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Online Methods Disease individual write-ups for chronic respiratory 

conditions in GBD 2017 
 

Chronic Respiratory Diseases 
 

YLLs

CODEm models

Unadjusted deaths 
by location/year/

age/sex due to 
chronic respiratory 

diseases

CodCorrect
Location-level 

covariates

Adjusted 
deaths by 

location/year/
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Vital registration 
data
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Noise reductionICD mapping Age-sex splitting
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input data

Cause of death 
database

Surveillance

Input data

ProcessResultsDatabase

Disability weights

Nonfatal

Burden estimation

Cause of death

  Covariates

 

Input data 
Sources used to estimate chronic respiratory disease mortality included vital registration, verbal 

autopsy, and surveillance data from China. Our outlier criteria excluded data points that (1) were 

implausibly high or low, (2) substantially conflicted with established age or temporal patterns, or (3) 

significantly conflicted with other data sources conducted from the same locations or locations with 

similar characteristics (ie, Socio-demographic Index). 

Modelling strategy  
The standard CODEm modelling approach was applied to estimate deaths due to chronic respiratory 

diseases. Chronic respiratory diseases served as the parent cause to chronic obstructive pulmonary 

disease, pneumoconiosis (including silicosis, asbestosis, coal worker’s pneumoconiosis, other 

pneumoconiosis), asthma, interstitial lung disease and pulmonary sarcoidosis, and other chronic 

respiratory diseases. Functionally, this means the death estimates for chronic respiratory diseases serve 

as a “parent” envelope into which the “child” causes are squeezed by the CodCorrect algorithm. This 

approach allows us to use a broader range of data – specifically verbal autopsy data – which cannot be 

accurately mapped to specific respiratory diseases.  

 

Separate models were conducted for male and female mortality, and the age range for both models was 

1 to 95+ years. The same covariates from GBD 2016 were used. 

 

Level Covariate Direction 
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1 log-transformed SEV scalar: chronic respiratory diseases + 

cumulative cigarettes (10 years) + 

cumulative cigarettes (5 years) + 

healthcare quality and access index - 

2 smoking prevalence + 

indoor air pollution (all cooking fuels) + 

outdoor air pollution (PM2.5) + 

population above 1500m elevation (proportion) + 

3 log LDI (I$ per capita) - 

education (years per capita) - 

Socio-demographic Index - 

population between 500 and 1,500m elevation (proportion) + 

population density over 1,000 people/kilometer2 (proportion) + 
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Chronic Obstructive Pulmonary Disease 
 

YLLs
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by location/year/

age/sex due to 
chronic obstructive 
pulmonary disease

CodCorrect
Location-level 
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Input data 
Data used to estimate chronic obstructive pulmonary disease (COPD) mortality included vital 

registration and surveillance data from the cause of death (COD) database. Our outlier criteria excluded 

data points that (1) were implausibly high or low, (2) substantially conflicted with established age or 

temporal patterns, or (3) significantly conflicted with other data sources conducted from the same 

locations or locations with similar characteristics (ie, Socio-demographic Index).  

Modelling strategy  
The standard CODEm modelling approach was applied to estimate deaths due to COPD. Separate 

models were conducted for male and female mortality, and the age range for both models was 1-95+ 

years. The mortality estimates from the COPD models were ultimately fit into the chronic respiratory 

diseases envelope. 

The same covariates from GBD 2016 were used, but outdoor air pollution was moved to level 1. 

Level Covariate Direction 

1 log-transformed SEV scalar: COPD + 

cumulative cigarettes (10 years) + 

cumulative cigarettes (5 years) + 

elevation over 1,500m (proportion) + 

outdoor air pollution (PM2.5) + 

2 smoking prevalence + 
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indoor air pollution (all cooking fuels) + 

healthcare access and quality index - 

3 Socio-demographic Index - 

log LDI (I$ per capita) - 

education (years per capita) - 
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Pneumoconiosis Diseases: Silicosis, Asbestosis, Coal Worker’s Pneumoconiosis, and Other 

Pneumoconiosis 
 

YLLs

Vital registration 
data

Surveillance data

Garbage code 
redistribution

Individual CODEm 
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coal workers 
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Adjusted 
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location/year/
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Cause of death 
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Input data
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Nonfatal
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Input data 
Data used to estimate pneumoconiosis diseases mortality included vital registration and China mortality 

surveillance data from the cause of death (COD) database. Our outlier criteria excluded data points that 

(1) were implausibly high or low, (2) substantially conflicted with established age or temporal patterns, 

or (3) significantly conflicted with other data sources conducted from the same locations or locations 

with similar characteristics (ie, socio-demographic index). 

Modelling strategy  
The standard CODEm modelling approach was applied to estimate deaths due to pneumoconiosis 

diseases. Separate models were conducted for male and female mortality, and the age range for both 

models was 15–95+ years. The mortality estimates from pneumoconiosis disease models were 

ultimately fit into the chronic respiratory envelope, which is the parent cause for pneumoconiosis 

disease. The pneumoconiosis model serves as an envelope for silicosis, asbestosis, coal worker’s 

pneumoconiosis, and other pneumoconiosis. In CoDCorrect, estimates are first fit within all 

pneumoconiosis, then within all chronic respiratory disease, before being fit to the all-cause mortality 

envelope.  

For the most part, the same covariates from GBD 2016 were used. The log-transformed SEV scalars were 

dropped, however, because the associated risk factors for GBD are occupational silica, asbestos, and 

particulate exposure, which each have a population attributable fraction (PAF) of 1 for pneumoconiosis. 

When PAF is equal to one, SEV=1/(1-PAF) is undefined. Subnational adjustments were also made to the 

coal, asbestos, and gold covariates. 

The following table indicates covariates used in the pneumoconiosis models, their level, and direction: 
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Level Covariate Direction 

1 asbestos consumption per capita* + 

coal production per capita* + 

gold production per capita* + 

2 smoking prevalence + 

indoor air pollution (all cooking fuels) + 

cumulative cigarettes (5 years) + 

elevation over 1,500m (proportion) + 

elevation 500 to 1,500m (proportion) + 

healthcare access and quality index - 

3 log LDI (I$ per capita) - 

education (years per capita) - 

Socio-demographic Index - 

* asbestos, coal, and gold covariates are each only used in a subset of the pneumoconiosis models, as 

follows: all three are included in the parent all pneumoconiosis model, asbestos consumption is included 

in the asbestosis model, coal production is included in the coal worker’s pneumoconiosis model, and 

gold production is included in the silicosis model. 
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Asthma 
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Input data 
Data used to estimate asthma mortality included vital registration and surveillance data from the cause 

of death (COD) database. Verbal autopsy data were not included and were instead mapped to the 

parent model (chronic respiratory diseases). Our outlier criteria excluded data points that (1) were 

implausibly high or low relative to global or regional patterns, (2) substantially conflicted with 

established age or temporal patterns, or (3) significantly conflicted with other data sources conducted 

from the same locations or locations with similar characteristics (ie, Socio-demographic Index). 

Modelling strategy  
The standard CODEm modelling approach was applied to estimate deaths due to asthma. Separate 

models were conducted for male and female mortality, and the age range for both models was 1–95+ 

years. The mortality estimates from the asthma models were ultimately fit into the chronic respiratory 

diseases envelope.  

The same covariates from GBD 2016 were used. 

 

Level Covariate Direction 

1 log-transformed SEV scalar: asthma + 

cumulative cigarettes (10 years) + 

cumulative cigarettes (5 years) + 

healthcare access and quality index - 
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2 smoking prevalence + 

indoor air pollution (all cooking fuels) + 

outdoor air pollution (PM2.5) + 

3 log LDI (I$ per capita) - 

education (years per capita) - 

Socio-demographic Index - 
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Interstitial Lung Disease and Pulmonary Sarcoidosis 
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Input data 
Data used to estimate interstitial lung disease and pulmonary sarcoidosis mortality included vital 

registration and surveillance data from the cause of death (COD) database. Our outlier criteria excluded 

data points that (1) were implausibly high or low, (2) substantially conflicted with established age or 

temporal patterns, or (3) significantly conflicted with other data sources conducted from the same 

locations or locations with similar characteristics (ie, Socio-demographic Index). 

Modelling strategy  
The standard CODEm modelling approach was applied to estimate deaths due to interstitial lung disease 

and pulmonary sarcoidosis. Separate models were conducted for male and female mortality, and the 

age range for both models was 1–95+ years. The mortality estimates from the interstitial lung disease 

and pulmonary sarcoidosis models were ultimately fit into the chronic respiratory envelope. 

The same covariates from GBD 2016 were used. 

 

Level Covariate Direction 

1 log-transformed SEV scalar: interstitial lung disease + 

smoking prevalence + 

cumulative cigarettes (5 years) + 

2 elevation over 1,500m (proportion) + 

elevation between 500 and 1,500m (proportion) + 
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population density over 1,000 ppl/km2 (proportion) + 

indoor air pollution (all cooking fuels) + 

outdoor air pollution (PM2.5) + 

healthcare access and quality index - 

3 log LDI (I$ per capita) - 

education (years per capita) - 

Socio-demographic Index - 
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Input data 
Data used to estimate other chronic respiratory diseases included vital registration and surveillance data 

from the cause of death (COD) database. Our outlier criteria excluded data points that (1) were 

implausibly high or low, (2) substantially conflicted with established age or temporal patterns, or (3) 

significantly conflicted with other data sources conducted from the same locations or locations with 

similar characteristics (ie, Socio-demographic Index).  

Modelling strategy  
The standard CODEm modelling approach was applied to estimate deaths due to other chronic 

respiratory diseases. Separate models were conducted for male and female mortality, and the age range 

for both models was 1 year to 95+ years. Like other respiratory causes, the mortality estimates from 

other chronic respiratory diseases were ultimately fit into the chronic respiratory envelope. 

The same covariates from GBD 2016 were used. 

 

Level Covariate Direction 

1 log-transformed SEV scalar: other chronic respiratory diseases + 

smoking prevalence + 

cumulative cigarettes (5 years) + 

indoor air pollution (all cooking fuels) + 

outdoor air pollution (PM2.5) + 
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2 elevation over 1,500m (proportion) + 

elevation between 500 and 1,500m (proportion) + 

population density over 1,000 ppl/km2 (proportion) + 

healthcare access and quality index - 

3 log LDI (I$ per capita) - 

education (years per capita) - 

Socio-demographic Index - 
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Chronic obstructive pulmonary disease (COPD) 
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Input data and methodological summary 
 

Case definition 
COPD is defined as in the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification: a 

measurement of <0.7 FEV1/FVC (one second of forceful exhalation/total forced expiration) on spirometry 

after bronchodilation. It should be noted that this is the same reference definition as was used for GBD 

2015 and GBD 2016, but it is different from GBD 2013, where the “Lower Limit of Normal (LLN),” ie, 

relative to an age- and sex-specific norm for the FEV1/FVC ratio, was the reference. We made this 

decision because the severity grading of COPD follows the GOLD Class definition rather than the LLN 

concept. The definitions of the severity classes in the GOLD classification are provided below.  

GOLD CLASS FEV1 Score 

I: Mild >=80% of normal 

II: Moderate 50-79% of normal 

IV: Severe <50% of normal 
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ICD-10 codes associated with COPD include J41, J42, J43, J44, and J47. The corresponding ICD-9 codes are 

491-492, and 496. J40 & 490 (Bronchitis, not specified as acute or chronic) and J47 & 494 (Bronchiectasis) 

were mapped to COPD for GBD 2016 but excluded for GBD 2017 based on expert feedback.  

Input data 
No systematic review of the literature was completed for GBD 2017; however, for GBD 2016, we updated 

the systematic review from previous iterations. The full search term was: 

(chronic obstructive pulmonary disease[Title/Abstract] AND (prevalence[Title/Abstract] or incidence 
[Title/Abstract] or mortality [Title/Abstract] or death [Title/Abstract]) AND "Cross-Sectional Studies"[MeSH 
Terms])  Filters: Publication date from 04/01/2015 to 11/01/2016; Humans 
 
For GBD 2017, we reviewed the papers listed in the following meta-analysis of COPD prevalence 
estimates: 
 
Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, Nair H, Gasevic D, Sridhar D, Campbell H, 
Chan KY. Global and regional estimates of COPD prevalence: Systematic review and meta–analysis. Journal 
of global health. 2015 Dec;5(2). 
 
In addition to scientific literature, we included survey data with spirometry measurements, such as the 

National Health and Nutrition Examination Study series in the United States. The Study of Aging and 

Global Health (SAGE) series, the Korean NHANES, the English Longitudinal Study of Aging (ELSA), and the 

Turkey Chronic Diseases and Risk Factors Study 2011 were all added for GBD 2017. 

Data using alternative case-definitions of COPD prevalence (ie, LLN or FEV1/FVC<0.7 pre-bronchodilator) 

were crosswalked to the reference case-definition with age-specific ratios derived from studies reporting 

prevalence using both the alternative and reference case-definitions. 

Furthermore, claims data for the United States were included. Additional information on the claims data 

collection and pre-corrections are provided elsewhere. Briefly, we determined USA national and state-

level estimates of COPD prevalence from a database of individual-level ICD-coded health service 

encounters. Persons with any inpatient claim or at least two outpatient claims associated with COPD were 

marked as a prevalent case for that year. 

For GBD 2016, a correction was made for COPD USA claims data. Under the assumption that NHANES 

estimates are more accurate than claims data estimates because they use spirometry measurements, we 

derived an age-specific crosswalk to adjust USA claims data according to the ratio between NHANES and 

the national-level USA claims estimates. However, for GBD 2017 we decided the age-pattern apparent in 

NHANES is unreliable and perhaps implausibly high in individuals under 30 years old, due to the fact that 

NHANES spirometry measurements are taken without the use of a bronchodilator. Instead, we derived an 

age-specific crosswalk using a comparison of BOLD study results from Kentucky to claims data from 

Kentucky. Claims data are valuable for the subnational variation they can provide; however, the challenge 

of correcting the systematic bias present in claims data relative to spirometry-based prevalence data has 

no clear or singular resolution. 
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The volume of claims data is sufficiently large to have a ripple effect throughout the model. One way this 

effect manifests is in the sex-ratio. The GBD 2016 NHANES-based crosswalk was both age and sex-

specific. The GBD 2017 BOLD-based crosswalk, on the other hand, is not sex-specific, and this decision 

was made because BOLD estimates in Kentucky are greater in females than in males, whereas USA 

NHANES and claims data suggest greater prevalence in females. As a result of using a non-sex-specific 

crosswalk, the sex-ratio present in the claims data is preserved by the crosswalk. This ratio, while in the 

direction we expect (larger prevalence in males), is smaller in magnitude than the ratio from NHANES, 

and therefore smaller than the ratio present in our adjusted data for GBD 2016. This modelling decision 

had the effect of increasing prevalence in females in the US, and this, combined with new UK data that 

are higher in females than the GBD 2016 models, resulted in higher modelled prevalence for females in 

many other GBD regions as well. A table describing the density and distribution of the available data 

informing the COPD estimation process is provided below. 

 Prevalence Incidence Proportion by GOLD 

class 

Site-years (total) 504 5 39 

Number of countries 

with data 

53 5 31 

Number of GBD regions 

with data (out of 21 

regions) 

16 3 15 

Number of GBD super-

regions with data (out 

of 7 super-regions) 

7 2 7 

 

Modelling strategy  
As described above, the estimation of COPD burden occurs in three main steps. The first is the estimation 
of prevalence and incidence using a DisMod-MR 2.1 model. The second is the separate estimation of the 
proportions by three GOLD class groupings in DisMod-MR 2.1. The third is the combination of these two 
processes to derive prevalence by severity. 
 
Step 1: Main COPD model 
Prior settings include remission of 0 and an incidence ceiling of 0.0002 before age 20. The latter was 
necessary to avoid a kick-up of estimates in childhood at an age range with few or no primary data. 
 
Similar to other causes, we included estimates of cause-specific mortality rate (CSMR) and derived 
estimates of excess mortality rate (EMR) by dividing every prevalence data point by the CSMR value for 
the corresponding location, age, sex, and year. We did not estimate EMR for data points with an age 
range greater than 20 years. 
 
To assist estimation, each model includes a series of country-level covariates that describe 

spatiotemporal patterns. For example, we use the COPD standardised exposure variables (SEV), which 
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aggregates multiple risk factors into a single variable. We also use the log of LDI and the Healthcare 

Access and Quality (HAQ) index on EMR to capture country-level variation of EMR, assuming a negative 

coefficient (ie, lower mortality with rising GDP and HAQ). For this GBD cycle, the proportion of elevation 

over 1500m was also added as a country-level covariate on prevalence and EMR based on its significance 

in the COPD cause of death models. 

For GBD 2017, with the new adjustment strategy for claims data, it appeared that DisMod was calculating 

a sex-coefficient that placed too much weight on the sex-ratio from the claims. The claims ratio is smaller 

than the ratio from the remainder of the dataset, so this had an undesirable effect. In response, we 

performed a random-effects meta-analysis of the male:female ratio in our dataset and fixed the sex-

coefficient in the DisMod prevalence model accordingly. 

Step 2: GOLD class models 
The GOLD class models use data from surveys that specified prevalence by GOLD class after expressing 
the values as a proportion of all COPD cases. For GBD 2016 we used fixed effects from the SEV scalar and 
the log of lag-distributed income (LDI) per capita to assist estimation. For GBD 2017, we dropped these 
covariates because they did not produce significant coefficients. We also restricted random effects to +/-
0.5 to control implausible geographical variation. 
 
Table of model coefficients for COPD 

Model Variable name Measure Beta Exponentiated 

COPD Elevation over 
1500m 
(proportion) 

excess mortality rate 0.21 

(0.12–0.31) 

1.23 
(1.12–1.36) 

COPD LDI (I$ per capita) excess mortality rate -0.5 

(-0.5 to -0.5) 

0.61 
(0.60–0.61) 

COPD Log age-
standardised SEV 
scalar: COPD 

prevalence 0.90 
(0.90–0.90) 

2.46  
2.46–2.46) 

 

Severity 
The three GOLD class groupings reflect a grading based on a physiological measurement rather than a 

direct measurement of disease severity. In order to map the epidemiological findings by GOLD class into 

the three COPD health states for which we have disability weights (DW), we used the 2001–2011 Medical 

Expenditure Panel Survey (MEPS) data from the United States. Specifically, we convert the GOLD class 

designations estimated for the USA in 2005 (the midpoint of MEPS years of analyses) into GBD 

classifications of asymptomatic, mild, moderate, and severe COPD.  

The table below shows the three health states of COPD and the corresponding lay descriptions and 

disability weights. The graph shows the average proportion by GOLD class (after scaling to 100%) across 

all ages for USA in 2005. We also show the proportion of MEPS respondents reporting any health service 

contact in the past year for COPD with a DW value attributable to COPD of 0, mild range (0 to midpoint 

between DWs for mild and moderate), moderate range (midpoint of DW values mild and moderate to 

midpoint of DW values for moderate and severe) and severe range (midpoint between DW values 
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moderate and severe or higher). The DW value for COPD was derived from a regression with indicator 

variables for all health states reported by MEPS respondents and their reported overall level of disability 

derived from a conversion of 12-Item Short Form Surveys (SF-12) answers to GBD DW values. This 

analysis gave the severity distribution for each GBD cause reported in MEPS after correcting for any 

comorbid causes individual respondents reported during a year. 

Health state Lay description DW (95% CI) 

Mild COPD This person has cough and shortness of breath after 

heavy physical activity, but is able to walk long 

distances and climb stairs. 

0.019 

(0.011–0.033) 

Moderate COPD This person has cough, wheezing, and shortness of 

breath, even after light physical activity. The person 

feels tired and can walk only short distances or climb 

only a few stairs. 

0.225 

(0.153–0.31) 

Severe COPD This person has cough, wheezing, and shortness of 

breath all the time. The person has great difficulty 

walking even short distances or climbing any stairs, 

feels tired when at rest, and is anxious. 

0.408 

(0.273–

0.556) 

  

 

The algorithm to translate GOLD class to COPD DW categories first assigns GOLD III&IV to severe COPD 

and what remains to moderate. Next, GOLD class I is assigned to the asymptomatic category first and 

what remains goes to mild COPD. This algorithm is repeated for each age and sex category and for all 

1,000 draws from the DisMod models of GOLD classes and the MEPS analyses. We end up with 

proportions of each of the GOLD class categories that map onto GBD COPD health states with uncertainty 

bounds determined by the 25th and 975th values of the 1,000 draws. These values are then applied to the 

estimates of the proportion of cases by GOLD class category, after scaling to 100%, by location, year, age, 
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and sex. This assumes that the relationship between GOLD class and GBD COPD health states in the 

United States applies everywhere. 

Pneumoconiosis 
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Input data and methodological appendix 

Case definition 
Pneumoconiosis is a chronic lung disease typified by lung scarring and other interstitial damage caused by 

exposure to dust and other containments – usually through occupational exposure. For GBD, we model 

pneumoconiosis by exposure type: coal, asbestos, silica, and other.  

Input data 
Data used to make estimates of pneumoconiosis are predominantly from three main sources. The first is 

literature data from systematic reviews, usually from smaller-scale studies of prevalence. One challenge 
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with literature data is that most studies are conducted in high-risk populations that are not 

representative of the general population. No systematic review of the literature was conducted for GBD 

2017. The second source of data is inpatient hospital reports, and the third is claims data for the United 

States and Taiwan. For all aetiologies, we use a sex-specific correction factor of the hospital inpatient data 

where numbers are adjusted upward by the ratio of primary diagnosis to secondary diagnosis present in 

the claims data. Greater detail on the preparation of the inpatient and claims data is provided elsewhere. 

The table below includes details regarding input data counts. All data are for prevalence. Data which have 

been marked as outliers are not included in these counts. 

 Asbestosis Coal worker’s 

Pneumoconiosis 

Silicosis Other 

Pneumoconiosis 

Site-years (total) 945 769 744 934 

Number of 

countries with 

data 

32 29 33 38 

Number of GBD 

regions with data 

(out of 21 regions) 

12 13 13 15 

Number of GBD 

super-regions 

with data (out of 7 

super-regions) 

5 6 6 7 

 

Severity split inputs 
Data to inform estimates of the severity gradient due to pneumoconiosis etiologies are derived from 

previous analyses of the Medical Expenditure Panel Survey (MEPS). The disability weights are also shared. 

Severity level Lay description DW (95% CI) 

Mild Has cough and shortness of breath after heavy 

physical activity, but is able to walk long distances 

and climb stairs. 

0.019 

(0.011–0.033) 

Moderate Has cough, wheezing, and shortness of breath, even 

after light physical activity. The person feels tired 

and can walk only short distances or climb only a 

few stairs. 

0.225 

(0.153–0.312) 

Severe Has cough, wheezing, and shortness of breath all 

the time. The person has great difficulty walking 

even short distances or climbing any stairs, feels 

tired when at rest, and is anxious. 

0.408 

(0.273–0.556) 
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Modelling strategy 
Estimates for the pneumoconiosis aetiologies are produced using a standard DisMod-MR 2.1 approach. 

For all aetiologies, we use prior settings of zero remission. Additionally, we assume no incidence and 

prevalence before the age of 10. 

To assist estimation, each model includes a series of country-level covariates that describe 

spatiotemporal patterns. The standardised exposure variable (SEV) covariates, which were used for GBD 

2016, were removed because the associated risk-outcome pairs for the new calculation resulted in 

undefined SEV values. However, we added the SEV scalar for mesothelioma in the asbestosis model, as 

asbestosis and mesothelioma have a common risk factor in asbestos exposure. The gold production 

covariate, which was used for the GBD 2016 silicosis model, was removed because DisMod was assigning 

it implausible coefficient values. Subnational updates were made to coal production and asbestos 

consumption to account for new subnational locations for GBD 2017. 

Cause Measure Variable name Beta Exponentiated 

Asbestosis Prevalence Asbestos 

consumption (per 

capita) 

0.47 

(0.015–1.70) 

1.60 

(1.02–5.47) 

Asbestosis Prevalence Log-transformed 

age-standardised 

SEV scalar: 

Mesothelioma 

0.029 

(0.000016–0.32) 

1.03 

(1.00–1.38) 

Coal worker’s Prevalence Coal production 

(per capita) 

0.0017 

( -0.00025 to 0.0045) 

1.00 

(1.00–1.00) 

 

Prevalence and incidence of coal worker’s pneumoconiosis were set to zero in locations without a history 

of coal mining given the causal and necessary relationship between respective occupational exposure and 

disease. For GBD 2016 these locations were values with zero coal production for 30 years in the GBD coal 

production covariate, but for GBD 2017 we cross-referenced these locations with vital registration data to 

ensure that we are not setting prevalence and incidence to zero for any locations where vital registration 

codes greater than zero deaths due to coal worker’s pneumoconiosis. 
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Case definition 
Asthma is a chronic lung disease marked by spasms in the bronchi usually resulting from an allergic 

reaction or hypersensitivity and causing difficulty in breathing. We define asthma as a doctor’s diagnosis 

and wheezing in the past year. The relevant ICD-10 codes are J45 and J46. ICD-9 code is 493. 

Input data 
No systematic review of the literature was completed for this GBD cycle. However, for GBD 2016, we did 

a full systematic review of the literature on asthma. We used the following search string in PubMed and 

filtered by studies of humans published between January 2012 and November 2016. 

(Asthma[Title/Abstract] AND prevalence[Title/Abstract] AND "Cross-Sectional Studies"[MeSH Terms]) 

Survey data added for GBD 2016 include the Survey of Health, Ageing and Retirement in Europe (SHARE), 

the Russian Ural Eye and Medical Study, the South Africa National Income Dynamics Study, the South 

Africa General Household Survey 2009, and the WHO Study on Global Ageing and Adult Health series 

(SAGE), among others. 
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Surveys carried out as part of the International Study of Asthma and Allergies in Childhood (ISAAC) 

collaboration are the most important source of prevalence data in children. 

The following table provides a description of the data density and distribution by geography and 

epidemiological measure (including the claims data discussed below). 

 Prevalence Incidence Remission Other 

Site-years (total) 1389 10 32 9 

Number of 

countries with 

data 

136 5 15 6 

Number of GBD 

regions with data 

(out of 21 regions) 

21 1 7 3 

Number of GBD 

super-regions 

with data (out of 7 

super-regions) 

7 1 5 3 

 

In addition to literature and survey data, we use claims data from the United States. Information on the 

source and preparation of these data are provided in detail elsewhere. 

 

Modelling strategy  
 
We use DisMod-MR 2.1 as the main modelling tool for asthma. Prior settings include a maximum 
remission of 0.3 (reflecting the upper bound of the highest observed data) and no incidence between the 
ages of 0 and 0.5 year, as a diagnosis cannot be made in young infants. 
 
Data points from the ISAAC studies were reported for both sexes combined. We sex-split before 
modelling using the ratios derived from the 2012 US claims data.  
 
Data that describe wheezing in the past year but do not report presence/absence of an accompanying 
diagnosis are crosswalked to the reference category using a study-level covariate in DisMod. As the table 
below shows, studies that only report wheezing are systematically higher than reference data points and 
are adjusted down – dividing by the exponentiated coefficient. Data that describe prevalence of lifetime 
diagnosis of asthma but not accompanying wheezing in the past year are also crosswalked to the 
reference category using a study-level covariate. For GBD 2016, we allowed DisMod to estimate these 
coefficients. For GBD 2017 we performed an analysis of World Health Survey microdata to estimate the 
coefficients and used these values as priors in the DisMod model. 
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To account for country-level differences in excess mortality as a function of available medical care we use 
log lag-distributed income (LDI) as a covariate and assume a negative coefficient. The effect size is shown 
below. 
 
For GBD 2016, claims data for 2000 and 2010 were adjusted via study covariates to account for 

systematically lower estimates relative to the 2012 claims data. Implicit in this adjustment is the 

assumption that variation between years of claims data is a function of data-collection inconsistencies. 

However, an analysis for GBD 2017 showed that even the 2012 claims data were systematically lower 

than asthma survey data. To account for this, we estimated a MarketScan 2000 coefficient and a separate 

MarketScan coefficient for the remaining years of data, by comparing the national values in these 

datasets to national asthma estimates from the USA National Health and Nutrition Examination Survey 

and National Health Interview Surveys. 

Similar to other causes, we include estimates of cause-specific mortality rate (CSMR) and excess mortality 
rate (EMR) derived as a matched value for each prevalence data point dividing CSMR by prevalence. We 
restrict these EMR calculations to data points of 20-year age span or less. 
 
To assist estimation, the model includes a series of country-level covariates that describe spatiotemporal 

patterns. Specifically, we use log LDI and the asthma standardised exposure variable (SEV), a scalar that 

combines exposure of all GBD risks that influence asthma. A full covariate list, including the study-level 

covariates described above, are presented in the following table with their associated effects: 

Variable name Measure Beta Exponentiated 

Wheezing only prevalence 1.05 

(1.05–1.05) 

2.85 

(2.85–2.85) 

Physician-diagnosed asthma only prevalence 0.60 

( 0.60–0.60) 

1.82 

(1.82–1.82) 

Self-reported currently have 

asthma 

prevalence 0.22 

(0.16–0.28) 

1.24 

(1.17–1.32) 

Self-reported ever having asthma prevalence 0.24 

(0.20–0.28) 

1.28 

(1.23–1.32) 

Claims data 2000 prevalence -1.25 

( -1.25 to -1.25) 

0.29 

(0.29–0.29) 

Claims data post-2000 prevalence -0.79 

(-0.79 to -0.79) 

0.45 

(0.45–0.45) 

Log SEV scalar: asthma prevalence 0.75 

(0.75–0.76) 

2.13 

(2.12–2.14) 
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Log LDI (I$ per capita) excess mortality rate -0.5 

(-0.5 to -0.5) 

0.61 

(0.61–0.61) 

 

Severity split inputs 
Lay descriptions and disability weights for the asthma health states are shown in the table below. The 

distribution between the three health states is derived from an analysis of the USA Medical Expenditure 

Panel Surveys (MEPS). The methods are described in full in a separate section of this appendix. Briefly, 

MEPS is an ongoing survey of health service encounters with as its main objective to collect data on 

health expenditure. Panels are recruited every year and followed up for a period of two years. Diagnostic 

information provided by respondents on the reasons for any health care contact are coded into three-

digit ICD-9 codes by professional coders. 

Twice over the two-year follow-up period, respondents are asked to fill in 12-Item Short Form Surveys 

(SF-12). From convenience samples asking respondents to fill in SF-12 for 60 of the GBD health states, 

IHME has created a mapping from SF-12 scores to GBD disability weights (DW). We perform a regression 

with indicator variables for all GBD causes that we can identify from the ICD codes in MEPS to derive for 

each individual with a diagnosis the amount of disability that can be attributed to that condition after 

controlling for any comorbid conditions. Anyone with a diagnosis of asthma in whom the disability 

assigned to asthma is negative or zero we assume is asymptomatic (at the time of asking SF-12 question 

relating to their health status in the past four weeks). Non-zero values we bin into the three health states 

assuming a split between these at the midpoint between DW values. The table below gives the 

proportions in MEPS in each of the health states and an asymptomatic state. 

Severity level Lay description DW (95% CI) Severity 

distribution 

Asymptomatic   36.2%  

(35.0–37.3%) 

Controlled This person has wheezing and cough once a 

month, which does not cause difficulty with 

daily activities.  

0.015 

(0.007–0.026) 

 

19.9% 

(13.6–27.8%) 

Partially controlled This person has wheezing and cough once a 

week, which causes some difficulty with daily 

activities. 

 

0.036 

(0.022–0.055) 

 

20.6%  

(15.1–25.8%) 

Uncontrolled This person has wheezing, cough, and 

shortness of breath more than twice a week, 

which causes difficulty with daily activities 

and sometimes wakes the person at night. 

0.133 

(0.086–0.192) 

23.3% 

(18.7–30.3%) 
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Interstitial lung disease and pulmonary sarcoidosis (ILD)  
 

Flowchart 
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Case definition 
Interstitial lung diseases and pulmonary sarcoidosis are a collection of chronic respiratory diseases that 

impair lung function and oxygen uptake through scarring and/or inflammation. The relevant ICD codes 

are D86 and J84. For interstitial lung disease, we use the American Thoracic Society as the gold standard 

definition. 

Input data 
Model Inputs 

No systematic review of the literature was conducted for ILD for this iteration of the Global Burden of 

Disease. These reviews are done on a rotating basis and updates will be made for a future iteration. 

Data used to make estimates of ILD are predominantly from three main sources. The first is literature 

data from previous systematic reviews – usually from smaller-scale studies of prevalence or incidence. The 

second main data type is claims data for the United States. The source and preparation of these data is 

described elsewhere. The third main data type is adjusted hospital inpatient records. Because these 

records only report primary diagnosis, we a priori adjust the numbers by a sex-specific factor based on 

the observed ratio between USA claims data and USA inpatient hospital data. 

The following table provides a picture of the number of available studies along with their distribution 

globally and by epidemiological profile. In short, the ILD data landscape is rather sparse. The available 

data are largely skewed toward high-income countries like the United States or the member countries of 
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the European Union. The relatively high number of subnational units with data is largely a function of 

claims data in the United States and hospital data from Mexico and Brazil.  

 Prevalence Incidence Other 

Site-years (total) 1380 54 2 

Number of countries 

with data 

39 16 2 

Number of GBD regions 

with data (out of 21 

regions) 

15 7 2 

Number of GBD super-

regions with data (out 

of 7 super-regions) 

7 4 2 

 

Severity splits 

Data to inform estimates of the severity gradient due to ILD are derived from previously analyses of the 

Medical Expenditure Panel Survey (MEPS). The table below illustrates the lay descriptions and disability 

weights associated with different levels of severity of interstitial lung disease. 

 
Severity level Lay description DW (95% CI) 

Mild Has cough and shortness of breath after heavy 

physical activity, but is able to walk long distances 

and climb stairs. 

0.019 

(0.011–0.033) 

Moderate Has cough, wheezing, and shortness of breath, 

even after light physical activity. The person feels 

tired and can walk only short distances or climb 

only a few stairs. 

0.225 

(0.153–0.312) 

Severe Has cough, wheezing, and shortness of breath all 

the time. The person has great difficulty walking 

even short distances or climbing any stairs, feels 

tired when at rest, and is anxious. 

0.408 

(0.273–0.556) 

 

Modelling strategy 
Estimates for ILD are produced using a standard DisMod-MR 2.1 approach. We use prior settings of zero 

remission and we constrain the super-region random effects to -0.5 to 0.5 to ensure model stability. 

As described above, we use an a priori adjustment of hospital inpatient data. 
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Similar to other causes, we include estimates of cause-specific mortality rate (CSMR) and Excess Mortality 

Rate (EMR). The source and estimation of these rates are discussed elsewhere.  

Variable name Measure Beta Exponentiated 

All MarketScan, year 2000 prevalence -0.25 

( -0.27 to -0.23) 

0.78 

(0.76–0.79) 

LDI (I$ per capita) excess mortality 

rate 

-0.2 

(-0.2 to -0.2) 

0.82 

(0.82–0.82) 

Healthcare Access and 

Quality index 

excess mortality 

rate 

0.012 

(0.012–0.013) 

1.01 

(1.01–1.01) 

 

A study-level covariate was used for MarketScan 2000 data to adjust for systematically low values. To 

account for country-level differences in excess mortality (perhaps as a function of available medical care) 

we use ln(lag distributed income) and Healthcare Access and Quality (HAQ) index as proxy measures. The 

effect sizes are shown above. 
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Other chronic respiratory diseases 
In addition to the chronic respiratory diseases described above, there are many diverse types of chronic 

respiratory diseases with a range of severities and associated sequelae. Because these chronic respiratory 

diseases are diverse in their underlying causes and risk factors as well as in their associated health 

outcomes, modelling them together in a DisMod-MR model would not produce reliable estimates of 

prevalence or excess mortality. Instead, we calculated the YLDs caused by other chronic respiratory 

diseases directly using a YLD/YLL ratio.  

We calculated the ratio of YLDs to YLLs across the specified chronic respiratory diseases for which non-

fatal outcomes were modelled, using YLL estimates from the GBD 2017 cause of death (CoD) analysis. We 

then multiplied this YLD/YLL ratio by the YLL estimates for other chronic respiratory diseases from the 

GBD 2017 CoD analysis, providing us with an estimate of the YLDs associated with other chronic 

respiratory diseases.  
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Online Methods risks for individual write-ups for respiratory risk factors 

in GBD 2017 

 

Smoking Capstone Appendix 

Flowchart 

 

We made significant changes to the methods used to estimate smoking attributable burden in GBD 

2017. In previous iterations of the GBD, we have used the Peto-Lopez (Smoking Impact Ratio) method to 

estimate burden attributable to cancers and chronic respiratory diseases. Although this method 

provides robust estimates of the burden of cancers and chronic respiratory diseases related to tobacco, 

it is not fully consistent with the GBD approach of estimating exposure independently of the outcomes 

affected by exposure. For cardiovascular diseases and all other smoking attributable health outcomes, 

we used five-year lagged daily smoking prevalence as the exposure. With a growing body of evidence on 

the association between smoking and several types of cancers and with cardiovascular disease, coupled 

with good estimates of the distribution of cumulative smoking exposure, direct estimation of 

attributable burden is possible. In GBD 2017, we have transitioned to using continuous measures of 

exposure that incorporate dose-response effects among daily, occasional, and former smokers for all 

health outcomes except fractures. 
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Current and former smoking prevalence 
We estimated the prevalence of current smoking and the prevalence of former smoking using data from 

cross-sectional nationally representative household surveys. We defined current smokers as individuals 

who currently use any smoked tobacco product on a daily or occasional basis. We defined former 

smokers as individuals who quit using all smoked tobacco products for at least 6 months, where 

possible, or according to the definition used by the survey. Prior to modelling a complete time series for 

all demographic groups, we made adjustments for alternative case definitions as well as for data 

reported in non-standard age or sex groups. We modelled current and former prevalence using 

spatiotemporal Gaussian process regression.  

Data extraction 
We extracted primary data from individual-level microdata and survey report tabulations. We extracted 
data on current, former, and/or ever smoked tobacco use reported as any combination of frequency of 
use (daily, occasional, and unspecified, which includes both daily and occasional smokers) and type of 
smoked tobacco used (all smoked tobacco, cigarettes, hookah, and other smoked tobacco products such 
as cigars or pipes), resulting in 36 possible combinations. Other variants of tobacco products, for 
example hand-rolled cigarettes, were grouped into the four type categories listed above based on 
product similarities. Only smoked tobacco products are included, smoked drugs are estimated 
separately as part of the drug use risk factor. 
 
For microdata, we extracted relevant demographic information, including age, sex, location, and year, as 
well as survey metadata, including survey weights, primary sampling units, and strata. This information 
allowed us to tabulate individual-level data in the standard GBD five-year age-sex groups and produce 
accurate estimates of uncertainty. For survey report tabulations, we extracted data at the most granular 
age-sex group provided. 

Crosswalk 
Our GBD smoking case definitions were current smoking of any tobacco product and former smoking of 
any tobacco product. All other data points were adjusted to be consistent with either of these 
definitions. Some sources contained information on more than one case definition and these sources 
were used to develop the adjustment coefficient to transform alternative case definitions to the GBD 
case definition. The adjustment coefficient was the beta value derived from a linear model with one 
predictor and no intercept. 
 
We generated separate crosswalk coefficients for the 10-14 age group and the 15-19 age group, as we 
found the relationships between case definitions differed strongly in the younger age groups compared 
to the 20+ age groups. To account for this, we attempted to generate a global crosswalk coefficient for 
both the 10-14 and 15-19 age groups, using the same regression as above. Due to data limitations, none 
of the crosswalk coefficients met the criteria outlined above, so no data covering youths under 20 years 
old were crosswalked. In other words, all data from these age groups that appear in the model were 
asked according to our case definition in the survey. 
 
We propagated uncertainty at the survey level from the crosswalk by incorporating both the variance of 
the errors and the variance of the adjustment coefficients.  
 
For each source that needed adjusting, we assigned space weights based on GBD region and super 
region to the sources containing more than one case definition. Data from the same region receiving a 
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full weight of 1, and data from the same super-region received a weight of ½. We explored using a time 
weight, to control for possible changes in the relationship between smokeless tobacco use behaviours 
over time. We found incorporating temporal information did not significantly change the estimated 
coefficients but did undercut sample sizes, and chose to exclude the time weight. Crosswalk coefficients 
generated from fewer than 20 data sources were dropped 
 

Age and sex splitting  
We split data reported in broader age groups than the GBD 5-year age groups or as both sexes 
combined by adapting the method reported in Ng et al. 
(http://jamanetwork.com/journals/jama/fullarticle/1812960) to split using a sex- geography- time 
specific reference age pattern. We separated the data into two sets: a training dataset, with data 
already falling into GBD sex-specific 5-year age groups, and a split dataset, which reported data in 
aggregated age or sex groups. We then used spatiotemporal Gaussian Process Regression (ST-GPR) to 
estimate sex-geography-time specific age patterns using data in the training dataset. The estimated age 
patterns were used to split each source in the split dataset.  
 
The ST-GPR model used to estimate the age patterns for age-sex splitting used an age weight parameter 
value that minimises the effect of any age smoothing. This parameter choice allows the estimated age 
pattern to be driven by data, rather than being enforced by any smoothing parameters of the model. 
Because these age-sex split data points will be incorporated in the final ST-GPR exposure model, we do 
not want to doubly enforce a modelled age pattern for a given sex-location-year on a given aggregate 
data point.  
 

Smoking prevalence modelling 
We used ST-GPR to model current and former smoking prevalence. Full details on the ST-GPR method 
are reported elsewhere in the Appendix. Briefly, the mean function input to GPR is a complete time 
series of estimates generated from a mixed effects hierarchical linear model plus weighted residuals 
smoothed across time, space and age. The linear model formula for current smoking, fit separately by 
sex using restricted maximum likelihood in R, is: 
 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑔,𝑎,𝑡) = 𝛽0 + 𝛽1𝐶𝑃𝐶𝑔,𝑡 + ∑ 𝛽𝑘𝐼𝐴[𝑎] + 𝛼𝑠 + 𝛼𝑟 + 𝛼𝑔 + 𝜖𝑔,𝑎,𝑡

19

𝑘=2

  

Where 𝐶𝑃𝐶𝑔,𝑡 is the tobacco consumption covariate by geography 𝑔 and time 𝑡, described above, 𝐼𝐴[𝑎] is 

a dummy variable indicating specific age group 𝐴 that the prevalence point 𝑝𝑔,𝑎,𝑡 captures, and 

𝛼𝑠, 𝛼𝑟 , and 𝛼𝑔 are super region, region, and geography random intercepts, respectively. Random effects 

were used in model fitting but not in prediction.  

The linear model formula for former smoking is:   

𝑙𝑜𝑔𝑖𝑡(𝑝𝑔,𝑎,𝑡) = 𝛽0 + 𝛽1𝑃𝑐𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝐴[𝑎],𝑔,𝑡 + 𝛽3𝐶𝑆𝑃𝐴[𝑎],𝑔,𝑡 + ∑ 𝛽𝑘𝐼𝐴[𝑎] + 𝛼𝑠 + 𝛼𝑟 + 𝛼𝑔 + 𝜖𝑔,𝑎,𝑡

20

𝑘=3

  

Where 𝑃𝑐𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝐴[𝑎],𝑔,𝑡 is the percent change in current smoking prevalence from the previous year, 

and 𝐶𝑆𝑃𝐴[𝑎],𝑔,𝑡 is the current smoking prevalence by specific age group 𝐴, geography 𝑔, and time 𝑡 that 

point 𝑝𝑔,𝑎,𝑡 captures, both derived from the current smoking ST-GPR model defined above.  
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Exposure among current and former smokers 
We estimated exposure among current smokers for two continuous indicators: cigarettes per smoker 

per day and pack-years. Pack-years incorporates aspects of both duration and amount. One pack-year 

represents the equivalent of smoking one pack of cigarettes (assuming a 20 cigarette pack) per day for 

one year. Since the pack-years indicator collapses duration and intensity into a single dimension, one 

pack-year of exposure can reflect smoking 40 cigarettes per day for six months or smoking 10 cigarettes 

per day for two years. 

To produce these indicators, we simulated individual smoking histories based on distributions of age of 

initiation and amount smoked. We informed the simulation with cross-sectional survey data capturing 

these indicators, modelled at the mean level for all locations, years, ages, and sexes using 

spatiotemporal Gaussian process regression. We rescaled estimates of cigarettes per smoker per day to 

an envelope of cigarette consumption based on supply-side data. We estimated pack-years of exposure 

by summing samples from age- and time-specific distributions of cigarettes per smoker for a birth cohort 

in order to capture both age trends and time trends and avoid the common assumption that the amount 

someone currently smokes is the amount they have smoked since they began smoking. All distributions 

were age-, sex-, and region- specific ensemble distributions, which were found to outperform any single 

distribution.  

We estimated exposure among former smokers using years since cessation. We utilised spatiotemporal 

Gaussian process regression to model mean age of cessation using cross-sectional survey data capturing 

age of cessation. Using these estimates, we generated ensemble distributions of years since cessation 

for every location, year, age group, and sex. 

Risk-outcome pairs 
We included the following risk-outcome pairs based on evidence supporting a causal relationship: 

tuberculosis, lower respiratory tract infections, esophageal cancer, stomach cancer, bladder cancer, liver 

cancer, laryngeal cancer, lung cancer, breast cancer, cervical cancer, colorectal cancer, lip and oral 

cancer, nasopharyngeal cancer, other pharyngeal cancer, pancreatic cancer, kidney cancer, leukemia, 

ischemic heart disease, ischemic stroke, hemorrhagic stroke, subarachnoid hemorrhage, atrial 

fibrillation and flutter, aortic aneurysm, peripheral arterial disease, chronic obstructive pulmonary 

disease, other chronic respiratory diseases, asthma, peptic ulcer disease, gallbladder and biliary tract 

diseases, Alzheimer disease and other dementias, Parkinson disease (protective), multiple sclerosis, 

type-II diabetes, rheumatoid arthritis, low back pain, cataracts, macular degeneration, and fracture. 

Dose-response risk curves 
We conducted systematic literature reviews for all risk-outcome pairs identified as being caused by 

smoking. We extracted effect sizes by cigarettes per smoker per day, pack-years, and years since 

quitting from cohort and case-control studies. We synthesised these data to produce non-linear dose 

response curves using a Bayesian meta-regression model. For outcomes with significant differences in 

effect size by sex or age, we produced sex- or age-specific risk curves. 

We estimate risk curves of former smokers compared to never smokers taking into account the rate of 

risk reduction among former smokers seen in the cohort and case-control studies, and the cumulative 

exposure among former smokers within each age, sex, location and year group.  
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PAF calculation 
We estimated population attributable fractions based on the following equation: 

𝑃𝐴𝐹 =
𝑝(𝑛) + 𝑝(𝑓) ∫ exp(𝑥) ∗ 𝑟𝑟(𝑥) + 𝑝(𝑐) ∫ exp(𝑦) ∗ 𝑟𝑟(𝑦) − 1

𝑝(𝑛) + 𝑝(𝑓) ∫ exp(𝑥) ∗ 𝑟𝑟(𝑥) + 𝑝(𝑐) ∫ exp(𝑦) ∗ 𝑟𝑟(𝑦)
 

where 𝑝(𝑛) is the prevalence of never smokers, 𝑝(𝑓) is the prevalence of former smokers, 𝑝(𝑐) is the 

prevalence of current smokers, exp(𝑥) is a distribution of years since quitting among former smokers, 

𝑟𝑟(𝑥) is the relative risk for years since quitting, exp(𝑦) is a distribution of cigarettes per smoker per 

day or pack-years, and 𝑟𝑟(𝑦) is the relative risk for cigarettes per smoker per day or pack-years. 

We used pack-years as the exposure definition for cancers and chronic respiratory diseases, and 

cigarettes per smoker per day for cardiovascular diseases and all other health outcomes. 
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Secondhand Smoke Capstone Appendix 

Flowchart 
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Exposure 

Case definition 
We define secondhand smoke exposure as current exposure to secondhand tobacco smoke at home, at 

work, or in other public places. We use household composition as a proxy for non-occupational 

secondhand smoke exposure and make the assumption that all persons living with a daily smoker are 

exposed to tobacco smoke. We use surveys to estimate the proportion of individuals exposed to 

secondhand smoke at work. We only consider non-smokers to be exposed to secondhand smoke. Non-

smokers are defined as all persons who are not daily smokers. Ex-smokers and occasional smokers are 

considered non-smokers in this analysis. Exposure is evaluated for both children and adults. 

Input data 
To calculate the proportion of non-smokers who live with at least one smoker, we used unit record data 

on household composition, which included the ages and sexes of all persons living in the same 

household. Our sources included representative major survey series with a household composition 

module, including the Demographic Health Surveys (DHS), the Multiple Indicator Cluster Surveys (MICS), 

and the Living Standards Measurement Surveys (LSMS); and national and subnational censuses, which 

included those captured in the IPUMS project and identified using the Global Health Data Exchange 

catalog (GHDx). 

To calculate the proportion of individuals exposed to secondhand smoke at work, by age and sex, we 

used cross-sectional surveys that ask respondents about self-reported occupational secondhand smoke 

exposure. Sources include the Global Adult Tobacco Surveys, Eurobarometer Surveys, and WHO STEPS 

Surveys. We identified sources using the GHDx. 
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Estimates of primary smoking prevalence in each location were also used in our calculations. Further 

details on the estimation of primary smoking prevalence can be found in the Smoking methods 

appendix. 

Modelling strategy  
We estimated the probability that each person is living with a smoker and is also a non-smoker 

themselves using set theory. First, household composition data were used at the individual level to 

capture the ages and sexes of each person in the household. Second, we analyzed surveys with both 

household composition data and tobacco use questions and determined that the distribution of 

household size, mean age of the household members, and the age distribution were not significantly 

different between households with and without a self-reported smoker. Since we did not find that 

household composition varied between smokers and non-smokers, we then used the GBD 2017 primary 

smoking prevalence model to calculate the probability that each household member is a smoker. Next, 

we used the probability of the union of sets on each individual household member to calculate the 

overall probability that at least one of the other household members was a smoker. We incorporated 

occupational exposure by modelling prevalence of current exposure to secondhand smoke at work, by 

age, sex, location, and year, using ST-GPR. In order to avoid double counting we calculated the 

probability that an individual is exposed through either non-occupational exposure or occupational 

exposure, given their age, sex, and household composition. Finally, we multiplied this probability of 

exposure by the probability that the individual is not a smoker themselves (i.e. 1 minus primary smoking 

prevalence for that person’s location, year, age, and sex). We then collapse these individual-level 

probabilities to produce average probabilities of exposure by location, year, age, and sex.  

These probabilities were modelled in the GBD ST-GPR framework, which generates exposure estimates 

from a mixed effects hierarchical linear model plus weighted residuals smoothed across time, space, and 

age. The linear model formula was fit separately by sex using restricted maximum likelihood in R. 

We used the sex-specific overall smoking prevalence for adults (age 15 and older) as a country-level 

covariate in the model. The overall male adult daily smoking prevalence was used as the covariate for 

females of all ages and for males under age 15. The overall female adult daily smoking prevalence was 

used as the covariate for males age 15 and older. This was a modelling change from GBD 2015, in which 

we used the male age-standardised smoking prevalence for the adult female and children under 15 

model, and the female age-standardised smoking prevalence for the adult male model.  

All input data points from the probability calculation had a measure of uncertainty (variance and sample 

size) coming from the uncertainty of the primary smoking prevalence model and the sample size from 

the unit record data going into the modelling process. Geographic random effects were used in model 

fitting but were not used in prediction. 

Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level for secondhand smoke is zero exposure among non-

smokers, meaning that non-smokers would not live with any primary smokers. 

Relative risks 
For children ages 0-14, we estimated the burden of otitis media attributable to secondhand smoke 

exposure. For all ages we estimated the burden of lower respiratory infections (LRI), and for adults 
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greater or equal to 25 years of age we estimated the burden of lung cancer, chronic obstructive 

pulmonary disease (COPD), ischemic heart disease, and cerebrovascular disease attributable to 

secondhand smoke exposure, breast cancer, and type-II diabetes.  

For lung cancer, ischemic heart disease, cerebrovascular disease, and LRI, we used country-specific 

relative risks created using integrated exposure response curves (IER) for PM2.5 air pollution. The 

relative risks for otitis media, breast cancer, and diabetes are derived from published meta-analyses. 

We used the standard GBD population attributable fraction (PAF) equation to estimate burden based on 

exposure and relative risks. 
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Ambient Ozone Pollution Capstone Appendix 

Flowchart 

 

Input data and methodological summary 

Exposure 

Case definition 

For GBD 2017, exposure to ozone pollution is defined as the seasonal (6 month period with highest 

mean) 8 hour daily maximum ozone concentrations, measured in ppb. This was an update from the 

previous exposure metric in accordance with an update of the American Cancer Society Cancer 

Prevention Study II (ACS CPS-II).1 

Input data 
Previously, exposure estimates were based on a chemical transport model with no measurement 

database or evaluation. In GBD 2017, exposure estimates incorporated a new comprehensive ozone 

measurement database (TOAR).2 This enabled a continent-specific weighted blend of 6 chemical 

transport models with grid cell level bias correction. The use of ground measurements also enabled the 

incorporation of error estimation, where previously we had assumed a +/- 6% error. The output of this 

model is a global raster of ozone exposure which is a summary for the years 2008-2014.3  

Modelling strategy for trends 
To estimate ozone concentrations over time, we used the trend from the former GBD model for 1990, 

2000, and 2010 and cubic splines for 1995, 2005, and 2011, after applying an adjustment for the 

difference in trends between the previous (1 hour daily maximum) and current (8 hour daily maximum 

metrics. Annualised rate of change was used to predict for the years 2012-2017.  

Theoretical minimum-risk exposure level 
The TMREL of ozone was updated this year based on the exposure distribution from the updated ACS 

CPS-II study.1 A uniform distribution was drawn around the minimum and 5th percentile values 

experienced by the cohort, defined as ~U(29.1, 35.7), in ppb.  



 53 

Relative risks 
Since the inclusion of ozone in GBD 2010 the relative risk of ozone exposure for respiratory COPD 

mortality has been defined to be 1.029, 95% C.I. (1.01-1.048) per 10 ppb of ozone exposure. Note that 

this comes from one study that looked at all respiratory mortality.4 For GBD 2017, we performed a 

literature review and included five cohorts from Canada, the UK, and the US which all measured COPD 

mortality. For cohorts with multiple analyses we chose the most recent analysis. We found a resulting 

relative risk of 1.06, 95% C.I. (1.02, 1.10). 
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Occupational Risk Factors Capstone Appendix 
 

Exposure definitions 
The following definitions were used for occupational risk factor exposures. All exposures were estimated 

for ages 15 and older. 

Occupational Asbestos Cumulative lifetime exposure to occupational 

asbestos, using mesothelioma death rate as an 

analogue 

Occupational Asthmagens Proportion of the working population exposed to 

asthmagens, based on population distributions across 

nine occupational categories 

Occupational Carcinogens (arsenic, 

benzene, beryllium, cadmium, chromium, 

diesel engine exhaust, formaldehyde, nickel, 

polycyclic aromatic hydrocarbons, silica, 

sulfuric acid, and trichloroethylene) 

Proportion of the population that was ever 

occupationally exposed to carcinogens at high or low 

exposure levels, based on population distributions 

across seventeen economic activities 

Occupational Ergonomic Factors Proportion of the working population exposed to low 

back pain-inducing work, based on population 

distributions across nine occupational categories 

Occupational Injuries Proportion of injuries in the working-age population 

attributable to occupational work, based on fatal 

injury rates in seventeen economic activities 

Occupational Noise Proportion of the population occupationally exposed 

to 85+ decibels of noise, based on population 

distributions across seventeen economic activities 

Occupational Particulates Proportion of the population occupationally exposed 

to particulates, based on population distributions 

across seventeen economic activities 

 

Economic activities and occupations were coded according to the following categories: 

Economic Activities Occupations 

Agriculture, hunting, forestry Legislators, senior officials, and managers 

Fishing Professionals 

Mining and Quarrying Technicians and associate professionals 

Manufacturing Clerks 
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Electricity, gas, and water Service workers and shop/market sales workers 

Construction Skilled agricultural and fishery workers 

Wholesale and retail trade/repair Plant and machine operators and assemblers 

Hospitality Craft and related workers 

Transport, storage, and communication Elementary occupations 

Financial intermediation  

Real estate/renting  

Public administration/defense; compulsory social 

security 

 

Education  

Health and social work  

Other community/social/personal service 

activities 

 

Private households  

Extra-territorial organisations/bodies  

 

Input data 
Primary inputs were obtained from the ILO,1-4 and included raw data on economic activity proportions, 

occupation proportions, fatal injury rates, and employment to population ratio estimates. A systematic 

web review was conducted in order to collect the underlying microdata from the ILO’s estimates to aid 

in re-extraction at greater levels of granularity. Where freely available, survey datasets were 

downloaded from the survey organisations in question. Other datasets were obtained through 

submission of requests to agencies and through the GBD collaborator network. Microdata was tabulated 

in order to create survey-weighted estimates of economic activities and occupations for the GBD 

geographies and years. Various classification systems were crosswalked to ISIC Rev.3 (for economic 

activities) and ISCO 1988 (for occupations). Subnational estimates for UK and China were added to the 

datasets for economic activities and occupations.5,6  

For occupational asbestos, primary inputs were obtained through GBD 2017 cause of death estimates 

and published studies.7,13,14  

Uncertainty for inputs where microdata was unavailable was generated by fitting a Loess curve to the 

data and determining the standard deviation of the data from the fitted curve.  

Modelling strategies 
A Spatio-temporal Gaussian process regression (ST-GPR) was used to generate estimates for all years 

and locations for the primary inputs. Study level covariates used in the prior model were education in 
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years per capita, geological covariates (for mining models), the proportion of the population living with 

access to a coastline (for fishing models), the IHME socio-demographic index (SDI), the mean 

temperature/latitude (for agriculture models), and the proportion of the population living in urban 

areas. Space-time parameters were chosen by maximising out-of-sample cross-validation and 

minimising RMSE. For economic activity and occupation proportions, estimates from ST-GPR were then 

re-scaled to sum to 1 across categories by dividing each estimate by the sum of all the estimates. 

The following sections describe the modelling approaches for each occupational risk’s exposure 

prevalence. 

Occupational carcinogens, occupational noise, and occupational particulates 
Prevalence of exposure to these risks was determined using the following equation: 

 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑓 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑐,𝑦,𝑠,𝑎,𝑟,𝑙 =  ∑ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝐸𝐴,𝑐,𝑦 ∗ 𝐸𝐴𝑃𝑐,𝑦,𝑠,𝑎 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑟𝑎𝑡𝑒𝐸𝐴,𝑟,𝑙,𝑑

𝐸𝐴

 

where: 

EAP = economically active population 

EA = economic activity 

a = age 

 

c = country 

d = duration 

l = level of exposure 

 

r = risk 

s = sex 

y =year 

Exposure rate was provided by expert group recommendations and literature8-11 (see table 1). The 

CAREX database was used in order to quantify the association between exposure by industry/carcinogen 

to SDI across all the countries in the database. This effect was used to predict exposure in countries that 

were not included in CAREX. Duration was considered for occupational carcinogens through application 

of occupational turnover factors12 and for occupational noise and particulates by calculating cumulative 

exposure as the average exposure over the lifetime (the past 50 years) for each age/sex cohort. 

 

Occupational ergonomic factors and occupational asthmagens 
Prevalence of exposure to these risks was determined using the following equation: 

 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑓 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑐,𝑦,𝑠,𝑎,𝑟 =  ∑ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑂𝐶𝐶,𝑐,𝑦 ∗ 𝐸𝐴𝑃𝑐,𝑦,𝑠,𝑎

𝐸𝐴

 

where: 

EAP = economically active population 

OCC = occupation 

 

c = country 

a = age 

 

r = risk 

s = sex 

y = year 

 

Occupational injuries 
Occupational injury counts were estimated using the following equation: 
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𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑎𝑡𝑎𝑙 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠𝑐,𝑦,𝑎,𝑠

= ∑ 𝐼𝑛𝑗𝑢𝑟𝑦 𝑟𝑎𝑡𝑒𝐸𝐴,𝑐,𝑦,𝑠 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑐,𝑦,𝑎,𝑠 ∗ 𝐸𝐴𝑃𝑐,𝑦,𝑠,𝑎 ∗ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝐸𝐴,𝑐,𝑦

𝐸𝐴

 

where: 

EAP = economically active population 

EA = economic activity 

 

c = country 

a = age 

 

y = year 

s = sex 

 

Occupational asbestos 
Prevalence of exposure to asbestos was estimated using the asbestos impact ratio (AIR), which is 

equivalent to the excess deaths due to mesothelioma observed in a population divided by excess deaths 

due to mesothelioma in a population heavily exposed to asbestos. Formally, this is defined using the 

following equation: 

 

𝐴𝐼𝑅 =  
𝑀𝑜𝑟𝑡𝑐,𝑦,𝑠 −  𝑁𝑐,𝑦,𝑠 

𝑀𝑜𝑟𝑡𝑐,𝑦𝑠,
∗ − 𝑁𝑐,𝑦,𝑠

 

 

where: 

Mort = Mortality rate due to mesothelioma 

Mort* = Mortality rate due to mesothelioma in 

population highly exposed to asbestos 

N = Mortality rate due to mesothelioma in 

population not exposed to asbestos 

 

c = country 

y = year  

s = sex 

Mortality rate due to mesothelioma was estimated from GBD 2017 causes of death.7 Mortality rate due 

to mesothelioma in populations not exposed to asbestos was calculated using the model in Lin et al.,13 

while the mortality rate due to high exposure to asbestos was estimated in Goodman et al.14 Asbestos 

exposure prevalence created using the AIR was used to estimate PAFs for all asbestos-associated causes 

except for mesothelioma. Custom PAFs were calculated for mesothelioma by using the ratio of the 

excess mortality with respect to an unexposed population (Mort – N) divided by the mortality rate in the 

population in question (Mort). This calculation assumes that all mesothelioma is a product of 

occupational asbestos exposure and could potentially over-estimate burden due to occupational 

asbestos exposure in populations with high non-occupational asbestos exposure. 

 

Theoretical minimum-risk exposure level 

For all occupational risks, with the exception of occupational asbestos, the theoretical minimum-risk 

exposure level was assumed to be no exposure to that risk. 
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Relative risk 
Relative risks were obtained for all occupational risks by conducting a systematic review of published 

meta-analysis. The estimates used, as well as the associated studies, are reported by category group in 

appendix table 5.  

PAFs 
For all occupational risks, with the exception of injuries (outlined below) and mesothelioma (outlined 

above), PAFs were calculated using the prevalences estimated above, using the PAF formula in outlined 

in the GBD 2017 methods appendix.  

Occupational injuries PAF 
The PAFs for occupational injuries were calculated using the following formula: 

𝑃𝐴𝐹𝑐,𝑦,𝑎,𝑠 =  
𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑎𝑡𝑎𝑙 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠𝑐,𝑦,𝑎,𝑠 − 𝑇𝑀𝑅𝐸𝐿

𝐹𝑎𝑡𝑎𝑙 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠𝑐,𝑦,𝑎,𝑠
 

where: 

c = country 

y = year 

a = age 

s = sex 

 

Fatal injury totals were obtained from GBD 2017 causes of death.7  
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Input data and modeling strategy 

Exposure 

Definition 

Exposure to ambient air pollution is defined as the population-weighted annual average mass 

concentration of particles with an aerodynamic diameter less than 2.5 micrometers (PM2.5) in a cubic 

meter of air. This measurement is reported in µg/m3. 

Input Data 

The data used to estimate exposure to ambient air pollution is drawn from multiple sources, including 

satellite observations of aerosols in the atmosphere, ground measurements, chemical transport model 

simulations, population estimates, and land-use data.  

The following details the updates in methodology and input data used in GBD 2017.  

PM2.5 ground measurement database 

Updates of ground measurements used for GBD 2017 include using more recent data than that used  

previously and the addition of data from new locations. The data from the 2018 update of the WHO 

Global Ambient Air Quality Database include monitor-specific measurements of concentrations of PM10 

and PM2.5 from 9,960 ground monitors (up from 6,003 in GBD 2016) from 108 countries. The majority of 

measurements were recorded in 2016 (as there is a lag in reporting measurements, little data from 2017 

were available). Annual averages were excluded if they were based on less than 75% coverage within a 

year. Collection year ranged from 2008 to 2017 in data used. If information on coverage was not 

available then data were included unless they were already sufficient data within a country (monitor 

density greater than 0.1). 

For locations measuring only PM10, PM2.5 measurements were estimated from PM10. This was performed 

using a hierarchy of conversion factors (PM2.5/PM10 ratios): (i) for any location a ‘local’ conversation 

factor was used, constructed as the ratio of the average measurements (of PM2.5 and PM10) from within 

50km and within the same country, if such were available’ (ii) if there was not sufficient local 

information to construct a conversion factor then a country-wide conversion factor was used; and (iii) if 

there was no appropriate information within a country then a regional factor was used. In each case, to 

avoid the possible effects of outliers in the measured data (both PM2.5 and PM10), extreme values of the 

ratios were excluded (defined as being greater/lesser than the 95 and 5% quantiles of the empirical 

distributions of conversion factors) of the latter two cases for the country measurements were available, 

for both metrics. As in the GBD 2013 and GBD 2015/GBD 2016 databases, in addition to values of PM2.5 

and whether they were direct measurement or converted from PM10, the database also included 

additional information, where available,  related to the ground measurements such as monitor geo 

coordinates and monitor site type.  

Satellite-based estimates 

The updated satellite-based estimates for years 1998-2016 are described in detail in van Donkelaar et al. 

2016.0 These estimates were available at 0.1o×0.1o resolution (~11 x 11 km resolution at the equator) 

and combine aerosol optical depth retrievals from multiple satellites with the GEOS Chem chemical 

transport model and land use information.  
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Population data  

A comprehensive set of population data on a high-resolution grid was obtained from the Gridded 

Population of the World (GPW) database. These estimates are adjusted to match UN2015 Population 

Prosepectus. These data are provided on a 0.0417o×0.0417o resolution. Aggregation to each 0.1o×0.1o 

grid cell comprised of summing the central 3 × 3 population cells. As this resulted in a resolution higher 

than necessary, it was repeated four times, each offset by one cell in a North, South, East and West 

direction. The average of the resulting five quantities was used as the estimated population for each grid 

cell. Population estimates for 2000, 2005, 2010, 2015 and 2020 were available from GPW version 4 

revision 10. Populations for 2016 and 2017 were obtained by interpolation using natural splines with 

knots placed at 2000, 2005, 2010, 2015 and 2020. This was performed for each grid cell.  

Chemical transport model simulations 

Estimates of the sum of particulate sulfate, nitrate, ammonium and organic carbon and the 

compositional concentrations of mineral dust simulated using the GEOS Chem chemical transport 

model, and a measure combining elevation and the distance to the nearest urban land surface (as 

described in van Donkelaar et al. 20160) were available for 2000 to 2016 for each 0.1o×0.1o grid cell. 

These were not included within the GBD 2013 analysis. 

Modelling strategy 

Significant advances have been made in the methodology used to estimate exposure to ambient 

particulate matter pollution since GBD 2013. The following is a summary of the modelling approach,  

known as the Data Integration Model for Air Quality (DIMAQ) used in GBD 2015, 2016, and 2017; further 

details can be found in Shaddick et al. (2017). 2 

In GBD 2010 and GBD 2013 exposure estimates were obtained using a single global function to calibrate 

available ground measurements to a ‘fused’ estimate of PM2.5; the mean of satellite-based estimates 

and those from the TM5 chemical transport model, calculated for each 0.1o×0.1o grid cell. This was 

recognised to represent a trade-off between accuracy and computationally efficiency when utilising all 

the available data sources. In particular, the GBD 2013 exposure estimates were known to 

underestimate ground measurements in specific locations (see discussion in Brauer et al., 20133). This 

underestimation was largely due to the use of a single, global, calibration function, whereas in reality 

the relationship between ground measurements and other variables will vary spatially.  

In GBD 2015 and GBD 2016, coefficients in the calibration model were estimated for each country. 

Where data were insufficient within a country, information can be `borrowed’ from a higher aggregation 

(region) and if enough information is still not available from an even higher level (super-region). 

Individual country level estimates were therefore based on a combination of information from the 

country, its region and super-region.  This was implemented within a Bayesian Hierarchical modelling 

(BHM) framework. BHMs provide an extremely useful and flexible framework in which to model 

complex relationships and dependencies in data. Uncertainty can also be propagated through the model 

allowing uncertainty arising from different components, both data sources and models, to be 

incorporated within estimates of uncertainty associated with the final estimates.  The results of the 

modelling comprise a posterior distribution for each grid cell, rather than just a single point estimate, 

allowing a variety of summaries to be calculated. The primary outputs here are the median and 95% 

credible intervals for each grid cell. Based on the availability of ground measurement data, modelling 

and evaluation was focused on the year 2016.  

http://beta.sedac.ciesin.columbia.edu/data/collection/gpw-v4
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The GBD 2017 model was updated to also include within country calibration variation. 4 The model used 

for GBD2017, henceforth referred to as DIMAQ2, provides a number of substantial improvements over 

the initial formulation of DIMAQ.  In DIMAQ, ground measurements from different years were all 

assumed to have been made in the primary year of interest (i.e. 2014 for GBD2015 before extrapolation) 

and then regressed against values from other inputs (e.g. satellites etc.) made in that year. In the 

presence of changes over time therefore, and particularly in areas where no recent measurements were 

available, there was the possibility of mismatches between the ground measurements and other 

variables. In DIMAQ2, ground measurements and matched with other inputs (over time) and the 

possibility of the (global level) coefficients  being allowed to vary over time, subject to smoothing that is 

induced by a second-order random walk process. In addition, the manner in which spatial variation can 

be incorporated within the model has developed: where there is sufficient data, the calibration 

equations can now vary (smoothly) both within and between countries, achieved by allowing the 

coefficients to follow (smooth) Gaussian processes. Where there is insufficient data within a country, to 

produce accurate equations, as before information is borrowed from lower down the hierarchy and it is 

supplemented with information from the wider region.   

DIMAQ2 is used for all regions except for the North Africa-Middle East and Sub-Saharan super-regions 

and remote islands where there is insufficient data to allow the extra complexities of the new model to 

be implemented. In the North Africa-Middle East and Sub-Saharan super-regions a simplified version of 

DIMAQ2 is used in which the temporal component is dropped, and for remote islands the original 

DIMAQ is used.  

Due to both the complexity of the models and the size of the data, notably the number of spatial 

predictions that are required, recently developed techniques that perform ‘approximate’ Bayesian 

inference based on integrated nested Laplace approximations (INLA) were used.5 Computation was 

performed using the R interface to the INLA computational engine (R-INLA). Fitting the models and 

performing predictions for each of the ca. 1.4 million grid cells required the use of a high performance 

computing cluster (HPC) making use of high memory nodes.  

Model evaluation 

Model development and comparison was performed using within- and out-of-sample assessment. In the 

evaluation, cross validation was performed using 25 combinations of training (80%) and validation (20%) 

datasets.  Validation sets were obtained by taking a stratified random sample, using sampling 

probabilities based on the cross-tabulation of PM2.5 categories (0-24.9, 25-49.9, 50-74.9, 75-99.9, 100+ 

µg/m3) and super-regions, resulting in them having the same distribution of PM2.5 concentrations and 

super-regions as the overall set of sites.  The following metrics were calculated for each 

training/evaluation set combination: for model fit - R2 and deviance information criteria (DIC, a measure 

of model fit for Bayesian models); for predictive accuracy - root mean squared error (RMSE) and 

population weighted root mean squared error (PwRMSE). 

All modelling was performed on the log-scale. The choice of which variables were included in the model 

was made based on their contribution to model fit and predictive ability. The following is a list variables 

and model structures that were included in DIMAQ. 

Continuous explanatory variables: 

http://www.r-inla.org/
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o (SAT) Estimate of PM2.5 (in μgm-3) from satellite remote sensing on the log-scale. 
o (POP) Estimate of population for the same year as SAT on the log-scale.  
o (SNAOC) Estimate of the sum of sulfate, nitrate, ammonium and organic carbon 

simulated using the GEOS Chem chemical transport model. 
o (DST) Estimate of compositional concentrations of mineral dust simulated using the 

GEOS Chem chemical transport model. 
o (EDxDU) The log of the elevation difference between the elevation at the ground 

measurement location and the mean elevation within the GEOS Chem simulation grid 
cell multiplied by the inverse distance to the nearest urban land surface. 
 

Discrete explanatory variables: 

o (LOC) Binary variable indicating whether exact location of ground measurement is 
known. 

o (TYPE) Binary variable indicating whether exact type of ground monitor is known. 
o (CONV) Binary variable indicating whether ground measurement is PM2.5 or converted 

from PM10. 
 

Random Effects: 
o Grid cell random effects on the intercept to allow for multiple ground monitors in a grid 

cell.  
o Country-region-super-region hierarchical random effects for the intercept. 
o Country-region-super-region hierarchical random effects for the coefficient associated 

with SAT . 
o Country-region-super-region hierarchical random effects for the coefficient associated 

with the difference between estimates from CTM and SAT.  
o Country-region-super-region hierarchical random effects for the coefficient associated 

with POP. 
o Country level random effects for population uses a neighbourhood structure allowing 

specific borrowing of information from neighbouring countries.  
o Within a region, country level effects of SAT and the difference between SAT AND CTM 

are assumed to be independent and identically distributed. 
o Within a super-region, region level random effects are assumed to be independent and 

identically distributed. 
o Super-region random effects are assumed to be independent and identically distributed. 

 
Interactions: 

o Interactions between the binary variables and the effects of SAT and CTM. 
 
In addition, DIMAQ2 includes 

o Smoothed, spatially varying, random-effects for the intercept 
o Smoothed, spatially varying, random-effects for the coefficient of coefficient associated 

with SAT 
o Smoothed, temporally varying, random-effect for the intercept 
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Results 

The final model contained the following variables: SAT, POP, SNAOC, DST, EDxDU, LOC, TYPE, and CONV, 

together with interactions between SAT and each of LOC, TYPE and CONV. The model structure 

contained grid cell random effects on the intercept to allow for multiple ground monitors in a grid cell, 

country-region-super-region hierarchical random effects for intercepts and SAT and country level 

random effects for population using a neighbourhood structure allowing specific borrowing of 

information from neighbouring countries together with region-super-region hierarchical random effects 

for POP. Notably, and as in GBD 2015 and GBD 2016, based on the evaluation of candidate models, 

including estimates from the TM5 chemical transport model (CTM) used in GBD 2013 did not improve 

the predictive ability of the model and was therefore not included. 

Compared to the model used in GBD2013, DIMAQ showed improved predictions of ground 
measurements in all super regions with improvements in both within-sample fit; with a global 
population-weighted RMSE of 12.1 µg/m3 compared to 23.1 µg/m3 when using the GBD 2013 approach.0 
Using the larger database available for GBD2017, with potentially more variability in measurements, 
DIMAQ2 shows an additional improvement on DIMAQ: overall population-weighted RMSE reduced from 
9.32 to 8.11 (12.12 to 11.17 when using all data, irrespective of within-year coverage). Reductions by 
super-region can be seen in Figure 1. Reductions can be seen in all super-regions with particular 
improvement in the Southeast Asia, East Asia and Oceania super-region which is based largely on a 
substantial increase in accuracy in China, PwRMSE 6 vs 9 µg/m3 
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Figure 1: Summary measures of predictive ability, globally and by super-region. Dots denote the median values of population 
weighted root mean squared error (µg/m3) from 25 validation sets with vertical lines showing the range of values over those 
sets.  

Estimates for other years 

In contrast to the method used previously, where estimates (of PM2.5) were extrapolated to produce 

estimates for the year of interest (e.g. 2017 where data was available up to and including 2016) due to 

the extra complexity of the smooth spatial processes in DIMAQ2 this would not be possible in any 

straightforward manner. With DIMAQ2 it is the input variables that are extrapolated; this allows 

estimates for 2017 to be produced in the same way as other years and crucially, allows measures of 

uncertainty to be produced within the BHM framework rather than by using post-hoc approximations.  

Satellite estimates and quantities estimated using the GEOS-Chem model were available for 1990, 1995, 

2000, 2005, 2010-2016. Estimates of these input variables for 2017 were produced by extrapolating, on 

a cell-by-cell basis, using natural splines. Population estimates for 2000, 2005, 2010, 2015 and 2020 

were availalble from GPW version 4. For 1990 and 1995 data were extracted from GPW version 3, as in 

GBD2013.2 As with populations for 2015, values for each cell for 2011-2017 were obtained by 

interpolation using natural splines with knots placed at 2000, 2005, 2010, 2015 and 2020. 

These were used as inputs to DIMAQ, enabling estimates of exposures to be obtained for each of these 

years respectively. For 2017, estimates of exposures were obtained from predictions from locally-

varying regression models.6 For each cell a model was fit to the values within that cell over time, with a 

constraint placed on the rate of change between 2016 and 2017 to avoid unrealistic and/or unjustified 

extrapolation of trends. Measures of uncertainty were obtained by repeating the procedure for the 

limits of the 95% credible intervals, again on a cell-by-cell basis.  

Population-weighted exposure generation 

To generate a distribution of the population-weighted ambient particulate matter, we took a weighted 

sampling strategy, taking samples from all grid cells in a given location. For example, for a country with n 

grid cells, we randomly sampled 1000 values from the n (grid cells) x 1000 (samples) where the 

probability of being sampled was proportional to the population of that grid cell.  

Theoretical minimum-risk exposure level 
The TMREL was assigned a uniform distribution with lower/upper bounds given by the average of the 
minimum and 5th percentiles of outdoor air pollution cohort studies exposure distributions conducted in 
North America, with the assumption that current evidence was insufficient to precisely characterise the 
shape of the concentration-response function below the 5th percentile of the exposure distributions. The 
TMREL was defined as a uniform distribution rather than a fixed value in order to represent the 
uncertainty regarding the level at which the scientific evidence was consistent with adverse effects of 
exposure. The specific outdoor air pollution cohort studies selected for this averaging were based on the 
criteria that their 5th percentiles were less than that of the American Cancer Society Cancer Prevention II 
(CPSII) cohort’s 5th percentile of 8.2 based on Turner et al. (2016).7 This criterion was selected since GBD 
2010 used the minimum, 5.8, and 5th percentile solely from the CPS II cohort. The resulting lower/upper 
bounds of the distribution for GBD 2017 were 2.4 and 5.9. This has not changed since GBD 2015. 
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Relative risks and population attributable fractions 
We estimated the Ambient Air Pollution-attributable burden of disease based on the relation of long-

term exposure to PM2.5 with Ischemic Heart Disease, stroke (ischemic and hemorrhagic), COPD, lung 

cancer and acute lower respiratory infection. These were also the pollutant-outcome pairs used to 

estimate the Ambient Air Pollution attributable burden since GBD 2010. For GBD 2017 we also added 

Type II Diabetes as an outcome of ambient air pollution. We used results from all cohort studies 

published as of July 2018 that reported cause-specific relative risk estimates based on measured or 

modelled PM2.5 and that adjusted for potential confounding due to other major risk factors such as 

tobacco smoking using data for each study participant.  

Bowe et al. recently published work that assembled the evidence for the relationship between 

particulate matter and diabetes to generate IER curves and attributable burden estimates based on 

methodologies similar to those of the GBD. 8  

When generating the IER for Type II Diabetes, we included all eight of the studies summarized by Bowe 

et al. in addition to six other cohorts. Resulting attributable burden estimates were remarkably similar to 

GBD 2017 results. All citations for studies used in the fitting of the IER curve can be found using the GBD 

17 Data Input Sources Tool.  

Integrated exposure response function 
The Integrated Exposure Response Function (IER) was created to ascertain the shape of the dose 

response curve for a variety of health outcomes across a wide range of exposure to PM2.5. The IER 

model is fit by integrating RR information from studies of outdoor air pollution (OAP), Second hand 

tobacco smoke (SHS), Household Air Pollution (HAP), and Active Smoking (AS). Because OAP studies are 

often performed at the lower end of the ambient air pollution range, incorporating other exposures to 

particulate matter enables RR estimation across the global range of exposure. These methods have been 

described in detail elsewhere.9,10 

Notable changes for GBD 2017 include added studies for OAP, SHS, and HAP, updated literature reviews 

for AS studies, and more informative priors to stabilize the shape of the IER curves.  

• We added all newly published cohorts of long-term exposure to Ambient PM2.5 and incidence 
or mortality due to IHD, stroke, COPD, lung cancer, and LRI. One notable addition was the China 
Male Cohort which included mortality due to IHD, Stroke, COPD, Lung Cancer, and Diabetes 
(unpublished analysis).11 This study represented a higher exposure range than most of our 
previously incorporated studies with 5th and 95th percentile of 15.5 and 77.1 micrograms/m3. For 
Type II Diabetes, the new outcome included in GBD 2017, we included all cohorts which 
measured long-term PM2.5 exposure and incident diabetes or mortality due to diabetes.  

• We did not change the SHS input studies with the exception of including all studies from a 
recent meta-analysis examining the relationship between SHS and Type II Diabetes.12  We also 
added seven studies found from a systematic review examining SHS exposure and COPD. We 
had previously not included SHS in the formation of this curve.  

• We added four cohort studies of HAP and any of our measured outcomes. Previously we have 
only included which measured levels of PM2.5 exposure. To incorporate cohort studies with 
binary exposure data (presence or absence of solid-fuel use for cooking) we used the PM2.5 
mapping function (see Household Air Pollution Appendix for more details) to obtain a PM2.5 
level attributed to solid fuel use for cooking for the location-year of the study (ExpHAP). We also 
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used the OAP exposure model to obtain an OAP PM2.5 level for the location-year (ExpOAP). The 
study RR was used to inform the curve on the range of ExpOAP to (ExpOAP + ExpHAP).  

• For all outcomes, we used updated systematic reviews of the literature performed by the GBD 
smoking team for studies examining cigarettes smoked per day and the six IER outcomes to 
inform the high exposure range of the curve. The smoking team found that the process of 
systematic review and inclusion of all acceptable studies led to lower relative risks.  

• To help obtain more reasonable curve fits, we added more informative priors to two of three IER 
function parameters in the MCMC Bayesian fitting process.  

 

Limitations 

It is important to recognize the inherent limitations of the IER approach. The use of various sources to 

construct a risk curve assumes an equitoxicity of particles, consistent with evaluations by US EPA and 

WHO. However, current evidence suggests there are differences in health impact by source, size, and 

chemical composition. This is seen when comparing studies of ambient and household particulate 

matter. As this body of evidence grows, we will continue to re-examine our strategy for the integrated 

exposure-response curve. For now, the IER is a practical solution to fill gaps in the literature where we 

do not have sufficient evidence such as household air pollution exposures and ambient in highly 

polluted areas. 

Additionally, currently the exposure concentrations used for both SHS and AS data points when fitting 

the IER are contrasted with the TMREL and do not take into account ambient particulate matter 

pollution. In future iterations of fitting the curve, we will test alternate approaches, including a similar 

approach to HAP, allowing each data point to inform the curve on the range of ExpOAP to (ExpOAP + 

ExpAS/SHS). 

Relative risk and proportional PAF approach 
For GBD 2017 we developed a new approach to use the IER for obtaining PAFs for both OAP and HAP. 

Previously, relative risks for both exposures were obtained from the IER as a function of exposure and 

relative to the same TMREL. In reality, were a country to reduce only one of these risk factors, the other 

would remain. We failed to consider the joint effects of particulate matter from outdoor exposure and 

burning solid fuels for cooking. 

In GBD 2017, relative risks were still estimated from the output of the IER curve. Everyone is exposed to 

some level of OAP, but only a proportion of the population in each location-year use solid cooking fuel 

and are exposed to HAP. For the proportion of the population not exposed to HAP the relative risk was 

obtained by RROAP =  IER(z = ExpOAP) and used to calculate the PAF for each location based on the 

population-weighted exposure.  

For the proportion of the population exposed to both OAP and HAP, we calculated a joint relative risk 

from the IER by RROAP+HAP =  IER(z = ExpOAP+ExpHAP). This joint relative risk is used to calculate a joint PAF 

for each location. PAF calculation is detailed in the methods appendix. For each location, we 

proportioned the joint PAF based on the proportion of exposure due to OAP and HAP respectively. See 

the table below for equations used to calculate proportional PAFs. 

PAF Population  not exposed to HAP Population exposed to HAP 
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OAP PAFOAP (ExpOAP/(ExpOAP+ExpHAP))*PAFOAP+HAP 

HAP 0 (ExpHAP/(ExpOAP+ExpHAP))*PAFOAP+HAP 

 

Generally, as expected, this new strategy led to lower PAFs for both ambient and household particulate 

matter pollution.  
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Input Data & Methodological Summary 

Exposure 

Case definition 

Exposure to household air pollution from solid fuels (HAP) is defined as the proportion of households 

using solid cooking fuels. The definition of solid fuel in our analysis includes coal, wood, charcoal, dung, 

and agricultural residues.  

Input data 

Data were extracted from the standard multi-country survey series such as Demographic and Health 

Surveys (DHS), Living Standards Measurement Surveys (LSMS), Multiple Indicator Cluster Surveys (MICS), 

and World Health Surveys (WHS), as well as country-specific survey series such as Kenya Welfare 

Monitoring Survey and South Africa General Household Survey. To fill the gaps of data in surveys and 

censuses, we also downloaded and updated HAP estimates from WHO Energy Database and extracted 

from literature through systematic review. Each nationally or sub-nationally representative data point 

provided an estimate for the percentage of households using solid cooking fuels. Estimates for the usage 

of solid fuels for non-cooking purpose were excluded, i.e. primary fuels for lighting. The database, with 
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estimates from 1980 to 2017, contained about 680 studies from 150 countries. As updates to systematic 

reviews are performed on an ongoing schedule across all GBD causes and risk factors, an update for 

household air pollution will be performed in the next 1-2 iterations. 

Modelling strategy  

Household air pollution was modelled at household level using a three-step modelling strategy that uses 

linear regression, spatiotemporal regression and Gaussian Process Regression (GPR). The first step is a 

mixed-effect linear regression of logit-transformed proportion of households using solid cooking fuels. 

The linear model contains maternal education, proportion of population living in urban areas, and 

lagged-distributed income as covariates and has nested random effect by GBD region, and GBD super 

region respectively. The full ST-GPR process is specified elsewhere this appendix. No substantial 

modelling changes were made in this round compared to GBD 2016. 

Theoretical minimum-risk exposure level 
For cataract, the TMREL is defined as no households using solid cooking fuel. For outcomes that utilise 

evidence based on the Integrated Exposure Response (IER), the TMREL is defined as uniform distribution 

between 2.4 and 5.9 ug/m3.  

Relative risks 
In addition to the previously included outcomes of lower respiratory infections (LRI), stroke, Ischemic 

Heart Disease (IHD), Chronic Obstructive Pulmonary Disease (COPD), lung cancer, and cataract, in GBD 

2017 we added Type II Diabetes as a new outcome of household air pollution. The relative risk for 

cataracts was extracted from a meta-analysis and is 2.47 with 95% (1.61, 3.73).1 GBD currently only 

estimates cataracts as an outcome for females. 

In GBD 2017, we adopted a new approach for risk attribution using the Integrated Exposure-Response 

Function (IER). Updates to the IER and the new joint-estimation PAF approach is described in the 

Ambient Particulate Matter appendix.  

PM2.5 mapping value  

In order to use the IER curve, we must estimate the exposure to particulate matter with diameter of less 

than 2.5 micrometers (PM2.5). Since GBD 2015 we have been using a mapping model relying on a 

database of now almost 90 studies which measures PM2.5 exposure in households using solid cooking 

fuel. Using socio-demographic index and study-level factors as covariates, we predict exposure for all 

location-years.  

In GBD 2017, we updated the model to estimate the individual exposure to PM2.5 over and above 

ambient levels due to the use of solid cooking fuel. We did this by subtracting off the estimated ambient 

level PM2.5 for the location-year of each study in the database before inputting them into the model. By 

doing this we have independent estimates for PM2.5 exposure due to ambient and household solid fuel 

use. 

These exposures are cross-walked to values for men, women, and children by generating the ratio of 

each group’s mean exposure to the overall mean personal exposure. The resulting location, year, sex, 

and age specific PM2.5 exposure values are used as inputs in the IER and attributable burden calculation 

process.  
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Online Results Appendix - Supplementary tables and figures 
 

Supplementary Table 1: Estimated disability weights and 95% uncertainty intervals for GBD chronic 

respiratory disease states 

Chronic respiratory disease states DW and 95% U.I. 

  

Asthma   

Controlled     0·015 (0·007–0·026) 
Partly controlled    0·036 (0·022–0·055) 

Uncontrolled     0·133 (0·086–0·192) 

  

COPD  
Mild      0·019 (0·011–0·033) 

Moderate     0·225 (0·153–0·310) 

Severe     0·408 (0·273–0·556) 
  

Interstitial lung disease and pulmonary sarcoidosis  

Asymptomatic interstitial lung disease and pulmonary 
sarcoidosis 

- 

Moderate heart failure due to severe interstitial lung disease 
and pulmonary sarcoidosis 

- 

Moderate interstitial lung disease and pulmonary sarcoidosis 0.225 (0.153-0.310) 

Mild interstitial lung disease and pulmonary sarcoidosis 0.019 (0.011-0.033) 

Treated heart failure due to severe interstitial lung disease 
and pulmonary sarcoidosis 

- 

Severe interstitial lung disease and pulmonary sarcoidosis 
without heart failure 

0.408 (0.273-0.556) 

Severe heart failure due to severe interstitial lung disease 
and pulmonary sarcoidosis 

- 

Mild heart failure due to severe interstitial lung disease and 
pulmonary sarcoidosis 

- 

  

Pneumoconiosis  
Severe asbestosis without heart failure 0·408 (0·273-0·556) 

Moderate coal workers pneumoconiosis 0·225 (0·153-0·310) 

Asymptomatic coal workers pneumoconiosis - 
  

Other chronic respiratory diseases  

None - 
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Supplementary Table 2: Age-standardized prevalence of all and specific CRDs, by sex and by GBD super regions, in 1990 and in 2017 

 

 

 
Super Region Male Female Both

Global

7.9264% 

(7.4407% to 7.4407%)

8.4112% 

(7.8897% to 7.8897%)

8.1577% 

(7.6640% to 7.6640%)

Central Europe, Eastern 

Europe, and Central Asia

7.5947% 

(7.0967% to 7.0967%)

9.4940% 

(8.9235% to 8.9235%)

8.7069% 

(8.1780% to 8.1780%)

High-income

8.7133% 

(8.1172% to 8.1172%)

8.9053% 

(8.2867% to 8.2867%)

8.7688% 

(8.1639% to 8.1639%)

Latin America and 

Caribbean

8.6641% 

(7.8873% to 7.8873%)

9.5266% 

(8.7078% to 8.7078%)

9.1117% 

(8.3349% to 8.3349%)

North Africa and Middle 

East

8.5614% 

(7.9643% to 7.9643%)

9.5604% 

(8.9122% to 8.9122%)

9.0442% 

(8.4317% to 8.4317%)

South Asia

7.4014% 

(6.9244% to 6.9244%)

7.7479% 

(7.2400% to 7.2400%)

7.5663% 

(7.0794% to 7.0794%)

Southeast Asia, East Asia, 

and Oceania

8.1277% 

(7.5919% to 7.5919%)

8.2661% 

(7.7135% to 7.7135%)

8.1853% 

(7.6588% to 7.6588%)

Sub-Saharan Africa

6.8130% 

(6.3223% to 6.3223%)

7.3910% 

(6.8681% to 6.8681%)

7.1038% 

(6.6006% to 6.6006%)

Super Region Male Female Both

Global

6.7311% 

(6.2483% to 6.2483%)

7.2669% 

(6.7418% to 6.7418%)

6.9915% 

(6.4967% to 6.4967%)

Central Europe, Eastern 

Europe, and Central Asia

6.4121% 

(5.9300% to 5.9300%)

7.9599% 

(7.3677% to 7.3677%)

7.2612% 

(6.7288% to 6.7288%)

High-income

7.9761% 

(7.4177% to 7.4177%)

8.4359% 

(7.8320% to 7.8320%)

8.1902% 

(7.6270% to 7.6270%)

Latin America and 

Caribbean

7.1614% 

(6.4350% to 6.4350%)

7.8878% 

(7.1281% to 7.1281%)

7.5388% 

(6.7952% to 6.7952%)

North Africa and Middle 

East

8.1221% 

(7.4635% to 7.4635%)

8.9565% 

(8.2871% to 8.2871%)

8.5116% 

(7.8521% to 7.8521%)

South Asia

6.3472% 

(5.8956% to 5.8956%)

6.8561% 

(6.3790% to 6.3790%)

6.5961% 

(6.1494% to 6.1494%)

Southeast Asia, East Asia, 

and Oceania

6.5486% 

(5.9862% to 5.9862%)

6.8423% 

(6.2880% to 6.2880%)

6.6884% 

(6.1362% to 6.1362%)

Sub-Saharan Africa

6.2645% 

(5.7587% to 5.7587%)

6.6466% 

(6.1036% to 6.1036%)

6.4602% 

(5.9311% to 5.9311%)

1990 Sex

2017 Sex

All Chronic Respiratory Diseases
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Super Region Male Female Both

Global

4.6184% 

(4.2566% to 4.2566%)

4.7453% 

(4.3538% to 4.3538%)

4.6692% 

(4.2967% to 4.2967%)

Central Europe, Eastern 

Europe, and Central Asia

4.3386% 

(3.9709% to 3.9709%)

6.2257% 

(5.7077% to 5.7077%)

5.4604% 

(5.0121% to 5.0121%)

High-income

3.7703% 

(3.5095% to 3.5095%)

3.1548% 

(2.9005% to 2.9005%)

3.4044% 

(3.1494% to 3.1494%)

Latin America and Caribbean

4.1647% 

(3.8292% to 3.8292%)

4.3363% 

(3.9998% to 3.9998%)

4.2571% 

(3.9194% to 3.9194%)

North Africa and Middle 

East

3.9473% 

(3.5518% to 3.5518%)

4.2454% 

(3.8209% to 3.8209%)

4.0875% 

(3.6873% to 3.6873%)

South Asia

5.2940% 

(4.7717% to 4.7717%)

5.7300% 

(5.1433% to 5.1433%)

5.5029% 

(4.9452% to 4.9452%)

Southeast Asia, East Asia, 

and Oceania

5.3922% 

(4.9547% to 4.9547%)

5.4697% 

(4.9888% to 4.9888%)

5.4204% 

(4.9762% to 4.9762%)

Sub-Saharan Africa

3.5668% 

(3.1826% to 3.1826%)

3.6565% 

(3.2597% to 3.2597%)

3.6125% 

(3.2258% to 3.2258%)

Super Region Male Female Both

Global

3.7115% 

(3.3347% to 3.3347%)

3.7914% 

(3.4310% to 3.4310%)

3.7407% 

(3.3698% to 3.3698%)

Central Europe, Eastern 

Europe, and Central Asia

3.4994% 

(3.1142% to 3.1142%)

4.8336% 

(4.3189% to 4.3189%)

4.2384% 

(3.7878% to 3.7878%)

High-income

3.6420% 

(3.2839% to 3.2839%)

3.1802% 

(2.8910% to 2.8910%)

3.3823% 

(3.0597% to 3.0597%)

Latin America and Caribbean

3.2977% 

(2.9504% to 2.9504%)

3.4154% 

(3.0553% to 3.0553%)

3.3617% 

(3.0088% to 3.0088%)

North Africa and Middle 

East

3.8648% 

(3.4844% to 3.4844%)

3.7664% 

(3.3778% to 3.3778%)

3.8022% 

(3.4299% to 3.4299%)

South Asia

4.4406% 

(3.9645% to 3.9645%)

4.5743% 

(4.0891% to 4.0891%)

4.5060% 

(4.0322% to 4.0322%)

Southeast Asia, East Asia, 

and Oceania

3.4654% 

(3.0944% to 3.0944%)

3.7487% 

(3.3834% to 3.3834%)

3.5975% 

(3.2463% to 3.2463%)

Sub-Saharan Africa

3.1299% 

(2.7856% to 2.7856%)

3.0376% 

(2.6963% to 2.6963%)

3.0823% 

(2.7339% to 2.7339%)

1990 Sex

2017 Sex

Chronic Obstructive Pulmonary Disease
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Super Region Male Female Both

Global

3.7984% 

(3.3866% to 3.3866%)

4.1687% 

(3.7231% to 3.7231%)

3.9817% 

(3.5487% to 3.5487%)

Central Europe, Eastern 

Europe, and Central Asia

3.5798% 

(3.2102% to 3.2102%)

3.9108% 

(3.4980% to 3.4980%)

3.7601% 

(3.3722% to 3.3722%)

High-income

5.3935% 

(4.8275% to 4.8275%)

6.1679% 

(5.5238% to 5.5238%)

5.7895% 

(5.1893% to 5.1893%)

Latin America and 

Caribbean

4.8983% 

(4.1469% to 4.1469%)

5.6691% 

(4.8915% to 4.8915%)

5.2954% 

(4.5387% to 4.5387%)

North Africa and Middle 

East

5.1298% 

(4.5675% to 4.5675%)

5.9042% 

(5.2827% to 5.2827%)

5.5075% 

(4.9099% to 4.9099%)

South Asia

2.8451% 

(2.5647% to 2.5647%)

2.7576% 

(2.4994% to 2.4994%)

2.8016% 

(2.5322% to 2.5322%)

Southeast Asia, East Asia, 

and Oceania

3.2752% 

(2.8709% to 2.8709%)

3.2953% 

(2.8891% to 2.8891%)

3.2816% 

(2.8777% to 2.8777%)

Sub-Saharan Africa

3.5263% 

(3.1486% to 3.1486%)

4.0621% 

(3.6349% to 3.6349%)

3.7956% 

(3.4048% to 3.4048%)

Super Region Male Female Both

Global

3.3617% 

(2.9519% to 2.9519%)

3.8339% 

(3.3948% to 3.3948%)

3.5996% 

(3.1751% to 3.1751%)

Central Europe, Eastern 

Europe, and Central Asia

3.1064% 

(2.7434% to 2.7434%)

3.4958% 

(3.0747% to 3.0747%)

3.3137% 

(2.9137% to 2.9137%)

High-income

4.6907% 

(4.1859% to 4.1859%)

5.6379% 

(5.0571% to 5.0571%)

5.1745% 

(4.6563% to 4.6563%)

Latin America and 

Caribbean

4.1262% 

(3.4397% to 3.4397%)

4.7876% 

(4.0826% to 4.0826%)

4.4677% 

(3.7810% to 3.7810%)

North Africa and Middle 

East

4.7146% 

(4.1267% to 4.1267%)

5.6760% 

(5.0443% to 5.0443%)

5.1783% 

(4.5833% to 4.5833%)

South Asia

2.4506% 

(2.1784% to 2.1784%)

2.8091% 

(2.4925% to 2.4925%)

2.6256% 

(2.3376% to 2.3376%)

Southeast Asia, East Asia, 

and Oceania

3.3816% 

(2.8873% to 2.8873%)

3.3895% 

(2.9149% to 2.9149%)

3.3871% 

(2.9104% to 2.9104%)

Sub-Saharan Africa

3.3470% 

(2.9231% to 2.9231%)

3.8464% 

(3.3850% to 3.3850%)

3.6035% 

(3.1601% to 3.1601%)

2017 Sex

1990 Sex

Asthma
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Super Region Male Female Both

Global

0.0880% 

(0.0803% to 0.0803%)

0.0737% 

(0.0672% to 0.0672%)

0.0799% 

(0.0729% to 0.0729%)

Central Europe, Eastern 

Europe, and Central Asia

0.2264% 

(0.2041% to 0.2041%)

0.1609% 

(0.1450% to 0.1450%)

0.1897% 

(0.1705% to 0.1705%)

High-income

0.1087% 

(0.0990% to 0.0990%)

0.0851% 

(0.0778% to 0.0778%)

0.0948% 

(0.0867% to 0.0867%)

Latin America and 

Caribbean

0.0530% 

(0.0481% to 0.0481%)

0.0431% 

(0.0392% to 0.0392%)

0.0479% 

(0.0436% to 0.0436%)

North Africa and Middle 

East

0.0300% 

(0.0271% to 0.0271%)

0.0387% 

(0.0349% to 0.0349%)

0.0343% 

(0.0310% to 0.0310%)

South Asia

0.0536% 

(0.0479% to 0.0479%)

0.0507% 

(0.0455% to 0.0455%)

0.0520% 

(0.0466% to 0.0466%)

Southeast Asia, East Asia, 

and Oceania

0.0601% 

(0.0540% to 0.0540%)

0.0473% 

(0.0424% to 0.0424%)

0.0528% 

(0.0475% to 0.0475%)

Sub-Saharan Africa

0.1022% 

(0.0912% to 0.0912%)

0.0986% 

(0.0883% to 0.0883%)

0.1000% 

(0.0894% to 0.0894%)

Super Region Male Female Both

Global

0.0869% 

(0.0787% to 0.0787%)

0.0713% 

(0.0647% to 0.0647%)

0.0782% 

(0.0709% to 0.0709%)

Central Europe, Eastern 

Europe, and Central Asia

0.1829% 

(0.1628% to 0.1628%)

0.1280% 

(0.1135% to 0.1135%)

0.1527% 

(0.1356% to 0.1356%)

High-income

0.1251% 

(0.1143% to 0.1143%)

0.0994% 

(0.0912% to 0.0912%)

0.1110% 

(0.1019% to 0.1019%)

Latin America and 

Caribbean

0.0503% 

(0.0455% to 0.0455%)

0.0430% 

(0.0388% to 0.0388%)

0.0465% 

(0.0420% to 0.0420%)

North Africa and Middle 

East

0.0334% 

(0.0300% to 0.0300%)

0.0381% 

(0.0343% to 0.0343%)

0.0358% 

(0.0322% to 0.0322%)

South Asia

0.0586% 

(0.0523% to 0.0523%)

0.0562% 

(0.0504% to 0.0504%)

0.0571% 

(0.0510% to 0.0510%)

Southeast Asia, East Asia, 

and Oceania

0.0744% 

(0.0665% to 0.0665%)

0.0557% 

(0.0497% to 0.0497%)

0.0641% 

(0.0574% to 0.0574%)

Sub-Saharan Africa

0.0995% 

(0.0883% to 0.0883%)

0.0949% 

(0.0846% to 0.0846%)

0.0967% 

(0.0862% to 0.0862%)

1990

Interstitial Lung Disease and Pulmonary Sarcoidosis

Sex

2017 Sex
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Super Region Male Female Both

Global

0.0131% 

(0.0116% to 0.0116%)

0.0020% 

(0.0017% to 0.0017%)

0.0070% 

(0.0062% to 0.0062%)

Central Europe, Eastern 

Europe, and Central Asia

0.0114% 

(0.0102% to 0.0102%)

0.0019% 

(0.0017% to 0.0017%)

0.0056% 

(0.0050% to 0.0050%)

High-income

0.0061% 

(0.0054% to 0.0054%)

0.0009% 

(0.0007% to 0.0007%)

0.0031% 

(0.0027% to 0.0027%)

Latin America and Caribbean

0.0093% 

(0.0082% to 0.0082%)

0.0021% 

(0.0018% to 0.0018%)

0.0055% 

(0.0048% to 0.0048%)

North Africa and Middle East

0.0062% 

(0.0053% to 0.0053%)

0.0024% 

(0.0021% to 0.0021%)

0.0044% 

(0.0037% to 0.0037%)

South Asia

0.0045% 

(0.0039% to 0.0039%)

0.0017% 

(0.0014% to 0.0014%)

0.0031% 

(0.0028% to 0.0028%)

Southeast Asia, East Asia, and 

Oceania

0.0290% 

(0.0251% to 0.0251%)

0.0031% 

(0.0025% to 0.0025%)

0.0149% 

(0.0129% to 0.0129%)

Sub-Saharan Africa

0.0046% 

(0.0040% to 0.0040%)

0.0019% 

(0.0016% to 0.0016%)

0.0032% 

(0.0028% to 0.0028%)

Super Region Male Female Both

Global

0.0126% 

(0.0111% to 0.0111%)

0.0016% 

(0.0014% to 0.0014%)

0.0066% 

(0.0059% to 0.0059%)

Central Europe, Eastern 

Europe, and Central Asia

0.0085% 

(0.0075% to 0.0075%)

0.0017% 

(0.0015% to 0.0015%)

0.0045% 

(0.0040% to 0.0040%)

High-income

0.0056% 

(0.0050% to 0.0050%)

0.0008% 

(0.0007% to 0.0007%)

0.0030% 

(0.0027% to 0.0027%)

Latin America and Caribbean

0.0078% 

(0.0068% to 0.0068%)

0.0018% 

(0.0015% to 0.0015%)

0.0046% 

(0.0040% to 0.0040%)

North Africa and Middle East

0.0067% 

(0.0057% to 0.0057%)

0.0024% 

(0.0020% to 0.0020%)

0.0046% 

(0.0039% to 0.0039%)

South Asia

0.0039% 

(0.0034% to 0.0034%)

0.0016% 

(0.0014% to 0.0014%)

0.0028% 

(0.0024% to 0.0024%)

Southeast Asia, East Asia, and 

Oceania

0.0261% 

(0.0226% to 0.0226%)

0.0018% 

(0.0016% to 0.0016%)

0.0130% 

(0.0113% to 0.0113%)

Sub-Saharan Africa

0.0044% 

(0.0038% to 0.0038%)

0.0018% 

(0.0015% to 0.0015%)

0.0030% 

(0.0026% to 0.0026%)

Pneumonconiosis

1990 Sex

2017 Sex
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Online Figure 1. World map with the GBD regions and super-regions  
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Online Figure 2a. Variations in CRD-attributable YLDs by sex and in aggregate across GBD super regions in 1990 
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Online Figure 2b. Variations in CRD-attributable YLLs by sex and in aggregate across GBD super regions in 1990 
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Online Figure 2c. Variations in CRD-attributable DALYs by sex and in aggregate across GBD super regions in 1990 
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