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Abstract. In a variety of organisms, euchromatic genes
brought into juxtaposition with pericentric heterochroma-
tin show position-effect variegation (PEV), a silencing of
gene expression in a subset of the cells in which the gene
is normally expressed. Previously, a P-element mobiliza-
tion screen identified transgenic Drosophila stocks show-
ing PEV of an hsp70-white+ reporter gene; transgenes in
many of these stocks map to the chromocenter of poly-
tene chromosome. A screen at an elevated temperature
identified two stocks that under standard culture temper-
atures show complete repression of the hsp70-white+

transgene. The transgenes in both cases map to the chro-
mocenter of polytene chromosomes. Different types of
middle repetitive elements are adjacent to seven pericen-
tric transgenes; unique sequences are adjacent to two of
the perimetric transgenes. All of the transgenes show sup-
pression of PEV in response to a mutation in the gene en-
coding heterochromatin protein 1 (HP1). This suppres-
sion correlates with a more accessible chromatin struc-
ture. The results indicate that a pericentric transgene
showing PEV can be associated with different types of
DNA sequences, while maintaining a common associa-
tion with the chromosomal protein HP1.

Introduction

Centric and telomeric regions of the genome are not con-
ducive for the expression of most euchromatic genes.
These regions are packaged into heterochromatin, origi-
nally defined as those portions of the genome that remain
densely stained throughout the cell cycle. Heterochromat-
ic regions generally replicate late in S-phase, are relative-
ly gene poor, and contain a high percentage of repetitious
sequences (reviewed by Weiler and Wakimoto 1995).
Genes normally present in euchromatic domains placed
near or within heterochromatic domains exhibit posi-

tion-effect variegation (PEV), a silencing of gene expres-
sion in a subset of the cells in which the gene is normally
expressed, leading to a mosaic phenotype. Examples in-
clude genes placed near pericentric or telomeric regions
of Drosophila chromosomes (reviewed by Weiler and
Wakimoto 1995; Wallrath and Elgin 1995), pericentric
or telomeric regions of yeast chromosomes (Gottschling
et al. 1990; Renauld et al. 1993; Allshire et al. 1994;
Nimmo et al. 1994) and pericentric locations of mouse
chromosomes (reviewed by Dobie et al. 1997; Kioussis
and Festenstein 1997). Investigations are underway to ex-
plore the molecular mechanisms responsible for PEV. It
has been suggested that the presence of repetitious
DNA might be sufficient to trigger heterochromatin for-
mation (Sabl and Henikoff 1996 and references therein).

In Drosophila melanogaster large blocks of pericentric
heterochromatin consist of simple repeats, the satellite
DNA sequences (Lohe et al. 1993). Transposable ele-
ments are also a prominent component of heterochroma-
tin (Carmena and Gonzalez 1995; Pimpinelli et al. 1995;
Sun et al. 1997; reviewed by Dimitri 1997). Transposons
localize to regions containing simple satellite sequences
and to distinct locations within mitotic heterochromatin
(Camena and Gonzalez 1995). Transposons are frequent-
ly found as incomplete copies clustered within other mo-
bile elements (Devlin et al. 1990; Valgeirsdóttir et al.
1990). Changes in the distribution of some transposons
within heterochromatin have been noted between labora-
tory strains (Caizzi et al. 1993; Carmena and Gonzalez
1995). Taken together, the emerging picture is one in
which Drosophila heterochromatin is a mosaic arrange-
ment of different types of middle repetitive DNA and sat-
ellite DNA sequences. The data presented here suggest
even further complexity.

We have recovered stocks that variegate for the ex-
pression of an hsp70-white+ reporter gene from P-element
mobilization screens (Wallrath and Elgin 1995; Wallrath
et al. 1996; and this report). Expression of the white+

gene is required for red eye pigmentation. These stocks
show variation in the pattern and the severity of silencing
of the hsp70-white+ transgene. All of the variegating
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transgenes map to known heterochromatic regions: 12 lo-
calize to pericentric regions, 17 to telomeric regions, and
24 to sites along the small, mostly heterochromatic fourth
chromosomes. The P-element also contains a tagged
hsp26 gene for analysis of chromatin structure. Heat
shock-induced expression of the heterochromatic hsp26
transgenes is impaired at pericentric, fourth chromosome
and some telomeric sites (Wallrath and Elgin 1995; un-
published data). Using the inverse polymerase chain reac-
tion (PCR), the DNA sequences adjacent to nine pericen-
tric P-element inserts have been characterized. Both un-
ique and repetitive DNA sequences were found adjacent
to the variegating transgenes, suggesting that PEV does
not require that the transgene be surrounded by repetitive
sequences. All nine transgenes are sensitive to mutations
in HP1, a prominent heterochromatin-associated protein
(James et al. 1989; Eissenberg et al. 1990). A ªclosedº
chromatin configuration observed for a pericentric trans-
gene becomes more accessible in the presence of a muta-
tion in HP1. This suggests that PEV reflects specialized
packaging due to heterochromatin proteins that are asso-
ciated with different types of sequences.

Materials and methods

Genetic manipulations. All stocks of D. melanogaster were cultured
on standard cornmeal-sucrose medium at 25� C unless otherwise
stated (Shaffer et al. 1994). To recover flies with completely re-
pressed transgenes, females of stock 118E-X (Wallrath and Elgin
1995) carrying a P-element (including the hsp70-white+ and
hsp26-pt-T transgenes) on the X chromosome were crossed to y
w67c23/Y; Sb D2±3 males (containing a genomic source of transpos-
ase; Robertson et al. 1988) and cultured at 25� C. Red-eyed Sb male
progeny were independently crossed to two y w67c23 females and the
culture vial was subjected to one of two treatments: (1) a heat shock
at 37� C for 1 h daily or (2) constant culture at 28� C. The two treat-
ments gave similar increases in red eye pigmentation for stocks
39C-4 and 118E-12, two lines with hsp70-white+ located in pericen-
tric heterochromatin (Wallrath and Elgin 1995). Resulting non-Sb
male progeny were screened for PEV.

To test the effects of HP1 dosage, males of the PEV stocks were
crossed to females of stock y w67c23; Su(var)2±502/Cy and cultured
at 25� C. Su(var)2±502 is a point mutation in the gene encoding
HP1 (Eissenberg et al. 1992). Cy and non-Cy progeny of the same
age were compared and photographed. We and others have noted
that balancer chromosomes, such as the Cy-containing chromosome,
often contain background modifiers of PEV. For those examples
shown here, the Cy/+ progeny were phenotypically identical to
hemizygous individuals in the y w67c23 background; we conclude
that the Cy chromosome does not contain strong modifiers for these
particular PEV transgenes. For chromatin structure analysis, stock
118E-10, having a transgene in pericentric heterochromatin, was
crossed into stock y w67c23; Su(var)2±502/Cy and made homozygous.

In situ hybridization. Salivary glands were dissected from late third
instar larvae raised at 18� C according to Ashburner (1989). The
glands were squashed using a mechanical squashing device (Gener-
al Valve, Fairfield, N.I.). The P-element construct described above
(Wallrath and Elgin 1995) was labeled with biotin-16-dUTP (Boeh-
ringer Mannheim) by nick translation according to Sambrook et al.
(1989). The site of hybridization on the polytene chromosome was
detected using streptavidin-horseradish peroxidase complex (Vector
Labs) and 3,3©-diaminobenzidine (Sigma) (Lim 1993).

Eye pigment assay. Eye pigments were extracted from adults ac-
cording to Khesin and Leibovitch (1978). Ten adult flies, approxi-

mately 2 to 4 days old, homozygous for a particular P-element, were
homogenized in 1 ml of 0.01 N HCl in ethanol. The homogenate
was placed at 4� C overnight and then warmed at 50� C for 5
min. The homogenate was centrifuged in a microcentrifuge for 10
min. The supernatant was collected and the optical density at 480
nm was recorded. To correct for background absorbance, the aver-
age value from y w67c23 was subtracted prior to reporting. Three in-
dependent samples were assayed for each stock. The average of the
three values and the standard deviations are reported in Fig. 4. The
values were also normalized to that of 39C-X, set at 100%, and list-
ed as relative percent pigment in Fig. 4.

Inverse PCR. Genomic DNA was isolated from each of the pericen-
tric insertion stocks according to methods previously described (Lu
et al. 1993a). Three micrograms of DNA were digested in a 30 �l
volume with 60 U of enzyme. Initially the DNA was digested with
HhaI, which cleaves within the 3© region of the white+ gene (Fig. 1).
Five microliters of the digestion reaction were used in a 150 �l vol-
ume ligation reaction with 2 U of ligase at 16� C overnight. Then 5
�l of the ligation reaction containing the circularized products were
used in a PCR with primers specific for the 5© P-element inverted
repeats (5© GCTTCGGCTATCGACGGGACCACCTTATGTTA
3©) and specific for the 3© white+ sequences (5©GACGAAATGAA-
CCACTCGGAACCATTTGAGCG 3©). Buffers from the PCR Opti-
mization Buffer kit (Invitrogen) and Amplitaq (Perkin Elmer) were
used for the PCRs. Reaction products were evaluated by gel electro-
phoresis and used directly for cloning; 2 �l of fresh PCR product
were ligated to the pCR2.1 TA cloning vector according to the man-
ufacturer's specifications (Invitrogen). In some cases, the PCR did
not yield a product, possibly indicating that the HhaI site in the un-
characterized flanking DNA was too far away to yield a fragment of
a reasonable size for PCR. In these cases, another aliquot of genom-
ic DNA was digested with HpaII or DpnII (Fig. 1) and treated as
described above. Positive clones were sequenced manually using
the Sanger dideoxy sequencing method with Sequenase (USB),
and were also sequenced using an automated sequencing system
(ABI, University of Iowa Sequencing Core Facility). At least two
clones from each of the stocks were sequenced and found to have
identical inserts. The occurrence of deletions and/or rearrangements
during the cloning process appears unlikely, since the size and re-
striction maps of the cloned inserts matched those of the PCR prod-
ucts. The sequences of clones obtained from stocks HS-3, HS-5 and
39C-4, containing previously uncharacterized sequences, have been
deposited in Genbank (Accession numbers AF068629, AF068630
and AF068631, respectively). Sequence analysis was performed us-
ing DNA Strider (Marck 1988).

Chromatin structure analysis. Nuclei were isolated from nonheat-
shocked third instar larvae and treated with XbaI as previously de-
scribed (Lu et al. 1993a). The DNA was purified, cleaved to com-

Fig. 1. Diagram of the P-element and primers used for inverse poly-
merase chain reaction (PCR). Shown on the top is a diagram of the
P-element transposon used, with filled boxes representing the P-el-
ement inverted repeats. Enlarged at the bottom is a diagram showing
the positions of the primers corresponding to sequences from the 3©
region of the white+ gene and from the 5© inverted repeat of the P-
element (see Materials and methods). Restriction sites used to create
fragments for ligation and subsequent inverse PCR are shown



279

pletion with SalI, separated by size on a 1% agarose-TAE gel
(Sambrook et al. 1989), transferred to nylon membrane and hybrid-
ized with a-32P-labeled DNA fragments (Feinberg and Vogelstein
1984) corresponding to the barley sequence (Wallrath and Elgin
1995). The amount of radioactivity on the membrane was measured
using an Instant Imager (Packard Instruments). The percent cleav-
age at the proximal XbaI site was calculated as a ratio of the counts
in the band generated by cleavage at the proximal XbaI site to the
total counts in all the bands within the given lane. The values for
the euchromatic transgene of stock 39C-X was set at 100%; other
samples were normalized to that of 39C-X.

Results

A screen to recover completely repressed transgenes

We previously performed a P-element mobilization
screen designed to recover stocks with P-element inserts
in heterochromatin by scoring for PEV of an hsp70-
white+ transgene (Wallrath and Elgin 1995). The screen
was carried out at 25� C, allowing only basal expression
from the hsp70 promoter; this expression is sufficient to
a result in a wild-type, uniformly dark-red eye pigmenta-
tion with a single copy of this P-element in a euchromatic
environment. In an initial screen of approximately 7,000
males, 3,000 transposition events were observed, 35 of
which resulted in a PEV phenotype. However, hetero-
chromatic inserts showing complete repression of the
white+ transgene have the same phenotype as flies with-
out a P-element insert, and would have been discarded
in this screen.

In order to recover stocks in which the hsp70-white+

gene is completely silent under standard culture condi-
tions, we repeated the P-element mobilization under con-
ditions inducing higher levels of expression from the
hsp70 promoter, either by subjecting flies to a 1 h daily
heat stock at 37� C throughout development, or by con-
tinual culture at 28� C (see Materials and methods).
From 655 mobilization events, six flies showing PEV
of the hsp70-white+ transgene were recovered. These
stocks were designated HS-2 through HS-7. (HS-1
showed uniform repression of the hsp70-white+ trans-
gene and was not included in this study.) Two of these
stocks, HS-2 and HS-5, show the desired phenotype.
When raised at 25� C, these stocks have essentially white
eyes; when cultured with a daily 1 h heat shock at 37� C
they show a small amount of pigmentation in the eye
(Fig. 2). In situ hybridization to third instar larval poly-
tene chromosomes demonstrated that the P-element in-
serts in stocks HS-2 and HS-5 are in the pericentric het-
erochromatic regions of chromosome arms 3L and 2L, re-
spectively (Fig. 3). In the case of HS-2, we frequently ob-
serve two dots within the chromocenter, which may re-
flect a lack of chromatid pairing (Fig. 3). Similar unusual
patterns of in situ hybridization to polytene chromosomes
have been observed for stocks containing pericentric in-
serts of a rosy+-marked P-element (Zhang and Spradling
1995).

Four of the stocks showed some red eye pigmentation
when raised at 25� C. These stocks exhibit a weak PEV
phenotype with increased eye pigmentation when cul-

tured at the higher temperature. In situ hybridization to
the polytene chromosomes of these stocks showed that
the hsp70-white+ transgenes of stocks HS-4, HS-6 and
HS-7 are located in the telomeric region of the fourth
chromosome (data not shown). The transgene in stock
HS-3 mapped to the proximal banded region of 2L, cy-
tological region 38B (Fig. 3). The hsp70-white+ trans-
genes in the three pericentric insert stocks recovered
from this screen and in six pericentric insert stocks re-
covered from previous screens (Wallrath and Elgin
1995; Wallrath et al. 1996) were used as unique se-
quence entry points to clone the neighboring DNA
(see below).

Eye pigment assays performed with pericentric insert
stocks show a range of hsp70-white+ expression (Fig.
4). Six stocks (39C-3, 118E-10, HS-2, 39C-4, 118E-12
and HS-5) showed severe repression of the hsp70-white+

transgene. Pigment values for these stocks are less than
10% compared with the values obtained for stock 39C-
X, in which the transgene is present at a euchromatic lo-
cation. Stock 39C-X shows uniform, dark-red eye pig-
mentation (Wallrath and Elgin 1995). Stocks 118E-25,
HS-3 and 39C-2 showed intermediate levels of pigment
ranging from 22% to 86% compared with the 39C-X val-
ue. The quantitative values obtained correlate roughly
with the percentage of pigmented ommatidia as estimated
by observation.

Fig. 2. Phenotypes of HS-2 and HS-5, showing temperature depen-
dence of eye coloration. Stocks HS-2 and HS-5 carry single inserts
of the P-element in the pericentric regions of 3L and 2L, respective-
ly. Stocks were cultured at 25� C or given a daily 1 h 37� C heat
shock (HS) treatment to induce expression of the hsp70-white+ pro-
moter
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Pericentric transgenes are immediately adjacent
to repetitive and unique DNA sequences

To examine the DNA sequences associated with trans-
genes exhibiting PEV, inverse PCR (Ochmann et al.
1988) was employed to clone the DNA adjacent to the in-
verted repeat of the 5© P-element. The sequences of the
adjacent DNA were determined and compared with se-
quences in Genbank by performing a BLAST search. A
schematic diagram of the sequenced regions is shown in
Fig. 4. Sequences showing greater than 85% identity to
a known sequence are labeled accordingly.

Both unique and repetitive DNA sequences are found
in the DNA adjacent to the pericentric inserts on chro-
mosome 2. At least 1.1 kb of unique DNA is adjacent
to the transgene in stock HS-5. The unique nature of
the DNA was confirmed by experiments showing that
this fragment hybridizes to a single band on a Southern
blot of genomic DNA (data not shown). This sequence is
62% A+T and does not contain any substantial open
reading frames or repeats. The transgene in stock HS-3
is inserted adjacent to a short stretch of unique DNA.
Immediately following the unique sequences are se-
quences with 85% identity to a portion of the 0.4 kb sub-
telomeric minisatellite DNA sequences of chromosome
arm 2L (accession no. U35404; Walter et al. 1995),
and sequences with 83% identity to a portion of the
1.8 kb telomere-associated sequences (TAS) of a mini-
X chromosome (accession no. L03284; Karpen and
Spradling 1992). The entire region is 98% identical to
the sequence of a subclone from the P1 clone DS0083
(accession no. AC000773, Berkeley Drosophila Genome
Project). This P1 clone maps to region 38B, the site of P-
element insertion in stock HS-3. A 146 bp stretch of
DNA that is 87% identical to the 1.8 kb TAS is also
present flanking the transgene of stock 39C-3. TAS
and non-TAS sequences within this clone are similar
to those found adjacent to xanthine dehydrogenase

Fig. 3. In situ hybridization to polytene chromosomes. Chromo-
somes from stocks HS-2, HS-5 and HS-3 are shown (top to bottom).
The transgenes of stocks HS-2 and HS-5 map to the chromocenter.
The site of insertion is indicated by a large arrowhead. A small ar-
rowhead denotes the two dots of hybridization frequently seen in
stock HS-2 (see text for discussion). The P-element insert in stock
HS-3 is located at 38B. The probe was the entire P-element plasmid
in all cases (Wallrath and Elgin 1995)

Fig. 4. Percent eye pigment and
DNA sequence adjacent to the
pericentric transgenes. The amount
of eye pigment was determined and
normalized to that of stock 39C-X,
containing a euchromatic transgene
(see Materials and methods). For
stock 118E-25 with a pericentric X-
chromosome transgene, values for
males (M) and females (F) are re-
ported separately. The cloned DNA
flanking the 5© P-element inverted
repeat is shown as an open box
(unique sequence) or shaded box
(repetitive DNA). The solid box
represents the 5© P-element invert-
ed repeat. Regions showing simi-
larity to known DNA sequences are
indicated (see text for details)
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(rosy+)-marked P-element insert, CH(2)6 (accession no.
L36595; Zhang and Spradling 1995).

The transgene of stock 39C-4 is adjacent to repetitive
DNA sequences containing a 239 bp region that shows
90% identity to a Drosophila S-element (accession no.
U33470; Kidwell 1993). The S-element is a member of
a diverse family of inverted repeat-containing transpo-
sons that map to the chromocenter and several sites with-
in euchromatin (Kidwell 1993; Merriman et al. 1995).
When the cloned DNA is used as a probe on a Southern
blot of genomic DNA (cleaved with restriction enzymes
that do not cut within the clone), four strongly hybridiz-
ing bands and several weaker smeared regions are visual-
ized (data not shown). A similar pattern of hybridization
is seen when sequences similar to the S-element are re-
moved from the probe (data not shown). This suggests
that the sequences adjacent to the 5© P-element inverted
repeat include an uncharacterized repetitive element.
Overall, this cloned sequence is 63% A+T and does not
contain any long open reading frames or repeats. Lastly,
the transgene in stock 39C-2, also located on the second
chromosome, is flanked by sequences that are 98% iden-
tical to the Doc transposon (O'Hare et al. 1991, discussed
below).

P-element inserts recovered in the pericentric hetero-
chromatin of chromosome 3 are within repetitive DNA
sequences. Adjacent to the strongly repressed transgene

in stock HS-2 is 107 bp that is completely identical to
the sequence within the P1 clone DS01219 (D129) (ac-
cession no. AC004244, Berkeley Drosophila Genome
Project) that maps to region 35B4-35C1 on larval salivary
gland polytene chromosomes. Therefore, this sequence is
present in at least two copies within the genome. Several
attempts were made using other enzymes to clone addi-
tional flanking DNA by inverse PCR to obtain a larger
probe for Southern blot analysis, but all failed. Stock
118E-12 shows strong PEV; the adjacent DNA is 88%
identical to the hoppel transposon (accession no.
X78388, Kurenova et al. 1990). A fragment of this clone
also shows 91% identity to a region adjacent to a rosy+-
marked P-element on the third chromosome, CH(3)336
(accession no. L36596; Zhang and Spradling 1995). In
addition, hoppel sequences are also found adjacent to
the pericentric fourth chromosome insert in stock 118E-
10 (Fig. 4).

The hsp70-white+ transgene of stock 118E-25, locat-
ed on the X chromosome, shows dosage compensation
despite its location in heterochromatin. Males express
twice the amount of eye pigment as do females (Fig.
4). This is in contrast to what has been seen for an
Hsp82 transgene. The Drosophila pseudoobscura
Hsp82 gene transformed into D. melanogaster shows
dosage compensation were present at X-linked euchro-
matic sites, but not when present at X-linked heterochro-
matic sites (Arkhipova et al. 1997). The DNA immedi-
ately adjacent to the hsp70-white+ transgene in stock
118E-25 shows 95% identity to the inverted repeat se-
quences from genomic clone l20p7, which hybridizes
to Drosophila heterochromatin (accession no. L10989;
Baiborodin et al. 1993). Adjacent to these inverted re-
peats are sequences that are 92% identical to those pres-
ent within clone l20p1.4. Fragments of this clone bind to
polymerized Drosophila nuclear lamin in vitro (Barich-
eva et al. 1996). In situ hybridization to salivary gland
polytene chromosomes in intact cells with the l20p1.4
clone shows localization to the nuclear periphery, the re-
gion where heterochromatin residues (Baricheva et al.
1996; reviewed in Marshall 1997).

We made several attempts to clone the DNA sequenc-
es adjacent to the 3© P-element inverted repeat using a
similar strategy to that employed for the sequences adja-
cent to the 5© P-element inverted repeat. Multiple attempts
using different restriction enzymes were unsuccessful.
This might reflect a lack of restriction enzyme recogni-
tion sites within these regions, suggesting that simple rep-
etitious sequence could be present.

PEV transgenes adjacent to repetitive and unique DNA
sequences respond to mutations in HP1

Given that both repetitive and unique DNA sequences are
associated with the variegating transgenes, we asked
whether or not changes in the dosage of HP1 (James et al.
1989; Eissenberg et al. 1990) would have an effect on the
degree of PEV in all cases. Females carrying Su(var)2±
502, a point mutation in the gene encoding HP1 (Eissen-
berg et al. 1992), were crossed to males of the different

Fig. 5a, b. Effects of an HP1 mutation on chromatin structure of a
pericentric hsp26 transgene. a Diagram of the hsp26 promoter re-
gion: HSE heat shock elements, circles nucleosomes. b Southern
blot analysis showing the accessibility of the proximal XbaI site
in a euchromatic transgene (39C-X, euch.) and a fourth chromosome
pericentric transgene (118E-10, C4) with (+) and without (�) a mu-
tation in HP1 [Su(var)2±502]. Relative percent cleavage of the prox-
imal XbaI site is shown below each lane with the value for a euchro-
matic hsp26 transgene set at 100%
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variegating stocks. In all cases, PEV was suppressed
(Wallrath and Elgin 1995; data not shown).

The chromatin structure of a heterochromatic transgene
is more accessible in an HP1 mutant background

The hsp26 gene, in its endogenous euchromatic location,
has two nucleosome-free regions upstream of the tran-
scription start site (Thomas and Elgin 1988). These re-
gions map to the location of the heat shock elements
(HSEs). XbaI sites within the HSEs have been used quan-
titatively to measure accessibility within the promoter re-
gion in isolated nuclei (Lu et al. 1993b, 1995; Wallrath
and Elgin 1995). hsp26 transgenes at heterochromatic lo-
cations have an altered chromatin structure (Wallrath and
Elgin 1995). Here we examine the accessibility of the
proximal XbaI site in a wild-type and HP1 mutant back-
ground. Of all the pericentric stocks, 118E-10 shows the
greatest contrast in eye pigmentation and hsp26-induced
expression in the presence and absence of an HP1 muta-
tion (Wallrath and Elgin 1995). Therefore, we chose this
stock to examine the chromatin structure. In a wild-type
background, the proximal XbaI site within the hsp26 pro-
moter region of this pericentric transgene is 9% accessi-
ble compared with a euchromatic hsp26 transgene. We at-
tribute this reduction in accessibility to the packaging of
heterochromatin. In an HP1 mutant background this value
increases to 50% (Fig. 5). This data directly demonstrate
an opening of the chromatin structure that correlates with
a mutation in HP1.

Discussion

The molecular mechanisms underlying the formation of
heterochromatin remain a mystery. Nonetheless, we are
beginning to identify DNA sequences and proteins that
play a role in the process of heterochromatin formation
(Lohe et al. 1993; Le et al. 1995; ClØard et al. 1997; re-
viewed by Elgin 1996; Wallrath 1998). The formation
of heterochromatin has been postulated to start at ªinitia-
tionº sites and spread to ªterminationº sites (Locke et al.
1988; reviewed by Eissenberg 1989). However, no such
sequences have been identified to date, and the question
of heterochromatin spreading has been widely debated
(reviewed by Karpen 1994; Henikoff 1996). Our collec-
tion of stocks with pericentric hsp-70-white+ transgenes
serves to provide entry points for a molecular character-
ization of heterochromatin.

Heterochromatin makes up 30% of the Drosophila ge-
nome, with the majority estimated to be simple satellite
sequences (Lohe et al. 1993). Many of the simple satellite
sequences show dramatic underrepresentation in salivary
gland polytene chromosomes (reviewed by Weiler and
Wakimoto 1995). We have shown that the transgenes in
several of the PEV stocks showing strong variegation
(such as 118E-12 and 39C-4) are dramatically underrepre-
sented in salivary gland polytene nuclei, while others,
showing modest PEV (such as 39C-2 and 39C-3) are only
slightly underrepresented (Wallrath et al. 1996). Pericen-

tric transgenes are less accessible to restriction enzyme di-
gestion in isolated nuclei (Wallrath and Elgin 1995; Fig.
5). This inaccessibility might be due to packaging of the
transgene into a very regular nucleosome array, as seen
for the heterochromatic transgenes of stocks 39C-4 and
118E-12 (Wallrath and Elgin 1995). Repetitive elements,
including the 1.688 gm/cm3 satellite sequences from Dro-
sophila, are similar in sequence and DNA bending char-
acteristics to sequences shown to position nucleosomes in
vitro (Fitzgerald et al. 1994). A library made from isolat-
ed mouse mononucleosomal DNA shows enrichment of
simple di-, tri- and tetra-repeats that hybridize to cent-
romeres (Widlund et al. 1997). Therefore, we reasoned
that the pericentric transgenes might be surrounded by
simple satellite DNA sequences. However, this was not
the case; the transgenes are adjacent to unique and middle
repetitive DNA sequences, not satellite DNAs.

In situ hybridization to metaphase chromosomes
shows that transposable elements are a significant compo-
nent of heterochromatin (Carmena and Gonzalez 1995;
Pimpinelli et al. 1995; Sun et al. 1997). We have identi-
fied two transposable elements associated with variegat-
ing transgenes, Doc and hoppel. Doc is a LINE-like trans-
posable element closely related to I-, F-, and G-elements
and jockey (O'Hare et al. 1991). Doc is found in clusters
near the primary constriction and throughout the hetero-
chromatin of all D. melanogaster chromosomes
(Carmena and Gonzalez 1995; Pimpinelli et al. 1995);
in particular, it is found in the 412 kb that make up the
fully functional centromere of the mini-X chromosome
Dp1187 (Sun et al. 1997). There are an estimated 30 cop-
ies of Doc within euchromatin (Pimpinelli et al. 1995).
hoppel, also called 1360, has been placed in the same
class of transposable elements as the P-element and Hobo
(Kurenova et al. 1990). hoppel sequences are estimated to
be present at 10 to 30 sites in euchromatin and throughout
heterochromatin. hoppel probes hybridize strongly to four
or five bands along the fourth chromosome, including the
telomeric region. In addition, hybridization is seen
throughout the chromocenter and the proximal region of
the euchromatic arms (Kurenova et al. 1990).

We recovered two pericentric inserts located adjacent
to copies of the TAS. Telomeric sequences are also found
in centric regions of mice and plant chromosomes; it has
been speculated that these might have arisen by specific
sequence interchanges between the two regions (Yen
et al. 1995; Presting et al. 1996). Subtelomeric TAS ele-
ments of Drosophila have been postulated to be hot spots
for P-element insertion on the mini-X chromosome
Dp1187 (Karpen and Spradling 1992). Interestingly,
TAS sequences are found flanking several variegating
hsp70-white+ transgenes located at the telomeres of chro-
mosomes 2R and 3R (L. Wallrath, M. Pavlova, R. Levis,
H. Biessmann, S. Elgin, unpublished data). These trans-
genes do not show suppression of PEV in the presence
of a mutation in HP1 (Wallrath and Elgin 1995). Thus,
TAS elements are associated with gene silencing at both
pericentric and telomeric locations, but only transgenes at
pericentric locations respond to HP1 mutations. This sug-
gests that the DNA immediately flanking the transgene is
not the sole element determining the mode of silencing.
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Sequences more distal to the insertion site and/or the
chromatin structure of a given domain might dictate the
type of silencing observed.

To date, there have been a few reports in which the
DNA sequences adjacent to a variegating gene have been
characterized. Stock In(1LR)pn2a contains an inversion
in which the euchromatic breakpoint disrupts the vinculin
gene, placing it adjacent to AAGAG satellite DNA se-
quences (Tolchkov et al. 1997). Neighboring genes pn,
wapl, Pgd and several vital loci variegate owing to the
juxtaposition of a large block of centric X-chromosome
heterochromatin. A secondary rearrangement that dis-
places a portion of the heterochromatin causes a suppres-
sion of PEV, despite the retention of approximately 1 Mb
of satellites DNA sequences. In this case, satellite DNA
sequences alone are insufficient to induce PEV. In con-
trast, variegation of the brown allele bwD is apparently
due to an insertion of approximately 1.5 Mb of the satel-
lite DNA sequence AAGAG within the coding region of
the gene (Platero et al. 1998). This allele causes trans-in-
activation of a paired brown+ homolog; this trans-inacti-
vation is also sensitive to the distance from a large block
of heterochromatin (reviewed by Henikoff 1997).

In addition to satellite DNA, transposons have been
found at heterochromatic breakpoints that induce PEV.
Three chromosomal rearrangements that cause variega-
tion of the white+ gene have generated new junctions with
sequences similar to a Type I mobile element (Tartoff
et al. 1984). Transposons and novel A-T-rich sequences
are adjacent to rosy+ P-element inserts (Zhang and Sprad-
ling 1995). Two of the sequences reported from that
study, CH(2)6 and CH(3)336, match those found adjacent
to the hsp70-white+ inserts reported here (Fig. 4). Unlike
the PEV inserts described here, all of the pericentric au-
tosomal rosy+ inserts examined were found to be fully
represented in polytene chromosomal DNA (Zhang and
Spradling 1995). Thus, the same heterochromatic se-
quences can be replicated to different extents depending
on their position within heterochromatin.

Why have we and others not recovered transgenes ad-
jacent to satellite DNA sequences? Perhaps these se-
quences are ªcold spotsº for P-element insertion due to
the nature of the DNA sequence. It is also possible that
the satellite DNA sequences are packaged into a chroma-
tin structure that renders the DNA inaccessible to P-ele-
ment integration. It is worth noting that examples in
which satellite sequences are adjacent to variegating
genes are the result of chromosomal rearrangements.
DNA breaks due to irradiation might be more likely to
occur in satellite DNA than are the DNA insertion events
associated with P-element transposition.

The findings reported here, and those of others cited
above, indicate that a wide range of DNA sequences, un-
ique, middle repetitious and satellite, can be associated
with variegating gene expression. An examination of
gene silencing in a variety of organisms suggests that
chromosomal proteins that influence heterochromatin
might be more highly conserved than the underlying
DNA. HP1, first characterized in Drosophila (James
et al. 1989) has been identified as a heterochromatic pro-
tein in mice and humans (Singh et al. 1991; Saunders

et al. 1993; Wreggett et al. 1994). Homologs of other
suppressors and enhancers of PEV [including En(z),
Rpd3 and SU(VAR)3±9] have been identified in yeast
and mammals (De Robertis et al. 1996; Laible et al.
1997; Laible and Jenuwein, personal communication).
Perhaps most remarkable is the ability of the mammalian
homolog of Enhancer of zeste to participate in gene si-
lencing both in Drosophila heterochromatin and at Sac-
charomyces cerevisiae telomeres (Laible et al. 1997).

In this study all of the variegating transgenes charac-
terized, regardless of their site in the pericentric region
or of the nature of the adjacent DNA, show a suppression
of PEV in response to a mutation in the gene encoding
HP1. In at least one case, this suppression is associated
with an opening of the chromatin structure. Prior to this
observation, an effect on chromatin structure was inferred
on the basis of changes in gene expression. These data
support the conclusion that the general and defining char-
acteristics of the heterochromatic state are based on the
associated proteins, presumably generating an alternative
chromatin structure, rather than on a specific set of DNA
sequences. Further studies of the chromatin structure of
genes silenced by heterochromatin are underway.
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