View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

FACTA UNIVERSITATIS (NIS)
SER. MATH. INFORM. Vol. 35, No 5 (2020), 1327-1341
https://doi.org/10.22190/FUMI2005327P

A CLASSIFICATION OF SOME ALMOST a-PARA-KENMOTSU
MANIFOLDS *

Quanxiang Pan and Ximin Liu

Abstract. In this paper, we mainly study local structures and curvatures of the almost
a-para-Kenmotsu manifolds. In particular, locally symmetric almost a-para-Kenmotsu
manifolds satisfying certain nullity conditions are classified.
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1. Introduction

One of the recent topics in the theory of almost contact metric manifolds is the
study of the so-called nullity distributions. In [5], E. Boeckx studied the full classi-
fication of contact (k, u)-spaces, later in [11] and [12], P. Dacko and Z. Olszak gave
a systematic study of almost cosymplectic (k, u, v)-spaces and almost cosymplectic
(=1, u,0)-spaces. G. Dileo and A. M. Pastore in [8] studied nullity distributions
on almost Kenmotsu manifolds. In recent years, many authors have turned to the
study of almost paracontact geometry due to an unexpected relationship between
contact (k, u1)-spaces and paracontact geometry that was found in [3].

The study of almost paracontact geometry was introduced by Kaneyuki and
Williams in [14] and then it was continued by many other authors. A systematic
study of almost paracontact metric manifolds was carried out in [16] by Zamkovoy.
In fact, such manifolds were studied earlier in [17],[18],[6],[15] and in these papers
the authors called such structures almost para-cohermitian. The curvature identi-
ties for different classes of almost paracontact metric manifolds were obtained in
[13],[10],[16].

In [2], a complete study of paracontact metric manifolds satisfying a certain
nullity condition has been carried out, later, in [9], the authors gave a complete
study of almost a-cosymplectic manifolds, where « is a function, basic properties
of such manifolds are obtained and general curvature identities are proved. It is
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also showed that almost a-para-Kenmotsu (k, i, v)-spaces have para-Kéhler leaves.
Motivated by [7], [8] and [9], the aim of this paper is devoted to investigate local
symmetry and nullity distributions on almost a-para-Kenmotsu manifolds.

This paper is organized in the following way. In section 2, some preliminaries
and properties about almost a-para-Kenmotsu manifolds are given. In section 3,
we characterize almost paracontact metric manifolds which are CR-integrable al-
most a-para-Kenmotsu through the existence of a suitable linear connection, and in
section 4, we investigate almost a-para-Kenmotsu manifolds which are locally sym-
metric and give some properties. In section 5, we study almost a-para-Kenmotsu
manifolds satisfying some nullity distributions and give some properties and classi-
fication theorems of them.

2. Almost a-para-Kenmotsu manifolds
Now, we recall some basic notions of almost paracontact manifold (see [9] ). A 2n+1-
dimensional smooth manifold M is said to have an almost paracontact structure
if it admits a (1, 1)-tensor field o, a vector field £ and a 1-form 7 satisfying the
following conditions:

(i) ¢* =Id—n®¢ 0 =1,

(i) the tensor field ¢ induces to an almost paracomplex structure on each fibre
of D =Ker(n), i.e. the £1—eigendistributions D* := D,(£1) of ¢ have equal
dimension n.

From the definition, it follows that p(£) = 0, noy = 0 and rank(p) = 2n. When
the tensor field N, := [, ¢] — 2dn ® £ vanishes identically the almost paracontact
manifold is said to be normal. If an almost paracontact manifold admits a pseudo-
Riemannian metric g such that

(2.1) 9(pX,pY) = —g(X,Y) +n(X)n(Y)

for any vector fields X,Y € I'(TM), then we say that (M?"*1 ¢ € n,9) is an
almost paracontact metric manifold. Notice that any such a pseudo-Riemannian
metric is necessarily of signature (n,n 4+ 1). For an almost paracontact metric
manifold, there always exists an orthogonal basis{¢, X1,...,X,,Y1,...,Y,} such
that g(X;, X;) = 0i5,9(Y3,Y;) = —d;; and Y; = X, for any ¢,j € {1,...,n}. Such
basis is called a p—basis. Moreover,we can define a skew-symmetric tensor field
2-form ® by ®(X,Y) := g(X, Y ),which is usually called the fundamental form.

Lemma 2.1. ([16]) For an almost paracontact structure (¢,&,1,g), the covariant
derivative Vi of ¢ with respect to the Levi-Civita connection V is given by

20((Vx @)Y, Z) = = 3d®(X, 9V, pZ) = 3d®(X, Y, Z) — gN (Y, Z), 0X)
+ N, Z)n(X) + 2dn(pY, X)n(Z) = 2dn(9 2, X)n(Y ).
Definition 2.1. Let (M?"*! o, £ 7, g) be an almost paracontact metric manifold,

if it satisfies
dn=0, d®=2anA?,
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where a=const.# 0, then M?"*! is called an almost a-para-Kenmotsu manifold.

Let M be an almost a-para-Kenmotsu manifold with structure (¢, &, 7, ¢g). Since the
1-form 7 is closed, then the distribution D = ker(n) is integrable, we have L¢n = 0,
and [X,¢] € D for any X € D. Then, using Lemma 2.1, the Levi-Civita connection
is given by

(22)  29((Vx@)Y,Z) = —2ag(n(Y)pX + g(X,9Y)E, Z) — gIN(Y, Z), X)

for any vector fields X,Y,Z € I'(T'M). If we replace X by &, it follows Vep = 0,
which implies that V¢£ =0 and V¢ X € D for any X € D.

The tensor fields h = %ngp and h' = h-  are symmetric operators anticommut-
ing with ¢ and hé =0 = hlﬁ, and we note that Vgh/ = 0 if and only if V¢h = 0.
Let Y = ¢ in (2.2) we obtain

(2.3) Vxé=ap?’X + phX

Proposition 2.1. An almost a-para-Kenmotsu manifold (M1 p,€ n,9) has
para-Kdhler leaves if and only if

(Vx@)Y = glapX + hX,Y) — n(Y)(apX + hX).

Theorem 2.1. ([9]) Let (M*" 1 p,&,n,g) be an almost a-para-Kenmotsu mani-
fold with para-Kdhler leaves. Then M*"*1 is para-Kenmotsu (o = 1) if and only if
VX§ = 902X.

Proposition 2.2. (/9]) Let (M?*"*1 ¢, €, m,9) be an almost a-para-Kenmotsu man-
ifold. Then, for any X,Y, Z € T(TM?>"*1),

(2.4) R(&, X)E = a®0* X + 2aphX — B X + ¢(Veh) X,
(25) S(RIE X)E+ oR(E X)6) = 026X — WX,

R(X,Y)¢ =an(X)(aY + ghY)
—an(Y)(aX + phX) + (Vxph)Y — (Vyph)X,
g(R(&, X)Y, Z) + g(R(§, X )oY, pZ) — g(R(§, ¢ X)pY, Z)
(2.7) — g(R(& 0 X)Y,0Z) = 2(V,x®)(Y, Z) + 2°n(Y)g(X, Z)
—20°0(2)g(X,Y) — 20n(Z)g(phX,Y) + 20m(Y )g(¢hX, Z).

Proposition 2.3. Let (M?"1 . & 1, g) be an almost a-para-Kenmotsu manifold.
Then, for any X,Y € T(TM?*"+1),

(2.8) gWN (pX,Y), ) = 0.
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Proof. By direct computations one has

IN(9X,Y),€) = g([9X, Y], €) = 9(Vx )Y = (Vore)pX, §),
which implies (2.8) by using (2.2) and [¢, X| = —2phX.

Theorem 2.2. ([9]) Let M?"*! be an almost a-para-Kenmotsu manifold with h =
0. Then, M?"*! is locally a warped product M X g2 Mo, where Ms is an almost
para-Kdhler manifold, My ia an open interval with coordinate t and f? = we?*t for
some positive constant.

3. CR-integrability

For an almost a-para-Kenmotsu manifold we have [X,Y] — [pX, Y] € D for any
X,Y € D, since dn = 0 and thus D is integrable. Hence, the structure (¢, &,7,9) is
CR-integrable if and only if N (X, Y) = [X, Y]+[pX, oY |—p[eX,Y]—¢[X, Y] =0
on D, that is to the request that the integral manifolds of D are para-Ké&hler.

Theorem 3.1. Let (M?"*1 o £ n,g) be an almost paracontact metric manifold.
Then, M?*"*1 is q CR-integrable almost a-para-Kenmotsu manifold if and only if
there exists a linear connection V such that

1) @<p:0, @g:O, @77:0.

2) the torsion T satisfies
a) T(X, Y) =0 for any X,Y € D,
b) T(¢,X)=X+h'X for any X € D,
¢) Te is selfadjoint.

Moreover, such a connection is uniquely determined by
(3.1) VxY =VxY +g(aX —h' X, V)¢ —n(Y)(aX — h' X),
V being the Levi-Civita connection.

Proof. Let M?" ! is a CR-integrable almost o-para-Kenmotsu manifold. We put
V =V + H, where the tensor field H of type (1,2) is defined by

H(X,Y)=g(aX —h X, Y)¢ —n(Y)(aX — b X).

Since H(X,¢Y) — p(H(X,Y)) = —(9(apX + hX,Y) — n(Y)(apX + hX)) =
—(Vx¢)Y, owing to Proposition 2.1. By direct calculations, we get g(H(X,Y), Z)+
g(H(X,Z),Y) = 0 and (Vxn)Y —n(H(X,Y)) = 0, moreover, we get Vo = 0,
Vg =0,V =0. Since T(X,Y) = n(X)(aY —h'Y) —n(Y)(aX —h' X) = 0 for any
X, Y € D, and T({“,X) =aX —h X for any X € D, hence Tg is selfadjoint. As for
the uniqueness and the vice versa part, the proof is similar with Theorem 3.1 in [8].
O
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Corollary 3.1. Let (M*"*1 ¢, £, n,g) be a CR-integrable almost a-para-Kenmotsu
manifold. Then MQN""’1 is a a-para-Kenmotsu manifold if and only if the linear con-
nection V verifies Te o p = p o Tg.

Proof. Since TrpX — ¢TeX = T(€,pX) — ¢T(£,X)

= —2hX for any X € D,
hence, Corollary 3.1 is easily followed by Theorem 3.1. O

4. Almost a-para-Kenmotsu manifolds and local symmetrys

In this section, we investigate almost a-para-Kenmotsu manifolds which are lo-
cally symmetric, that is, almost a-para-Kenmotsu manifolds satisfying the condi-
tion VR = 0, which is a natural generalization of almost a-para-Kenmotsu manifold
of constant curvature.

By similar proof as that of proposition 6 in [7], we get the following lemma

Lemma 4.1. Let M?"*! be a locally symmetric almost a-para-Kenmotsu mani-

fold. Then, V¢h = 0.

Theorem 4.1. Let (M1 o, & n, g) be a locally symmetric almost a-para-Kenmotsu
manifold. Then, M*" "1 is an a-para-Kenmotsu manifold if and only if h = 0.
Moreover, if any of the above equivalent conditions holds, M?"*! has constant sec-

tional curvature ¢ = —a?.

Proof. First, assuming that M?"*! is an a-para-Kenmotsu manifold, by Theorem
2.1. we have Vx¢ = ap?X, comparing with (2.3) it follows that A = 0 and by
(2.6), we easily obtain R(X,Y)¢ = —a?(n(Y)X — n(X)Y), let Vz acting on the
above equation and by the local symmetry, we have R(X,Y)Z = —a?(g(Y, Z)X —
g9(X,Z)Y), it follows then M is of constant sectional curvature ¢ = —a?. Now,
supposing M’ is the integral manifold of D and V'’ is the corresponding connection
on M'. Then VxY = V5Y +h(X,Y), then h(X,Y) = g(VxY, )¢ = —ag(X,Y)E,
this implies H = —af thus A(X,Y) = g(X,Y)H, and M’ is a totally umbilical
submanifold of M?"*+1. What is more, it is not difficult to see that R'(X,Y) =
R(X,Y)+a?(g(Y,Z)X —g(X,Z)Y) = 0, we know that M’ is flat and the sectional
curvature of M’ vanishes. This means that M’ is a flat para-Kahler manifold. For
another part of the proof, noticing that Vz¢ = ap?Z = aZ if and only if h = 0,
by Theorem 2.1 we prove that M?"*! is an a-para-Kenmotsu manifold. At last,
it is obvious from the proof of the equivalence that if any of the above equivalent
conditions holds, M?"*! has constant sectional curvature ¢ = —a?. Thus, we

complete the proof. O

Theorem 4.2. An almost a-para-Kenmotsu manifold of constant curvature c is

an a-para-Kenmotsu manifold and ¢ = —a?.

Proof. Supposing M?2"*+! is an almost a-para-Kenmotsu manifold of constant
sectional curvature c, it is obvious that

(4.1) R(X,Y)Z = c(n(Y)X — n(X)Y).
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Vw acting on (4.1) we get Vi R = 0, thus, M?"*! is locally symmetric, by Lemma
4.1, we get Veh = 0. Comparing (2.6) with (4.1), we obtain

(c+a®) (V)X =n(X)Y) +an(Y)phX —n(X)phY) — (Vxeh)Y +(Vyeh)X = 0.
Choosing X = ¢ and Y € D and by Lemma 4.1, we get
(4.2) —(c4 a?)Y — 2aphY + h2X = 0.

Now, if Y is an eigenvector of h with eigenvalue A, then (4.2) becomes —(c +
a?)Y —2alpY + 22X = 0. We get A = 0 and ¢ = —a? since Y and Y are linearly

independent. Hence h = 0 and ¢ = —a?, by Theorem 4.1, we know M?2"*+! is an
a-para-Kenmotsu manifold of constant curvature ¢ = —a?. Thus, we complete the
proof. O

5. Almost a-para-Kenmotsu manifolds and nullity distributions

In this section, we study almost a-para-Kenmotsu manifolds under the assumption
that ¢ belongs to the (k, p)-nullity distribution and (k, 1) -nullity distribution.

First, we consider the (x,p)-nullity distribution. if ¢ belongs to the (k,u)-
nullity distribution, (x, ) € R?, denoted by A (k, u),which is given by putting for
each p € M?n+1,

Ny (k1) = {Z € D(T, M) R(X, Y )2
— K(g(Y, 2)X — g(X. Z)Y) + p(g(Y, Z)hX — g(X, Z)hY)}.

So, if £ € N(k, ), that is, for any X,Ye I'(TM?"+1)
R(X,Y)§ = s(n(Y)X = n(X)Y) + p(n(Y)hX — n(X)hY).

Proposition 5.1. ([9]) Let (M ¢, £, n,g) be an almost a-para-Kenmotsu (5, i)-
space. Then the following identities hold:

(5.1) X = (k+ a?)p?X,
(5.2) R(& X)Y = r(9(X,Y)E —n(Y)X) + u(g9(X, hY)E —n(Y)hX),
(5.3) QE = —2nk¢,

(5.4) (Vxp)Y = glapX + hX,Y) —n(Y)(apX + hX).

Theorem 5.1. Let (M1 p. € n,9) be an almost a-para-Kenmotsu manifold.
Let us suppose that & € N(k,u). Then, k = —1,h = 0 and M** " is locally a
warped product of an almost paraKdahler manifold and an open interval. Moreover,
assuming the local symmetry, M2t is locally isometric to the hyperbolic space

H?" Y (—a?) of constant curvature —a?.
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Proof. ¢ € N(k, ) means that R(X, )¢ = kX + phX, for any unit vector field X
orthogonal to £&. Combining with (2.5), it follows that h2X = (a? + k) X. Now, if
X is a unit eigenvector of h with eigenvalue A, we get A2 = a® + k > 0. It follows
that k > —a? and Spec(h) = {0,\, —A}. Computing R(X,&)¢ by means of (2.6),
we easily obtain

R(X, )€ = —a’X — 200X + N2 X — \pVeX + phVeX,
thus we have
(K 4+ M+ a? = M)X + 200X + AoV X — ohVe X =0,

and taking the scalar product with X, we obtain aX = 0. Since a = const. # 0, it
follows that A = 0,h = 0,k = —a? and thus K(X,§) = —a?.

Being h = 0, Theorem 2.2 ensures that M?"+! is locally a warped product of an
almost para-Kahler manifold and an open interval. Furthermore, if M2"*! is locally
symmetric, by Theorem 4.1, it is an a-para-Kenmotsu manifold locally isometric to
H?"t1(—a?). Thus, we complete the proof. O
From Theorem 5.1 we know for almost a-para-Kenmotsu manifold (M2 + p, & 1, g),
if £ € N(k,u), then Kk = —1,h = 0 and M?"*! is locally a warped product of an
almost para-Kéhler manifold and an open interval. Therefore, we consider the
(k, p)'-nullity distribution, (k,u)’ € R?, as the distribution N (k, ) is given by
putting for each p € M?"+1,

Nyl ) = (Z € T(T,M* ) |R(X,Y)Z

(55) — w(g(Y, 2)X — g(X, Z)Y) + plg(Y, 2N X — g(X, Z)H'Y)}.

So, if £ € N(k, ), that is, for any X,Ye I'(TM?"+1)

(5.6) R(X,Y)E = k(n(Y)X —n(X)Y) + pu(n(Y)h'X —n(X)R'Y).

Theorem 5.2. Let (M?" ¢ £ n,9) be an almost a-para-Kenmotsu manifold
such that & € N(k,u) and ' # 0. Then, k < —a?,u = 2a and Spec(h’) =
{0,\, =}, with 0 as simple eigenvalue and X = \/—(a? + k). The distributions
[E]@ [N and [§] @ [—A] are integrable with totally geodesic leaves. The distributions
[A]" and [—A]" are integrable with totally umbilical leaves.

Proof. Let X be a unit vector field orthogonal to &, we have R(X, £){ = kX +ph'X
and if we suppose X € [\, since h'?> = —h?, combing with (2.5), we get \2 =
—(k+a?) >0, then K < —a?. Spec(h’) = {0,\,—\}. Using (2.6) to compute
R(X, &), we have

(5.7) (k 4+ M+ a? = 20N+ X)X — AV X + W' VX =0.

let (5.7) take the scalar product with X and ¢ X respectively, we get A(u—2a) =0
and A\g(VeX,pX) = 0. If A = 0, then b/ = 0 or equivalently h = 0, N(k,pu) =
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N(k,p)" and Theorem 5.1 applies. Therefore, assuming A # 0, it follows that
k < —a? and p = 2a, g(VeX,pX) = 0 for any unit X € [A]. Let (5.7) take the
scalar product with any Y € [=A]’, we get g(VeX,Y) = 0 and thus VX € [)].
Analogously VY € [-A]’ and we obtain V¢h' = 0. Comparing (5.6) with (2.6) for
any X,Y € D, we have

(5.8) (Vxh')Y — (Vyh)X = 0.

If X € [\, by (2.3) we have Vx& = aX — X = (o« — M) X € [\, and since
Veh! =0, we easily get VeX € [A]'. By (5.8) we have

(59) 0= (Vxh/)Z — (Vzh/)X = -A\VxZ — h/VXZ —AVzX + h/VZX.

let (5.9) take the scalar product with Y € [-)), we get ¢(VzX,Y) = 0, therefore
VzX € [N since g(VxZ,€) =0. For any X, W € [\, Y, Z € [-)]' it follows that
VxW e [§]® [N since g(VxW, &) = (A—a)g(X,W). Hence, we get g([X, W],§) =
g(VxW-VwX,&) =0and g([X,W],Y) = g(VxW-VyX,Y) =0, thus [X, W] €
[A]'. Similarly, it holds [Y, Z] € [—=A]’. Therefore, the distributions [£] & [A]" ,[¢] &
[—A], [A] and [—)] are integrable. It is easy to see that the distributions [¢] & [A]
and [¢] @ [-)]) are totally geodesic leaves. Now we prove the distribution [A]" is
totally umbilical, we choose a local orthonormal frame {&,e;, pe;}, with e; € [A].
The second fundamental form h(e;, e;) = g(Ve,e5,8)€ = (A — a)d;;€, so the mean
curvature vector field is H = (A — a), hence h(X, W) = g(X,W)H and thus [\
is totally umbilical. Similarly, we can get [—A]’ is also totally umbilical with the
mean curvature vector field is H' = (A + «)§ and W/(Y, Z) = ¢g(Y, Z)H'. Thus, we
complete the proof. O

Theorem 5.3. Let (M*" 1 p,&,n,9) be an almost a-para-Kenmotsu manifold
such that & € N(k,u) and h' # 0. Then, the integral manifolds of D are para-
Kahler manifolds.

Proof. For any X,Y,Z € D, if £ € N(k, ), then R(X,Y)¢ =0, (2.7) in Proposi-
tion 2.2 gives that (Vpx®)(Y, Z) = 0. Replacing X by h X, we get (V5,2x®)(Y, Z) =
0 or equivalently, —\?(Vx®)(Y, Z) = 0 since h2X = —h"?X = —A\2X if X is a unit
eigenvector of h’/ with eigenvalue . Being A # 0, we get (Vx®)(Y,Z) = 0. Us-
ing (2.2) we obtain g(N (Y, Z),pX) = 0, which together with (2.8) in Proposition
2.3 gives N(Y,Z) = 0 for any Y, Z € D, therefore the integral manifolds of D are
para-Kahler. Thus, we complete the proof. O

Corollary 5.1. Any almost a-para-Kenmotsu manifold such that £ € N(k,pn),
Kk < —a?, is a CR-manifold.

Theorem 5.4. Let (M*"H1 . & 1, g) be a locally symmetric almost a-para-Kenmotsu
manifold such that ¢ € N'(k,u) and b’ # 0. Then, M*"*1 is locally isometric to
H" ™ (—(\—a)?) x R".
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Proof. As proved in Theorem 5.2, the distributions [£] @ [A]" and [£] ® [-)A]" are
integrable with totally geodesic leaves and the distributions [A]’ and [—A]’ are in-
tegrable with totally umbilical leaves. It follows that M?2"+! is locally isometric

to the product of an integral manifold M of [¢] @ [\ and an integral man-
ifold M3 of [—)]'. Therefore, we can choose coordinates (u’,...,u?") such that
525 € 1€, Frs- s 5o € [N and 52841, 5% € [-A]. Now, we set X; = 52

for any ¢ € {1,...,n}, so that the distribution [}’ is spanned by the vector fields
eX1, ..., 0X. it is easy to see that X; € [\’ is projectable and pX; € [—)] is
vertical, then [X;, X ;] is vertical by [1], hence [X;, ¢X ;] € [-A]". Taking the scalar
product with any Z € [A]’, since Vx,¢X; € [=)], we get g(V,x,Xi, Z) = 0 and
then V,x, X; = 0. Applying (V,x @)oY — (Vx @)Y = a(n(Y)eX +29(X, oY )E) +

n(Y)hX (appeared in [9]), we have (Vx,¢)X; + ¢(Vyx,9X;) = 0, which implies
(Vx,0)X; = 0, Vyx,0X; = 0, since the two part belong to [—A]" and [A]’ re-
spectlvely Vex,9X; = 0 means that M3 of [-A]" is flat. Now we compute the
curvature of M. Applying ¢ to (Vx, )X, = 0 gives

VXin - QDVXi(pXj = ()\ - Oé)g(Xi, Xj)f
Derivating with respect to X yields:
Vx,.Vx, Xj = (Vx,0)(Vx, 0X;) — oV, Vx,0X;
= (A=) Xi(9(Xi, X;))€ = (A = a)?g(Xi, X;) X

taking the scalar product with X; on both sides of the above equality and taking
into account g((Vx,¢)(Vx,vX;), X1) = —9(Vx,9X;, (Vx,¢)Xi) =0, we obtain

9(Vx.Vx. X, X1) + 9(Vx, Vx,0X;, 0X1) = = (A — a)?g(Xi, X;)9(X, X0).
Interchanging ¢ and k, subtracting and being [X;, Xi] = 0 we have

g(R(Xk, Xi) X, Xi) + g(R(Xk, Xi)p X, 0 X1)
= —(A—a)?9(X;, X;)9(Xp, X1) + (A — a)?9(Xn, X;)9(X;, X0).

Since Vyx,9X; = 0 and [pX;,9X;] = 0, by a straightforward calculation we
obtain
9(R(X, Xi)pXj, 0X1) = g(R(p X, 0 X1) Xy, Xi) =0,

and thus
9(R(Xn, X0) X5, X1) = —(A — ) [9(Xi, X;)g(Xn, X1) — 9(Xn, X;5)9(Xs, X0)].

Moreover, since R(X,Y){ = 0 for any X,Y € D, we get g(R(X;, X;){, Xy) =
0. By (2.4) in Proposition 2.2, and V¢ch = 0 because of the symmetry, we get
g(R(X;, )& X;) = —(N — @)?g(X;, X;). Therefore, we conclude that the integral
manifold M of [¢] @ [\ is a space of constant curvature —(\ — a)?. Thus, we
complete the proof. O
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Lemma 5.1. Let (M*"* ¢, £, n,9) be an almost a-para-Kenmotsu manifold such
that € € N(k,2a)" and h' #0. Then, for any X,Y € T(TM?*"+1),

(5.10) (Vxh)Y = g(h*?X — ab’ X, V)¢ +n(Y) (WX — ah'X).

Proof. We choose a local orthonormal frame {§, e;, pe;} with e; € [A].

1) If X,Y € [\, we know that VxY € [{] @ [A]' from Theorem 5.2. It is easy
to get

VxY =g(VxY,e)ei + g(VxY,€)E = (A — a)g(X, V) + g(VxY, ei)e,
and thus

(VxB)Y = Vxh'Y —'VxY = AVxY — Ag(VxY,e)e; = A(A — a)g(X, Y)E.

2)If X,Y € [-)], we know that VxY € [{]®[—A]’ from Theorem 5.2. Similarly
we have

VxY = g(VxY,pei)pe; + g(VxY, ) = —(A+ a)g(X, Y)E + g(VxY, pe;)pei,

and
(Vxh)Y = XA+ a)g(X,Y)E.

NIUX e[N,Y € [-A, since g(VxY,€) = (A —a)g(X,Y) = 0, and for any
Z e [N, 9(VxY,Z) = Xg(Y,Z) — g(Y,VxZ) = 0, thus we get VxY € [-)]
and (Vxh)Y = Vxh'Y — I'VxY = 0, therefore we have (Vyh')X = 0 since
(Vx )Y — (Vyh')X = 0.

Therefore, for any X € T(TM?"*1), we write X = X\ + X_ + n(X)&, with
Xy € [\ and X_) € [-\]/, since V¢h/ =0, we get

(Vxh)Y = (Vx,W)Yx +n(Y)(Vx, W)E+ (Vx_ h)Y_x +n(Y)(Vx_ 1')E
= AMA—a)g(X\, Y)E+ AN —a)n(Y) X\ + XA+ a)g(X_»x, Y_»)E
FAA+ a)n(Y)X_»
= —aMg(Xa, Ya) — g(X-x, You) 36+ XH{g(Xa, Ya) + (X -a, Y-on) }E
(V) (—adXy + adX_x + A2 X\ — A2X_))
= g(h*X —al/ X, Y)E+n(Y)(h*X — ol X).

Lemma 5.2. Let (M*"*1 ¢, £ n,9) be an almost a-para-Kenmotsu manifold such
that £ € N'(k,2a)" and b’ # 0. Then, for any X,Y € D,

R(X, Y)W Z— W R(X,Y)Z=(k+202)[g(Y, Z)W' X—g(X, Z)NY—g(W'Y, Z)X +g(W X, Z)Y].
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Proof. We know from Lemma 5.1 that (Vxh')Y = g(h?>X — ah/X,Y)¢ for any
X,Y € D, by direct calculation we obtain

R(X, Y)W Z —NR(X,Y)Z

=VxVyh'Z —NVyVxh'Z -V xy|i'Z - NR(X,Y)Z

= g(Vxh?)Y — (Vy )X — a((Vxh)Y — (Vyh)X), Z) + g(h*Y —ah'Y, Z)V x ¢
—g(h*X —ah' X, Z)Vy €& —g(Vy&, Z) (WX —ah/ X) 4+ g(Vx&, Z) (WY —ah'Y).

It follows that for any X,Y € D, we know from h'2X = —h?X = —(k + a?)X,
and (Vxh?)Y = —(k + a?)n(VxY)E, hence, (Vxh'?)Y — (Vyh'?)X = 0 since D

is integrable, and from Lemma 5.1, we get (Vxh')Y — (Vyh')X = 0. Lemma 5.2 is
followed by direct computation. Thus, we complete the proof. O

Lemma 5.3. Let (M*"*1 ¢, £ n,9) be an almost a-para-Kenmotsu manifold such
that £ € N'(k,2a)" and b’ # 0. Then, for any X,Y,Z € D, we have

R(X,Y)pZ — oR(X,Y)Z
= glaX —NWX,0Z)(aY —hY) —glaX — WX, Z)(apY — oh'Y)
+g(aY — W'Y, Z)(apX — ph'X) — g(aY — W'Y, 0Z)(aX — W X).

Proof. Since the Weingarten operator for an integral manifold M’ of D is given
by
AX = -Vxé=—(aX — IVX),

by Theorem 2.3 in [4] we get the Guass equation
R(X,Y)Z = R(X,Y)Z + glaX —W'X, Z)(@Y — K'Y ) —g(aY — B'Y, Z)(aX — I'X).

By Theorem 5.3, the integral manifolds of D are para-Kéahler manifolds, and from
Lemma 10.1 of [4], we know R'(X,Y)¢Z — pR'(X,Y)Z = 0. Combining with the
above two equations, we get the required formula for R and ¢. Thus, we complete
the proof. O

Proposition 5.2. Let (M?"*t! . £,m,9) be an almost a-para-Kenmotsu mani-
fold such that ¢ € N(k,2a) and b’ # 0. Then, for any Xx,Yx,Zy € [\ and
X_\,Y_x,Z_x €[], the curvature tensor R satisfies:

R(X\,Y\)Z_» =0,
R(X_»,Y_))Zy =0,

R(Xx,Y_2)Zx = (k + 202)g(Xx, Z))Y_2,
R(Xx,Y_\)Z-» = —(k+20%)g(Y_x, Z_») X,
R(Xx,Y2\)Zx = (k + 200)[g(Yx, Zx) Xx — g(X, Zx) Y2,
R(X_,Y_)Z_x = (k= 2a\)[g(Y_x, Z_2)X_x — g(X_x, Z_»)Y_,].
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Proof. For any X € [\, and Y, Z € [-)]’, by Lemma 5.2 we have
CAR(X,Y)Z — WR(X,Y)Z = 2\(r + 202)g(Y, Z) X.
Taking the scalar product with W € [A]’, we obtain
(5.11) g(R(X,Y)Z,W) = —(k+2a)g(Y, Z)g(X,W).

Lemma 5.2 implies that R(X,Y)Z € [A] for any X,Y,Z € [\ and R(X,Y)Z €
[-A] for any XY, Z € [-)]'. Now, in order to compute R(X, Y))Z_», we consider
alocal orthonormal frame {¢, e;, pe; }, with e; € [A)’. Condition £ € N(k, 2«)’ means
that g(R(Xx,Y)\)Z_x,&) = g(R(Xx,Yx)E, Z_x) = 0, and since R(Xx,Yx)e; € [N,
thus g(R(Xx,Yx)Z_x,e;) = 0. Using the first Bianchi identity and (5.11), we have

g(R(X)\a Y)\)Z—)\u Spei) = g(R(Y>w Z_)\)QOGi, X)\) - g(R(X)\a Z_)‘)speiu Y)\)

= —(k+20%)[g(Z_x, pe1)g(Xx, Ya) — g(Z_x, pei)g(Xx, Y2)]
—0,

so that R(X)\, Y)\)Z,)\: 0. The terms R(X,)\, Y,)\)Z)\, R(X)\, Y,)\)Z)\ and R(X)\, Y,)\)Z,)\
are computed in a similar manner. By Lemma 5.3, using R(X,,Y))Z_\ = 0, we
get

R(X5, YA)pZx = —(a = N)*[9(Ya, 9Z-2) Xx — g(Xx, pZ-2)Y)]

Replacing Z_ ) by ¢Zy € [\, and since —(a — A\)? = k + 2\, we have
R(X)\, Y)\)Zk = R(X)\, Y)\)(p((pZA) = (K + 2a/\)[g(Y,\, ZA)XX - g(X)\, Z)\)Yk].

In the same manner, we obtain R(X_»,Y_))Z_x = (k — 2a\)[g(Y_x, Z_2)X_x —
9(X_x,Z_»)Y_,]. Thus, we complete the proof. O

Proposition 5.3. Let (M1 ¢ £,n,9) be an almost a-para-Kenmotsu manifold
such that £ € N'(k,2a) and i/ # 0. Then,we have

1) K(X,8) =k+2a\ if X € [\;
K(X,8) =k —2a\, if X € [N}

2) K(X,Y) = &+ 20\, if X,Y € \;
K(X,)Y)=krk—-2a\ if X,)Y € [-)];
K(X,Y) = —(k+2a2), ifX € [\, Y € [

3) r = 8ain — 4a*n? — 2kn.

Proof. The proof for the sectional curvature is easily followed by Proposition 5.2.
In order to compute the scalar curvature, we choose a orthonormal frame {&, e;, e; }
with e; € [A]', by direct calculations we have

n n

Ric(év 5) = Z R(é, €i, €4, 5) - Z R(f, Pei, PEi, 5) = 405)‘715

i=1 =1
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Ric(e’i;e’i) = ZR(eivgagvei) + Z R(eivejaej;ei) - ZR(e’h(peja@ejvei)
i=1 j#i=1 j=1

= n(k+2a)) +n(k + 2a?),

Ric(pei, pe;) = (k — 2a\)(2 — n) + n(k + 2a?),

and it is easy to get the scalar curvature r = 8adn — 4a’n? —2kn. O

Proposition 5.4. Let (M1 ¢ £,n,g) be an almost a-para-Kenmotsu manifold
such that € € N'(k,2a)" and b’ # 0. Then, M*"*1 is locally isometric to the warped
products

S"(k +2a)) xf R", or B""'(k—2a)\) xp R",

where ST (k+2a\) is a space of constant positive curvature k+2a\, BT (k—2a\)
is a space of constant negative curvature k — 20\, f = ce~ Mt f = Jela=Nt
with ¢, positive constants.

Proof. By Theorem 5.2, we get that the distributions [¢] & [A]" and [¢] & [ )]’ are
integrable with totally geodesic leaves, the distributions [A]" and [— )] are integrable
with totally umbilical leaves. First, we consider that M?2"*! is locally a warped
product S x; F such that T'S = [¢] @ [\ and TF = [-)]'. Now, we compute
the function f. We have denoted by g and § the pseudo-Riemannian metrics on S
and F, respectively, such that the warped metric is given by § + f2§. Then, the
projection 7 : S X s F' — S is a submersion with horizontal distribution [{]® [\]" and
vertical distribution [—A]’. From Theorem 5.2 we know that the mean curvature

vector field for the immersed submanifold (F, §) is H' = (A + «)§. By Proposition
9(v,2)

4.1 in [4], we get for any Y, Z € [-A]', nor(Vy Z) = h(Y,Z) = =55 grad,f.
And since h(Y,Z) = g(Y,Z)H', we get —(\ + «)f§ = gradyf. We choose local
coordinates {t,z',...,2"} on B such that £ = % and % € [\ for any ¢ =

1,...,n. After direct computation we get f = ce~ A+t ¢ > 0. Since £ € N (k,2a)’,
we have R(X,Y)¢ = 0, and R(X,£)¢ = (k + 2a)0)X, also by £ € N(k,2a)’, we
get R(&, X)Y = k(g(X,Y)¢ —n(Y)X) + 2a(g(W X, Y)§ — n(Y) hX), thus, we get
R, X)Y = (k+ 2aM)g(X,Y)&. Applying Proposition 5.2, we get R(X,Y)Z =
(k4 2aM)[g(Y, Z2) X — g(X, Z)Y], hence, we conclude that S is a space of constant
curvature £-+2aX > 0. Next, we compute the curvature R of (F, §), by Proposition
4.2 in [4], for any U, V,W € [-)]', it holds

RF(V,W)U = R(V, W)U — w

Since gradf = —(A\+a) f€, we get that g(gradf, gradf) = (A\+a)?f? = (2a\—k) f?,
and by Proposition 5.2, we get R(V, W)U = (2aX — ){g(V, U)W — g(W,U)V}.
Then, RF(V,W)U = 0, and thus the fibers of the warped product are flat spaces.
Similar discussions for horizontal distribution [¢]€[—A]" and vertical distribution
[A]’. In this case, the mean curvature vector field for the immersed submanifold

{g(V, U)W —g(W,U)V}.
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s H = (A — a)¢ and computing the warping function, we obtain f/ =

el Nt ¢ > 0. Moreover, we can also prove that the base manifold of the warped
product is a space of constant curvature k — 2aX < 0 and the fibers are flat spaces.
Thus, we complete the proof. O
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