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HP1 was first described in Drosophila as a heterochromatin-
associated protein with dosage-dependent effects on
heterochromatin-induced gene silencing. Recently,
membership of the HP1 protein family has expanded
tremendously. A number of intriguing interactions between
HP1 and other proteins have been described, implicating HP1
in gene regulation, DNA replication, and nuclear architecture.
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Abbreviations
GST glutathione S transferase
HP1 heterochromatin protein 1
INCENP inner centromere protein 
KRAB Krüppel-associated box
LBR lamin B receptor 
ORC origin recognition complex
Pc Polycomb
PEV position effect variegation
TIF transcription intermediary factor

Introduction
The compartmentalization of chromatin in the nuclei of
higher eukaryotes has been recognized for over 100 years.
At the cytological level, this is seen in the individualization
of chromosomes at the onset of mitosis and in the differ-
ential condensation of heterochromatin and euchromatin
in interphase nuclei [1]. At the biochemical level, the
DNA of eukaryotes is packaged in nucleosomes, of which
the spacing, acetylation state, and association with nonhis-
tone proteins differs regionally. 

Within euchromatic domains, gene activation is accom-
plished by transactivators working in concert with
chromatin-remodeling complexes [2]; however, hete-
rochromatin formation can result in the functional
inactivation of regions of chromatin that would otherwise
be transcriptionally active. In Drosophila — the organism in
which heterochromatin is best-characterized — genes that
become mislocalized to heterochromatin by rearrangement
or transposition are silenced (reviewed in [3,4]). This
silencing occurs at the transcriptional level and is correlated
with a more heterochromatin-like cytological appearance
in polytene chromosomes [5] and increased resistance to
nuclease attack [6]. Among the nonhistone proteins pri-
marily associated with heterochromatin, the best
characterized is heterochromatin protein 1 (HP1). Our goal

in this review is to summarize the structural and function-
al properties of HP1 family members and to highlight
reported interactions with HP1 family proteins that may
have functional significance.

Identification of HP1 and its gene
HP1 was originally identified by immunolocalization analysis
of a fraction of tightly bound nonhistone chromosomal pro-
teins prepared from Drosophila melanogaster embryo nuclei
[7]. A monoclonal antibody was used to demonstrate a pre-
dominantly heterochromatic distribution of the protein [8]
and to isolate the corresponding cDNA clone from a recom-
binant expression library [7]. Molecular genetic studies
[9–11] determined that the gene encoding the HP1 protein
was identical to a locus previously identified as a dominant
suppressor of position effect variegation (PEV), Su(var)2-5
[12,13]. PEV, a mosaic silencing, results when a euchromatic
gene is placed next to or within heterochromatin. Su(var)2-5
satisfies the genetic criteria of dosage dependency for a
structural protein of heterochromatin [14]: it is a haplo-insuf-
ficient suppressor and triplo-abnormal enhancer of PEV. All
known Su(var)2-5 mutations are recessive lethal, demon-
strating that HP1 is essential in Drosophila.

HP1 structure and the chromo domain
The cloning of the homeotic gene silencer Polycomb (Pc)
led to the identification of a sequence motif of ~44 amino
acid residues shared by HP1 and PC, termed the ‘chromo
domain’ (for chromosome organization modifier [15]). This
motif has now been found in a large number of chromoso-
mal proteins from diverse sources [16,17]. Among these are
proteins from yeast, nematode, insects, chicken, frog and
mammals (Table 1) that display the defining characteristics
of the HP1 family: all are relatively small proteins
(15–35 kDa) with an amino-terminal chromo domain and a
structurally related carboxy-terminal motif, the ‘chromo
shadow’ domain (Figure 1). 

The three-dimensional structure of a chromo domain (from
mouse M31) has been determined by nuclear magnetic
resonance (NMR) [18]. It consists of a three-stranded
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Figure 1

Schematic representation of the generic HP1 protein. A single amino-
terminal chromo domain motif (CHD) and a single carboxy-terminal
chromo shadow domain motif (CSD) are separated by a variable
length linker (hinge) region. The lengths of the amino- and carboxy-
terminal tails are also variable.
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β sheet packed against an α helix, a motif also described
for two DNA-binding proteins from thermophilic archea.
On the basis of its overall negative surface charge distribu-
tion, however, the chromo domain appears to be better
suited for protein–protein interactions than for protein–
nucleic acid interactions. Because of its high sequence
homology to M31, the Drosophila chromo domain structure
is likely to resemble the M31 chromo domain (Figure 2).

Chromo domain mutations in HP1 and PC abolish the genet-
ic activity of these proteins [19,20]. Additionally,
β-galactosidase fusion proteins with the PC chromo domain,
or either the HP1 chromo or chromo shadow domains, target
β-galactosidase to euchromatic PC binding sites or hetero-
chromatic HP1 binding sites, respectively [19–21]. As
expected, a chimeric HP1–PC fusion protein (in which the
HP1 chromo domain is replaced with the PC chromo domain)
targets β-galactosidase to both HP1 and PC binding sites.
Interestingly, the chimeric protein also mislocalizes endoge-
nous HP1 to euchromatic PC sites and endogenous PC to
heterochromatin [19,22]. This latter behavior implicates the
PC chromo domain and HP1 chromo shadow domain in
mediating protein–protein interactions in the nucleus. 

Targets of HP1 binding in the nucleus
While there is some data supporting HP1–DNA interac-
tion [23], much recent work has focused on identifying
protein partners of HP1. Several candidates have been
identified [24]. Available evidence points to roles for these
proteins in gene silencing and in nuclear assembly. Inter-
actions that implicate HP1 family members in silencing are
discussed below.

SU(VAR)3-7 
Su(var)3-7 was also identified as a dominant suppressor of
heterochromatic PEV. The SU(VAR)3-7 protein includes
seven zinc-finger motifs, suggesting a possible DNA bind-
ing activity. Immunofluorescent localization of SU(VAR)3-7
on larval salivary gland polytene chromosomes reveals that
it has a distribution nearly identical to that of HP1, and
antibodies to SU(VAR)3-7 co-immunoprecipitate HP1
from embryo extracts [25].

SU(VAR)3-9
Su(var)3-9, another dominant suppressor of PEV, encodes a
protein containing a chromo domain [26]. The protein appears
to be enriched in heterochromatin [27]. A human SU(VAR)3-9
homolog, SUV39H1, can be co-immunoprecipitated from
human or mouse nuclear extracts using an antibody to
M31, suggesting that these proteins form a complex [27].

TIF1αα and TIF1ββ
The transcription intermediary factors (TIF) 1α and TIF1β
interact with nuclear hormone receptors and the Krüppel-
associated box (KRAB) domains of several proteins; they
may function as co-activators in ligand-dependent activation
of transcription and co-repressors with KRAB-containing re-
pressor proteins. Yeast two-hybrid protein screens of a mouse
embryo cDNA library using TIF1α as bait recovered clones
encoding the HP1 family proteins mHP1α and mMOD1 [28]. 

Mutations in TIF1β gene that blocked mHP1α and
mMOD1 binding in vitro reduce TIF1β-mediated repres-
sion of a SV40 enhancer/promoter reporter in NIH 3T3
fibroblasts [29]. TIF1β colocalizes in heterochromatin with

Table 1

Members of the HP1 family.

Name Organism Size (amino Reported cytology Silencing activity Refs
acid residues) demonstrated

Swi6p S. pombe 328 Centromeres, telomeres, 
silent mating type cassettes + [56]

Hhp1p T. thermophila 184 Absent in micronuclei; enriched 
in condensed chromatin of macronuclei – [43]

pchet1 P. citri 173 Male specific nuclear protein; not heterochromatin-specific ND [40]
pchet2 P. citri 194 ND ND [40]
HP1 D. melanogaster 206 Pericentric heterochromatin, 

telomeres, several non-pericentric sites + [7]
DvHP1 D. virilis 213 ND ND [57]
emb|CAB07241 C. elegans 175 ND ND (a)
gi|3702834 C. elegans 184 ND ND (a)
Xhp1α X. laevis 141 ND ND [37•]
Xhp1γ X. laevis 171 ND ND [37•]
CHCB1 G. gallus 185 ND ND [58]
CHCB2 G. gallus 174 ND ND [58]
mHP1α M. musculus 191 ND + [28]
M31; MoMOD1 M. musculus 185 Pericentric heterochromatin – [59]
M32; MoMOD2 M. musculus 173 Euchromatic; excluded from heterochromatin – [59]
HP1hsα H. sapiens 191 Pericentric heterochromatin + [60]
HP1hsβ H. sapiens 185 Pericentric heterochromatin – [59]
HP1hsγ H. sapiens 173 Euchromatic; excluded from heterochromatin + [32]

(a) GenBank database. ND, not determined.
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mouse M31, and in euchromatin with mouse M32 [29], con-
sistent with an in vivo association between these proteins.
The physiological significance of the TIF1α–mHP1α
association is unclear, as the HP1 binding domain proved
dispensable for TIF1α-mediated repression in a transfec-
tion assay, and no significant subnuclear colocalization of
mHP1α and TIF1α has been observed [30].

Interactions that implicate HP1 family members
in nuclear assembly 
Lamin B receptor
The lamin B receptor (LBR) is an integral membrane pro-
tein of the nuclear envelope; it binds B-type lamins and
double-stranded DNA, and may function as a chromatin
docking site at the nuclear envelope [31]. Interaction of
human LBR with the human HP1 family proteins HP1hsα

and HP1hsγ was demonstrated by affinity chromatography
and by co-immunoprecipitation [32]; the interaction utilizes
the chromo shadow domain [33]. In vitro translated HP1
binds to a purified glutathione-S-transferase (GST)– LBR
fusion protein, indicating direct interaction [32]. Without
genetic analysis, the functional significance of LBR–HP1
interaction is unclear but, in all eukaryotic cells, the inner
nuclear membrane and nuclear lamina are closely associated
with peripheral heterochromatin. The possibility that HP1
could promote silencing through LBR-mediated association
with the nuclear membrane is intriguing, given that nuclear
membrane association can promote silencing in yeast [34].

Inner centromere protein
Inner centromere protein (INCENP), a component of the
mitotic chromosome scaffold, is associated with the
centromere in early metaphase but moves progressively to
the spindle fibers and the plasma membrane at the
presumptive cleavage furrow. The centromere-targeting
amino-terminal half of INCENP interacts with HP1hsα

and HP1hsγ in a yeast two-hybrid screen of a HeLa cell
cDNA library [35]. The interaction of HP1 homologs with
INCENP requires the ‘hinge region’ of HP1 connecting
the chromo and chromo shadow domains. The significance
of the interaction remains obscure, however, as it does not
seem to be required for INCENP function.

Chromatin assembly factor 1
Chromatin assembly factor (CAF) is a three-polypeptide
complex that mediates histone deposition on newly repli-
cated DNA. A yeast two-hybrid protein screen of a mouse
embryo cDNA library, using the mouse HP1 family protein
MOD1 as bait, recovered cDNA clones encoding the large
CAF-1 subunit p150 [36]. Comparing overlapping sequences
of all cDNAs isolated in the screen, a MOD1 interacting
region (MIR) was identified. MOD1 binds a GST–MIR
fusion peptide in vitro; the MOD1 chromo shadow domain
is both necessary and sufficient for this interaction. 

Transient expression of GFP-tagged p150 found this fusion
protein concentrated in the heterochromatin of mouse cells.
Point mutations within or deletion of the DNA encoding a
highly conserved hydrophobic motif of p150 reduced or
eliminated p150–MOD1 interactions in vitro and in vivo.
Mutations in the region of the p150 gene encoding MIR
abolished heterochromatin binding of GFP–p150 fusion pro-
teins in non-S-phase mouse L cells. Nevertheless, the
mutant fusion proteins were recruited normally to replication
foci during S phase, as judged their by colocalization with
PCNA (proliferating cell nuclear antigen), and the fact that a
p150 deletion mutant lacking the MIR functioned normally
in in vitro nucleosome assembly. These results suggest that
the HP1-binding and heterochromatin-targeting activities of
the CAF-1 large subunit are dispensable for its role in nucle-
osome assembly during replication. Further, MOD1
synthesized in early S phase, prior to the initiation of DNA

206 Chromosomes and expression mechanisms

Figure 2

Three dimensional model of the Drosophila
HP1 chromo domain. Models of the
Drosophila chromo domain were created by
using the coordinates for the MoMOD1
chromo domain [18] and substituting the
Drosophila amino acids at positions where
these sequences differ. (a) A ribbon model,
highlighting the side chains of Tyr24
(magenta) and Val26 (green), sites of
previously described mutations in Drosophila
HP1 [19]. (b) Stereopair of a Drosophila
chromo domain model, shown in space-filling
representation. Left image highlights Tyr24
(magenta) and Val26 (green) and right image
highlights electrostatic potential (red, negative
potential; blue, positive potential). Note that
both mutations occur within a groove or
pocket in the chromo domain structure,
suggesting a site of protein–protein
interaction. Ribbon and stereopair images
were rendered on a Silicon Graphics Octane
unit using RIBBONS and MIDAS, respectively.
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replication, was localized to heterochromatin normally, indi-
cating that replication-dependent chromatin assembly is not
required for proper MOD1 targeting. The functional signifi-
cance of CAF-1 binding in heterochromatin outside of S
phase is unknown. CAF-1 may behave analogously to the
satellite-binding proteins GAGA factor and PROD protein;
these proteins have low affinity binding sites in certain sub-
domains of heterochromatin, to which they bind when
excluded from their high affinity sites in euchromatin [37•].

Origin recognition complex 
Antibodies to the origin recognition complex (ORC)
polypeptide ORC2 show a diffuse granular staining pattern
in mitotically cycling Drosophila cells during interphase,
with a significant concentration in the heterochromatic
chromocenter [38]. During mitosis, all detectable ORC2
concentrates in the pericentric heterochromatin at a subset
of HP1 binding sites. In polytene nuclei, ORC2 is distrib-
uted widely across all euchromatic chromosome arms but is
largely excluded from the chromocenter.

ORC1 interacts strongly with HP1 and both the chromo
and chromo shadow domains of HP1 are required for this
interaction [38]. The functional significance of an Orc–
HP1 interaction is unclear; while HP1 appears to be spa-
tially restricted, Orc is thought to function at replication
origins distributed throughout the genome. Orc may play a
role in the establishment of heterochromatic silencing in
Drosophila, however, analogous to the role of replication
origins in silencing the silent mating type cassettes in the
budding yeast Saccharomyces cerevisiae. Here, Orc appears to
act as a platform to recruit the silencing protein Sir1p [39].
As in Drosophila, there must be more to the mechanism, as
replication origins are widely dispersed throughout the
chromosomes, whereas silencing in yeast is restricted to
the silent mating type cassettes, telomeres and rDNA.

Self-association
HP1 family proteins also undergo self-association, reported
for P. citri HP1 proteins [40], HP1hsα and mHP1α [28,33];
heterologous interactions between HP1hsα and HP1hsγ have
also been observed [33]. In the case of the human proteins,
the associations depend on the chromo shadow domain.

Thus, there appears to be a complex and potentially
dynamic collection of HP1-dependent interactions occur-
ring in a variety of eukaryotic cells. Where the interactions
have been mapped, most involve the chromo shadow
domain. It seems unlikely that such a relatively small
domain could accommodate simultaneously such a wide
range of partners. Instead, distinct populations of HP1 may
be involved in distinct interactions. Differential HP1 phos-
phorylation could regulate these interactions.

Phosphorylation of HP1 and the regulation of
heterochromatin assembly
In Drosophila, HP1 is multiply phosphorylated by serine/
threonine kinases, one of which is casein kinase II (CKII)

[41•]; CKII phosphorylation of HP1 is required for effi-
cient heterochromatin targeting [41•]. There is also
indirect evidence for tyrosine phosphorylation of HP1
[19]. Biochemical fractionation of HP1 suggests that dif-
ferential HP1 phosphorylation may be associated with
distinct complexes [42]. Human and Tetrahymena HP1
proteins are also differentially phosphorylated; hyper-
phosphorylation of the Tetrahymena Hhp1p is induced by
starvation and is correlated with decreased nuclear volume
[43]. In humans, hyperphosphorylation of HP1hsα and
HP1hsγ is correlated with mitosis [44•]. The dynamic
nature of HP1 phosphorylation suggests a regulatory func-
tion for this process, although further genetic and
biochemical studies are needed.

Mechanism of HP1-mediated silencing
Although genetic and cytological evidence in Drosophila
clearly implicates HP1 in heterochromatic position effect
silencing, both the mechanism of silencing and the role of
HP1 in the mechanism remain unknown. The structure of
the HP1 protein, with two related heterochromatin-targeting
domains, suggests that it acts as a bifunctional cross-linker,
perhaps organizing higher order chromatin structure by
linking or anchoring chromatin subunits.

In chromosome rearrangements that place euchromatic
genes next to a heterochromatic breakpoint, HP1 becomes
visibly associated with euchromatic regions in cis across the
breakpoint [45]. This physical association correlates with
the silencing of adjacent genes; however, a cytological asso-
ciation of HP1 with regions silenced by PEV is apparently
not obligatory, as a similar immunostaining experiment
found no detectable HP1 staining at a copy of the brown
locus silenced in trans by brownDominant [46].

Arrays of P transposons carrying a mini-white gene result in
silencing of the white marker [47]. HP1 is recruited to these
silenced arrays in polytene chromosomes [48•]. Interest-
ingly, lower amounts of HP1 are also detectable at single
copy nonsilenced white transgenes and at transposon arrays
carrying a different eye color marker that do not exhibit
silencing. Apparently, the presence of HP1 alone is not suf-
ficient to establish silencing; perhaps some threshold of
HP1 concentration is required. 

At the biochemical level, heterochromatin silencing is corre-
lated with reduced accessibility of promoter sequences to
nuclease attack [6], while suppression of PEV by HP1 muta-
tion is correlated with increased accessibility [49]. The
mechanism by which HP1 mediates this differential acces-
sibility is unknown. High resolution footprinting analysis
suggests a loss of transcription factor and paused RNA poly-
merase from the silenced heat shock promoters [50••].

What does HP1 do normally?
In Drosophila, examples of HP1-dependent silencing involve
chromosome rearrangements or transposon insertions; how-
ever, the heterochromatin of flies does include a number of

The HP1 protein family Eissenberg and Elgin    207

GDA202.QXD  03/22/2000  02:16  Page 207



genes, some of which have been shown to require a hete-
rochromatin context for their normal expression [51,52]. In
rearrangements that separate the genes from their flanking
heterochromatin such genes are misregulated. Mutations in
several loci that cause suppression of classical PEV enhance
the misregulation of rearranged heterochromatic genes [53];
these mutations include alleles of Su(var)2-5, the locus
encoding HP1. In addition, certain pairwise combinations of
PEV modifiers including Su(var)2-5 result in misregulation
of the heterochromatin gene light, when light remains in its
normal chromosomal position [54•].

A second role for HP1 is suggested by the report that the
metaphase chromosomes in HP1 mutant larval neuroblasts
show a high frequency of telomere associations [55]. As
HP1 is found at telomeres, the telomere fusions that occur
in larvae lacking zygotic HP1 suggest that HP1 might
function to protect telomeres; however, HP1 might func-
tion in the pericentric heterochromatin to regulate
trans-acting modifiers of telomeres, such as Het-A ele-
ments, which are responsible for telomere stabilization.

Normally, HP1 may simply function as an organizer of
higher order chromatin structure in the nucleus (Figure 3).
This organizing property could serve to accommodate the
transcription of genes that normally reside within hetero-

chromatin. When the normal organization of heterochromatin
is lost — through rearrangement to euchromatin or by deple-
tion of structural subunits — misregulation of heterochromatic
genes would result. Conversely, rearrangements that place
euchromatic genes next to a heterochromatic breakpoint
could make genes near the breakpoint vulnerable to
assembly into HP1-dependent heterochromatin, silencing
those genes by template occlusion.

Conclusions
The HP1 family of proteins represents the best-character-
ized heterochromatin-associated nonhistone chromosomal
protein family in the eukaryotic kingdom. Its remarkable
evolutionary conservation suggests a fundamental role for
HP1 proteins in nuclear organization and a highly con-
served set of macromolecular interactions. The role of HP1
proteins in mediating position-effect silencing has proven
especially useful in genetic strategies aimed at identifying
candidate partners for HP1 in heterochromatin assembly.
Future work on HP1 and its partners will be directed at
defining its role as a subunit of heterochromatin, as a cofac-
tor in gene regulation, and as an essential player in the
dynamic organization of nuclear architecture. Key to the
achievement of these goals will be the application of
genetic assays to test the functional significance of cyto-
logical and biochemical correlations.

208 Chromosomes and expression mechanisms

Figure 3

Cartoon representation of the role of an HP1-
dependent complex as a chromatin organizer,
promoting silencing of euchromatic genes and
expression of heterochromatic genes in
heterochromatic domains. (a) In euchromatin,
a euchromatic enhancer (enh) is bound by an
activator complex, which acts to recruit RNA
polymerase (shown as a train) to the
promoter. (b) When a euchromatic gene lies
next to a heterochromatic breakpoint, HP1-
dependent complexes spread across the
breakpoint to assemble heterochromatin over
euchromatic sequences, making the template
inaccessible to activators. (c) HP1-dependent
complexes act to organize heterochromatic
DNA so as to accommodate binding of
heterochromatic gene activators and their
target promoters. (d) When a heterochromatic
locus is mislocalized to euchromatin (or
mutations interfere with HP1-dependent
complex formation), the normal HP1-mediated
organization of the locus is lost, and the gene
is silenced.
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Update
Since the submission of this review, two new reports have
appeared that significantly extend our understanding of
HP1 family activities. Festenstein et al. [61••] report the
first study to show that a mammalian HP1 family member
has dosage dependent effects on heterochromatin silenc-
ing in transgenic mice. Smothers and Henikoff [62•]
identify a consensus chromo shadow domain binding motif
that may underlie some HP1-dependent interactions, as
well as HP1 self-association.
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