on the nucleosome was not

anticipated based on earlier studies of metazoan HP1 CDs in solution; CD-CD dimerization

was not observed in earlier solution studies or crystal structures [15]. In particular, a recent,

detailed biophysical characterization of recombinant mammalian HP1β binding to

recombinant mononucleosomes disclosed no other constraints on interaction, or

multimerization interfaces, besides the H3K9me3 mark and the CD in creating flexible and

dynamic nucleosome binding [33]. These results suggest that CD-CD interaction may be

limited to Swi6. The CD-CD association postulated for Swi6 is supported by genetic

analysis; missense mutations with increased CD interaction in vitro result in increased

tetramerization of Swi6 (which is thought to occur on the nucleosome), and are correlated

with increased silencing and heterochromatin spreading [32]. A conformational shift in Swi6

has been proposed to promote heterochromatin spreading [34].

Swi6/HP1 also contributes to higher order chromatin condensation by recruiting other

factors, notably cohesin, which is required for mitotic sister chromatid cohesion [35]. While

such a direct interaction has not been demonstrated in higher eukaryotes, recent studies in

mammalian cells have shown that HP1 interaction with the HMT Suv4-20h2 leads to

cohesin recruitment at pericentric heterochromatin, with associated compaction [36].

Transcript degradation

Heterochromatin domains generally show low levels of associated RNA Pol II, but many

recent studies show that transcription can occur, and can be essential to targeting

heterochromatin formation through the RNAi system (see below). Several reports have

documented nucleic acid binding by HP1, most often involving the hinge region, but

sometimes either the CD or CSD. A recent study in S. pombe, looking primarily at the MAT

loci and telomeres, argues that Swi6 can capture transcripts from heterochromatic reporter

genes and direct them to the nuclear exosome for degradation. Extensive genetic alteration

of the hinge region that abolished RNA binding allowed persistence of the heterochromatic
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transcripts [37], but may have altered other Swi6 properties as well. An ability of Swi6 to

facilitate silencing at several levels could potentially create a “fail safe” system where

silencing is critical. It will be important to see if similar HP1 family protein-dependent

transcript degradation is detected in metazoa as well. The HP1-family protein Rhino/HP1d is

required for targeted post-transcriptional degradation of certain transposon RNAs in the

Drosophila female germline, and is required for nuage organization, suggesting a role in

RNA processing, albeit for piRNA production [38].

Targeting of heterochromatin formation

Clearly, heterochromatin formation is a potent silencing mechanism; thus the cell must

target domains that should be silenced, while maintaining appropriate access for

transcription. Hypotheses as to targeting mechanisms generally turn on either protein

recognition of specific DNA sequences or RNA-based recognition (often invoking RNAi-

based recognition of transient transcripts) to localize either HP1 or appropriate histone

modification enzymes to initiate the heterochromatin formation cascade. An RNAi-based

mechanism for heterochromatin targeting is well-established in some fungi (e.g., S. pombe)

and plants based on the recognition of transcribed repetitious sequences. In general, the data

indicate that Argonaute family proteins carrying small RNAs can target heterochromatin

proteins, including H3K9 HMTs and HP1, by sequence recognition of transient transcripts

(reviewed in [39]). Similarly, growing evidence implicates a piRNA system in silencing of

transposable elements (TEs) and their remnants in most metazoa, particularly in the female

germline [40]. For example, depletion of either HP1a or PIWI (an Argonaute protein that

can bind piRNAs and enter the nucleus) in the Drosophila female germline leads to

increased expression of the same set of TEs [41]. De-repression of TEs upon PIWI depletion

correlates with increased Pol II occupancy, whereas expression of piRNAs that target a

reporter construct results in increased association of H3K9me3 and HP1a [42]. Analysis of

Drosophila ovarian somatic cells has also demonstrated Piwi-dependent transcriptional

silencing of transposons, through a mechanism dependent on Maelstrom (an HMG protein)

to block RNA Pol II recruitment [43]. In vitro, PIWI binds directly to HP1a through a

PxVxL domain [44], but whether or not this occurs in vivo remains an open question, as a

PIWI missense mutation that disrupts the in vitro interaction fails to compromise function in

vivo [41].

An RNAi-based system seems well-adapted to recognizing TEs, which can change rapidly,

are quite variable, and must be silenced to maintain genome integrity. What about regions

with satellite DNA? Many mammalian transcription factors (e.g. Pax3 and Pax9) have

binding sites in pericentric heterochromatin; indeed, a high concordance has been found

between Suv39h-dependent heterochromatic repeat regions and transcription factor binding

sites in mouse. Pax3 and Pax9 depletion results in de-repression of major satellite

transcripts, impairment of heterochromatic marks, and defects in chromosome segregation

[45]. While in this case targeting may be determined by specific protein binding, loss of

Pax3/Pax9 results in bidirectional transcription up-regulation, resulting in dsRNA [45],

which could once again feed into the piRNA system.
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In some cases, binding of specific transcription factors to euchromatic sites appears to

trigger formation of small blocks of heterochromatin to achieve silencing. For example,

phosphorylated HERS (histone gene-specific epigenetic repressor in late S phase) binds to

the histone gene regulatory regions in Drosophila, and anchors HP1a and Su(var)3-9 to

induce silencing of this repeated gene cluster [46]. Similarly, the TIF1β/KAP1 co-repressor

targets HP1 to specific loci in the euchromatic arms to silence those genes [47,48]. In

contrast to the PEV associated with pericentric heterochromatin, there is very little spreading

of the silencing marks in these cases, suggesting a silencing state that differs in some key

characteristics from heterochromatin formation. However, analysis of the modENCODE

data makes clear that as Drosophila cells mature, large “facultative heterochromatin”

domains enriched for H3K9me2/3 and HP1a accumulate in the euchromatic arms [49,50];

unfortunately, there has been little study of this process to date.

In summary, the evidence points to an HP1-based silencing mechanism in which HP1 binds

histone tails in a way that constrains nucleosome arrays to occlude the chromatin template.

The mechanism for HP1 targeting depends on the H3K9 methyl mark and, at least in some

cases, on the specificity of the RNAi pathway. The mechanism by which these interactions

contribute to the defining cytological appearance of heterochromatin is unknown.

The Role of HP1a in Gene Activation

While HP1a is prominently associated with silencing, there is growing evidence that it can

also promote gene expression. HP1a dosage can impact the expression of subsets of genes

residing in euchromatin, as well as affecting heterochromatic gene expression (reviewed in

[51]). How can a protein that plays a major role in silencing also promote gene activation?

No doubt the versatility of HP1a in binding to a variety of effector proteins is critical

(reviewed in [52]). In addition, HP1 family proteins may not always be interacting with H3

silencing marks; the chromodomain of Cbx3/HP1γ can also bind to H1K26me2,

trimethylated lysine 185 of G9a, and no doubt other modified polypeptides [53]. Whether

the observed HP1a dosage effects are direct or indirect is difficult to establish (Box 2),

although if HP1a is found at significant levels at the impacted gene, the effect is inferred to

be direct. What sort of direct effects should be considered? Two mechanisms have been

proposed: an impact on overall heterochromatin structure, and a role in transcript elongation.

Maintaining heterochromatin structure

As mentioned above, genes normally packaged in heterochromatin appear to require that

HP1-rich environment for optimal expression. Drosophila genes normally found in

pericentric heterochromatin can be silenced by juxtaposition (through rearrangement) with a

euchromatic domain. Protein factors found in heterochromatin are required for optimal

expression of these genes in their native state (reviewed in [51]). Similarly, most of the

genes on the heterochromatic fourth chromosome lose expression when HP1a is depleted

[54]. It has been argued [55] that heterochromatin formation is required for piRNA

production, based on the loss of expression upon depletion of dSETDB1 from a piRNA

cluster that maps to a heterochromatic domain. These results suggest that HP1a is required

to maintain a necessary feature of the chromatin structure at and around active genes that are

surrounded by heterochromatin. One clue comes from direct studies of two fourth
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chromosome genes, Dyrk3 and Caps, which show a loss of HS sites (indicating loss of

promoter accessibility) on HP1a depletion [56]. But how this might be accomplished

remains unknown.

Promoting transcript elongation and processing

In addition to its association with heterochromatin, Drosophila HP1a is also associated with

a small set of sites in the euchromatic arms of the major autosomes, including conspicuous

chromosome puffs, sites with high transcription levels [57]. Chromosome-wide binding

studies using cultured cells find HP1a enriched across the entire transcription units of certain

exon-rich active genes in euchromatin [58]. HP1a stimulates transcript elongation at a small

set of euchromatic sites, and is associated with heterogeneous nuclear ribonuclear proteins

(hnRNPs) [59], suggesting a role for HP1a in transcript processing in flies. The mammalian

HP1-family protein CBX3/HP1γ is required for the full activity of some euchromatic genes,

as evidenced by reduced expression upon CBX3/HP1γ knockdown. The knockdown leads

to defective recruitment of splicing factors, with accumulation of unspliced transcripts for

these genes [60]. These results argue for a positive role for HP1a in transcript elongation/

processing for some euchromatic genes, the opposite of the result reported above from S.

pombe looking at heterochromatic transcripts [61].

Taken together, the context-dependent effects of HP1 family proteins on gene expression

may be understood mechanistically by thinking of these proteins and their associated

complexes as chromatin organizers. In some cases, the resulting chromatin occludes

promoters and/or regulatory DNA, while in other cases, the resulting chromatin facilitates

access to promoters and/or regulatory DNA for activators. By extension, Pol II elongation

could be either impeded or enhanced by HP1-dependent architecture, and RNA processing

efficiency directly or indirectly affected [62].

HP1 post-translational modifications and chromatin assembly

The stable epigenetic silencing associated with HP1-enriched heterochromatin contrasts with

the remarkably dynamic chromatin-binding behavior of mammalian HP1 family proteins

(see Box 2). Such dynamic behavior may be regulated by post-translational modifications

(PTMs), which could tip the balance towards or away from heterochromatin assembly.

Recent systematic mass spectrometry analysis has disclosed evidence for a variety of

posttranslational modifications of mammalian HP1 family proteins, reminiscent of the

histone code [63]. These include phosphorylation, acetylation, formylation,

monomethylation, sumoylation and ubiqutinylation. The enzymes controlling most of these

modifications, and the functional significance of most of these modifications, are unknown.

Table 1 summarizes several modifications of HP1 and the observed properties conferred by

the modifications.

Testing the functional significance of PTMs involves expressing mutant forms of the HP1

family protein in which the modified residue is replaced with alanine or some other amino

acid that cannot be modified (or, in the case of phosphoserine, a phosphomimetic amino acid

like glutamate) and testing the ability of the mutant protein to replace the wild-type form in

a silencing assay. S. pombe and D. melanogaster, with their facile genetics, would be the
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best organisms in which to test hypotheses about HP1 family protein PTMs. As with the

histones, changes in PTMs could be key to the alternative functions discussed above.

Concluding remarks

HP1, a small protein with three major domains (CD, H, and CSD), is remarkably influential

in promoting distinct forms of packaging within eukaryotic genomes, impacting expression

of the genes within those chromatin regions. While not universal among eukaryotes, the

HP1a/H3K9me2/3 silencing mechanism is very common and highly conserved in metazoa.

Despite exciting progress during that last decade, much remains to be learned about how

HP1 is selectively targeted for heterochromatin formation, how the resulting

heterochromatin assembly actually achieves silencing, and how HP1 carries out other “off

label” functions, including promoting transcript elongation in some cases (see Box 3). A

common thread may be found in its ability to generate compact structures. However, HP1a

interacts with a wide range of partner proteins, and the findings above suggest that every

HP1 family protein will have a variety of isoforms due to PTMs. Such modifications may

create or destroy interaction sites with other proteins and/or may alter conformation or

turnover rates at specific genomic sites. Understanding the PTMs of HP1 proteins may well

help resolve many of the mysteries described above.

Box 1

Chromo domains interact directly with methylated histone H3 tails to cause
silencing

A combination of genetic manipulation and structural analysis has demonstrated that

direct binding of the methylated H3 tail by the chromo domain protein is required for

silencing by HP1a and by Pc. Structural studies show that the chromo domain folds with

an alpha helix backed by a 3-strand beta-pleated sheet to form a crevice holding the

histone tail with an aromatic cage capturing the methylated lysine (see Fig. 1B for the

structure of HP1a). A V26M mutation that destabilizes the folded structure of HP1a

results in a complete loss of H3K9me2 binding in vitro, and loss of PEV silencing in vivo

([76]; see Fig. 1C). Until recently, it has not been possible to do the reciprocal

experiment, mutating the histone and assessing the in vivo consequences, because the

core histone genes are present in multiple copies. However, a genetic system that deletes

the wild type histone gene cluster and replaces it with a transgene cassette providing 12

copies has recently been developed in Drosophila melanogaster [77]. This has allowed a

direct test showing that an H3 K27R mutation fails to repress transcription of genes that

are normally silenced by the Pc complex 2; moreover, the mutant cells show homeotic

changes that mimic those of Pc mutations [78]. Development of this system is a valuable

contribution that will allow many other direct tests of the biological importance of

histone modifications.
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BOX 2

Dynamic chromatin

Chromatin is a multi-faceted assembly, and many of the proteins involved form multiple

complexes. Even HP1 family proteins, which are associated with stable heterochromatin,

are dynamic. Using GFP-tagged proteins and fluorescence recovery after photobleaching

(FRAP), it was found that 50% of mammalian HP1 was exchanged within 2.5 sec. in

heterochromatin and 0.6 sec. in euchromatin [79]. This implies that the distribution of a

given chromosomal protein can shift from one chromatin compartment to another,

depending on its own concentration and the local concentrations of available partners.

Hence it can be difficult to ascertain whether the effect on a particular locus of depletion

of a given chromosomal protein is direct or indirect. Effects that suggest shifts in HP1a

can be seen using variegating reporters present in different heterochromatic domains. For

example, while Su(var)3-9 mutations lead to a loss of silencing at reporters in the

pericentric heterochromatin, they can lead to enhanced silencing on the fourth

chromosome of D. melanogaster [80]. A plausible explanation is that this mutation

causes a greater loss of H3K9me2/3 in the pericentric heterochromatin than it does on the

fourth chromosome, where the HMT dSETDB1 plays a major role. The loss of

H3K9me2/3 in pericentric heterochromatin will cause a loss of HP1a from that domain;

more can now accumulate on the fourth chromosome, where H3K9me2/3 levels remain

high. Thus every event that perturbs chromatin structure in one compartment should be

assumed to have perturbed the structure in other compartments, resulting in indirect

effects.

Box 3

Outstanding questions

What is the mechanism of HP1-mediated silencing?

Do other HP1 family proteins form tetramers, as was reported for Swi6 in S. pombe??

Can HP1 family proteins be shown to cross-link nucleosome arrays? How general is the

HP1-dependent RNA degradation model?

How does an HP1a-driven heterochromatin structure contribute to maintenance of gene

expression for heterochromatic genes?

How does HP1 contribute to HS site formation in these domains?

How is HP1a targeted to a small set of euchromatic loci? In many cases this is a silencing

mechanism, but in other cases it provides positive effects; at these latter sites, can it

enhance transcript elongation, or transcript processing?

Do post-translational modifications determine HP1a partners, and hence HP1a activities?
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Highlights

• We propose a structure-based definition of HP1 family proteins

• We review evidence that HP1 is a context-dependent modifier of gene

expression

• Post-translational modifications of HP1 family proteins alter functionality
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Figure 1.
(A) Schematic representation of HP1 family proteins; example shown is HP1a from D.

melanogaster (see text for abbreviations). (B) A 3-D model of the chromo domain, showing

binding of the H3 N-terminal tail and the aromatic cage for K9me3 (image from [74]). (C)

Alignment of the chromo domain from Homo sapiens CBX1, CBX5, and CBX3 with S.

pombe Swi6, D. melanogaster HP1a, C. elegans HPL-2, and Arabadopsis thaliana LPH1.

Amino acids are color-coded for functional similarity. The conserved residues that make up

the aromatic cage are marked with an asterisk, and the position of V26 in HP1a, site of a

loss-of-function mutation, is marked with a dot.
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Figure 2.
Cartoon models of a nucleosome array in which H3K9 is di- or trimethylated and bound by

HP1. A. In this model, CSD-CSD homo-dimerization is indicated, which could facilitate

chromatin condensation [31] and impose regular nucleosome positioning, as previously

reported for HP1a-dependent transgene silencing in Drosophila [75]. B. In this model, based

on studies on Swi6 in S. pombe, both CD-CD and CSD-CSD self-associations are indicated,

which could facilitate further condensation of the chromatin fiber (model based on [32]).
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Table I

A sample of HP1 family protein modifications and associated properties

Modification Property Refs

Phosphorylation of CBX5/HP1α and
CBX3/HP1γ

Increased phosphorylation correlates
with mitosis

[59]

Pim-1 phosphorylation in the hinge region of
CBX3/HP1γ

Inhibits transcriptional repression [60]

Casein kinase II phosphorylation N-terminal to the
CBX1/HP1β chromodomain

Loss of HeK9me2 binding [61]

Casein kinase II phosphorylation N-terminal to
the HP1a chromo domain and C-terminal to the
chromo shadow domain

Promotes heterochromatin binding
and PEV silencing

[62,63]

Protein kinase A sites in the HP la hinge domain Enhanced dimerization and binding
to H3K9me2

[64]

Phosphorylation of peptide binding surface of
the HP1a chromo shadow domain

Destabilizes dimerization; increases
binding to HP2 and PIWI

[40]

Ubiquitinylation of CBX5/HP1α and
CBX1/HP1β

Faster turnover than CBX3/HPlγ [65,66]

SUMOylation of the CBX5/HP1α hinge
domain

Targeting to satellite repeats via
RNA binding

[67]

SUMO deconjugation of CBX5/HP1α Retention in heterochromatin [68]
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