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Abstract. In this paper, we consider a nonlinear neutral fractional difference equations.
By applying Krasnoselskii’s fixed point theorem, sufficient conditions for the existence of
solutions are established. Also, the uniqueness of a solution is given. As an application
of the main theorems, we provide the existence and uniqueness of the discrete fractional
Lotka-Volterra model of neutral type. Our main results extend and generalize the
results that are obtained in [6].
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1. Introduction and preliminaries

Fractional difference equations have received a special attention during the last
years. Indeed, some mathematicians have recently taken the lead to develop the
qualitative properties of fractional difference equations. We recall, for instance, the
study made by Atici et. al. [7], [8], [9] and Abdeljawad et. al. [1], [2] (see also [4],
[12], [15], [19]-[23], [25] and reference therein) who developed the transformmethods,
properties of initial value problems and studied applications of these equations.

Let N0 = [0, T1]∩Z where T1 ∈ [2,+∞)∩Z. Alzabut, Abdeljawad and Baleanu
[6] discussed the existence of solutions for the difference equation

(1.1)

{

c∇α
0 x (t) = f (t, x (t) , x (t− τ1)) , t ∈ N0,

x (t) = ψ (t) , t ∈ [−τ1, 0] ∩ Z,

where τ1 ∈ N, ψ : [−τ1, 0] ∩ Z → R, f : N0 × R × R → R and c∇α
0 denotes the

Caputo’s fractional difference of order α ∈ (0, 1). By employing the Krasnoselskii
fixed point theorem, the authors obtained existence results.
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In this paper, we are interested in the analysis of qualitative theory of the
problems of the existence and uniqueness of solutions to nonlinear neutral fractional
difference equations

(1.2)

{

c∇α
0 x (t) = f (t, x (t) , x (t− τ1) ,

c ∇α
0x (t− τ2)) , t ∈ N0,

x (t) = ψ (t) , t ∈ [−τ, 0] ∩ Z,

where τ1, τ2 ∈ N, τ = max (τ1, τ2), ψ : [−τ, 0] ∩ Z → R, f : N0 × R × R × R → R

and c∇α
0 denotes the Caputo’s fractional difference of order α ∈ (0, 1). To prove

our main results, we employ the Krasnoselskii and Banach fixed point theorems and
the Arzelá-Ascoli’s theorem. Moreover, we apply the main theorems to the discrete
fractional Lotka-Volterra of neutral type

(1.3)

{

c∇α
0 x (t) = x (t) [a (t)− b (t)x (t− τ1)− c (t)

c
∇α

0x (t− τ2)] , t ∈ N0,

x (t) = ψ (t) , t ∈ [−τ, 0] ∩ Z,

where a, b and c are sequences fulfill some of the conditions described below, which
are medically and biologically feasible.

Now, we present some basic definitions, notations and results of fractional dif-
ference calculus [16], [17] which are used throughout this paper. For any α, t ∈ R,
the α rising function is defined by

(1.4) tα =
Γ (t+ 1)

Γ (t)
, t ∈ R− {...,−2,−1, 0} , 0α = 0,

where Γ is the well known Gamma function satisfying Γ (α+ 1) = αΓ (α).

Definition 1.1. Let x : N0 → R, ρ (s) = s− 1, α ∈ R
+ and µ > −1. Then

1) The nabla difference of x is defined by

∇x (t) = x (t)− x (t− 1) , t ∈ N1 = [1, T1] ∩ Z.

2) The Riemann-Liouville’s sum operator of x of order α > 0 is defined by

(1.5) ∇−α
0 x (t) =

1

Γ (α)

t
∑

s=1

(t− ρ (s))
α−1

, t ∈ N1.

3) The Riemann-Liouville’s difference operator of x of order 0 < α < 1 is defined
by

(1.6) c∇α
0 x (t) = ∇

−(1−α)
0 ∇x (t) =

1

Γ (1− α)

t
∑

s=1

(t− ρ (s))
−α

∇x (s) , t ∈ N1.

4) The power rule is defined by

(1.7) ∇−α
0 tµ =

Γ (µ+ 1− α)

Γ (µ+ α+ 1)
tµ+α, t ∈ N1.
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Let N−τ = [−τ, T1] ∩ Z where T1 ∈ [3,+∞) ∩ Z, and B (N−τ ,R) be the Banach
space of all bounded sequences with respect to the maximum norm.

Definition 1.2. A set D of sequences in B (N−τ ,R) is uniformly Cauchy if for
every ǫ > 0, there exists an integer N∗ such that |x (t)− x (s)| < ǫ whenever
t, s > N∗ for any x = {x (n)} in D.

The following discrete version of Arzelá-Ascoli’s theorem has a crucial role in
the proof of our main theorems.

Theorem 1.1. Arzelá-Ascoli’s theorem A bounded, uniformly Cauchy subset D of
B (N−τ ,R) is relatively compact.

The proof of the main theorem is achieved by employing the following fixed
point theorem.

Theorem 1.2. Krasnoselskii’s fixed point theorem [10] Let D be a nonempty, closed,
convex and bounded subset of a Banach space (X, ‖·‖). Suppose that A1 : D → X

and A2 : D → X are two operators such that

(i) A1 is a contraction,

(ii) A2 is continuous and A2 (D) resides in a compact subset of X,

(iii) for any x, y ∈ D, A1x+A2y ∈ D.

Then the operator A1 +A2 has a fixed point x ∈ D.

2. Existence and uniqueness of solutions

In this section, we give the equivalence of the problem (1.2). So, by an alternative
way used in [3], [5] and [14], we turn the problem (1.2) into an equivalent equation,
then, the solvability of this equivalent equation implies the existence and uniqueness
of solution to the problem (1.2).

Lemma 2.1. x denotes a solution of the equation (1.2) if and only if it admits
the following representation

(2.1) x (t) = ψ (0) +
1

Γ (α)

t
∑

s=1

(t− ρ (s))
α−1

zx (s) ,

where zx (t) =
c ∇α

0x (t) and x (t) = ψ (t) , t ∈ [−τ, 0] ∩ Z.

Proof. By the same way used in [3], we get for t ∈ N−τ , the initial value problem
(1.2) is equivalent to the following equation

(2.2) x (t) = ψ (0) +
1

Γ (α)

t
∑

s=1

(t− ρ (s))
α−1

f (t, x (s) , x (s− τ1) ,
c ∇α

0 x (s− τ2)) .
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By the techniques used in [5] and [14], let

zx (t) =
c ∇α

0x (t) and x (t) = ψ (t) for t ∈ [−τ, 0] ∩ Z.

Then, the equation (2.2) is equivalent to the equation (2.1), with

(2.3) zx (t) = f (t, x (t) , x (t− τ1) , zx (t− τ2)) .

We prove our main results under the following assumptions

(A1) For t ∈ N−τ ,

zx (t) = f (t, x (t) , x (t− τ1) , zx (t− τ2))

= f1 (t, x (t)) + f2 (t, x (t) , x (t− τ1)) + f3 (t, x, zx (t− τ2)) ,

where f1, f2 and f3 are Lipschitz functions with Lipschitz constants Lfi ,
i = 1, 2, 3, with Lf3 < 1.

(A2) For t ∈ N−τ ,

|f1 (t, u (t))| ≤ M1 |u (t)| ,

|f2 (t, u (t) , v (t))| ≤ M2 |u (t)| |v (t)| ,

|f3 (t, u (t) , v (t))| ≤ M3 |u (t)| |v (t)| ,

for any positive numbers Mi, i = 1, 2, 3.

Define the set

(2.4) D = {u ∈ B (N−τ ,R) , ‖u‖ ≤ r, u (t) = ψ (t) for t ∈ [−τ, 0] ∩ Z} ,

where r satisfies

(2.5) |ψ (0)|+
M1r +M2r

2 +M3Lr
2

Γ (α)
C (α) ≤ r,

and C (α) =
Γ (T1 + α)

αΓ (T1)
is a positive constant depending on the order α and satisfies

the inequality

(2.6) Lf1C (α) < Γ (α) .

Lemma 2.2. Suppose that the assumption (A1) holds. Then, for t ∈ N−τ , zx
satisfies the following inequality

|zx (t)− zy (t)| ≤ L ‖x− y‖ for all x, y ∈ B (N−τ ,R) ,

where

L =
Lf1 + 2Lf2 + Lf3

1− Lf3

.
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Proof. For all x, y ∈ B (N−τ ,R), since (A1) holds, then

|zx (t)− zy (t)|

≤ Lf1 |x (t)− y (t)|+ Lf2 |x (t)− y (t)|+ Lf2 |x (t− τ1)− y (t− τ1)|

+Lf3 |x (t)− y (t)|+ Lf3 |zx (t− τ2)− zy (t− τ2)|

≤ (Lf1 + 2Lf2 + Lf3) ‖x− y‖+ Lf3 ‖zx − zy‖ .

Thus,

|zx (t)− zy (t)| ≤
Lf1 + 2Lf2 + Lf3

1− Lf3

‖x− y‖ .

Now, to apply Krasnoselskii’s fixed point 1.2, by Lemma 2.1 can define the
operators A1 and A2 on D by

(2.7) (A1x) (t) = ψ (0) +
1

Γ (α)

t
∑

s=1

(t− ρ (s))
α−1

f1 (s, x (s)) ,

and

(A2x) (t) =
1

Γ (α)

t
∑

s=1

(t− ρ (s))α−1
f2 (s, x (s) , x (s− τ1))

+
1

Γ (α)

t
∑

s=1

(t− ρ (s))
α−1

f3 (s, x (s) , zx (s− τ2)) .(2.8)

It is clear that x is a solution of (1.2) if it is a fixed point of the operatorA = A1+A2.

Theorem 2.1. Let conditions (A1), (A2), (2.5) and (2.6) hold. Then, the equa-
tion (1.2) has a solution in the set D.

Proof. From the assumptions on the set D, one can easily see that D is a nonempty,
closed, convex and bounded set.

Step 1. We prove that the A1 defined by (2.7) is contraction. We can easily
see that for x, y ∈ D

|(A1x) (t)− (A1y) (t)|

≤
1

Γ (α)

t
∑

s=1

(t− ρ (s))α−1 |f1 (s, x (s))− f1 (s, y (s))|

≤ Lf1

1

Γ (α)

t
∑

s=1

(t− ρ (s))
α−1

|x (s)− y (s)|

≤
Lf1

Γ (α)
‖x− y‖

t
∑

s=1

(t− ρ (s))
α−1

.
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By virtue of (1.4), (1.5), (1.7) and since (t− 0)
0
= 1, one can see that

t
∑

s=1

(t− ρ (s))α−1 (t− 0)0 = Γ (α)∇−α
0 (t− 0)0 =

Γ (t+ α)

αΓ (t)
.

Therefore,

|(A1x) (t)− (A1y) (t)| ≤
C (α)

Γ (α)
Lf1 ‖x− y‖ , t ≤ T1.

By the assumption (2.6), we conclude that A1 is contraction mapping on D.

Furthermore, we obtain for x ∈ D

|(A1x) (t) + (A2x) (t)|

≤

∣

∣

∣

∣

∣

ψ (0) +
1

Γ (α)

t
∑

s=1

(t− ρ (s))α−1
f1 (s, x (s))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

Γ (α)

t
∑

s=1

(t− ρ (s))
α−1

f2 (s, x (s) , x (s− τ1))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

Γ (α)

t
∑

s=1

(t− ρ (s))
α−1

f3 (s, x (s) , zx (s− τ2))

∣

∣

∣

∣

∣

≤ |ψ (0)|+
M1 ‖x‖+M2 ‖x‖

2
+M3L ‖x‖

2

Γ (α)

t
∑

s=1

(t− ρ (s))α−1

≤ |ψ (0)|+
M1r +M2r

2 +M3Lr
2

Γ (α)
C (α)

≤ r,(2.9)

which implies that A1x+A2x ∈ D. For x ∈ D, we also get

|(A2x) (t)| ≤

∣

∣

∣

∣

∣

1

Γ (α)

t
∑

s=1

(t− ρ (s))
α−1

f2 (s, x (s) , x (s− τ1))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

Γ (α)

t
∑

s=1

(t− ρ (s))
α−1

f3 (s, x (s) , zx (s− τ2))

∣

∣

∣

∣

∣

≤
M2 ‖x‖

2
+M3L ‖x‖

2

Γ (α)

t
∑

s=1

(t− ρ (s))α−1

≤
M2r

2 +M3Lr
2

Γ (α)
C (α)

≤ r,

which implies that A2 (D) ⊂ D.
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Step 2. We prove that A2 is continuous. Let a sequence xn converge to x.
Taking the norm of A2xn −A2x, we have

|(A2xn) (t)− (A2x) (t)|

≤
1

Γ (α)

t
∑

s=1

(t− ρ (s))
α−1

|f2 (s, xn (s) , xn (s− τ1))− f2 (s, x (s) , x (s− τ1))|

+
1

Γ (α)

t
∑

s=1

(t− ρ (s))α−1 |f3 (s, xn (s) , zxn
(s− τ2))− f3 (s, x (s) , zx (s− τ2))|

=
C (α)

Γ (α)
(2Lf2 + Lf3 + Lf3L) ‖xn − x‖ .

Then, we conclude that whenever xn → x, A2xn → A2x. This proves the continuity
of A2. To prove that A2 (D) resides in a compact subset of B (N−τ ,R), i.e., A2 (D)
is a relatively compact subset. We let t1 ≤ t2 ≤ T1 to get

|(A2x) (t2)− (A2x) (t1)|

≤
1

Γ (α)

∣

∣

∣

∣

∣

t2
∑

s=1

(t2 − ρ (s))
α−1

f2 (s, x (s) , x (s− τ1))

−

t1
∑

s=1

(t1 − ρ (s))
α−1

f2 (s, x (s) , x (s− τ1))

∣

∣

∣

∣

∣

+
1

Γ (α)

∣

∣

∣

∣

∣

t2
∑

s=1

(t2 − ρ (s))
α−1

f3 (s, x (s) , zx (s− τ2))

−

t1
∑

s=1

(t1 − ρ (s))α−1
f3 (s, x (s) , zx (s− τ2))

∣

∣

∣

∣

∣

≤
1

Γ (α)

t1
∑

s=1

∣

∣

∣
(t2 − ρ (s))

α−1
− (t1 − ρ (s))

α−1
∣

∣

∣
|f2 (s, x (s) , x (s− τ1))|

+
1

Γ (α)

t2
∑

s=t1+1

∣

∣

∣
(t2 − ρ (s))

α−1
∣

∣

∣
|f2 (s, x (s) , x (s− τ1))|

+
1

Γ (α)

t1
∑

s=1

∣

∣

∣
(t2 − ρ (s))α−1 − (t1 − ρ (s))α−1

∣

∣

∣
|f3 (s, x (s) , zx (s− τ2))|

+
1

Γ (α)

t2
∑

s=t1+1

∣

∣

∣
(t2 − ρ (s))

α−1
∣

∣

∣
|f3 (s, x (s) , zx (s− τ2))| .
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By the assumption (A2) and Lemma 2.2, we obtain

|(A2x) (t2)− (A2x) (t1)|

≤
(

M2r
2 +M3Lr

2
)

[

1

Γ (α)

t1
∑

s=1

∣

∣

∣
(t2 − ρ (s))

α−1
− (t1 − ρ (s))

α−1
∣

∣

∣

+
1

Γ (α)

t2
∑

s=t1+1

∣

∣

∣
(t2 − ρ (s))

α−1
∣

∣

∣

]

.

By using (1.5), we get

|(A2x) (t2)− (A2x) (t1)|

≤
(

M2r
2 +M3Lr

2
)

(

(t2)
0
− (t1)

0
+ (t2 − t1)

0
)

.

From (1.7), it follows that

|(A2x) (t2)− (A2x) (t1)|

≤

(

M2r
2 +M3Lr

2
)

Γ (α+ 1)

(

∇−α
0 (t2 − 0)0 −∇−α

0 (t1 − 0)0 +∇−α
t1

(t2 − t1)
0
)

.

This implies that A2 (D) is uniformly bounded subset of B (N−τ ,R). Thus, by
virtue of the discrete Arzelá-Ascoli’s theorem 1.1, we conclude that A2 is compact.

Step 3. It remains to show that for any x, y ∈ D, we have A1x +A2y ∈ D. If
x, y ∈ D, then we have

|(A1x) (t) + (A2y) (t)|

≤

∣

∣

∣

∣

∣

ψ (0) +
1

Γ (α)

t
∑

s=1

(t− ρ (s))α−1
f1 (s, x (s))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

Γ (α)

t
∑

s=1

(t− ρ (s))
α−1

f2 (s, y (s) , y (s− τ1))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

Γ (α)

t
∑

s=1

(t− ρ (s))
α−1

f3 (s, y (s) , zy (s− τ2))

∣

∣

∣

∣

∣

≤ |ψ (0)|+
M1 ‖x‖ +M2 ‖y‖

2
+M3L ‖y‖

2

Γ (α)

t
∑

s=1

(t− ρ (s))α−1

≤ |ψ (0)|+
M1r +M2r

2 +M3Lr
2

Γ (α)
C (α)

≤ r,

which implies that A1x+A2y ∈ D.

By employing the Krasnoselskii fixed point theorem, we conclude that there
exists x ∈ D such that x = Ax = A1x + A2x which is a fixed point of A. Hence,
the equation (1.2) has at least one solution in D.
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Remark 2.1. Note that, when f3 ≡ 0 Theorem 2.1 becomes the same Theorem 3 in [6],
and this confirms the generality of the results.

It is worth noting that, the authors in [6] stated that they studied the uniqueness
of solutions for the equation (1.2), but in reality they did not, because Krasnosel-
skii’s theorem only gives us the existence of solutions, it may be only a written
error. So, in this paper, we will study the uniqueness of solutions as well.

Theorem 2.2. Let conditions (A1), (A2), (2.5) and

(2.10)
C (α)

Γ (α)
(Lf1 + 2Lf2 + Lf3 + Lf3L) < 1,

hold. Then, the equation (1.2) has a unique solution in D.

Proof. Since the equation (1.2) is equivalent to (2.1), for x ∈ D define

Ax = A1x+A2x.

Step 1. We must prove that A maps D into itself, then by the condition (2.5)
and the same way in (2.9)

|(Ax) (t)| = |(A1x) (t) + (A2x) (t)|

≤ |ψ (0)|+
M1r +M2r

2 +M3Lr
2

Γ (α)
C (α)

≤ r,

which implies that Ax ∈ D.

Step 2. We prove that A is contraction. We can see that for x, y ∈ D

|(Ax) (t)− (Ay) (t)|

≤
Lf1

Γ (α)
‖x− y‖

t
∑

s=1

(t− ρ (s))
α−1

+
2Lf2

Γ (α)
‖x− y‖

t
∑

s=1

(t− ρ (s))
α−1

+
(Lf3 + Lf3L)

Γ (α)
‖x− y‖

t
∑

s=1

(t− ρ (s))α−1
.

Therefore,

|(Ax) (t)− (Ay) (t)| ≤
C (α)

Γ (α)
(Lf1 + 2Lf2 + Lf3 + Lf3L) ‖x− y‖ , t ≤ T1.

By the assumption (2.10), we conclude that A is contraction mapping on D.

By employing the Banach fixed point theorem, we conclude that there exists a
unique x ∈ D such that x = Ax which is a unique fixed point of A. Hence, the
equation (1.2) has a unique solution in D.
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Remark 2.2. Note that, when f3 ≡ 0 Theorem 2.2 gives the uniqueness of the solution
of the equation (1.1).

Now, we can replace the assumptions (A2) and (2.5) by the following, which
provide us the existence and uniqueness too.

(A2) For t ∈ N−τ , we assume that f1 (t, 0) = f2 (t, 0, 0) = f3 (t, 0, 0) ≡ 0 and

(2.11) |ψ (0)|+
(Lf1 + 2Lf2 + Lf3 (1 + L)) r

Γ (α)
C (α) ≤ r.

Then we get the following theorems.

Theorem 2.3. Let conditions (A1), (A2), (2.11) and (2.6) hold. Then, the equa-
tion (1.2) has a solution in the set D.

Proof. The proof is based on the following estimation, since f1, f2 and f3 satisfy
the assumptions (A1) and (A2), then

|f1 (t, x (t))| = |f1 (t, x (t))− f1 (t, 0)|

≤ Lf1 ‖x‖ ,

|f2 (t, x (t) , x (t− τ1))| = |f2 (t, x (t) , x (t− τ1))− f2 (t, 0, 0)|

≤ 2Lf2 ‖x‖ ,

and

|f3 (t, x (t) , zx (t− τ2))| = |f3 (t, x (t) , zx (t− τ2))− f3 (t, 0, 0)|

≤ Lf3 (‖x‖ + ‖zx‖)

≤ Lf3 (‖x‖ + L ‖x‖)

= Lf3 (1 + L) ‖x‖ .

The remaining steps of the proof are the same as in Theorem 2.1.

Theorem 2.4. Let conditions (A1), (A2), (2.11) and (2.10) hold. Then, the equa-
tion (1.2) has a unique solution in D.

Proof. The steps of the proof is given by the same way in Theorem 2.2.

Remark 2.3. The results of this paper can be carried out for the equation

(2.12)

{

∇
α
0 x (t) = f (t, x (t) , x (t− τ1) ,

c
∇

α
0 x (t− τ2)) , t ∈ N2 = [2, T1] ∩ Z,

x (t) = ψ (t) , t ∈ [−τ, 1] ∩ Z,

where τ1, τ2 ∈ N, τ = max (τ1, τ2), T1 ∈ [4,+∞)∩Z, ψ : [−τ, 1]∩Z → R, f : N0×R×R → R

and ∇α
0 denotes the Riemann-Liouville’s fractional difference of order α ∈ (0, 1). The

solution of the equation (2.12) has the form

x (t) =
tα−1

Γ (α)
ψ (1) +

1

Γ (α)

t
∑

s=2

(t− ρ (s))α−1
zx (s) .
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3. Discrete fractional Lotka-Volterra model of neutral type

Because it is very interesting to study the neutral delay population model. So,
the Lotka-Volterra model has been extensively investigated by many authors see
([6], [9], [13], [11], [18], [24]) and others, through different approaches. But, all the
above works studied the Lotka-Volterra model, or the neutral model with integer
order. Then, there is no literature on the type of discrete neutral fractional Lotka-
Volterra model.

In this section, we employ Theorems 2.1 and 2.2 to prove the existence and
uniqueness results for the solutions of (1.3), that represents an interspecific compe-
tition in single species with τ denotes the maturity time period.

For a bounded sequence u on N0, we define u+ and u− as follows

u− = inf
t∈N0

u (t) and u+ = sup
t∈N0

u (t) ,

and denote

f1 (t, x (t)) = a (t)x (t) ,

f2 (t, x (t) , x (t− τ1)) = −b (t)x (t)x (t− τ1) ,

f3 (t, x, zx (t− τ2)) = −c (t)x (t) zx (t− τ2) ,

where the coefficients a, b and c satisfy the boundedness relations

a− ≤ a (t) ≤ a+, b− ≤ b (t) ≤ b+, c− ≤ c (t) ≤ c+.

From the conditions (A1) and (A2), it is easy to see that

Lf1 = a+, Lf2 = rb+, Lf3 = rc+L,

and

M1 = Lf1 , M2 = b+, M3 = c+.

Theorem 3.1. Let conditions (2.5), (2.6) and

Lf3 = rc+L < 1,

hold. Then, the model (1.3) has a solution in the set D.

Theorem 3.2. Let condition (2.5), (2.10) and

Lf3 = rc+L < 1,

hold. Then, the model (1.3) has a unique solution in the set D.



1486 M. B. Mesmouli, A. Ardjouni and A. Djoudi

Remark 3.1. The above theorems can be extended to n species neutral competitive
Lotka-Volterra system of the form
(3.1)










c
∇

α
0 xi (t) = xi (t)

[

ai (t)−
n
∑

j=1

bij (t)x (t− τij)−
n
∑

j=1

cij (t)
c
∇

α
0 x (t− τij)

]

, t ∈ N0,

xi (t) = ψi (t) , t ∈ [−τ, 0] ∩ Z,

where τij ∈ N, τ = max1≤i,j≤n τij , α ∈ (0, 1), ψi : [−τ, 0] ∩ Z → R, a− ≤ ai (t) ≤ a+,
b− ≤ bij (t) ≤ b+, c− ≤ cij (t) ≤ c+, i = 1, 2, ..., n.
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