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Abstract. The paper considers a higher-order sliding mode dynamics design in a class 

of single-input linear systems having the invertible system matrix. The proposed sliding 

manifold selection method simultaneously provides a necessary relative degree of the 

sliding variable for a specific sliding mode order and the desired system dynamics after 

establishing that sliding mode. It is shown that the found unique solution satisfies these 

requirements. The theoretically obtained result is validated through a numerical example 

and illustrated by digital simulations. 
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1. INTRODUCTION 

Variable structure control systems (VSCS) with sliding modes (SM) [1,2] are one of the 

more important robust control techniques due to their theoretical invariance to system 

perturbations that satisfies so called matching conditions [3]. This property in practical 

implementations is reduced to strong robustness to parameter and external disturbances. The 

main obstacle in a wider application of this control strategy is the occurrence of chattering due 

to the existence of system imperfections and unmodeled dynamics. This unwanted effect 

represents the occurrence of high frequency oscillations, inadmissible in some systems. 

Although in most control tasks of plants classified as linear dynamical systems, linear 

controllers work well, the SM control (SMC) still shows a superior behavior through the 

overshoot elimination, fast response and excellent robustness to parametric and external 

disturbances. In addition, the design of conventional SMC of linear systems is systematized 

through well-defined procedures. Thus, the application of SMC in linear systems is easily 

implemented and that is why SMC is most frequently applied in these systems. Furthermore, 

systematic procedures for the sliding manifold (usually hyperplane) design have been also 
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developed for linear systems. For these reasons the forthcoming considerations are limited to 

linear systems only. 

The concept of a higher order sliding mode (HOSM) [4] has emerged in attempts to 

reduce chattering. HOSM control systems were firstly analyzed in a single input system, 

and then in multiple input systems as well as discrete-time systems [5-8]. The most 

important results have been established in case of the second order SM [9,10]. 

An initial step in the SM control system design is selection of a sliding manifold, defined 

by a sliding variable. This defines the desired system dynamics in SM along the sliding 

manifold. In conventional SM (first order SM), the relative degree of the sliding variable with 

respect to control must be one. Several sliding manifold design methods were proposed that 

provide desired dynamics in the first order SM. One approach is the system transformation into 

so called regular form [2] in which the reduced SM dynamics is easily noticeable. In case of 

single input linear systems, it is possible to design the sliding manifold without the system 

transformation in a way that is based on the application of the Ackermann’s formula [11]. Also, 

a simple comprehensive sliding manifold design method for multiple input linear systems was 

developed not needing the system transformation [12,13]. 

In case of HOSM, the sliding variable relative degree must be equal to the SM order. 

Hence, the design of a sliding manifold needs to accomplish a twofold task: to provide the 

desired reduced order dynamics in HOSM as well as to fulfill the precondition of the 

required sliding variable relative degree. There is a small number of papers that deal with 

this problem, and so far only single input linear systems are considered. Generalization of 

the Ackermann-Utkin formula [11] for a sliding manifold design in single-input systems 

in case of an arbitrary order SM was done in [14,15]. 

The main motivation behind this paper was to investigate if the comprehensive approach to 

sliding manifold design systems [13], developed for conventional (or first-order) SMs, could be 

utilized in HOSM. The paper proposes a way of HOSM dynamics design for a class of single 

input linear systems of 𝑛-th order. This method relies on the conventional state feedback control 

design approach. Besides the requirement to ensure a predefined desired (𝑛 − 𝑟)-th order 

dynamics in the 𝑟-th order SM, the sliding variable selection must also satisfy the precondition 

to have the relative degree 𝑟. A simple solution for the vector 𝑐 defining the sliding variable is 

found in case of systems having a full rank system matrix. It is proved that such designed sliding 

manifold provides both requirements. The validity of the proposed solution has been tested in a 

numerical example and illustrated by simulation results. 

2. PRELIMINARIES AND PROBLEM STATEMENT 

Consider a linear time-invariant single-input system described by the following state 

space model 

 �̇� = 𝐴𝑥 + 𝑏(𝑢 + 𝑑), (1) 

where 𝑥 ∈ ℝ𝑛 is the available state vector and 𝑢, 𝑑 ∈ ℝ are the control and an unknown 

bounded disturbance, respectively. 𝐴 and 𝑏 are constant matrices of appropriate 

dimensions and the system is fully controllable, i.e. the controllability matrix 𝑄𝑐 =
[𝑏 𝐴𝑏 ⋯ 𝐴𝑛−1𝑏] has a full rank (rank𝑄𝑐 = 𝑛). Obviously, the disturbance satisfies 

the matching condition [3] since it affects the system through the input channel. Notice that 

all variables in (1) are functions in time, but the time arguments have been omitted due to 
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a shorter notation hereafter. The task is to organize the 𝑟-th order sliding mode in the system 

(1) having a desired sliding mode dynamics. 

Let the sliding variable 𝑔 ∈ ℝ be defined as 

 𝑔 = 𝑐𝑥, 𝑐 ∈ ℝ1×𝑛. (2) 

The system motion defined by (1) and (2) along the manifold 

 𝑔 = �̇� = �̈� = ⋯ = 𝑔(𝑟−1) = 0 (3) 

denotes the 𝑟-th order sliding mode, [6]. Control that in the system (1), (2) ensures the 

condition (3) in finite time must be discontinuous [8], at least in the set (3), under the 

condition that the sliding variable has a relative degree 𝑟 with respect to control. This means 

that the control signal occurs only in the 𝑟-th time derivative of 𝑔, i.e. in 𝑔(𝑟). 𝑟-th time 

derivative of the sliding variable is obtained as 

 𝑔(𝑟) = 𝑐𝐴𝑟𝑥 + ∑ 𝑐𝐴𝑟−1−𝑗𝑏(𝑢(𝑗) + 𝑑(𝑗))𝑟−1
𝑗=0 . (4) 

The condition that the sliding variable has required relative degree can be expressed as 

 𝑐 ∙ [𝑏 𝐴𝑏 ⋯ 𝐴𝑟−2𝑏] = 0, (5) 

 𝑐𝐴𝑟−1𝑏 ≠ 0. (6) 

The condition (6) is usually fulfilled by the selection 𝑐𝐴𝑟−1𝑏 = 1 in order to provide further 

simplifications. Then, the 𝑟-th time derivative of the sliding variable (4) becomes 

 𝑔(𝑟) = 𝑐𝐴𝑟𝑥 + 𝑢 + 𝑑.  (7) 

In the 𝑟-th order sliding mode, the sliding mode dynamics is of (𝑛 − 𝑟)-th order [9], 

which can be found using an equivalent control method. The equivalent control can be 

obtained from the condition 

 𝑔(𝑟)|
𝑢=𝑢𝑒𝑞

= 0, (8) 

which gives 

 𝑢𝑒𝑞 = −𝑐𝐴𝑟𝑥 − 𝑑. (9) 

The replacement of the equivalent control in (1) gives the system description in the 𝑟-th 

order sliding mode 

 �̇� = 𝐴𝑥 + 𝑏𝑢|𝑢=𝑢𝑒𝑞
= (𝐼 − 𝑏𝑐𝐴𝑟−1)𝐴𝑥 = 𝑃𝐴𝑥 = 𝐴𝑒𝑞𝑥. (10) 

Sliding mode dynamics (10) in the ideal 𝑟-th order sliding mode is not affected by the 

disturbance 𝑑, so the system is invariant to the matched disturbances. However, the 

equivalent control (9) is not feasible since it requires the knowledge of disturbances. Also, 

it is easy to prove that the matrix 𝑃 is idempotent, i.e. it holds 𝑃2 = 𝑃. This means that 𝑃 

is a projector. Due to projector matrices properties [16], it follows that rank(𝑃) = 𝑛 − 1. 

Under assumption rank(𝐴) = 𝑛 it holds rank(𝐴𝑒𝑞) = rank(𝑃𝐴) = 𝑛 − 1, which means 

that det(𝐴𝑒𝑞) = 0 and 𝐴𝑒𝑞  is a singular matrix. Obviously, eigenvalues of the matrix 𝐴𝑒𝑞  

define sliding mode dynamics, which needs to be stable. 
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Therefore, the vector 𝑐 should be determined that provides the desired 𝑟-th order sliding 

mode dynamics (10) as well as the required relative degree 𝑟 of the sliding variable (2). A 

simple way of selection of 𝑐 is suggested in the next section. 

3. THE MAIN RESULT 

Since the equivalent control (9) is linear and state dependent, it can be considered as a 

traditional state feedback control. Namely, the model (10) that describes sliding mode 

dynamics can be rewritten as 

 �̇� = 𝐴𝑒𝑞𝑥 = (𝐴 − 𝑏𝑐𝐴𝑟)𝑥 = (𝐴 − 𝑏𝑘)𝑥, (11) 

where 𝑘 ∈ ℝ1×𝑛 is the gain vector of the state feedback control 𝑢 = −𝑘𝑥. Sliding mode 

dynamics in case of the 𝑟-th order sliding mode is characterized by 𝑟 zero and 𝑛 − 𝑟 

nonzero eigenvalues. Nonzero eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛−𝑟 should be chosen to be stable 

and to define the desired sliding mode dynamics, which can be described by the following 

characteristic polynomial 

 
𝜙(𝑠) = 𝑠𝑟(𝑠 − 𝜆1)(𝑠 − 𝜆2)⋯ (𝑠 − 𝜆𝑛−𝑟) = 𝑠𝑟𝜙𝑟(𝑠),

𝜙𝑟(𝑠) = (𝑠 − 𝜆1) ⋯ (𝑠 − 𝜆𝑛−𝑟) = ∑ 𝛽𝑖𝑠
𝑛−𝑟−𝑖𝑛−𝑟

𝑖=0 , 𝛽0 = 1.
 (12) 

It is well known that a unique state feedback gain vector 𝑘 exists in the controllable 

system (11) that will provide the desired dynamics (12). A possible way to find 𝑘 is to je 

apply the Ackermann’s formula 

 𝑘 = [01×(𝑛−1) 1]𝑄𝑐
−1𝜙(𝐴) = [01×(𝑛−1) 1]𝑄𝑐

−1𝜙𝑟(𝐴)𝐴𝑟. (13) 

Such obtained 𝑘 can be used for finding an unknown vector 𝑐. According to (11), a 

relationship between 𝑐 and 𝑘 can be noticed, which is given by the relation 𝑐𝐴𝑟 = 𝑘. The 

vector 𝑐 that satisfies this equation will provide the desired dynamics (12) in the 𝑟-th order 

sliding mode. However, beside this requirement, 𝑐 should provide the required relative degree 

of the sliding variable with respect to control as well. Hence, 𝑐 must satisfy the following 

equations 

 𝑐𝐴𝑟 = 𝑘, (14) 

 𝑐 ∙ [𝑏 𝐴𝑏 ⋯ 𝐴𝑟−2𝑏] = 0. (15) 

The system of equations that is formed out of (14) and (15) consists of 𝑛 + 𝑟 − 2 scalar 

equations with 𝑛 unknown components of the vector 𝑐. The next theorem gives the unique 

solution of the obtained system of equations. 

Theorem 1: If the matrix 𝐴 of the controllable system (1) has a full rank, i.e. rank(𝐴) =
𝑛, then 

 𝑐 = 𝑘𝐴−𝑟  (16) 

is the unique solution of the equations (14) and (15). 

Proof: If rank(𝐴) = 𝑛 then rank(𝐴𝑟) = 𝑛 and inverse matrix 𝐴−𝑟  exists. Obviously, 

solution (16) fulfils equation (14). However, it is necessary to prove that solution (16) 

simultaneously satisfies equation (15). Replacement of (16) into 𝑐[𝑏 𝐴𝑏 ⋯ 𝐴𝑟−2𝑏] 
by virtue of (13) yields 
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𝑐[𝑏 𝐴𝑏 ⋯ 𝐴𝑟−2𝑏]|𝑐=𝑘𝐴−𝑟 = 𝑘𝐴−𝑟[𝑏 𝐴𝑏 ⋯ 𝐴𝑟−2𝑏] =
[01×(𝑛−1) 1]𝑄𝑐

−1𝜙𝑟(𝐴)[𝑏 𝐴𝑏 ⋯ 𝐴𝑟−2𝑏]. (17) 

For 𝜙𝑟(𝐴) = ∑ 𝛽𝑖𝐴
𝑛−𝑟−𝑖𝑛−𝑟

𝑖=0 , 𝛽0 = 1, it is obtained 

𝑐[𝑏 𝐴𝑏 ⋯ 𝐴𝑟−2𝑏]|𝑐=𝑘𝐴−𝑟 =
[01×(𝑛−1) 1]𝑄𝑐

−1 ∑ 𝛽𝑖𝐴
𝑛−𝑟−𝑖𝑛−𝑟

𝑖=0 [𝑏 𝐴𝑏 ⋯ 𝐴𝑟−2𝑏] = [01×(𝑛−1) 1]𝑄𝑐
−1 ∑ 𝛽𝑖

𝑛−𝑟
𝑖=0 ∙

[𝐴𝑛−𝑟−𝑖
𝑏 𝐴𝑛−𝑟−𝑖+1𝑏 ⋯ 𝐴𝑛−𝑖−2𝑏] = [01×(𝑛−1) 1] ∙ ∑ 𝛽𝑖

𝑛−𝑟
𝑖=0 ∙

[𝑄𝑐
−1𝐴𝑛−𝑟−𝑖𝑏 𝑄𝑐

−1𝐴𝑛−𝑟−𝑖+1𝑏 ⋯ 𝑄𝑐
−1𝐴𝑛−𝑖−2𝑏]. (18) 

The product 𝐴𝑗𝑏, 𝑗 = 0,1, … , 𝑛 − 1 can be extracted from the controllability matrix 𝑄𝑐 in 

the following manner 

 𝐴𝑗𝑏 = 𝑄𝑐 ∙ [

0𝑗×1

1
0(𝑛−𝑗−1)×1

] , 𝑗 = 0,1, … , 𝑛 − 1. (19) 

It follows accordingly  

 𝑄𝑐
−1𝐴𝑗𝑏 =∙ [

0𝑗×1

1
0(𝑛−𝑗−1)×1

] , 𝑗 = 0,1,… , 𝑛 − 1. (20) 

Applying (20) onto the matrix elements in (18) it is obtained 

𝑐[𝑏 𝐴𝑏 ⋯ 𝐴𝑟−2𝑏]|𝑐=𝑘𝐴−𝑟 = [01×(𝑛−1) 1] ∙

[
 
 
 
 
 
 
 
 
 

𝛽𝑛−𝑟 0 ⋯ 0
𝛽𝑛−𝑟−1 𝛽𝑛−𝑟 ⋯ 0

⋮ 𝛽𝑛−𝑟−1 ⋯ ⋮

𝛽0 ⋮ 0
0 𝛽0 ⋯ 𝛽𝑛−𝑟

0 0 ⋯ 𝛽𝑛−𝑟−1

⋮ ⋮ ⋮
0 0 ⋯ 𝛽0

0 0 ⋯ 0 ]
 
 
 
 
 
 
 
 
 

 (21) 

Since the last row of the obtained matrix is zero, the right hand side product of (21) is 

equal to 01×(𝑟−1). This shows that solution (16) satisfies equation (15), which completes 

the proof.■ 

4. HOSM CONTROLLER 

It was shown in [6] that the control in the system (1), (2) that provides the high order 

sliding mode (3) in finite time must be discontinuous, at least in the set (3). If the sliding 

mode dynamics is stable, which is set by the adequate selection of 𝑐, the system trajectory 

asymptotically converges along (3) into the origin (𝑥 → 0 for 𝑡 → ∞), in spite of the action 

of the matched disturbances. 

If the control in the system (1), (2) is chosen as in [7] 

 𝑢 = −𝑐𝐴𝑟𝑥 − 𝛾(𝜉),  𝜉 = (𝑔, �̇�, … , 𝑔(𝑟−1)), (22) 
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 𝑟-th time derivative of 𝑔 (7) becomes 

 𝑔(𝑟) = −𝛾(ξ) + 𝑑. (23) 

Levant proposed in [6] a set of quasi-continuous functions 𝛾(ξ) that enforces 𝑟-th order 

sliding mode in single-input nonlinear systems. Complexity of these functions increases 

with the increase of the sliding mode order 𝑟, while chattering decreases. These functions 

can be applied for the linear case (23). 

Functions 𝛾(𝜉) that guarantee the higher order sliding mode occurrence in finite time 

can be chosen as nonlinear functions proposed in [5,6]. For example, functions 𝛾(𝜉) for 

𝑟 = 1,2,3 are respectively given as 

 𝛾(𝜉) = 𝛼
𝑔

|𝑔|
, (24) 

 𝛾(𝜉) = 𝛼
�̇�+𝛽1|𝑔|

1
2sign(𝑔)

|�̇�|+𝛽1|𝑔|
1
2

, (25) 

 𝛾(𝜉) = 𝛼
�̈�+𝛽2(|�̇�|+𝛽1|𝑔|

2
3)

−
1
2
(�̇�+𝛽1|𝑔|

2
3sign(𝑔))

|�̈�|+𝛽2(|�̇�|+𝛽1|𝑔|
2
3)

1
2

, (26) 

where 𝛼, 𝛽1, 𝛽2 > 0 are chosen sufficiently large. 

It is important to notice that realization of 𝛾(𝜉) requires the knowledge of the successive 

derivatives of the sliding variable, i.e. 𝑔(𝑖), 𝑖 = 0,1, … , 𝑟 − 1. However, in the systems with 

matched disturbances these derivatives according to (4) and (5) can be obtained as 

 𝑔(𝑖) = 𝑐𝐴𝑖𝑥, 𝑖 = 0,1, … , 𝑟 − 1. (27) 

In this case, the need for real differentiators is unnecessary. 

5. AN ILLUSTRATIVE EXAMPLE 

The proposed higher sliding manifold design method and its validity has been 

demonstrated on a numerical example and illustrated by digital simulations. Consider a 

fully controllable fifth order system (1) whose matrices are 

 𝐴 =

[
 
 
 
 
−1.129 −2.262 2.21 0.465 1.663
1.829 −0.743 −1.344 −3.802 −6.199
−1.06 1.87 −1.375 −2.324 0.181
0.399 4.190 1.258 −1.062 0.908
−2.89 5.645 1.334 0.24 −1.45 ]

 
 
 
 

, 

 𝑏T = [0.4136 0 0.144 0 −0.7601]. 

The system is subjected to a matched external disturbance in a complex form 𝑑(𝑡) =
2 sin(4𝜋𝑡) + 2ℎ(𝑡 − 3). The control task is to bring the system state from an arbitrarily 

chosen initial state 𝑥(0) = [1 1 1 1 1]T into the origin regardless of the disturbance 

by organizing the second order sliding mode. Since in this case 𝑛 = 5 and 𝑟 = 2, the sliding 

mode dynamics is of order 𝑛 − 𝑟 = 3. Hence, let a desired system dynamics be defined by the 
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spectrum of poles 𝑝 = [0 0 −3 −3 −3]. According to (13), state feedback gain 𝑘 is 

obtained as 

𝑘 = [4.2365 −12.9816 −3.4063 −0.8998 −2.6053] 

The corresponding value of the vector 𝑐 defining the sliding manifold is found using 

formula (16) as 

 𝑐 = [0.052 0.2238 0.101 0.0976 0.0474]. 

Calculations confirmed that the obtained 𝑐 satisfies equations (14), (15) and that the matrix 

(𝐴 − 𝑏𝑐𝐴𝑟) in (11) has the desired eigenvalues spectrum 𝑝. 

 

Fig. 1 Control signal, sliding variable and its derivative 

 

Fig. 2 State variables 



110 B. VESELIĆ 

The control that provides the occurrence of the second order sliding mode in the 

considered system is defined by (22) and (25). The required sliding variable first order 

derivative �̇� is estimated using (27). The controller parameters are chosen as 𝛼 = 8 and 𝛽1 =
1. Fig. 1. shows the control signal 𝑢(𝑡), sliding variable 𝑔(𝑡) and its derivative �̇�(𝑡). It is 

evident that the control ensures 𝑔 = �̇� = 0, i.e. the second order sliding mode in finite time 

regardless of the disturbance. Fig. 2. shows that the sliding variables asymptotically converge 

into the origin after establishing the sliding mode, with the prescribed dynamics defined by 

𝑝. 

 

Fig. 3 Control signal, sliding variable and its derivatives 

 

Fig. 4 State variables 
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Now, let the desired sliding mode order be 𝑟 = 3. Then the sliding mode dynamics is the 

second order and let the desired dynamics be defined by the spectrum 𝑝 =
[0 0 0 −3 −3]. The corresponding state feedback gain 𝑘 is obtained according to 

(13) as 

𝑘 = [3.7024 −12.9186 −1.8852 2.0798 1.3391] 

The required sliding manifold vector 𝑐 is calculated using (16) as 

 𝑐 = [0.021 0.0076 −0.0073 0.0503 0.01], 

which satisfies (14) and (15) and ensures that the matrix (𝐴 − 𝑏𝑐𝐴𝑟) in (11) has the desired 

eigenvalues spectrum 𝑝. 

The control that provides the occurrence of the third order sliding mode in the 

considered system is defined by (22) and (26). The required derivatives �̇� and �̈� are 

estimated using (27). The controller parameters are chosen as 𝛼1 = 10, 𝛽1 = 1 and 𝛽2 =
2, and the system is subjected to the identical disturbance. Control signal 𝑢(𝑡), sliding 

variable 𝑔(𝑡) and its derivatives �̇�(𝑡) and �̈�(𝑡) are depicted in Fig. 3. Since the control 

ensures 𝑔 = �̇� = �̈� = 0, the third order sliding mode occurs in finite time in spite of the 

disturbance. Fig. 4. shows the sliding variables that asymptotically converge into the origin 

with the prescribed dynamics defined by 𝑝. 

6. CONCLUSION 

The proposed sliding manifold design method for the higher order sliding mode single-

input control systems relies on the conventional state feedback control design principle. 

The method, which can be applied in systems having a full rank system matrix, does not 

require system transformation nor extensive calculations. It is proved that the designed 

vector 𝑐 ensures the desired dynamics in the higher order sliding mode and the appropriate 

sliding variable relative degree. Validity of the analytically obtained solution has been 

confirmed through numerical example and simulations. 

The given approach to the sliding manifold design can be entirely applied in discrete 

time higher order sliding mode regimes. 
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