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Research

Plasticity in patterns of histone modifications and
chromosomal proteins in Drosophila heterochromatin
Nicole C. Riddle,1,9 Aki Minoda,2,9 Peter V. Kharchenko,3,9 Artyom A. Alekseyenko,4

Yuri B. Schwartz,5,6 Michael Y. Tolstorukov,3 Andrey A. Gorchakov,4 Jacob D. Jaffe,7

Cameron Kennedy,2 Daniela Linder-Basso,5 Sally E. Peach,7 Gregory Shanower,5

Haiyan Zheng,8 Mitzi I. Kuroda,4 Vincenzo Pirrotta,5 Peter J. Park,3 Sarah C.R. Elgin,1,10

and Gary H. Karpen2,10

1Department of Biology, Washington University St. Louis, Missouri 63130, USA; 2Department of Molecular and Cell Biology, University
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Medical School, Boston, Massachusetts 02115, USA; 5Department of Molecular Biology & Biochemistry, Rutgers University,
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Eukaryotic genomes are packaged in two basic forms, euchromatin and heterochromatin. We have examined the com-
position and organization of Drosophila melanogaster heterochromatin in different cell types using ChIP-array analysis of
histone modifications and chromosomal proteins. As anticipated, the pericentric heterochromatin and chromosome 4 are
on average enriched for the ‘‘silencing’’ marks H3K9me2, H3K9me3, HP1a, and SU(VAR)3-9, and are generally depleted
for marks associated with active transcription. The locations of the euchromatin–heterochromatin borders identified by
these marks are similar in animal tissues and most cell lines, although the amount of heterochromatin is variable in some
cell lines. Combinatorial analysis of chromatin patterns reveals distinct profiles for euchromatin, pericentric hetero-
chromatin, and the 4th chromosome. Both silent and active protein-coding genes in heterochromatin display complex
patterns of chromosomal proteins and histone modifications; a majority of the active genes exhibit both ‘‘activation’’ marks
(e.g., H3K4me3 and H3K36me3) and ‘‘silencing’’ marks (e.g., H3K9me2 and HP1a). The hallmark of active genes in het-
erochromatic domains appears to be a loss of H3K9 methylation at the transcription start site. We also observe complex
epigenomic profiles of intergenic regions, repeated transposable element (TE) sequences, and genes in the heterochromatic
extensions. An unexpectedly large fraction of sequences in the euchromatic chromosome arms exhibits a heterochromatic
chromatin signature, which differs in size, position, and impact on gene expression among cell types. We conclude that
patterns of heterochromatin/euchromatin packaging show greater complexity and plasticity than anticipated. This
comprehensive analysis provides a foundation for future studies of gene activity and chromosomal functions that are
influenced by or dependent upon heterochromatin.

[Supplemental material is available for this article.]

Two types of chromosomal regions are generally recognized in

eukaryotic genomes, heterochromatin and euchromatin. Initially

defined based on histological staining patterns in interphase cells

(Heitz 1928), these subtypes are now known to represent distinct

genomic and nuclear domains distinguished by a variety of prop-

erties including DNA sequence composition, gene density, repli-

cation timing, nuclear localization, frequency of meiotic recom-

bination, and biochemical composition (for review, see Grewal

and Elgin 2007; Eissenberg and Reuter 2009). Genomic studies

generally focus on the euchromatin, which contains most of the

genes. In addition, analyses of heterochromatin are challenging

due to enrichment for repetitive sequences. Thus, although het-

erochromatin encodes essential structural and regulatory features

such as centromeres, telomeres, and meiotic pairing sites (Allshire

and Karpen 2008; Peng and Karpen 2008; Hughes et al. 2009), as

well as several hundred genes (Smith et al. 2007b), its structure and

organization remain poorly characterized.

At the core of chromatin are the histone proteins, which as-

semble DNA into nucleosomes, providing the basis for higher or-

der chromatin packaging. A variety of post-translational histone

modifications are used in combination to define alternative chro-

matin states (Jenuwein and Allis 2001; Ruthenburg et al. 2007;

The modENCODE Consortium 2010; Kharchenko et al. 2011).

Despite the complexity and the many organism-specific intricacies

observed in the use of histone modifications, some common

themes have emerged (Kouzarides 2007). For example, histone

hyperacetylation, in general, and methylation of H3 lysine 4 (H3K4),

in particular, are correlated with open chromatin conformations

9 These authors contributed equally to this work.
10Corresponding authors.
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and gene expression; these ‘‘activation marks’’ are generally en-

riched in euchromatic regions. In contrast, heterochromatic re-

gions generally display low levels of histone acetylation and H3K4

methylation, and instead are enriched for ‘‘silencing marks’’ such

as H3 lysine 9 (H3K9) methylation (Kouzarides 2007; Eissenberg

and Reuter 2009).

Heterochromatic domains are enriched for a number of spe-

cialized proteins implicated in epigenetic regulation, including

those involved in deposition or recognition of specific histone

modifications (Ruthenburg et al. 2007; Marmorstein and Trievel

2009). The first of such proteins identified was heterochromatin

protein 1a [HP1a, also known as SU(VAR)205], which shows strong

enrichment in the pericentric and telomeric regions of Drosophila

melanogaster chromosomes (James and Elgin 1986; James et al.

1989) and binds di- and trimethylated H3K9 (Lachner et al. 2001).

Similar enrichment patterns are observed for other proteins, in-

cluding known histone-modifying enzymes [e.g., the SU(VAR)3-9

histone H3 K9 methyltransferase] and the SU(VAR)3-7 zinc finger

protein (Cleard et al. 1997; Schotta et al. 2002). Mutations in such

proteins cause defects in heterochromatin formation and associated

gene silencing, while overexpression increases heterochromatin

establishment, suggesting that these proteins directly participate in

heterochromatin assembly and function (Eissenberg and Reuter

2009). The patterns of enrichment and depletion of histone mod-

ifications and of the proteins associated with epigenetic regulation

can be used to distinguish chromatin domains across the genome

and to assess chromatin changes that occur in different cell types.

The modENCODE project was initiated by NIH to provide

a complete annotation of the functional elements in the C. elegans

and D. melanogaster genomes (Celniker et al. 2009; Gerstein et al.

2010; The modENCODE Consortium 2010). We have used chro-

matin immunoprecipitation (ChIP) array analysis to define the

genome-wide patterns of an extensive list of histone modifications

and chromosomal proteins in D. melanogaster using chromatin

from different cell culture lines, embryos, larvae, and adult heads.

These data have provided an unprecedented opportunity to map

the heterochromatin/euchromatin borders at high resolution, to

ask whether this border is fixed or variable in different cell types,

and to search for ‘‘facultative heterochromatin,’’ i.e., tissue-specific

domains present in the euchromatic chromosome arms that dis-

play modifications typical of heterochromatin. We find that the

organization and composition of Drosophila heterochromatin is

surprisingly complex. Both single-copy and repeat-rich regions of

the heterochromatin exhibit a mosaic of distinct chromatin sig-

natures. Most striking is the packaging of active genes embedded

within heterochromatin, which exhibit both ‘‘silencing’’ and

‘‘activation’’ marks, differentially distributed across different gene

features. We observe some variability of heterochromatin/eu-

chromatin border positions, as well as plasticity in the distribu-

tions and properties of facultative heterochromatin in different

cell types. These findings demonstrate that heterochromatin

contains more complex and plastic chromatin patterns than pre-

viously appreciated, which must be considered in any future

analysis of heterochromatin assembly and function.

Results

Epigenomic borders between euchromatin
and heterochromatin differ among cell types

By cytological criteria, about one-third of the D. melanogaster ge-

nome is heterochromatic, including pericentric regions, telomeres,

and all of the 4th and Y chromosomes (Gatti and Pimpinelli 1992;

Pimpinelli et al. 1995); the long arms of the X, 2nd, and 3rd

chromosomes are euchromatic. There are three types of hetero-

chromatic sequences in Release 5 of the D. melanogaster genome

(Fig. 1A): (1) sequences assembled contiguously with the chro-

mosome arms (‘‘h’’; e.g., 2Lh), (2) scaffolds not linked to the eu-

chromatic sequences but mapped to a specific chromosome arm

(‘‘Het’’; e.g., 2LHet), and (3) unmapped assemblies (arm U) (Hoskins

et al. 2007; Smith et al. 2007b). The unique components of these

sequences are included in the Affymetrix genome tiling arrays

(version 2) used in our studies. Arm U and the Y chromosome se-

quences, respectively, were excluded from analysis, as they are

predominantly repetitive and not well represented.

The borders between pericentric heterochromatin and eu-

chromatin in the chromosome arms have been defined previously

using cytogenomic methods (Fig. 1A; Hoskins et al. 2002, 2007).

Here, we refine ‘‘cytogenomic’’ borders into ‘‘epigenomic’’ borders

by mapping marks such as H3K4me2 and H3K9me2 by ChIP-array

analysis (Fig. 2). As expected, the pericentric h and Het regions are

enriched for classical ‘‘silent’’ marks (e.g., H3K9me2, H3K9me3,

and HP1a) and depleted for ‘‘active’’ marks (e.g., H3K4me3) (Fig. 1B

shows a cytological result; Fig. 2, the ChIP with microarray hy-

bridization [ChIP-chip] result; additional marks are shown for

BG3 cells in Supplemental Fig. 1). (The terms ‘‘active’’ and ‘‘silent’’

marks will be used in quotes, since these marks are not strictly

associated with activation or silencing of expression.) It is of note

that previous analysis concluded that Drosophila heterochromatin

in third instar larvae contains high levels of H3K9me2, but not

H3K9me3 (Ebert et al. 2004), which is in contrast to the high en-

richment of H3K9me3 observed in mammalian heterochromatin

Figure 1. Chromatin marks define heterochromatin and euchromatin.
(A) Diagram of the heterochromatic and euchromatic regions in the
D. melanogaster genome. For each chromosome, euchromatin is repre-
sented in black, heterochromatin in light blue or light gray, and ‘‘C’’ is the
centromere. The targets of this analysis, the assembled heterochromatic
sequences in Release 5 of the D. melanogaster genome (h and Het re-
gions), are indicated in light blue. (B) Euchromatin and heterochromatin
occupy distinct genomic compartments. Polytene chromosomes from
third instar larvae of Oregon R (wild type) (top) or interphase nuclei of S2
cells (bottom) were stained with antibodies specific for H3K4me2, which
is enriched in euchromatic regions of the genome, and for H3K9me2,
which is enriched in heterochromatin. (Left to right) Phase image (poly-
tene) or DAPI staining (S2 cells); H3K4me2 staining (red); H3K9me2
(green); merged image of the signals for H3K4me2 (red) and H3K9me2
(green).

148 Genome Research
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(Peters et al. 2003). Here, using antibodies validated by Western

and peptide blots, our analyses by ChIP-array and immunofluo-

rescence show that H3K9me2 and H3K9me3 have, in fact, similar

distributions and enrichments in the heterochromatin of Dro-

sophila cells, as well as 3rd instar larvae. Furthermore, quantitative

mass spectrometry analysis showed that H3K9me3 is only 1.7-fold

less abundant in Drosophila cells compared with human cells (see

Methods; Supplemental Fig. 2).

To define the epigenomic euchromatin–heterochromatin

borders, we determined locations of sharp H3K9me2 transitions

(Table 1), which were similar to the transitions for the other silent

marks (Supplemental Fig. 1). The borders in 2–4-h embryos were

located close to the previous cytogenomic borders for chromosome

arms 2L, 2R, and 3L (within 300 kb) (Fig. 2; Table 1; Supplemental

Fig. 1). However, no transition to H3K9me2 enrichment was ob-

served for chromosome X and arm 3R, suggesting that in early

embryos the currently available contiguous sequence for these

arms do not reach into the epigenomically defined heterochro-

matin. No border was observed for chromosome 4 because it

shows chromosome-wide H3K9me2 enrichment; note that the

assembled sequence does not extend into the pericentric region.

The close congruence between previously determined borders

and our epigenomic analysis supports the validity of these

approaches, justifying an expansion of our study to other cell

types.

We next carried out ChIP-array analysis with 2–4- and 14–

16-h embryos, third instar larvae, fly heads, and four cultured cell

lines (S2 = embryo, undifferentiated, male; BG3 = peripheral neu-

ron, differentiated, male; Kc = embryo, female; clone 8 = imaginal

disc, male). In most cases, the epigenomic borders lie within 300 kb

Figure 2. Chromatin marks define the epigenomic border between heterochromatin and euchromatin. Centromere-proximal euchromatin/hetero-
chromatin borders were delineated based on ChIP-array data. Enrichments for H3K9me2 and H3K4me3 in 2–4-h embryos are shown for the centromere-
proximal 3 Mb of chromosomes 2, 3, and X, as well as the distal portion of the 4th chromosome (1.35 Mb). The complete Het regions are shown also for
chromosomes 2, 3, and X. Log intensity ratio values (y-axis) are plotted for each mark relative to the chromosomal position (x-axis). Boxes below the bar
graph demarcate genomic regions with significant enrichment (0.1% false discovery rate [FDR]). Genes are shown in green below the ChIP-array data with
their orientations as indicated by the arrows, and the cytogenomically defined heterochromatin is marked by a blue bar. The blue arrowheads indicate the
positions of the epigenomic borders for chromosome arms 2L, 2R, and 3L. Patterns for multiple ‘‘silent’’ and ‘‘active’’ marks on chromosome arms 2R and
3L are shown in Supplemental Figure 1.

Table 1. Heterochromatin–euchromatin border positions in different cell types

Arm
Cyto-genomic

border

Epigenomic border

Larvae Fly heads
Embryos
(14–16 h)

Embryos
(2–4 h) BG3 cells S2 cells Kc cells Clone 8 cells

X 22,030,326 22,310,000 22,240,000 a a 21,930,000 21,240,000 22,360,000 a

2L 22,001,009 22,040,000 22,160,000 22,150,000 22,150,000 21,900,000 21,090,000 22,170,000 22,130,000
2R 1,285,689 1,580,000 1,580,000 1,580,000 1,580,000 1,835,000 2,500,000 1,580,000 1,580,000
3L 22,955,576 22,920,000 22,880,000 22,990,000 22,990,000 22,890,000 22,250,000 23,020,000 22,880,000
3R 378,656 a a a a a a a a

4R NA b b b b b b b b

Numbers indicate the positions of the borders in the Release 5 genome sequence (base pairs).
aThese regions are entirely euchromatic based on chromatin marks.
bThe entirety of chromosome 4 is characterized by an abundance of heterochromatic marks (see text).
NA, Not available.

Drosophi la heterochromatin
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of the cytogenomic borders (Fig. 3; Table 1; Supplemental Fig. 3).

One exception is S2 cells, in which the epigenomic borders are

shifted distally by at least 700 kb (Fig. 3; Table 1; Supplemental

Fig. 3).

What determines the euchromatin–heterochromatin border

is currently unknown. Previous studies have linked such borders

to a sharp drop in the density of repetitive elements (Yasuhara and

Wakimoto 2008). However, improved repeat identification (Smith

et al. 2007a,b) reveals that high H3K9me2 levels are not al-

ways associated with high-repeat density (Supplenmental Fig. 3).

Thus, repeat density in the arms alone does not determine the

extent of heterochromatin or the position of the epigenomic

border.

The expansion of pericentric heterochromatin in S2 cells

represents a special case, as S2 cells are known to have undergone

considerable genomic change compared with the D. melanogaster

reference genome. Thus, the expansions may result from an in-

crease in the number of repeats in the pericentric core region

(marked by H3K9me2 in all cell types), by the invasion of repetitive

elements into the extension regions themselves, or from changes

in the dosage of heterochromatin proteins. High-throughput se-

quencing shows that the total repeat content in S2 cells is higher

than in other cell types (data not shown); however, in the absence

of a complete S2 cell genome assembly, we cannot distinguish

between these and other possibilities.

We conclude that the locations of the epigenomic and cyto-

genomic borders for most chromosome arms are similar in fly tis-

sues and most cultured cells, as observed previously for a more

limited set of marks and cell types (Yasuhara and Wakimoto 2008).

However, there is a significant expansion of heterochromatic

marks in S2 cells into sequences that are euchromatic in other cell

types. The variable euchromatin–heterochromatin borders impact

how heterochromatin should be defined with respect to genomic

sequence; thus, the epigenomic borders given in Table 1 will be

used for the analyses described below.

Heterochromatin contains distinct combinatorial
chromatin patterns

Next, we determined the landscapes of multiple histone modifi-

cations and chromosomal proteins in BG3 and S2 cells (see

Methods) in pericentric heterochromatin and the 4th chromo-

some, which will be referred to hereafter as ‘‘heterochromatin’’ for

simplicity. For the examination of individual modifications and

proteins, the enrichment profiles are normalized genome-wide

(Fig. 4A; Supplemental Fig. 4A, BG3 cells; Supplemental Fig. 4B, S2

cells). As euchromatin constitutes the majority of the genome

sampled (94% in BG3 cells, 92% in S2 cells due to the different

epigenomic borders), it shows few deviations from the average

pattern, and thus no enrichments or depletions are observed. In

contrast, in both BG3 and S2 cells, the pericentric sequences as-

sayed are strongly enriched for ‘‘silent’’ marks, such as HP1a,

H3K9me2, H3K9me3, and SU(VAR)3-9, and weakly enriched for

the linker histone H1 (Fig. 4A; Supplemental Fig. 4A,B, panels

1,2). These enrichments are accompanied by strong depletion

of H3K23ac and reduced levels of many chromatin marks typi-

cally associated with transcriptionally active regions of the ge-

nome (e.g., RNA polymerase II (Pol II), H4K16ac, H3K18ac,

H3K27ac, H3K4me3, and ubiquitinated H2B). The pericentric

regions also show an overall depletion for modifications and

proteins associated with Polycomb group (PcG)-mediated silenc-

ing [e.g., H3K27me3, PC, and E(Z)]. Chromosome 4 resembles

pericentric heterochromatin in terms of average patterns, but

more detailed analysis shows some significant differences (see

below).

We utilized cluster and principal component analysis to ex-

amine what specific combinations of modifications and proteins

occur throughout heterochromatin (chromatin ‘‘states’’) (see

Methods). A total of 15 clusters were initially determined (the

number of clusters was chosen to be sufficiently high to capture

Figure 3. Heterochromatin–euchromatin borders differ among cell
types. (A) H3K9me2 log intensity ratio values (y-axis) in the proximal re-
gion of chromosome arm 3L (x-axis, sequence coordinates in base pairs)
are shown for 2–4-h embryos, 14–16-h embryos, third instar larvae, and
adult heads, and for S2, BG3, Kc, and Clone 8 cells. Boxes below the bar
graphs demarcate genomic regions with significant enrichment (0.1%
FDR). The cytogenomically defined heterochromatin is shown in blue, and
the blue arrowheads indicate the positions of the epigenomic border
between euchromatin and heterochromatin. The ‘‘Repeat Density’’ track
shows the fraction of each 10-kb window that consists of repeated DNAs,
based on RepeatMasker (Release 3.28) (http://www.repeatmasker.org).
‘‘Gene coverage’’ plots the number of genes within 50-kb windows, and
individual genes are shown below with their orientations as indicated by
the arrows. (B) The barplot summarizes the positions of the epigenomic
euchromatin–heterochromatin borders on each chromosome arm in the
eight cell types examined. On the x-axis, 0 represents the positions of the
cytogenomic borders; minus and plus numbers indicate that the epi-
genomic border was centromere-proximal or -distal to the cytogenomic
border, respectively (in Mb). No enrichments for heterochromatic marks
were observed for region 3Rh in any cell type, and for the X chromosome
in three cell types (?<–), indicating that the borders lie in more proximal
regions that are not in the current assemblies. Sequence coordinates of the
epigenomic borders are shown in Table 1.

Riddle et al.
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most of chromatin variability) (Supplemental Fig. 4A,B). To facili-

tate the interpretation of the resulting patterns, however, the

clusters were then grouped into five states (A–E) based on enrich-

ment similarity (see Fig. 4B for BG3 cells, and Supplemental Fig. 4C

for S2 cells). The majority (76%) of the

heterochromatin sequences are contained

within group A, which displays strong

enrichments for ‘‘silent’’ marks and de-

pletion for ‘‘active’’ marks, and is nearly

identical to the average heterochromatin

pattern. However, 13% of the heterochro-

matic sequences (group B) are strongly

enriched for both ‘‘silent’’ marks and

H3K36me3, a modification linked to tran-

scriptional elongation (Carrozza et al.

2005). Furthermore, group C (6% of se-

quence) is moderately enriched for some

‘‘silent’’ marks, and strongly enriched for

many ‘‘active’’ marks. Group D (2% of se-

quence) is distinguished from group C

by the lack of enrichment for several ac-

tive marks, and group E (3% of sequence)

exhibits enrichments for PcG domain

markers. Regions associated with these

chromatin states are typically inter-

spersed; an example of a 30-kb hetero-

chromatin region of chromosome 2Rh

from BG3 cells is shown in Figure 4C.

The right arm of chromosome 4 ex-

hibits characteristics of both heterochro-

matin and euchromatin (Riddle et al.

2009); it is similar to pericentric hetero-

chromatin in its enrichment for ‘‘silent’’

marks. However, unlike pericentric re-

gions, chromosome 4 does not exhibit

overall depletion of ‘‘active’’ marks and

shows increased levels of H3K36me3

(see Fig. 4A for BG3 cells; Supplemen-

tal Fig. 4B for S2 cells). Consistent

with this pattern, chromosome 4 con-

tains a higher proportion of combinato-

rial states enriched for ‘‘active’’ marks

(groups B,C, Fig. 4B; ‘‘% of chr4’’) and

a reduced proportion of states with the

most extreme heterochromatic signature

(group A, Fig. 4B; Supplemental Fig. 4B,

‘‘chromosomes’’).

Overall, this analysis reveals that

combinatorial patterns of chromatin

marks in the assayed heterochromatin are

more complex than suggested by the av-

erage patterns. As indicated by previous

work, active marks can be present within

pericentric heterochromatin (Pimpinelli

et al. 1995; Johansson et al. 2007b; Yasuhara

and Wakimoto 2008). Our analysis sig-

nificantly extends the number of marks

used in prior work and reveals the vari-

ability observed in the combinations

of ‘‘silent’’ marks such as H3K9m2,

H3K9me3, and HP1a with many active

marks. These combinatorial patterns are

likely to be functionally relevant, since they are closely co-

ordinated with gene structure (see Fig. 4C) and transcriptional

activity. Thus, we next analyzed chromatin states associated with

genes.

Figure 4. A number of specialized chromatin states characterize the centric heterochromatin and
chromosome 4 in BG3 cells. (A) Average levels of enrichment of individual chromatin marks and proteins
(panels 1 and 2; green, ‘‘active’’ marks; red, ‘‘silent’’ marks; black, undefined) are shown for euchro-
matin, pericentric heterochromatin, and chromosome 4. The colors show enrichment (red) or depletion
(blue) on a log2 scale after genome-wide normalization (see Methods). There is less depletion of ‘‘active’’
marks on chromosome 4 (e.g., H3K4me2 and H3K27ac) and higher enrichment for H3K36me3,
a modification associated with transcript elongation, compared with pericentric heterochromatin. Panel
3 gives the average enrichment for repeats and the RNA-seq signal (Z-score, relative to the array av-
erage). The fraction (represented by the gray scale) of the three genome domains associated with
genes/gene elements is shown in panel 4 (gene, entire gene; TSS-prox., 6500 bp of the TSS annotated
in Flybase; 3’-prox., 6500 bp of the 3’end; intron, within annotated introns). The far-right column
indicates the percent of the tiled genome sequence on the oligonucleotide array in each group. See
Supplemental Figure 4B for the same analysis of the enrichment patterns in S2 cells. (B) Prevalent
combinatorial patterns of chromatin marks within the pericentric heterochromatin (‘‘heterochroma-
tin’’) and chromosome 4. Sequences displaying specific combinatorial patterns of ‘‘chromatin marks’’
(panel 1) were first identified by a 15-state K-means PCA cluster analysis (presented in Supplemental Fig.
4A), then combined into five similarity groups (A–E) (see Methods). Other properties, shown in the
remaining panels, were then assessed relative to these groups. Each column (panels 1 and 2) indicates
average enrichment levels for a given histone modification or protein within the five groups (A–E). The
color-coding for each group reflects the predominant patterns of ‘‘active’’ and ‘‘silent’’ marks (see text).
Panels 3, 4, and 5 are as described above. The ‘‘chromosomes’’ panel shows the fold over-/under-
representation of each group (log2 scale) relative to the amount of heterochromatin in each chromo-
some arm (h plus Het regions). The next two columns give the percentage of the group found in
chromosome 4 (‘‘% in chr4’’), and the percentage of chromosome 4 that is accounted for by each group
(‘‘% of chr4’’). ‘‘% in extensions’’ reports the percentage of each group present in the heterochromatin
extensions (Fig. 3B; Table 1). See Supplemental Figure 4, B and C for the same analysis of the chromatin
states in S2 cells. (C ) An example of the interspersion of different chromatin states in the pericentric
region of chromosome 2R. The region shows two transcribed genes (p120ctn and CG17486 ) within
a heterochromatic context. The enrichment profiles of four marks are shown in black (y-axis: log
intensity ratio values, x-axis: position on the chromosome), and the groups are illustrated as colored
bars on the top. Genes are indicated in green with orientations indicated by the arrows. The upstream
promoter regions of each gene are associated with the group D pattern (light-green; low H3K9me2
and me3, depletion of H4 and H1, and moderate HP1a enrichment). The regions immediately
downstream from TSSs are associated with group C (dark green) and show enrichment in H3K4me2/
3, H2B-ubi, along with low levels of HP1a and even lower levels of H3K9me2/3. The sequences within
the body of the genes fall into group B ( yellow), with strong enrichment for H3K36me3 along with
HP1a and H3K9me2/3. The intergenic regions are associated with the group A pattern (red), show-
ing enrichment only for H3K9me2/3 and HP1a. Group E describes a small group of loci under PC
regulation.

Drosophi la heterochromatin

Genome Research 151
www.genome.org



Distinct combinations of marks associated with ‘‘silent’’
and ‘‘active’’ genes in heterochromatin

There are hundreds of protein-coding genes within the pericentric

heterochromatin (Smith et al. 2007b), which function in a chro-

matin environment historically known for silencing euchromatin-

derived reporter genes (Cryderman et al. 1998; Konev et al. 2003).

We examined the chromatin patterns across these genes to gain

a better understanding of their regulation. We defined hetero-

chromatic genes by using the cell-type-specific epigenomic borders

described above for pericentric heterochromatin, including chro-

mosome 4 (Figs. 2, 3; Table 1), and excluding 46 genes in chro-

mosome 3Rh now reassigned to euchromatin.

Active heterochromatic genes display H3K9me2, H3K9me3, and HP1a

We first examined euchromatic, pericentric, and chromosome

4–linked genes in BG3 cells, separating transcriptionally active and

silent genes on the basis of RNA-seq data (Fig 5B,C, respectively; see

Supplemental Fig. 5 for S2 cells). Enrichment profiles for all non-

overlapping genes were analyzed for five gene segments of each

gene: 500-bp regions upstream and downstream from the 5’ and 3’

ends, as well as the remaining internal gene bodies (Fig. 5A). Sur-

prisingly, over half of all heterochromatic genes are expressed in

BG3 and S2 cells (51% and 54%, respectively), a percentage similar

to that observed for euchromatic genes (51% and 52%, respec-

tively) (Fig. 5C; Supplemental Fig. 5B). As expected, enrichment

of HP1a, H3K9me2, and H3K9me3 are seen at transcriptionally

silent heterochromatic genes. However, what is striking is that

transcriptionally expressed heterochromatic genes, on average,

are also enriched for these marks, in addition to the expected

‘‘active’’’marks (Fig. 5, cf. B and C). The average levels of HP1a,

H3K9me2, and H3K9me3 are, in fact, comparable to those of silent

heterochromatic genes, and the average levels of ‘‘active’’ marks are

also similar to those of active euchromatic genes (Fig. 5C).

Figure 5. Genes within heterochromatin have specialized properties. (A) The observed chromatin state of each annotated gene was summarized by
calculating average enrichment within the 500-bp regions flanking the 5’ and 3’ ends, the first and last 500 bp within the gene, and the remaining gene
body. Each region is represented by the small rectangles (various shades of red in the diagram). Only nonoverlapping genes are considered in this analysis.
Levels of modifications and proteins in each gene segment are indicated by shades of red (enrichment) and blue (depletion) in B–D. (B) Average patterns of
enrichment for chromatin marks and proteins (log2 scale) for transcriptionally silent genes in BG3 cells. The second panel shows average G/C nucleotide
content, repeat content, RNA-seq level, and gene length for each group of genes. The number of genes within each group is indicated in the last column.
Transcriptionally inactive genes within heterochromatin and chromosome 4 are highly enriched for H3K9me2/me3, HP1a, and SU(VAR)3-9 over all gene
segments, and depleted for most active marks, in comparison to inactive euchromatic genes. (C ) Average patterns of chromatin mark enrichment for
transcriptionally active genes in BG3 cells. Genes transcribed within the heterochromatic regions show enrichment for ‘‘active’’ marks at comparable levels to
expressed euchromatic genes (e.g., H3K36me3, Pol II, H3K4me2/3, and CHRO (a chromodomain protein associated with interband regions on polytene
chromosomes; Gortchakov et al. 2005; Rath et al. 2006). However, enrichment levels were noticeably reduced for some active marks (e.g., H4K16ac,
H3K18ac, H3K23ac, and H3K79me1/2) compared with active euchromatic genes. Most importantly, the heterochromatic and 4th chromosome genes also
contain high levels of HP1a, H3K9me2, and H3K9me3, which are not observed at active euchromatic genes. Expressed heterochromatic genes are, on
average, shorter, and contain fewer intronic repeats compared with silent heterochromatic genes (cf. ‘‘length’’ and ‘‘repeats’’ in B and C). (D) Combinatorial
chromatin patterns exhibited by heterochromatic genes. Genes were clustered according to their enrichment summary (A) across multiple histone modi-
fications and chromosomal proteins (columns in panel 1; see Methods). Each row shows the average enrichment pattern of the genes within one of the 10
determined clusters. Cluster numbers are color-coded to indicate chromatin states with similar predominant patterns of ‘‘active’’ and ‘‘silent’’ marks. The last
three panels show fold enrichment/depletion of each chromosome within the clusters (log2 scale), percentage of cluster regions in chromosome 4 (% in chr4),
and percentage of each cluster present in the heterochromatic extensions (‘‘% in ext.’’). (E ) TSS enrichment patterns at actively transcribed heterochromatic
and 4th chromosome genes. The plots show average enrichment profiles for HP1a (blue), H3K9me2 (orange), H3K9me3 (green), and Pol II (red) around TSSs
in BG3 cells (left, clusters 7,8 in D and corresponding clusters in S2 cells (right, Supplemental Fig. 5C, clusters 7,8). Genes with divergent promoters (of <2 kb
separation) and overlapping genes were excluded, resulting in analysis of a total of 25 genes for BG3 and 32 genes for S2 cells. Average enrichment levels (log2

scale) are plotted on the y-axis relative to the TSS (0) on the x-axis (bp). The results show significant depletion of silencing marks at the TSS.
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Interestingly, we also find HP1c associated with expressed

heterochromatic genes. HP1c is one of four D. melanogaster paral-

ogs of HP1a. It interacts with the zinc-finger proteins WOC and

ROW, and from immunofluoresence localization is considered to

be absent from heterochromatin (Smothers and Henikoff 2001;

Font-Burgada et al. 2008; Abel et al. 2009). However, we observe

HP1c enrichment in the 500 bp immediately upstream of the

transcription start sites (TSSs) of active genes in both euchromatin

and heterochromatin. This restricted localization, combined with

the presence of many more active genes in euchromatin compared

with pericentric heterochromatin, could explain the discrepancy

between cytological and ChIP localization results. While Western

blot analysis indicates our antibody is specific to HP1c (Supple-

mental Fig. 17), a small amount of signal is detected with this

antibody in chromatin prepared from homozygous mutant larvae

(<4% of wild-type binding sites; Supplemental Fig. 2E,F). This

signal might reflect cross-reactivity to a nontarget protein, or it

might reflect the minimal levels of HP1c remaining from the ma-

ternally loaded protein. Overall, our data for HP1c suggest a gen-

eral role in gene regulation, which is consistent with recent work

by Kwon and colleagues showing an interaction between HP1c,

FACT, and Pol II (Kwon et al. 2010).

Chromatin states of heterochromatic genes reflect chromosomal location
as well as expression status

In an attempt to gain further insight into the chromatin organi-

zation of heterochromatin, we examined chromatin states at non-

overlapping heterochromatic genes to determine what combina-

tions of modifications and proteins occur specifically at genes

(BG3 cells, Fig. 5D; S2 cells, Supplemental Fig. 5C). The genes were

grouped into 10 clusters (this number of clusters was chosen based

on the ability to interpret the resulting patterns). More than half of

the 10 clusters contain transcriptionally silent genes (clusters 1–6),

showing the expected enrichment of ‘‘silent’’ marks across these

genes. However, one cluster shows lower levels of enrichment for

‘‘silent’’ marks (BG3 and S2, clusters 5), and another almost lacks

such marks (S2, cluster 6, Supplemental Fig. 5C). The distributions

of these genes in the ‘‘silent’’ gene clusters are not random on the

chromosomes (Fig. 5D, panel 4; Supplemental Fig. 5C, panel 4). For

example, BG3 clusters 1 and 2 are strongly enriched on chromo-

some 3RHet and depleted from the X chromosome, whereas

clusters 4 and 5 are strongly enriched on the X chromosome. The

four genes in BG3 cluster 6, found almost exclusively on chro-

mosome 4, display high levels of PC, H3K27me3, and H3K4me2

surrounding the TSSs; in fact, three of these genes were previously

identified as Polycomb targets (toy, zfh2, and fd102C) (Schwartz

et al. 2006). Polycomb target genes are very rare in pericentric

heterochromatin, but occur at a higher frequency on chromosome

4 in specific cell types. Interestingly, this specific combinatorial

chromatin pattern is mostly absent from S2 cells, except for the sv

gene on chromosome 4, which was excluded from analysis due to

overlap with another gene.

BG3 and S2 clusters 7–10 (Fig. 5D; Supplemental Fig. 5C)

predominantly contain expressed genes based on RNA-seq signal,

Pol II binding, and enrichment for the elongation-associated

modification H3K36me3 within gene bodies. As observed for the

overall average of transcribed heterochromatic genes, these clus-

ters contain chromatin marks typical for active euchromatic genes,

as well as HP1a, H3K9me2, and H3K9me3. Genes in clusters 7 and

8 display the most extreme mixture of marks that are typically

considered to be ‘‘active’’ and ‘‘silent,’’ although the enrichments

of these marks across the genes vary; at their 59 ends, ‘‘active’’

marks are enriched where the levels of ‘‘silent’’ marks are low, and

over the gene bodies and 39 ends, both ‘‘silent’’ and ‘‘active’’ marks

are enriched. Strikingly, the levels of these ‘‘silent’’ marks over the

gene bodies and 39 ends are at levels comparable to the silent gene

clusters, yet these genes display moderate levels of expression. It is

of note that there is a local depletion for ‘‘silent’’ marks near the

promoters of these genes (Fig. 5E), as has been described previously

for some pericentric genes (Yasuhara and Wakimoto 2008). De-

pletion of methylated H3K9 in this region is not due solely to

nucleosome loss, since levels of active marks such as H3K4me3 are

high (Fig. 5D; Supplemental Fig. 5C). Furthermore, this region of

depletion does not correspond to the ‘‘nucleosome free region’’

(NFR) observed at active genes in many organisms, which lies

upstream of the TSS (Yuan et al. 2005; Mavrich et al. 2008). It is also

worth noting that HP1a can be enriched in regions where

H3K9me2 and H3K9me3 levels are low or depleted (e.g., clusters

7 and 8, upstream of and downstream from TSSs), suggesting that

HP1a localization is not strictly H3K9me2/3-dependent at these

sites.

Active gene clusters 9 and 10 (Fig. 5D; Supplemental Fig. 5C)

are distinguished by much lower enrichments for silent marks

across most gene segments, and much stronger enrichments for

‘‘active’’ marks. BG3 and S2 clusters 9 display the highest levels of

Pol II, H3K4me3, and RNA-seq signal. Despite inclusion of the

most highly expressed heterochromatic genes, cluster 9 also ex-

hibits HP1a enrichment, especially in the 500 bp upstream of the

TSSs, but low H3K9 methylation in all gene segments. Genes in

BG3 and S2 clusters 10 are distinguished by the lowest levels of

‘‘silent’’ marks among the active heterochromatic genes, and dis-

play high enrichments for ‘‘active’’ marks, yet, on average, are

expressed at lower levels. These clusters are preferentially located

in X chromosome heterochromatin (Fig. 5D, panel 4), and display

high enrichment for H4K16ac, a mark associated with dosage-

compensating X-linked genes (Gelbart et al. 2009).

Active genes on chromosome 4 are similar to pericentric

genes in average chromatin patterns (Fig. 5C; Supplemental Fig.

5B) and are present in all active gene clusters in the chromatin state

analysis (Fig. 5D; Supplemental Fig. 5C, see ‘‘% in chr4’’). The high

level of HP1a over active chromosome 4 genes has been previously

observed (Johansson et al. 2007b). However, comparison of the

levels of different marks across gene bodies revealed significantly

higher average enrichments for H3K9me3 across active 4th chro-

mosome gene bodies compared with active pericentric genes, at a

level that exceeds that of 4th chromosome intergenic regions (Fig.

6A,B). The patterns of HP1a and H3K9me3, in fact, closely follow

the profile of the elongation-linked modification H3K36me3

across chromosome 4 genes (Fig. 6A,B; correlation analysis in Sup-

plemental Fig. 6).

We conclude that both active and silent heterochromatic

genes display unusual combinatorial patterns of chromatin marks,

which differ from euchromatic genes in levels of enrichment/

depletion and in distributions across gene segments. Overall,

higher expression levels are correlated with lower enrichments

for H3K9me2 across all gene segments, but are not correlated with

HP1a levels (compare silent and expressed genes in Fig. 5B,C, and

all heterochromatic to heterochromatic expressed genes in Sup-

plemental Fig. 7A,B). Perhaps the most atypical feature of active

heterochromatic genes is the presence of modifications and pro-

teins normally associated with gene silencing and the depletion of

these marks immediately downstream from TSSs. This is consistent

with previously observed reductions in HP1a levels for a subset of
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heterochromatic genes (de Wit et al 2007). Given the presence of

‘‘silent’’ marks over the gene bodies, the dramatic depletion of

these marks specifically at TSSs of active genes may be critical for

gene expression.

Genes in S2 cell heterochromatic extensions are not silenced

The S2 ‘‘extensions’’ provide a unique region of study, where the

same sets of genes lie in a heterochromatic or a euchromatic en-

vironment in different cell types. Comparison of the S2 ‘‘exten-

sions’’ (2.8 Mb) to the relevant regions in BG3 cells reveals a de-

crease in the average levels of most ‘‘active’’ chromatin marks, in

addition to the average increase in ‘‘silent’’ marks (Supplemental

Fig. 8, green and orange, respectively). However, 98% of the genes

in the S2 extension regions that are expressed in BG3 cells are also

expressed in S2 cells. Only five nonoverlapping S2 genes in the

extensions show significant changes in expression (clusters 1–3,

Supplemental Fig. 9C); of these, only one gene is silenced in the S2

extension (cluster 1), and the other four actually have higher levels

of expression in S2 cells compared with BG3 cells. Transcription-

ally silent genes in S2 extensions that are also silent in BG3 cells

show higher enrichments for ‘‘silent’’ marks on average (Supple-

mental Fig. 9A, panel 1), although they are lower than those in the

cytogenomically defined heterochromatin (Supplemental Fig. 9A,

panel 2). In contrast, intergenic regions in the extensions display

similar levels of ‘‘silent’’ marks to cytogenomic heterochromatin

(Fig. 6C,D, dashed lines).

We conclude that the accumulation of ‘‘silent’’ heterochro-

matic marks within the S2 extensions is most prominent within

intergenic regions. Surprisingly, gene expression is virtually un-

changed between BG3 and S2 cells in these ‘‘extension’’ regions,

despite acquisition of moderate levels of heterochromatic marks

within many of the genes. These observations suggest that genic

regions within the S2 extensions, especially expressed genes, are

more resistant to establishment or maintenance of heterochro-

matic patterns than are intergenic regions (see Discussion).

Chromatin patterns in intergenic regions are complex

We conservatively defined intergenic regions as sequences >2 kb

away from the nearest annotated gene, which comprise 30% of

the pericentric heterochromatin and 7.4% of chromosome 4 se-

quences on the tiling array. As expected, intergenic regions in

heterochromatin are, on average, enriched for HP1a and

H3K9me2/3 and depleted for most ‘‘active’’ marks in both BG3 and

S2 cells (Supplemental Fig. 10A,C). Combinatorial patterns are

similar for all S2 and most BG3 (86%) intergenic regions (Supple-

mental Fig. 10B,D; BG3 clusters 3, 4, 6, and 8–10, S2 clusters 1–10).

However, 14% of the BG3 intergenic regions show chromatin

patterns typical of active transcription (Supplemental Fig. 10B;

clusters 1, 2, and 7), suggesting the presence of transcribed repeats

or currently unannotated genes. Interestingly, intergenic regions

have lower levels of ‘‘silent’’ marks and higher enrichments for

‘‘active’’ marks in chromosome 4, compared with pericentric het-

erochromatin, even though repeat densities are comparable (Fig.

6A,B; Supplemental Figs. 3, 10A,C). Furthermore, within chro-

mosome 4, intergenic regions have a higher density of repeats than

active genes, but contain less HP1a and H3K9me2/3 (Fig. 6B).

These findings provide further evidence for a link between ‘‘silent’’

mark enrichments and gene activity in some heterochromatic re-

gions (see above and Discussion).

Transposable elements display complex patterns
of epigenomic marks

One of the major distinctions between heterochromatin and eu-

chromatin is the density of repeated sequences. At least 80% of the

assembled heterochromatic sequences are repeats, predominantly

organized as scrambled clusters of transposable elements (Smith

et al. 2007b), whereas only 6% of the euchromatin is classified as

repetitive (Kaminker et al. 2002). The 4th chromosome domain

analyzed here contains ;30% repetitious DNA (Leung et al. 2010).

Previous analyses have found that H3K9me2 is highly enriched

at both satellite and rDNA sequences in a SU(VAR)3-9 HMTase-

dependent manner (Peng and Karpen 2007).

Many repeat types, in particular tandem repeats, cannot be

adequately assessed using tiling arrays due to cross-hybridization

and signal intensity issues. We therefore focused on analyzing the

chromatin patterns associated with unique transposable element

sequences (intact remnants and scrambled clusters; see Methods)

Figure 6. Chromatin patterns vary for expressed genes and intergenic
domains located in different heterochromatin regions. The plots show
log2 enrichment (y-axis) for H3K36me3 (red), H3K9me2 (light blue),
H3K9me3 (dark blue), and HP1a (green) relative to a scaled metagene and
2-kb flanking regions (x-axis). The dashed horizontal lines show average
levels of enrichment within intergenic regions for each modification/
protein, using the same color key. (A) Average enrichment profiles for
expressed pericentric genes in BG3 cells indicate that the levels of HP1a
and H3K9me2/3 are higher in intergenic regions compared with gene
bodies, whereas H3K36me3 levels are higher over gene bodies than in
intergenic regions. Pericentric genes are located in the regions that are
centromere-proximal to the BG3 epigenomic borders, including the
cytogenomic heterochromatin plus the BG3 extensions (n = 235). (B)
Average enrichment profiles for expressed chromosome 4 genes in
BG3 cells show significantly higher levels of HP1a, H3K9me2/3, and
H3K36me3 enrichment within gene bodies compared with intergenic re-
gion averages (n = 58). (C ) Average enrichment profiles genes in S2 cells
located (C ) within the S2-specific extension regions (between the S2 and
BG3 epigenomic borders). Profiles for 60 such genes that are expressed in
both S2 and BG3 cells are shown. (D) Average enrichment profiles in S2 cells
for expressed genes located within the pericentric heterochromatin defined
by the cytogenomic borders (excluding 3Rh; n = 117). In S2 cells, the ex-
tensions and cytogenomic heterochromatin have comparable levels of
enrichment for all four marks within the intergenic regions. However, at
active genes, the levels of HP1a and H3K9me2/3 are lower in the extensions
than in the cytogenomic regions.
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in heterochromatin and euchromatin (Fig. 7A; Supplemental Figs.

11, 12). Most TEs that were examined in heterochromatin show

strong enrichment in HP1a and H3K9me2/3, and moderate en-

richment for H1 (Fig. 7A, panel 2; Supplemental Figs. 11, 12),

consistent with the HP1a association reported by Dam-ID for

TEs in repeat-rich regions (de Wit et al 2007). However, some

TEs in heterochromatin show weak or moderate enrichment for

H3K36me3, Chromator (CHRO; a chromo-domain protein), and

H3K4me3. Thus, although most TEs in heterochromatin are pre-

dominantly associated with silent marks, a few show complex

patterns that include active marks.

In contrast, TEs within euchromatic regions are associated

with at least three types of chromatin signatures: (1) enriched for

‘‘silent’’ marks (;30% of the repeat types; Fig. 7A, marked by red

side-bars on the left), some of which are at the same level as those

in heterochromatin (Fig. 7B), (2) enriched for both ‘‘silent’’ and

‘‘active’’ marks (Fig. 7C, orange side-bars), and (3) enriched for

‘‘active’’ chromatin marks only (Fig. 7D). Remaining repeats show

less HP1a, but no significant enrichment of Pol II (Fig. 7A).

We conclude that the chromatin state of TEs depends on the

genomic context, consistent with the previous study that found

a TE’s likelihood of HP1a association depends on the density of

repeats in the region (de Wit et al 2007). Our results suggest that

TEs inserted into euchromatic regions avoid chromatin-mediated

silencing, in line with observations that Drosophila cells contain

many developmentally regulated TE transcripts (Flavell et al. 1980;

Lankenau et al. 1994). It is possible that

TE remnants are sufficiently evolved so

that they are no longer recognized as

TEs, and/or that single TEs in a euchro-

matic environment are unable to main-

tain stable heterochromatin, as suggested

by studies of the 1360 TE (Haynes et al.

2006). As such, the higher overall density

of TEs and TE fragments in heterochro-

matic regions compared with euchroma-

tin may ensure uniform silencing. Fu-

ture studies focused on providing a more

complete catalog of the chromatin states

associated with both TEs and other

highly repeated sequences should reveal

whether these hallmarks of heterochro-

matin are universally enriched for ‘‘si-

lent’’ marks, or display the kind of

complex enrichment patterns that we

observed for heterochromatic genes.

Furthermore, limitations of the micro-

array platform did not allow us to take

into account TE instances with a high

degree of sequence identity, and there-

fore, further investigations are needed

to extend the analysis to a complete set

of TEs.

Euchromatin contains domains
enriched for H3K9me2

Since the locations of the epigenomic

euchromatin–heterochromatin borders

differ among cell types, we asked whether

there are other cell-type differences in the

rest of the genome. Whole-genome clas-

sification shows that there are clusters of

H3K9me2 enrichment in the euchroma-

tin; some of these domains are present in

all of the cell types examined, whereas

others are cell-type specific (Supple-

mental Fig. 13). Focused segmentation

analysis identified common H3K9me2

enrichment in euchromatic regions of all

examined animal and tissue culture cell

types except for Kc cells (Fig. 8A, cluster

1). There are also domains of H3K9me2

enrichment that are unique to adult

heads (cluster 6), BG3 cells (cluster 5), S2

Figure 7. Repetitive elements integrated within heterochromatic regions show similar epigenomic
signatures. (A) Average enrichments (red) and depletions (blue) for particular chromatin marks (col-
umns) in BG3 cells are shown for specific repetitive element types (rows) in euchromatic (left) and
heterochromatic (right) regions (extended version with repeat names is shown in Supplemental Fig. 11
for BG3 cells, and Supplemental Fig. 12 for S2 cells). The color spectrum for the enrichment level (log2

scale) is the same as in Figure 5. The fraction of the heterochromatic repeats found in the BG3 extension
regions is reported in the grayscale column on the right. The heterochromatic instances of all repeat
types are marked by strong enrichment in HP1a, SU(VAR)3-9, and H3K9me2/3. In contrast, euchro-
matic repeat instances are associated with different types of chromatin patterns that vary in the levels of
‘‘active’’ and ‘‘silent’’ marks. Elements with similar patterns are marked by colored vertical bars on the
left; red, highly enriched for ‘‘silent’’ marks, depleted for ‘‘active’’ marks; green, low enrichment or
depletion for ‘‘silent’’ marks, highly enriched for ‘‘active’’ marks; orange, mixed enrichments for both
‘‘active’’ and ‘‘silent’’ marks. (B) Full-scale view of the top-most portion of the plot, showing repeat types
for which euchromatic and heterochromatic instances show similar average chromatin patterns with
predominant enrichments for ‘‘silent’’ marks. The RepBase repeat type names are shown on the left, with
the number of instances found within each region to the right. In contrast, repeat types with mixed (C )
and ‘‘active’’ (D) chromatin patterns in euchromatic regions (left) show predominantly ‘‘silent’’ mark
enrichments when located in heterochromatin (right).
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cells (cluster 3), and domains shared between S2 and BG3 cells

(cluster 2) or S2 and Kc cells (cluster 4).

There are significant differences between these H3K9me2

domains in their sizes, chromosome distributions, gene ac-

tivities, and patterns of chromatin marks (Fig. 8; Table 2). The 14

H3K9me2 domains that are found in all but Kc cells (cluster 1)

contain 20 functionally diverse genes, which are small and

generally specific to the X chromosome, with only two of 14

such regions found on autosomes. These genes are transcrip-

tionally inactive (only 10% are expressed) and show enrichment

for all other heterochromatic marks [H3K9me3, SU(VAR)3–9,

and HP1a] in both BG3 and S2 cells (Fig. 8B). With the exception

of two domains (covering SteXh and the skpC/skpD/skpE gene

clusters), each chromosome X-specific domain includes a single,

multi-exonic gene, with H3K9me2 enrichment strongly biased to-

ward the 39 end of the gene (Fig. 8C; Supplemental Fig. 14). The

absence of these ‘‘common’’ H3K9me2 domains in Kc cells is par-

ticularly interesting, given that the domains are enriched on the

X chromosome, and Kc cells alone are derived from female flies (see

Discussion).

Although they are enriched in H3K9me2 in S2 cells, the

majority of genes in clusters 3 and 4 are actively transcribed in

this cell type (59% S2 specific and 73% S2+Kc cells, respectively)

and comprise 7.7% of the euchromatic sequence (Table 2).

Similar to active heterochromatic genes, these genes are en-

riched for activation-associated marks (H3K4me3, H3K36me3,

and H2B-ubi), as well as multiple ‘‘silent’’ marks (Fig. 8B,D, Lrrk

gene). H3K9me2 enrichment is also biased toward the middle

and 39 end of these genes, with a decline at the TSSs, similar to

active heterochromatic genes (Supplemental Fig. 7). These

mixed patterns are specific to the S2 and Kc cells; the same set of

genes is also expressed in BG3 cells with the same pattern of

‘‘active’’ marks as in S2 cells, but without the heterochromatic

marks (Fig. 8B, middle panel). In addition, these genes are

strongly biased toward divergent promoter orientation (Table 2,

43% for S2-specific P-value = 1.9 3 10�4, 48% for S2 + Kc-specific

P-value = 8.2 3 10�5).

Compared with other cell-type-specific H3K9me2 domains,

the 180 domains specific to BG3 cells in cluster 5 account for

a much higher fraction of the euchromatic arms (12%), are no-

tably larger (78 kb mean size), and have a lower gene density

(Table 2). A total of 90% of genes within these domains are

transcriptionally silent in BG3 cells and are also silent in embryo

and S2 cells, despite the fact that they lack the heterochromatin-

like patterns in those cell types. These genes show a strong

preference for tandem orientation (18% divergent promoters).

This group shows significant over-rep-

resentation for genes associated with

sensory perception functions (P-value =

6 3 10�19) (Table 2). Further analysis of

these large BG3-specific domains reveals

that all clusters are depleted for marks

associated with transcription (e.g., Pol II

and H3K4me3) and are enriched for

H3K9me2, but differ in the levels of

enrichment for HP1a, SU(VAR)3-9, and

H3K9me3 (Supplemental Fig. 15).

Since both S2 and BG3 cells are

known to have abnormal chromosome

counts, and are most likely segmental

aneuploids, we looked at the possible

correlation between the occurrence of

novel H3K9me2-enriched domains and

copy number, but no correlation was

found (D MacAlpine and P Kharchenko,

data not shown). We therefore examined

whether these domains are caused by

genomic rearrangements. Four different

heterochromatin-like domains occurring

in BG3 cells were analyzed using PCR and

Southern analysis (Supplemental Fig. 16).

While one domain was associated with

a rearrangement in BG3 cells (Supple-

mental Fig. 16A), this H3K9me2 domain

is present in both S2 and BG3 cells, and

no rearrangement was observed in S2

cells. Thus, it is unlikely that genomic

alterations are responsible for the bulk of

the ‘‘heterochromatin-like’’ domains in

BG3 cells.

We conclude that there are extensive

H3K9me2 domains present in euchro-

matic sequences, and that their sizes and

impact on gene expression differ among

cell types (Table 2). These domains do notFigure 8. (Legend on next page)
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appear to arise from genomic rearrangements that juxtapose eu-

chromatic with pericentric regions.

Discussion
Our genome-wide analysis of histone modifications and chromo-

somal proteins is consistent with and extends previous findings of

enrichment for marks known to define heterochromatin, such as

HP1a and H3K9me2/3, in pericentric regions and the 4th chro-

mosome (Gatti and Pimpinelli 1992; Yasuhara and Wakimoto

2008; Eissenberg and Reuter 2009; Riddle et al. 2009). Our new

data provide a high-resolution map of the epigenomic borders

between heterochromatin and euchromatin, revealing intrigu-

ing differences among cell types. Our findings also illuminate

significant variations in marks classically associated with tran-

scriptional activity and silencing, revealing unexpected complex-

ity in heterochromatic chromatin patterns (summarized in Fig. 9).

We also show that repetitive elements, thought to be uniform

targets of heterochromatin formation, consistently carry silencing

marks within the heterochromatic regions, but vary within euchro-

matin. Finally, we identify novel, cell-type-specific regions within

euchromatic sequences that contain heterochromatin marks. These

findings raise important questions regarding how different chro-

matin states are established and maintained within heterochro-

matic domains, and about their impact on genomic functions.

Epigenomic patterns demonstrate variable positioning
of heterochromatin–euchromatin borders in different
cell types.

Overall, there is a gratifying congruence between the heterochro-

matin–euchromatin borders determined previously by cytoge-

nomic techniques (Hoskins et al. 2002,

2007) and the epigenomic borders de-

termined here (Fig. 2). Future analyses

should utilize the more relevant epi-

genomic borders to define the hetero-

chromatin domains for each cell type

studied. As a border was not identified for

arm 3R, we now consider the available 3Rh

sequences to be euchromatic. Supporting

this reassignment is the finding that this

region has a lower repeat content and

higher gene density compared with other

pericentric regions (Smith et al. 2007b; see

also Supplemental Fig. 3). Identifying the

border in 3R will require assembling se-

quences and analyzing chromatin pat-

terns in the gap between 3Rh and 3RHet.

In S2 cells, we observed larger ex-

tensions of the pericentric heterochro-

matin compared with other cell types,

marked by high enrichment for ‘‘silent’’

marks, mostly restricted to intergenic re-

gions (summarized in Fig. 9). Despite ac-

quiring moderate levels of ‘‘silent’’ marks,

genes within the extensions retain chro-

matin marks typically associated with

transcription, and expression levels are

surprisingly similar between BG3 and

S2 cells, with only one gene becoming

Table 2. Properties of euchromatin H3K9me2 domains in different cell types

No. of
H3K9me2
domains

Mean
size (kb)

Total size
(Mb)

Percent of
euchromatin

No. of
genesa

Gene
density

(no./Mb)

Percent of
divergent

promotersb

Percent of
genes

expressedc Types of genesd

Common 14 28 0.4 0.3 20 50 5 10
S2 and BG3 82 41 3.2 2.8 346 108 30 12
BG3 only 180 78 14 12.1 908 64 18e 10 Sensory perception
S2 only 267 14 5 5.8 1095 211 43e 59
Kc and S2 96 17 1.6 1.9 331 203 48e 73
Head only 111 29 3.2 2.8 585 183 30 nd

aTotal number of genes in the domains.
bPercent of genes in domains associated with divergent promoters.
cPercent of genes in the domains that are expressed, based on RNA-seq data.
dEnrichments for types of genes based on GO classifications.
eStatistically significant deviation from random expectation (P < 0.001).

Figure 8. BG3 and S2 cells show novel domains of H3K9me2 enrichment within euchromatic re-
gions. (A) Regions of H3K9me2 enrichment across different cell types. The euchromatic portion of the
genome (excluding regions defined as heterochromatin by the border analysis; see Fig. 3A) was sub-
divided into sets of regions that exhibit a common pattern of H3K9me2 enrichment across different cell
types. Each box shows the fraction (grayscale) of the regions belonging to the set (row) that are enriched
for H3K9me2 in a particular cell type (column). The histogram on the left shows the fraction of the
euchromatic genome in each row (1–7), with exact %s to the left. Regions in row 7 lack H3K9me2 across
all examined cell types, whereas row 1 groups regions enriched for H3K9me2 in all examined cell types
(except for Kc cells). Rows 2–6 identify other euchromatic regions that display H3K9me2 enrichment in
only a subset of cell types (e.g., only BG3 cells (row 5) or S2 cells (row 3), or both (row 2). Panel 2 shows
the fraction of sequence within each group associated with different parts of annotated genes (gene,
entire gene; TSS-prox. [6500 bp of the TSS annotated in Flybase], 3’-prox. [6500 bp of the 3’end
annotated in Flybase], and intron are a subset of the sequences included in the ‘‘gene’’ column). The
third panel shows over-/under-representation of each cluster on different chromosome arms, which was
calculated by comparing the fraction of sequence of a cluster on a specific chromosome with the fraction
of sequence the chromosome contributed to the array. (B) Average enrichment of chromatin marks in
the cell-type-specific H3K9me2 enrichment domains. Each row shows average enrichment levels (log2

scale) within regions corresponding to the main patterns seen in A. The specific regions were identified
using HMM segmentation (see Methods). Panel 1 shows the average enrichment patterns in S2 cells,
panel 2 shows the average enrichment patterns for the same genomic regions in BG3 cells, and panel 3
indicates the fraction of the particular H3K9me2 enrichment domain associated with gene features.
While ‘‘common,’’ BG3 and BG3+S2 domains (rows 1–3) are enriched only for heterochromatic marks,
the S2-specific and S2+Kc-specific domains (rows 4,5) include actively transcribed genes that in S2 cells
are enriched for heterochromatic marks along with marks normally associated with transcription, similar
to ‘‘mixed’’ state genes found in heterochromatin (Fig. 4). (C ) Browser shot showing an example of
a gene from a ‘‘common’’ (row 1) domain, located in the euchromatic arm of chromosome X, and
enriched for H3K9me2 across all examined cell types except Kc cells. x-axis, chromosomal position in
base pairs (centromere to the left). Genes are indicated in green with their orientations as indicated by
the arrows. y-axis, H3K9me2 enrichment levels (log2 scale) for the indicated tissue. (D) A representative
region of arm 3R containing an S2-specific domain (row 3), showing a combination of H3K9me2 (blue)
and marks associated with active transcription—H3K36me3 (green), H3K4me3 (orange), and Pol II
(red). Two sets of genes display a divergent promoter orientation typical of the S2-unique domain
genes. X-axis, chromosomal position in base pairs; y-axis, enrichment levels (log2 scale).
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silenced. Similarly, genes in euchromatic regions are not uniformly

silenced when juxtaposed with heterochromatin by chromosome

rearrangements (Rudolph et al. 2007; Vogel et al. 2009). We propose

that many active genes are resistant to heterochromatin formation

or spreading, despite being embedded in large domains that acquire

‘‘silent’’ marks in specific cell types. Determining whether ‘‘hetero-

chromatinization’’ of extension regions alters other aspects of gene

function, such as cell-cycle regulation of transcription or protein

levels, requires further analysis.

The variable nature of the border positions in different cell

lines (Fig. 3), embryos, and fly tissues (arms 2L and 3L, Supple-

mental Fig. 3) argues against a mechanism involving strict se-

quence-based boundary elements, as observed in S. pombe (Scott

et al. 2006; Wheeler et al. 2009). We favor the hypothesis that

border positions depend on the ‘‘epigenetic balance’’ between

euchromatic and heterochromatic chromatin components, as

suggested by studies of rearranged chromosomes (Ebert et al.

2004; Rudolph et al. 2007). However, border positions also appear

to be influenced by general properties, such as repeat and gene

densities. We propose that high-repeat content and/or low gene

density contributes to the extent of heterochromatin forma-

tion (as in S2 cells), but what is attained will depend on

global cell-specific properties, such as heterochromatin protein

levels. Heterochromatin also could be restricted in a cell-specific

manner in cis by the presence of chromatin states that are

incompatible with heterochromatin formation or spreading,

such as high gene activity or blocks of Polycomb marks and

proteins (as observed for three arms in BG3 cells).

Heterochromatic genes display complex chromatin patterns

Overall, our analysis of combinatorial patterns of chromatin

marks revealed that the composition of heterochromatic genes is

more complex than suggested by the average patterns for in-

dividual marks (e.g., Fig. 4).

Active heterochromatic genes display an unusual distribution of ‘active’
and ‘‘silent’ marks

Surprisingly, we found that a similar proportion of genes in peri-

centric heterochromatin and euchromatin are transcription-

ally active (;50%). The levels of most ‘‘active’’ marks are also

comparable between euchromatin and heterochromatin at ac-

tive genes (Fig. 5C; Supplemental Fig. 5B). However, enrich-

ments for some marks at active heterochromatic genes are

noticeably reduced (e.g., H4K16ac, H3K18ac, H3K23ac), accom-

panied by high-average enrichments for H3K9me3, H3K9me2,

and HP1a relative to active euchromatic genes (summarized in

Fig. 9). Interestingly, HP1a enrichments do not track precisely

with H3K9me2/3 levels near TSSs; at most active heterochro-

matic genes, a prominent peak of HP1a is centered 800 bp up-

stream of TSSs where H3K9me2/3 levels are low, followed by

moderate depletion of HP1a immediately downstream from

TSSs. This reduced enrichment for all three silent marks im-

mediately downstream from active heterochromatic gene TSSs

corresponds to the peaks of Pol II and H3K4me3 enrich-

ments (Fig. 5D,E) and is not due simply to local nucleosome

depletion.

The prominent association of HP1a, H3K9me2/3, and

SU(VAR)3-9 across active gene bodies, with high levels of

H3K36me3, suggests that once transcription is initiated, Pol II can

elongate through regions highly enriched for these supposedly

‘‘silent’’ marks. In fact, enrichments for ‘‘silent’’ marks across active

chromosome 4 gene bodies are higher than for pericentric genes,

and surprisingly, higher than observed for 4th chromosome

intergenic regions (Fig. 6A,B).

Importantly, we have established that the levels of H3K9me3

in D. melanogaster are similar to those seen in mammals. Al-

though the observed overall distributions of H3K9me2 and

H3K9me3 are similar, they show some interesting differences as well

(summarized in Fig. 9). For example, HP1a is, on average, more

highly correlated with H3K9me3 compared with H3K9me2, espe-

cially on the 4th chromosome (Supplemental Fig. 6). This finding

suggests that in a chromatin context HP1a may have a greater af-

finity for H3K9me3 nucleosomes versus those containing H3K9me2.

Differences in the distributions and levels of H3K9me2 and

H3K9me3 are more extreme at specific regions and gene groups, as

revealed by the combinatorial cluster analyses. Whether differences

between these marks have biological impact on heterochromatic

gene expression and other functions is unknown and warrants

further analysis.

Figure 9. Summary of chromatin patterns observed in Drosophila heterochromatin. The predominant enrichment patterns observed for selected
histone modifications and proteins are summarized for active and silent genes and intergenic regions, in euchromatin, pericentric heterochromatin
(including the S2-specific extensions), and the 4th chromosome. Red, ‘‘silent’’ marks and proteins; green, ‘‘active’’ marks. Heights of color blocks within
each row indicate enrichment levels relative to the features shown below, whose combinatorial patterns are reflected in the colors and intensities. For
example, the lighter red used for intergenic regions and silent genes in chromosome 4 indicate lower enrichments for ‘‘silent’’ marks compared with
pericentric heterochromatin. Gradients across active genes reflect differences in the relative levels of ‘‘active’’ and ‘‘silent’’ marks; red, predominantly
‘‘silent’’ marks; green, predominantly ‘‘active’’ marks; yellow, enrichments for both. Silent genes in euchromatin are shown in gray to indicate the absence
of ‘‘silent’’ marks.
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Do ‘silent’ marks and proteins play both positive and negative roles
in regulating heterochromatic gene expression?

Our findings suggest a model for heterochromatic gene transcrip-

tion that accommodates enrichments for HP1a and other ‘‘silent’’

marks. Interpreting the functional implications of marks such as

HP1a on active genes is complicated, as evidenced by previously

reported observations of both positive and negative effects on gene

expression. Although HP1a clearly is required for heterochroma-

tin-mediated silencing (Eissenberg et al. 1990), it is also essential

for the expression of some heterochromatin genes (e.g., light)

(Hearn et al. 1991). We propose that the inhibitory functions of

HP1a and associated proteins/marks must be eliminated at TSSs to

allow transcription initiation, whereas they are required over

heterochromatic gene bodies to maintain high levels of expres-

sion. According to this model, the main distinction between active

and silent heterochromatic genes is initiation through depletion of

‘‘silent’’ marks near TSSs.

For transcription initiation to occur in heterochromatin, Pol

II may be recruited first, followed by loss of ‘‘silent’’ marks near

TSSs, or Pol II may only be recruited after ‘‘silent’’ marks are re-

moved. The latter model is supported by the observation that

most putative binding sites are not actually bound by their

cognate transcription factors unless the chromatin is already

‘‘open’’ (MacArthur et al. 2009; Weber et al. 2009). One candidate

that may be responsible for the transcription initiation of the

heterochromatic genes is HP1c, which is enriched at TSSs of ac-

tive heterochromatic genes, and coincides with HP1a enrich-

ment around TSSs (see Fig. 5B,C). Given its reported association

with transcription factors (Smothers and Henikoff 2001; Font-

Burgada et al. 2008), it is possible that HP1c promotes initiation

of transcription at heterochromatic genes, perhaps through

a physical or functional interaction with HP1a that promotes

local chromatin changes. Whether HP1c or other factors such as

H3K9 demethylases (Marmorstein and Trievel 2009) act at het-

erochromatic TSSs to promote initiation must be addressed in

future studies.

It is perhaps more surprising to consider factors such as HP1a

as positively impacting gene expression, in this case through their

association with transcribed gene bodies. While a previous study

suggested that HP1a positively impacts the expression of some

euchromatic genes (particularly a subset expressed at high levels),

through interactions with RNA and RNA processing factors

(Piacentini et al. 2003, 2009) we observe that HP1a is not enriched

at active euchromatic genes in general (Fig. 5B). Another potential

positive link between HP1a and transcription comes from the

observation that HP1a can bind to KDM4A and stimulates its

H3K36me2/me3 demethylase activity (Lin et al. 2008), which in

S. cerevisiae results in histone hypoacetylation and blocks initia-

tion from cryptic promoters in ORFs (Carrozza et al. 2005). Al-

though these latter observations provide an attractive solution as

to how ‘‘silent’’ marks could promote transcription, the relevance

of this biochemical interaction is not supported by our observa-

tions. In particular, HP1a-mediated activation of the KDM4A

demethylase predicts reduced levels of H3K36me3 and increased

levels of H3K36me1 at sites of HP1a enrichment; however, both

HP1a and H3K36me3 are highly enriched across active chro-

mosome 4 and pericentric heterochromatic gene bodies, and

H3K36me1 is depleted across all gene segments (Figs. 5, 6). Finally,

we observe no enrichment for HP1a at active euchromatic genes,

inconsistent with a general role for HP1a recruitment of KDM4A

in promoting gene expression.

Clearly, we currently lack a mechanistic understanding of

how genes embedded in heterochromatin are regulated and

expressed, but we expect that these comprehensive chromatin

landscapes will provide a foundation for future advances. Direct

experimental dissections are needed to elucidate how the distri-

butions and levels of H3K9 methylation and HP1a impact the

initiation, elongation, and RNA processing associated with het-

erochromatin gene expression.

The 4th chromosome is enriched for specialized
heterochromatic domains

The distal 1.35 Mb of chromosome 4R exhibits characteristics of

both heterochromatin and euchromatin (Riddle et al. 2009). As is

the case for pericentric heterochromatin, the entire 4th chromo-

some is late replicating (Zhimulev et al. 2003), enriched for HP1a

and H3K9me2 (Fig. 1B; Greil et al. 2003; Slawson et al. 2006;

Johansson et al. 2007a; Yasuhara and Wakimoto 2008), and shows

no meiotic recombination under normal conditions (Sandler and

Szauter 1978). However, this region of the 4th chromosome has

a gene density comparable to euchromatin on other chromosome

arms (Supplemental Fig. 3) and is amplified during polytenization,

unlike the underreplicated pericentric heterochromatin. Genes are

interspersed with repetitious sequences that make up 30% of this

region (Leung et al. 2010), a value that is intermediate between

euchromatin (6%) and pericentric regions (>80%) (see Supple-

mental Fig. 3).

Our studies confirm that chromosome 4 generally resembles

pericentric heterochromatin (Fig. 4A; summarized in Fig. 9), but

it has higher levels of many ‘‘active’’ chromatin marks that are

likely due to its higher gene density (Supplemental Fig. 3). Several

combinatorial chromatin states are enriched specifically on chro-

mosome 4 (Supplemental Fig. 4); they are clearly associated with

transcribed genes (e.g., BG3 clusters 4–6, 11, and 14, Suppemental

Fig. 4A), and one cluster is associated with silent genes (cluster 1).

Sequences associated with Polycomb (PC) and H3K27me3 are

rare in pericentric heterochromatin. However, we observed a dis-

tinctive chromatin state enriched for H3K27me3 and PC that is

associated with seven 4th chromosome genes in BG3 cells (Fig. 4B,

group E), some of which were detected in previous studies (Negre

et al. 2006; Schwartz et al. 2006; Tolhuis et al. 2006). The presence

of PcG marks in BG3 cells but not S2 cells is consistent with the

previously reported cell-type-specific differences in PC binding at

euchromatic genes (Kwong et al. 2008; Schwartz et al. 2010). In-

terestingly, the association of 4th chromosome genes with PC and

H3K27me3 in BG3 cells correlates with reduced levels of HP1a,

whereas the same genes devoid of PcG binding in S2 cells display

high levels of HP1a that correspond well with the chromosome-

wide averages. This suggests that the chromatin state of the genes

repressed by PcG is in some way incompatible with H3K9methyl-

mediated silencing and HP1a binding.

We conclude that the chromatin composition of the 4th

chromosome is, in general, most similar to pericentric hetero-

chromatin, consistent with previous genetic, biochemical, and

developmental studies (Johansson et al. 2007a; Riddle et al. 2009);

however, the 4th also has unique domains that distinguish it from

both pericentric and euchromatic regions.

A surprisingly large fraction of euchromatin sequences display
cell-type-specific heterochromatin features

In mammals, there are well-studied examples of HP1 and

H3K9me2 enrichment at single genes in euchromatin, generally
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associated with silencing as part of a signaling response or process

of cell differentiation (Ayyanathan et al. 2003; Cammas et al.

2004). One recent study identified large domains of H3K9me2

present in differentiated mouse ES cells (Wen et al. 2009), though

there is some dispute about the significance (Filion and van

Steensel 2010). Our genome-wide analysis of H3K9me2 distribu-

tions identified a large fraction of D. melanogaster euchromatic

sequences (up to 12% or ;900 genes in BG3 cells) that are enriched

for ‘‘silent’’ marks (Fig. 8). Interestingly, the impact of these ‘‘si-

lent’’ mark enrichments in Drosophila on gene expression is not

uniform. The basis for these differences in gene expression is un-

known. However, it is intriguing that the H3K9me2 domains that

contain more expressed genes (clusters 3 and 4) are, on average,

smaller than domains with few expressed genes, have a two- to

fourfold higher gene density, and are more enriched for genes with

divergent promoters (Table 2). These observations suggest that the

cell-type-specific establishment, maintenance, or spreading of

heterochromatin features in euchromatic sequences may be in-

hibited by genes or facilitated by intergenic regions, similar to the

observed resistance of active genes to ‘‘heterochromatinization’’ in

the S2 extensions (see above).

Several hypotheses can be considered to explain the presence

of ‘‘heterochromatin-like’’ domains in euchromatin. There are

previously described regions of intercalary heterochromatin in all

D. melanogaster euchromatic arms (Belyaeva et al. 2008) that could

be responsible for the H3K9me2-enriched domains found in all cell

types and tissues. Comparing regions of intercalary heterochro-

matin with the positions of the H3K9me2-enriched domains, we

find that only one of 23 regions coincide with intercalary hetero-

chromatin identified by polytene chromosome analysis (Semeshin

et al. 2001), and six of 23 regions overlap with intercalary het-

erochromatin defined by ChIP-chip mapping of the SUUR protein

(Belyakin et al. 2005). Our results demonstrate that it is also un-

likely that such domains result from chromosome rearrangements

or changes in copy number. We note that when chromosome

rearrangements in animals have been analyzed by ChIP, there is

a gradient of heterochromatin marks spreading from the break-

point (Rudolph et al. 2007; Vogel et al. 2009), while here we see

distinct borders between these domains and flanking regions.

We favor the hypothesis that at least some of these domains

represent the establishment of heterochromatic chromatin pat-

terns to accomplish local, cell-type-specific silencing of euchro-

matic genes. Gene-poor regions appear to be particularly suscep-

tible to acquisition of ‘‘silent’’ marks; perhaps they lack the high

levels of transcription required to resist silencing, or these regions

contain genes with extensive regulatory regions characteristic of

developmental regulators. A novel observation from our study is

that the ‘‘common’’ domains of this type are predominantly on the

X (12 out of 14 domains). They are absent from the female Kc cell

samples and present in other sources that are either entirely male

(S2 and BG3 cells) or a mix of male and female cells (heads, larvae,

embryos). These H3K9me2 domains on the X chromosome are

reminiscent of the previously reported HP1a enrichment on the

male X chromosome, shown by DAMid mapping (de Wit et al.

2005). Although de Wit and colleagues observed X chromosome-

wide enrichments for HP1a, our ChIP-chip analysis clearly shows

distinct domains (that contain mostly single genes), covering 1.1%

of the X, which exhibit high levels of multiple heterochromatic

marks (H3K9me2, H3K9me3, and HP1a). It is possible that these

‘‘common’’ H3K9me2 domains contain X-linked genes that are

silenced by ‘‘heterochromatinization’’ only in male cells, suggest-

ing a strategy for avoiding the effects of dosage compensation

mechanisms which up-regulate expression of X-linked genes in

these cells (Gelbart and Kuroda 2009). The genes associated with

these domains are inactive in female Kc cells as well as male S2 and

BG3 cells, suggesting that accomplishing this goal requires an ad-

ditional layer of gene repression in male cells. Further analyses are

required to fully test the hypothesis that Drosophila euchromatic

sequences acquire heterochromatic features during developmental

determination or differentiation, and to ascertain whether other

organisms exhibit large domains of heterochromatic marks in

euchromatic sequences.

In conclusion, this analysis has provided a much more de-

tailed picture of the complexity of heterochromatin from an epi-

genomic perspective. Heterochromatin, sometimes referred to as

the ‘‘black hole’’ of the genome, contains a much richer and more

complex landscape of histone modifications and chromosomal

proteins than previously imagined. The effect is like looking at

a pointillist painting by Georges Seurat—before we were standing

at a distance, now we are looking close-up and perceiving the

complex patterns used to achieve different effects. We expect that

this study will provide a solid foundation for future experimental

analyses aimed at addressing the relationships among chromatin

composition, organization of heterochromatin sequences, and the

functions of heterochromatic domains. It will be particularly im-

portant to determine how heterochromatic gene expression and

silencing are regulated, how the borders between heterochromatin

and euchromatin are established and maintained, and what roles

the euchromatic H3K9me2 domains may play in developmental

regulation of gene expression.

Methods
Detailed materials and methods descriptions can also be found at
http://www.modENCODE.org.

Growth conditions

Cell lines were obtained from the Drosophila Genome Resource
Center (DGRC) and grown according to DGRC protocols (https://
dgrc.cgb.indiana.edu/): S2-DRSC cells (stock #181), Kc-167 cells
(DGRC, stock #1), ML-DmBG3-c2 cells (DGRC, stock #68), and
Clone 8 cells (DGRC, stock #151).

OR flies (Bloomington stock #25211) were raised in pop-
ulation cages at 25°C with 70% humidity on grape juice-agar me-
dium supplemented with yeast paste (Shaffer et al. 1994). Two to
4 h and 14–16 h embryos and adult flies were collected from these
cages, frozen in liquid nitrogen, and stored at �80°C. Fly heads
were prepared from frozen flies using sieves (sieve sizes: 710 mm,
600 mm, and 500 mm). Heads were reimmersed in liquid nitrogen
and stored at �80°C. Third instar larvae were collected from OR
flies grown in bottles (at low density) at 25°C/70% humidity on
standard cornmeal-agar medium (Shaffer et al. 1994). Larvae were
frozen in liquid nitrogen and stored at �80°C.

Antibody validation

We only used antibodies that were validated as specifically recog-
nizing the modification or protein, based on Western analysis of
nuclear extracts, peptide blot analysis (see Supplemental Fig. 17),
and in some cases, mass spectrometry analysis and IF analysis of
cells (Kharchenko et al. 2011).

Histone antibodies

Commercial histone modification antibodies were tested for cross-
reactivity with unmodified recombinant histones and other proteins
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by Western blotting according to standard protocols (Sambrook and
Russell 2001). An antibody was considered validated if (1) there
was no significant cross-reactivity with other proteins (<50%),
and (2) if there was no significant cross-reactivity with the un-
modified histone from the E. coli extract (>10-fold difference in
signal intensity).

In addition, histone antibodies were tested by slot/dot blot
analysis according to standard protocols (Sambrook and Russell
2001) with modified histone peptides (Diagenode), using amounts
ranging from 100 pmol to 3 pmol on nitrocellulose membrane
with 0.1-mm pore size.

Despite previous claims that Drosophila lacks the H3K9me3
modification, we observed that antibodies that recognize H3K9me3
colocalize extensively with H3K9me2 (Supplemental Fig. 2A) and
HP1a (data not shown) in IF experiments. The specificity of the
three H3K9me3 antibodies used in our studies were validated by
Western blot analysis (Supplemental Fig. 2B), as well as peptide
blot analysis, with no cross-reactivity with H3K9me2, and ;10-
fold higher binding to H3K9me3 versus H3K27me3 peptides
(Supplemental Fig. 2C). In addition, we compared the abundance
of H3K9me1, H3K9me2, and H3K9me3 in Drosophila S2 and hu-
man HeLa cells using quantitative mass spectrometry (Supple-
mental Fig. 2C). The results demonstrate that H3K9me3 is only
;1.8-fold more abundant in HeLa than in S2 cells (Supplemental
Fig. 2D). We conclude that Drosophila does contain significant
amounts of H3K9me3, whose distributions and enrichments are
similar but not identical to H3K9me2 (see Discussion).

Other proteins

Protein antibodies were tested for cross-reactivity with nontarget
proteins, and specificity was tested on mutant protein extracts or
extracts from RNAi knockdowns in S2 cells (RNAi experiments
were carried out according to Worby et al. 2001). Western blotting
was carried out according to standard protocols (Sambrook and
Russell 2001). An antibody was considered validated if (1) there
was a band of the correct size detected in the wild-type sample,
which lessened in intensity in the knockdown/mutant sample
(>50% depletion), and (2) if there was no significant cross-re-
activity with other proteins (<50%).

ChIP-chip

Chromatin preparation, immunoprecipitation, and microarray
hybridization were done as described in Schwartz et al. (2006) and
Kahn et al. (2006) with the following modifications. To prepare
chromatin from fly heads and larvae, the nuclei were isolated first
and then cross-linked with 1% formaldehyde as a suspension in 13

PBS. Bioruptor (Diagenode) sonicator was used for solubilization
and shearing of the chromatin. Cross-linked cultured cells were
permeabilized with 1% SDS prior to ultrasound treatment. The
ChIP products were amplified with Genome Plex Complete WGA
Kit (Sigma) according to the manufacturer’s recommendations,
with omission of the first chemical DNA fragmentation step.

Data analysis

Enrichment profiles

For M-value normalization, the log-intensity ratio values (M-values)
were calculated for all perfect-match (PM) probes as log2(ChIP
intensity)–log2(input intensity). The M values were then shifted so
that the mean is equal to 0. The smoothed log intensity ratios
shown in the example plots were calculated using lowess with
a smoothing span corresponding to 500 bp, combining normalized
data from two replicate experiments. Enrichment P-values are cal-
culated using a sliding window (1-kbp window size; step size 30 bp).

The P-value enrichment score is calculated at each step using a one-
sided t-test on the M-values of probes that fall within the window.
To capture both significant enrichment and significant depletion,
P-values for enrichment test (ePv) and depletion test (dPv) are cal-
culated, and the score is given as -log10(min(ePv,dPv)). The score is
then multiplied by �1 if dPv was smaller than ePv. Quality control
measures for all ChIP-chip datasets included in our study are pro-
vided in Supplemental Table 1.

Chromatin states and gene clustering

To study combinatorial patterns (i.e., Fig. 4; Supplemental Fig. 4A),
average enrichment was calculated for 500-bp blocks tiling the ge-
nome. The enrichment scores for each mark were shifted to a mean
of 0 and scaled to a unit variance. To reduce excessive contribution
of intercorrelated marks, the normalized matrix was projected to its
principal components. The projected matrix was then used to
cluster genome regions based on the similarity of the chromatin
state. The problem of determining the number of clusters to use is
complex, and no satisfying solution exists given the inherently in-
exact nature of the question. The number of clusters (15) was cho-
sen because we thought it would sufficiently capture the variability.
While the number of clusters was chosen to maximize the number
of different patterns detected without creating redundancy, for ease
of the reader, these 15 clusters were classified into five groups based
on similarity. This classification results in some loss of information,
which is why the original 15 cluster plots are provided as supple-
mental figures. Analogous procedures were used for gene clustering
(i.e., Fig. 5), with each of the five cells representing gene enrichment
in a particular mark being considered as an independent column.
Again, we chose 10 states as a compromise between comprehen-
siveness and ease of interpretation.

Chromatin context of the repetitive elements

Repetitive elements within each class were identified using
RepeatMasker (http://www.repeatmasker.org), excluding microsatel-
lite repeats. Average enrichment was estimated based on the
array probes that fell within the relevant repeat instances and
200-bp margins extending on either side of the identified instance
boundaries. Complete-linkage hierarchical clustering was used to
group repeat types based on the combined enrichment states (Fig. 6).

H3K9me2 enrichment across different cell types

For each cell line, continuous regions of H3K9me2 enrichment
were determined using a Viterbi algorithm, based on a three-state
hidden Markov model (HMM). The adjusted ChIP/input log in-
tensity ratios were modeled using Gaussian emission probabilities,
with means of �0.5, 0, and 0.5 corresponding to the enriched,
neutral, and depleted states. All three emission signals utilized
a fixed variance of 0.3 and a fixed transition probability of 1e-120
to transition between the states. Following HMM segmentation,
a K-means clustering procedure was applied to the enrichment
domains to determine patterns of H3K9me2 coverage across cell
lines (Fig. 8A). The functional analysis of these patterns (Fig. 8B)
utilized a more conservative set of loci matching the overall en-
richment pattern shown in Figure 8A; i.e., a position included in
the ‘‘common’’ regions (cluster 1) had to be covered by H3K9me2
HMM domains in all cell lines except for Kc (for WIG files of do-
mains, see Supplemental material).

PCR and Southern analysis

PCR and Southern blots were carried out according to standard
protocols (Sambrook and Russell 2001). For details, see Supple-
mental Methods.
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