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Abstract. In this paper we tried to find parametric presentation of a surface family
with common line of curvature in 3-dimensional Galilean space. We have obtained
necessary and sufficient conditions for the curve to be a common line of curvature
on this surface. We have stated examples to visualize our results and also, we have
examined a torsion free curve.
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1. Introduction

The surface family (or pencil surface) is a notion in differential geometry applied
in engineering science such as computer, manufacturing, mechanical engineering
[25]. In 2004 Wang et al. [25] gave the definition of a surface family. Their
paper is a reverse engineering problem to find a spatial curve to characterize the
surface and also the paper contains conditions for a curve to be a geodesic on this
surface. Besides, their work could be seen as an example of industrial mathematics.
Kasap et al. [10] generalized this study by assumption of more general marching-
scale functions. In [13] Li et al studied the approximation minimal surface with
geodesics by using Dirichlet function and they minimized the area of surface family
by using Dirichlet approach. This method can be used for obtaining minimal cost
of material while building surfaces. The surface family notion has been studied by
many researchers [1, 2, 9, 10].

There are many special curves on a surface such as geodesics. One of them is
the line of curvature. A line of curvature is a curve on a surface whose tangent
line at every point is aligned along a principal curvature direction. In [4] Che at
al. analysed and computed these curves which are defined on implicit surface and
worked on differential geometry of them. Same authors derived a necessary and
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sufficient condition for a given curve to be the line of curvature on the surface.
Surface family with common line of curvature has been studied in [7, 8, 12].

Galileo geometry is a type of non-Euclidean geometry based on Galileo principle
of relativity [20] and it has many important applications in physics [14]. In the last
decades, these kind of spaces have become interesting by geometers because of their
significant properties as a non-Euclidean geometry. Curves and surfaces in Galilean
geometry has been studied by many authors [3, 5, 6, 15–17, 21]. Surfaces family,
especially, in Galilean space have been studied in [22–24].

In this study, we examined a surface family with common line of curvature in
3− dimensional Galilean space. We obtain necessary and sufficient conditions for
the curve to be a line of curvature on the surface. We get some results for a torsion
free curve. Finally, we present examples and plot their graphs.

2. Preliminaries

A. Cayley and F. Klein discovered that both Euclidean and non-Euclidean
geometries can be considered as mathematical structures living inside projective-
metric spaces. Their contribution to geometry is called Cayley-Klein geometry
and non- Euclidean geometries could be classified by this geometry. In fact, the
3-dimensional Galilean geometry is also a Cayley-Klein space [20].

2.1. Basic Facts in 3D Galilean Space

In this subsection, we recall some fundamental facts from Galilean geometry. For
details see [18,20].

A vector ω = (ω1, ω2, ω3) in 3-dimensional Galilean space G3 is called non-
isotropic if ω1 6= 0, otherwise it is called isotropic.

Let ω = (ω1, ω2, ω3) and η = (η1, η2, η3) be two vectors in Galilean space G3.
The inner product and the vector product of ω and η in G3 are defined by

〈ω, η〉 =

{
ω1η1, if ω1 6= 0 or η1 6= 0

ω2η2 + ω3η3 if ω1 = 0 and η1 = 0

and

ω × η =



∣∣∣∣∣∣
e1 e2 e3

0 ω2 ω3

0 η2 η3

∣∣∣∣∣∣ if ω1 = η1 = 0,

∣∣∣∣∣∣
0 e2 e3

ω1 ω2 ω3

η1 η2 η3

∣∣∣∣∣∣ if ω1 6= 0 or η1 6= 0.

respectively.
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Let γ : I → G3, I ⊂ R be a curve in G3 given by γ(φ) = (δ(φ), ζ(φ), ψ(φ)).
Then the curvature κ1 and torsion κ2 of γ(φ) is obtained as

κ1(φ) = ‖γ′′(φ)‖, κ2(φ) =
1

κ2
1(φ)

det(γ′(φ), γ′′(φ), γ′′′(φ)), κ1(φ) 6= 0(2.1)

where ‖, ‖ is the Galilean norm. Thus, we have Frenet formulas of γ(φ) by

(2.2)

 V1
′ = κ1V2,

V2
′ = κ2V3,

V3
′ = −κ2V2,

where V1, V2 and V3 are tangent, normal and binormal vector fields of γ(φ), respectively.

If δ′(φ) = 0, then γ(φ) is called a non-admissible curve, otherwise it is called an
admissible curve. Let γ(φ) be an admissible curve in G3, given by

(2.3) γ(φ) = (φ, ζ(φ), ψ(φ)).

Then κ1 and κ2 can be obtained as

κ1(φ) =
√
ζ ′′(φ)2 + ψ′′(φ)2, κ2(φ) =

1

(κ1(φ))2
det(γ′(φ), γ′′(φ), γ′′′(φ))

and the Frenet vectors are given by
V1(φ) = γ′(φ) = (1, ζ ′(φ), ψ′(φ)),

V2(φ) = γ′′(φ)
κ1(φ) = 1

κ1(φ) (0, ζ ′′(φ), ψ′′(φ)),

V3(φ) = 1
κ1(φ) (0,−ψ′′(φ), ζ ′′(φ)).

2.2. Some facts on Surface Theory in 3D Galilean Space

A surface in G3 is a parametric mapping from a region R in R2 to G3 such as

S : R ⊂ R2 → G3, S (φ, ϕ) = (S1 (φ, ϕ) , S2 (φ, ϕ) , S3 (φ, ϕ))(2.4)

where S1, S2 and S3 are functions in C1(G3,R). The normal vector field of S is
given by

(2.5) N (φ, ϕ) = Sφ × Sϕ.

where Sφ = ∂S
∂φ and Sϕ = ∂S

∂ϕ are partial derivatives of S.

Every surface has its own intrinsic geometry which has been known since Gauss.
So, curves on a surface have geometric properties independent from the ambient
space. We have a classification for curves on a surface by following definition.

Definition 2.1. Let γ(φ) be a curve on a surface S in 3-dimensional Galilean
space G3. Then γ(φ) is
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1. a line of curvature, if the tangent vector at any point is in the direction of the
principal curvature.

2. a geodesic if the normal vector field V2 (φ) of the curve γ(φ) and the normal
N (φ, ϕ0) are parallel.

3. an asymptotic if the the binormal V3 (φ) of γ(φ) and the normal N (φ, ϕ0) of
the surface at any point on γ(φ), are parallel to each other.

On the other hand, if γ(φ) is both an asymptotic and a parametric (isoparametric)
curve, then it is called isoasymptotic; if it is both an geodesic and a parametric
(isoparametric) curve , then it is called isogeodesic.

The well-known theorem below gives the conditions for any curve on a surface
S to be the line of curvature. For proof and details, we refer to reader [19].

Theorem 2.1. (Monge’s Theorem) A necessary and sufficient condition for a
curve on a surface to be a line of curvature is that the surface normals along the
curve form a developable surface [19].

Let S(φ, ϕ) be a parametric surface in G3 is defined as follow;

S(φ, ϕ) = γ(φ) + [λ1(φ, ϕ)V1(φ) + λ2(φ, ϕ)V2(φ) + λ3(φ, ϕ)V3(φ)](2.6)

for (φ, ϕ) ∈ R = [I1, I2] × [I3, I4], where λ1(φ, ϕ), λ2(φ, ϕ) and λ3(φ, ϕ) are the
values of the marching-scale functions in C1(S,R) and {V1(φ), V2(φ), V3(φ)} is the
Frenet frame of γ(φ). The surface (2.6) is called surface family with a common
curve γ(φ).

A ruled surface formed by the surface normals can be given by

Ψ(φ, ϕ) = γ(φ) + ϕn,

where ϕ is the distance of a point on Ψ(φ, ϕ) to point γ(φ) and n = cos θV2(φ) +
sin θV3(φ), the vector functions V2(φ), V3(φ) are the principal normal and the
binormal of γ(φ), respectively. The surface Ψ(φ, ϕ) is called a normal surface [11].

Thus, by Monge’s Theorem, γ(φ) is the line of curvature if and only if Ψ(φ, ϕ)
is developable and n is parallel to the normal vector field N of the surface (2.6).
Also by classical differential geometry, it is well known that a surface is developable
if and only if det(γ′(φ), n, n′) = 0 (see [19]).

Hence from (2.2), we get∣∣∣∣∣∣
1 0 0
0 cos θ sin θ
0 −θ′ sin θ − κ2 sin θ κ2 cos θ + θ′ cos θ

∣∣∣∣∣∣ = 0(2.7)

and so
θ′ + κ2 = 0.
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This means that

(2.8) θ = −
φ∫

φ0

κ2dφ+ θ0

where φ0 is the starting value of arc length and θ0 = θ0(φ0). In this paper, we
assume φ0 = 0. Then by substituting θ in n and with parallelity of n to N , we
obtain the result that γ(φ) is the line of curvature.

3. Surfaces with common line of curvature in 3D Galilean space G3

In this section, we work on surfaces family in Galilean 3-space G3. We give if and
only if conditions for a unit speed non-isotropic curve, being a line of curvature on a
surface family. Furthermore, we give some examples and we present their graphics.

Theorem 3.1. The curve γ(φ) = (φ, ζ(φ), ψ(φ)) is a line of curvature on the
surface defined in (2.6) if and only if

(3.1)

{
λ1(φ, ϕ0) = λ2(φ, ϕ0) = λ3(φ, ϕ0) = 0,

−∂λ3(φ,ϕ0)
∂ϕ = µ(φ) cos θ, ∂λ2(φ,ϕ0)

∂ϕ = µ(φ) sin θ

where (φ, ϕ) ∈ R = [I1, I2] × [I3, I4], µ(φ) 6= 0. The functions θ(φ) and µ(φ) are
called controlling functions.

Proof. Let S(φ, ϕ) be a surface in G3 given by (2.6). For a curve γ(φ) on S(φ, ϕ)
which is isoparametric, we have a parameter ϕ0 ∈ [I3, I4] such that γ(φ) = S (φ, ϕ0)
with conditions

λ1(φ, ϕ0) = λ2(φ, ϕ0) = λ3(φ, ϕ0) = 0, (φ, ϕ0) ∈ R.

By direct computations, we have

∂S(φ, ϕ)

∂φ
=

[
1 +

∂λ1(φ, ϕ)

∂φ

]
V1(φ)

+

[
κ1λ1(φ, ϕ) +

∂λ2(φ, ϕ)

∂φ
− κ2λ3(φ, ϕ)

]
V2(φ)

+

[
κ2λ2(φ, ϕ) +

∂λ3(φ, ϕ)

∂φ

]
V3(φ)

and

∂S(φ, ϕ)

∂ϕ
=
∂λ1(φ, ϕ)

∂ϕ
V1(φ) +

∂λ2(φ, ϕ)

∂ϕ
V2(φ) +

∂λ3(φ, ϕ)

∂ϕ
V3(φ).
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Thus, we get the normal vector of surface by

N (φ, ϕ) =
∂S(φ, ϕ)

∂φ
× ∂S(φ, ϕ)

∂ϕ
.(3.2)

So, for ϕ0 ∈ [I3, I4], we have

N (φ, ϕ0) = N1(φ, ϕ0)V1(φ) +N2(φ, ϕ0)V2(φ) +N3(φ, ϕ0)V3(φ)

where

N1(φ, ϕ0) = 0

N2(φ, ϕ0) =
∂λ1(φ, ϕ0)

∂ϕ
(κ2λ2(φ, ϕ0) +

∂λ3(φ, ϕ0)

∂φ
)− (1 +

∂λ1(φ, ϕ0)

∂φ
)
∂λ3(φ, ϕ0)

∂ϕ

N3(φ, ϕ0) = (1 +
∂λ1(φ, ϕ0)

∂φ
)
∂λ2(φ, ϕ0)

∂ϕ
− (κ1λ1(φ, ϕ0)

+
∂λ2(φ, ϕ0)

∂φ
− κ2λ3(φ, ϕ0))

∂λ1(φ, ϕ0)

∂ϕ
.

Suppose that γ(φ) is a line of curvature on S(φ, ϕ). Thus, for a function µ(φ) 6= 0
on S(φ, ϕ), necessary and sufficient condition to provide n(φ) ‖ N (φ, ϕ0) is

N2(φ, ϕ0) = µ(φ) cos θ

N3(φ, ϕ0) = µ(φ) sin θ.

So the proof is completed.

Example 3.1. Let γ(φ) = (φ, 2 sin(φ), 2 cos(φ)) be an admissible curve in G3. Then, we
get the first and the second curvatures of γ(φ) by κ1 = 2 and κ2 = −1. Thus, the Frenet
frame is obtained by

V1(φ) = (1, 2 cos(φ),−2 sin(φ)), V2(φ) = (0,− sin(φ),− cos(φ)), V3(φ) = (0, cos(φ),− sin(φ)).

If we choose

λ1(φ, ϕ) = φ2ϕ, λ2(φ, ϕ) = φ sin(θ) sin(φϕ), λ3(φ, ϕ) = cos(θ)(φ− φeφϕ),

then we get surface family S(φ, ϕ) given by (2.6) with common curve γ(φ). Then, by
taking µ(φ) = φ2 and ϕ0 = 0, the conditions given in (3.1) are satisfied.

Suppose that the normal surface Ψ(φ, ϕ) of S is developable in G3 . From (2.8), we
have θ = φ. Thus, we get

S1(φ, ϕ) = φ+ φ2ϕ

S2(φ, ϕ) = 2 sin(φ) + 2φ2ϕ cos(φ) + sin2(φ)φ sin(φϕ) + cos2(φ)(φ− φeφϕ)

S3(φ, ϕ) = 2 cos(φ)− 2φ2ϕ sin(φ) + φsin(φ) cos(φ)sin(φϕ)− sin(φ)cos(φ)(φ− φeφϕ).

As seen, all Si(φ, ϕ), i = 1, 2, 3 are in C1(S,R). Consequently, γ(φ) is a line of curvature
on S(φ, ϕ) with positive curvature and negative torsion .

By taking R = [0, 2π] × [−3, 1], we visualize the curve γ(φ) = S(φ, 0) in Fig.3.1, the
surface S(φ, ϕ) in Fig. 3.2 and curve on surface in Fig. 3.3.
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Fig. 3.1: Image of γ(φ)
Fig. 3.2: Image of S(φ, ϕ) Fig. 3.3: γ(φ) on

the S(φ, ϕ)

Let take into consideration the case of the marching-scale functions

λ1(φ, ϕ) = ρ1(φ)Λ1(ϕ),

λ2(φ, ϕ) = ρ2(φ)Λ2(ϕ),

λ3(φ, ϕ) = ρ3(φ)Λ3(ϕ)

with under conditions λ1(φ, ϕ0) = λ2(φ, ϕ0) = λ3(φ, ϕ0) = 0 and (φ, ϕ0) ∈ R =
[I1, I2]× [I3, I4], where ρ1(φ),Λ1(ϕ), ρ2(φ),Λ2(ϕ), ρ3(φ) and Λ3(ϕ) are functions in
C1(S,R) . Then from Theorem 3.1, we have following corollary:

Corollary 3.1. The curve γ(φ) = (φ, ζ(φ), ψ(φ)) is a line of curvature on the
surface defined in ( 2.6) if and only if{

Λ1 (ϕ0) = Λ2 (ϕ0) = Λ3 (ϕ0) = 0,

−ρ3(φ)dΛ3

dϕ (ϕ0) = µ(φ) cos θ, ρ2(φ)dΛ2

dϕ (ϕ0) = µ(φ) sin θ
(3.3)

where (φ, ϕ0) ∈ R = [I1, I2]× [I3, I4]and µ(φ) 6= 0.

Example 3.2. Let γ(φ) = (φ, cos(φ), sin(φ)) be an admissible curve in G3. Then, we get
first two curvatures as κ1 = 1 and κ2 = 1. Also the Frenet frame is given by

V1(φ) = (1,− sin(φ), cos(φ)), V2(φ) = (0,− cos(φ),− sin(φ)), V3(φ) = (0, sin(φ), cos(φ)).

Thus, we get surface family S(φ, ϕ) given by (2.6) with common curve γ(φ) . Suppose that
the normal surface Ψ(φ, ϕ) of S is developable in G3. Thus, from (2.8), we have θ = −φ.

If we choose ρ1(φ) = φ,Λ1(φ, ϕ) = (ϕ2−1), ρ2(φ) = ρ3(φ) = 1, Λ2(φ, ϕ) = sin(θ)(ϕ−
1), Λ3(φ, ϕ) = cos(θ)(1−ϕ), and take µ(φ) = 1, ϕ0 = 1 so that equation (3.1) is satisfied,
then a member of surface family in G3 is obtained by

S(φ, ϕ) = (φ+ φ(ϕ2 − 1), cos(φ)− φ(ϕ2 − 1) sin(φ),

sin(φ) + φ(ϕ2 − 1) cos(φ) + sin2(φ)(ϕ− 1) + cos2(φ)(1− ϕ)).

By taking R = [0, 2π] × [0, 3], we visualize the curve γ(φ) = S(φ, 0) in Fig.3.4, the
surface S(φ, ϕ) in Fig. 3.5 and curve on surface in Fig. 3.6.
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Fig. 3.4: Image of γ(φ)

Fig. 3.5:
Image of
S(φ, ϕ)

Fig. 3.6: γ(φ)
on S(φ, ϕ)

Suppose that the second curvature of γ(φ) vanish, i.e κ2 = 0. Then, from (2.8),
we have θ = θr(constant). Thus, from (3.3), we obtain

µ(φ)

ρ3(φ)
= −c1,

µ(φ)

ρ2(φ)
= c2.

Considering conditions in (3.3), we get

dΛ3

dϕ
(ϕ0) = c1cosθr and

dΛ2

dϕ
(ϕ0) = c2cosθr.

On the other hand, since n ‖ N , if θr = (2m+ 1)π2 for any integer m then V3 ‖ N .
Thus, γ(φ) is an isoasymptotic curve on the surface. Also, if θr = mπ then V2 ‖ N
meaning γ(φ) is an isogeodesic curve on the surface. Consequently, we obtain the
following result.

Corollary 3.2. Let the curve γ(φ) = (φ, ζ(φ), ψ(φ)) be a line of curvature with
torsion free on the surface is defined in ( 2.6). Then, we have

if θr = (2m+ 1)π2 for any integer m, then γ(φ) is also isoasympotic,

if θr = mπ for any integer m, then γ(φ) is also isogeodesic.

Example 3.3. Let γ(φ) = (φ, 1 + sinφ, sinφ) be an admissible curve in G3. Then, we
get first two curvatures as κ1 =

√
2sinφ and κ2 = 0. Also, the Frenet frame is given by

V1(φ) = (1, cos(φ), cos(φ)), V2(φ) = (0,− 1√
2
,− 1√

2
), V3(φ) = (0,

1√
2
,− 1√

2
).

If we choose

ρ1(φ) = φ2, Λ1(ϕ) = ϕ, ρ2(φ) = φ,Λ2(ϕ) = ϕsin(θr), ρ3(φ) = φ,Λ3(φ) = −ϕcosθr
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and take ϕ0 = 0, c1 = c2 = 1 , then a member of surface family in G3 is obtained by

S(φ, ϕ) = (φ+ φ2ϕ, 1 + sinφ− 1√
2
φϕsin(θr)−

1√
2
φϕcos(θr),

sinφ− 1√
2
φϕsinθr +

1√
2
φϕcosθr).

By taking R = [0, 2π]× [0, 0.2], we visualize the curve γ(φ) = S(φ, 0) in Fig.3.7 and

1. the surface S(φ, ϕ) in Fig. 3.8 for θ = π
6 ;

2. curve on surface in Fig. 3.9 for θ = π
6 , in Fig. 3.10 for θ = π

2 ; in Fig. 3.11 for
θ = 0.

Fig. 3.7: Image of γ(φ)

Fig. 3.8: Image of S(φ, ϕ)
Fig. 3.9: γ(φ) on S(φ, ϕ)

Fig. 3.10: γ(φ) on S(φ, ϕ)

Fig. 3.11: γ(φ) on S(φ, ϕ)
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24. Z.K. Yüzbası : On a family of surfaces with common asymptotic curve in the
Galilean space G3, J. Nonlinear Sci. Appl. 9 (2016) 518-523.

25. G-J. Wang, K. Tang and C-L. Tai : Parametric representation of a surface
pencil with a common spatial geodesic Computer-Aided Design 36(5) (2004) 447-
459.

Mustafa Altin

Technical Sciences Vocational School

Bingol University

12000 Bingöl, Turkey

maltin@bingol.edu.tr

İnan Ünal

Department of Computer Engineering

Munzur University

62000 Tunceli, Turkey

inanunal@munzur.edu.tr


