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Materials and Methods

Fly strains.  The following fly strains carrying mutations in genes that participate

in the RNAi pathway were used in this analysis: lines (1) w1; piwi1/CyO, (2) w1;

piwi2/CyO, (3) aubQC42 cn bw/CyO, and (4) w1; aub P-3a/CyO were provided by H. Lin

(Duke University, Durham, North Carolina), and lines (5) mwh ry506 hlsP[lacZ,ry+]3987 e/TM3,

ryRK Sb e, (6) w; hls 125 e/TM3, Sb Ser e, (7)  ru st hlsE616 e ca/TM3, Sb es,  (8)  cv-c  hlsE1

sbd/TM3, ryRK Sb es, and (9)  ry cv-c hlsDE8 sbd/TM2, Ubx ry e  were provided by the C.

Berg laboratory (University of Washington, Seattle, Washington). Further description of

the mutations can be found in Flybase (http://flybase.bio.indiana.edu).

mini-white arrays: To determine the effect of homeless mutations on mini-white

arrays, each allele of homeless was crossed with a multiple balancer stock (y w67c23;

SM6a/In (2LR) Gla; MKRS/ TM3, Ser). Three different mini-white stocks (6-2 mini-w;

BX2 and DX1) were also combined with the same stock. The F1 males of the former

cross were then mated with F1 females of the latter carrying opposite balancers for

chromosomes 2 and 3. A mass culture was set up with F2 females (y w67c23/y w67c23; BX2/

SM6a; hls/TM3 Ser) and F1 males (y w67c23; BX2/ Gla; +/ MKRS). The progeny with no
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balancer second chromosome, which are homozygous for the mini-white array, were

selected for pigment assay. The DX1 and 6-2 mini-w stocks were combined with

homeless alleles in a similar manner. To test the effect of homozygous mutations on mini-

white arrays, the F2 females of the above crosses were mated to their male siblings or F2

males from the other crosses carrying different alleles of the same gene.

Both the mini-white arrays and piwi are situated on chromosome 2. We initially

recombined the mini-white arrays and the two piwi mutations. For pigment assays, the

flies with a mini-white array and a piwi mutation linked on a second chromosome that

were heterozygous for a second chromosome balancer were mated with males of a

recombined stock carrying the same or a separate piwi allele. The progeny with no

balancer chromosome carry the two copies of the mini-white array and two alleles of the

piwi mutation. To test the effect of heterozygous piwi alleles, the recombinant

chromosomes heterozygous with a second chromosome balancer were mated to the

respective mini-white stock and the appropriate genotype selected.

To measure eye pigmentation, the heads of 40 flies of each genotype were

manually dissected. The amount of red eye pigment was estimated as previously

described (S1). The isolated heads were homogenized in one ml of methanol, acidified

with 0.1% HCl and centrifuged. The absorbance of the supernatant was measured at 480

nm.

To identify larvae of various genotypes, the three different mini-white stocks (6-2

mini-w; BX2 and DX1) were transferred to the translocation stock y w67c23; T(2;3) CyO

TM6, Cy Tb, which serves as a balancer for chromosomes 2 and 3. In parallel, in order to

identify larvae carrying two copies of a mini-white array together with the hetero-allelic
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combinations of homeless, E1/E616 and DE8/E1, we transferred each array and the two

homeless alleles, each in combination with the respective mini-white array, to the

translocation stock y w67c23; T(2;3) CyO TM6, Cy Tb.  For example, in a y w67c23; BX2;

hls/CyO TM6, Cy Tb stock, the Tubby (Tb) larvae are heterozygous for the complex

balancer and the normal larvae are homozygous for BX2 hls/ BX2 hls. Crossing together

the two lines with different homeless alleles produces larvae homozygous for BX2 and

heteroallelic for hls, which can be identified as the Tb+ larvae. The two piwi recombinants

for each mini-white array were also transferred to this translocation stock and then

crossed together to generate larvae homozygous at the mini-white location but

heteroallelic for piwi.

To identify larvae homozygous for the various mutations depicted in Figure 4 that

do not carry the mini-white transgenes, the collection of alleles was introduced into stocks

with the same second-third translocation balancer, which allows phenotypic recognition

of homozygous or heteroallelic mutant individuals.

Fourth chromosome white insertions: The effect of these mutations on position

effect variegation was studied using two lines carrying variegating P element inserts,

marked by the white gene, on the fourth chromosome (S2).  In line 118E-10, the P

element is inserted in the centromeric region, and in line 39C-12 the insert is located in

the banded region, just proximal to Hcf.  The P element lines were made using the

recipient stock y w67c23.  To minimize possible background effects, standard genetic

crosses were performed to replace all of the chromosomes, except for the chromosome

with a given mutation and the corresponding balancer chromosome, with the

chromosomes from the y w67c23 line.  Heterozygous flies were obtained by crossing
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virgin females carrying the variegating inserts to males with RNAi pathway mutations.

Where homozygous or heteroallelic combinations were assessed, crosses were carried out

in both directions, so that each allele came either from the mother or the father.  As no

parental effects were observed, these results were combined to generate the data shown in

Figure 2.

To measure eye pigmentation, 4 samples of 10 males (3-4 days post eclosion)

were homogenized in 0.5 ml of 0.01M HCl in ethanol; the homogenate was placed at 4°C

overnight, warmed at 50°C for 5 min, clarified by centrifugation, and the OD at 480 nm

of the supernatant was recorded (S3).  Mean values (bar) are reported in comparison with

the value for the +/+ control stock, with the standard error indicated (thin line).

Immunostaining of the polytene chromosomes: Salivary glands were dissected

from third instar larvae and treated as described (S4).  The chromosomes were fixed in a

solution containing 3.7% formaldehyde and 1% Triton X-100 in phosphate buffered

saline (PBS) (pH 7.2) for approximately two minutes and transferred to 45% acetic acid

containing 3.7% formaldehyde for 2-5 min. The chromosomes were squashed and the

slide was placed on dry ice with subsequent removal of the coverslip. The chromosomes

were washed twice for 10 min with PBS and finally with PBS, 1% bovine serum

albumin, 0.2% Triton X-100, 0.2% azide (PBT) for 30 min. The chromosomes were

incubated overnight at 4˚C with primary antibodies in PBT buffer. For HP1 and HP2

proteins, chromosomes were labeled with rabbit anti-HP1 antibody (1:100) or rabbit anti-

HP2 (S5) antibodies (1:100) as well as mouse anti-Sex Lethal M-18 (University of Iowa

Hybridoma Bank) antibodies (1:50). Rabbit anti-H3-mK9 from Upstate Biotechnology

was used (1:100) to detect H3 methylated at K9. For double labeling of HP1 and H3-
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mK9, mouse monoclonal C1A9 anti-HP1 antibodies (S6) were used (1:100). To

determine the specificity of methylated H3-K9, primary antibodies against the di and tri

methylated forms (from T. Jenuwein) were applied to chromosome mixtures, using rabbit

anti-H3-tmK9 antibodies (1:50) or rabbit anti H3-dmK9 antibodies (1:50) (S7) and mouse

anti-SXL antibodies (1: 50). For detection of H3-mK27 residues, the fixed chromosomes

were probed with primary rabbit H3-tmK27 (1:50) or H3-dmK27 (1:50) (S7) and mouse

anti-SXL antibodies (1:50). After two 10 min washes in PBS and a 30 min incubation in

PBT and 2% goat serum, the chromosomes were incubated with fluorochrome conjugated

secondary antibodies for 3 hrs at room temperature in complete darkness. The slides were

then incubated with RNase (50 ng/ml) for 30 min at 37°.  Finally, the preparations were

washed twice in PBS for 10 min each and air-dried in the dark. Secondary antibody for

SXL was FITC-conjugated goat anti-mouse; for HP1, Cy5-conjugated goat anti-mouse or

anti-rabbit; and for HP2, Cy5 conjugated goat anti-rabbit (Jackson ImmunoResearch).

Preparations were finally mounted with a mixture of Vectashield mounting media with

propidium iodide (PI) (1.5µg/ml). The slides were examined with a Bio-Rad 600

confocal microscope using a 100X oil lens.

Northern blot: Northern analysis was performed as previously described (S8). The

northerns were probed for white mRNA and subsequently for tubulin, as a loading

control, as described (S6).

Western blot: Fifteen adult flies in each genotype were homogenized in 100µl Laemmli

loading buffer containing protease inhibitors as described (S8). The crude extracts were

boiled for 5 min and centrifuged to remove debris. 200 µg of protein were loaded per

well of a 6% stacking and 8% running PAGE-SDS gel. Proteins were transferred to a
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nylon membrane using an electro-blot apparatus at 120 mA for 1.5 to 2 hrs.  The

membrane was blocked overnight in 1X Tris buffered saline (TBS) (pH 8.0) plus 5%

nonfat milk. The diluted mouse monoclonal HP1 antibodies (C1A9) (1: 3000) or rabbit

anti-H3-mK9 antibodies (1:1000) (Upstate Biotechnology) were added to the incubation

solution (1X TBS plus 2.5% nonfat milk) for 60-90 min. Subsequently, blots were

incubated with secondary antibodies in the same solution for one hour. The amount of

HP1 or H3-mK9 in each genotype was detected using horseradish peroxidase-conjugated

detection ECL Kits (Amersham Pharmacia). The blots were reprobed with mouse anti-

tubulin antibodies (E7, University of Iowa Hybridoma Bank) (1:500); tubulin was

detected using the ECL detection method. The images were converted to Pict files to

estimate the band intensities.
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Fig. S1.
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Fig. S2.
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Fig. S3.
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Fig. S4.
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Fig. S5.
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Figure Legends for Supporting Online Material

Fig. S1. Northern analysis of repeat induced silencing. Total cellular RNA was extracted

from adults of selected genotypes carrying various mini-white arrays with different

combinations of piwi and homeless mutations. Northerns were performed in triplicate

with measurement of white RNA relative to B-tubulin. Asterisks denote those means that

are significantly different from the respective control (+/+, the mini-white array with

normal alleles at piwi and homeless) at the 95% level of confidence. All genotypes are

male and are noted in the figure.

Fig. S2.  Comparative assessment of the impact of piwi mutations.  Simultaneous

squashes for homozygous piwi and control (Canton S) lines, probed using rabbit

antibodies specific for HP1, HP2, and H3-mK9 (Upstate Biotechnology), counterstained

with propidium iodide and viewed by confocal microscopy, are shown. The mixtures

were made using females of one genotype and males of the other, as well as the

reciprocal combination, so that staining with mouse antibodies against Sex-lethal (SXL),

which is only present in females (S9), would allow one to assign unambiguously each

nucleus to the proper genotype. The examples depicted were chosen because adjacent

nuclei of different genotype were present in the same field of view; some, but not all, are

represented in Figure 4. As illustrated in Figure 4, some decrease in histone H3

methylated at K9 is observed, and a small increase in the level of HP1 and HP2

associated with the euchromatic arms is noted.  a = Canton S; b = mutant.



13

Fig. S3.  Comparative assessment of the impact of aubergine mutations.  Simultaneous

squashes for homozygous aubergine and control (Canton S) lines, probed using

antibodies specific for HP1, HP2, and H3-mK9 (Upstate Biotechnology), counterstained

with propidium iodide and viewed by confocal microscopy are shown. The mixtures were

prepared and probed with SXL antibody to identify the two genotypes as described in

figure S2. Some decrease in histone H3 methylated at K9 is observed, and a small

increase in the level of HP1 and HP2 associated with the euchromatic arms is noted. a =

Canton S; b = mutant.

Fig. S4.  Comparative assessment of the impact of homeless mutations.  Simultaneous

squashes for homozygous homeless and control (Canton S) lines, probed using antibodies

specific for HP1, HP2, and H3-mK9 (Upstate Biotechnology), counterstained with

propidium iodide and viewed by confocal microscopy are shown. The mixtures were

prepared and stained with SXL antibody to identify the two genotypes as described in

figure S2. As illustrated in Figure 4, a strong decrease in histone H3 methylated at K9 is

observed, and HP1 and HP2 are redistributed along the euchromatic arms.  a = Canton S;

b = mutant.

Fig. S5. Specificity of H3 modification affected. Simultaneous squashes of homozygous

homeless and control (Canton S) lines in the same field of view, stained using antibodies specific

for different histone H3 modifications: dimethylation of K9 (H3-dmK9), trimethylation of K9

(H3-tmK9), dimethylation of K27 (H3-dmK27), and trimethylation of K27 (H3-tmK27) (S7).

The mixtures were prepared and labeled with SXL antibody to identify the two genotypes as
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described in figure S2. There is a significant loss of both H3 dimethylated at K9 and H3

trimethylated at K9, while there appears to be little change in the distribution of H3 modified by

di- or trimethylation at K27.  a = Canton S; b = mutant.
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