
 

 
 

 

 
Viruses 2021, 13, 265. https://doi.org/10.3390/v13020265 www.mdpi.com/journal/viruses 

Review 

Mosquito-Borne Viruses and Non-Human Vertebrates in  

Australia: A Review 

Oselyne T. W. Ong 1,2, Eloise B. Skinner 3,4, Brian J. Johnson 2 and Julie M. Old 5,* 

1 Children’s Medical Research Institute, Westmead, NSW 2145, Australia; oong@cmri.org.au 
2 Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; 

Brian.Johnson@qimrberghofer.edu.au 
3 Environmental Futures Research Institute, Griffith University, Gold Coast, QLD 4222, Australia;  

ebskinn@stanford.edu 
4 Biology Department, Stanford University, Stanford, CA 94305, USA 
5 School of Science, Western Sydney University, Hawkesbury, Locked bag 1797, Penrith, NSW 2751, Australia 

* Correspondence: j.old@westernsydney.edu.au 

Abstract: Mosquito-borne viruses are well recognized as a global public health burden amongst 

humans, but the effects on non-human vertebrates is rarely reported. Australia, houses a number of 

endemic mosquito-borne viruses, such as Ross River virus, Barmah Forest virus, and Murray Valley 

encephalitis virus. In this review, we synthesize the current state of mosquito-borne viruses 

impacting non-human vertebrates in Australia, including diseases that could be introduced due to 

local mosquito distribution. Given the unique island biogeography of Australia and the endemism 

of vertebrate species (including macropods and monotremes), Australia is highly susceptible to 

foreign mosquito species becoming established, and mosquito-borne viruses becoming endemic 

alongside novel reservoirs. For each virus, we summarize the known geographic distribution, 

mosquito vectors, vertebrate hosts, clinical signs and treatments, and highlight the importance of 

including non-human vertebrates in the assessment of future disease outbreaks. The mosquito-

borne viruses discussed can impact wildlife, livestock, and companion animals, causing significant 

changes to Australian ecology and economy. The complex nature of mosquito-borne disease, and 

challenges in assessing the impacts to non-human vertebrate species, makes this an important topic 

to periodically review. 
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1. Introduction 

Mosquito-borne diseases pose a great risk to public health threatening more than half 

the human population, and many non-human vertebrates [1]. In Australia, mosquito-

borne diseases are currently a major focus due to public health concerns, which have been 

amplified by the potential effects of climate change and urbanization (see [2] for a review). 

Exacerbating the effects of climate change is the rapid and sustained increase in global 

trade and the alteration of the physical environment as a result of urbanization, 

deforestation, and agricultural expansion. Such changes have been highly favorable to 

urban vectors of foreign viruses including dengue, chikungunya, and Zika virus [3], 

whereas increased air travel and trade has led to a proliferation of viruses and their 

vectors globally [4,5]. However, the impacts of these global phenomena on non-human 

vertebrate hosts (species which may be susceptible to infection) and the consequences to 

the maintenance and transmission of mosquito-borne viruses remains poorly understood. 

Australia has a diverse climatic range and environmental bioregions, which promote 

unique and endemic faunal diversity. This, in combination with a number of introduced 

vectors and pathogens, has resulted in the emergence of novel disease transmission 
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pathways, including those of regional and global importance. Additionally, due to the 

dispersal of Australian animals, distinct patterns in evolution of mosquito-borne viruses 

have been found. The viruses across Australia either (i) evolve slowly and uniformly, (ii) 

have significant divergence due to single nucleotide changes, or (iii) have multiple 

lineages that are periodically redistributed over the Australian continent [6]. While 

studies on the distribution of mosquitoes and human infection rates are important, it is 

essential to consider the complex relationship between vectors and non-human 

vertebrates in various regions throughout Australia. Here, we review evidence for the 

impacts of Australian mosquito-borne viruses (introduced and endemic) on non-human 

vertebrates (including native and domestic species), and the role that these vertebrates 

may play in disease and transmission cycles. The aim of this review is to assess the impact 

of mosquito-borne diseases to Australian animals and the implications of the rapid change 

in Australia due to urbanization and climate change. We conclude with a discussion of 

exotic mosquito-borne diseases that threaten the unique fauna of Australia. 

2. Mosquitoes: The Link between Vertebrate Host and Disease 

There are more than 300 species of mosquitoes identified in Australia and almost 100 of 

these are capable of transmitting pathogens to wildlife and domestic animals (see Table 1), of 

which Aedes, Culex, and Anopheles species are the most common genera of vectors [7]. Feeding 

preferences by these species are highly variable with some species (such as Aedes aegypti) 

reported to have host specific feeding patterns, while other species (such as Aedes vigilax) 

exhibit more generalist feeding behaviors [8], both of which can play an important role as 

bridging vectors [9,10]. Individual feeding patterns are often dependent on host 

abundance and availability, both of which are strongly linked to habitat identity, and 

which can change annually and seasonally depending on the biology and ecology of 

individual host species (see [11] for a review). To date, vertebrate blood-meal hosts have 

been identified for a variety of taxonomic groups, including Carnivora (e.g., cats, dogs, 

and foxes), Aves (birds), Diprotodontia (e.g., possums and macropods), Artiodactyla (e.g., 

cattle, sheep, pigs, and goats), and Equidae (horses), with individual vector species 

displaying a trade-off between host preference and host availability [11]. For example, in 

rural Queensland, Australia, bloodmeal origins for Culex annulirostris, were dominated by 

cattle [12], but in Sydney, a highly urbanized city, Cx. annulirostris bloodmeal origins were 

mostly from birds, rodents and rabbits [8]. Thus, the ecologies of Australian mosquito-borne 

viruses can be driven by complex interactions between vector species, host availability, and 

host preference, which may be a derivative of habitat or climate. This will ultimately drive 

the spread of pathogens.
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Table 1. A summary of pathogen, pathogen distribution, mosquito vectors, and symptomatic a and asymptomatic b host distribution in Australia. Dengue and Rift Valley 

fever are not listed as there have been no known non-human vertebrate hosts in Australia. 

Pathogen 
Pathogen Distribution 

in Australia 
Mosquito Vectors Asymptomatic Hosts of Pathogen in Australia 

Symptomatic Hosts of Pathogen 

in Australia 

Ross River virus 

(RRV) 
All of Australia [13] 

Aedes and Culex mosquitoes, 

particularly Aedes vigilax, 

Aedes camptohynchus, and 

Culex annulirostris [14] 

Marsupials: wallabies, wallaroos [15], common brushtail 

possums [16], eastern grey kangaroos [17], western grey 

kangaroos [18] 

Australian birds: little corella, magpie larks, Australian 

brown flycatcher, masked finch [19,20] 

Wild eutherian mammals: rodents, Pteropus spp. [20] 

Domestic mammals: cattle, dogs [20], cats [21] 

Domestic mammals: horses 

[20,22] 

Barmah Forest 

virus (BFV) 
All of Australia [23] 

Culex annuliristris, Aedes 

normanensis, Aedes vigilax 

and Aedes procax [24] 

Marsupials: eastern grey kangaroo [25], koalas [25] and 

brushtail possums [21]. 

Wild eutherian mammals: Australian bush rats and 

swamp rats [26] 

Domestic mammals: cats, dogs, horses [27] 

 

Sindbis virus 

(SINV) 

Most of Australia 

(excluding Tasmania) 

[28] 

Culex annulirostris, Aedes 

normanensis, Aedes 

camptorhynchus [29], Aedes 

pseudonormanensis [30] 

Marsupials: chudditch [31] 

Wild eutherian mammals: European rabbits [31] 

Domestic mammals: horses [31] 

Birds: Emus [31] 

 

Murray Valley 

encephalitis virus 

(MVEV) 

Western Australia [32], 

Northern Territory [33], 

New South Wales, and 

Victoria [34] 

Culex annulirostris [35], Culex 

sitiens and other Culicine 

mosquitoes [36] 

Marsupials: eastern grey kangaroos [37], western grey 

kangaroos, agile wallabies [38] 

Australian birds: galahs, sulphur-crested cockatoos [38], 

chickens [39] 

Wild eutherian mammals: rabbits [37], wild mice [38] 

Domestic mammals: dogs, sheep, pigs, cattle [37] 

Water birds: rufous night herons [34], Pacific black 

ducks [38] 

Domestic mammals: horses 

[22,40,41] 

West Nile virus 

(WNV) 
All of Australia [42,43] 

Mainly isolated from Culex 

annulirostris [44]. Other Culex 

species, Aedes species and 

Anopheles amictus can also 

transmit the virus [45,46]  

Marsupials: western grey kangaroos, agile wallabies [37] 

Australian bird: Australian white ibis [47] 

Ardeid birds: herons, egrets [48] 

Introduced bird: house sparrow [49]. 

Wild eutherian mammals: rabbits 

[50,51] 

Domestic mammals: horses 

[22,42], cats (mild) [52] 
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Japanese 

encephalitis virus 

(JEV) 

Torres Strait (incursion) 

[53], North Peninsula 

Area and mainland [54] 

Culex annulirostris [53]. 
Ardeid birds: herons, egrets [55–57] 

Domestic mammals: pigs [58], horses [59] 

Wild eutherian mammals: 

Frugivorous bats i.e., black flying 

fox [60] 

Other birds: pigeons, sparrows, 

ducks, chickens [60] 

Kokobera 

(KOKV) and 

related viruses 

Queensland, New 

South Wales, Northern 

Territory, Western 

Australia, and Papua 

New Guinea [61,62] 

Aedes species including 

Aedes aculeatus, Aedes 

alternas, Aedes notoscriptus, 

Aedes procax, Aedes vigilax 

and Anopheles annulipes [63] 

Marsupials: mainly kangaroos and wallabies [17,64]. 

Domestic mammals: cattle [26] 

Domestic mammals: horses 

[64,65] 

It is unknown whether horses are 

affected by Kokobera and related 

viruses, as it could be associated 

with a known equine disease. 

Gan Gan (GGV) 

and Trubanaman 

viruses (TRUV) 

Queensland, New 

South Wales, and 

Western Australia [66] 

Aedes vigilax (GGV) [67], 

Culex annulirostris (GGV and 

TRUV) [62,68], Anopheles 

annulipes (TRUV) [66] and 

Anopheles meraukensis [69] 

Marsupials: eastern grey kangaroos (GGV, TRUV), red-

necked wallaby (GGV, TRUV) [26], western grey 

kangaroos (TRUV) [70] 

Wild eutherian mammals: Australian bush rat (GGV) 

[26], feral pigs (TRUV), rabbits (TRUV), foxes (TRUV), 

quokkas (TRUV) [70] 

Domestic mammals: sheep (GGV), horses (GGV, TRUV), 

cattle (GGV) [26,70] 

 

a A asymptomatic host would be a reservoir host species that does not experience the symptoms of disease but is able to produce sufficient pathogen levels to infect 

mosquitoes that blood-feed on that animal. b A symptomatic host would be a non-reservoir host species that show symptoms of the disease and also produces sufficient 

pathogen levels to infect mosquitoes that blood-feed on that animal.
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3. Uniquely Australian Vertebrate Hosts 

Australia provides a unique opportunity to investigate the transmission of viruses 

between vertebrates and mosquitoes. The long geographic isolation of Australia has led 

to the co-evolution of viruses, mosquitoes, and endemic vertebrate hosts, which offer 

unique insights into immunology and physiology. Over the last 200 years, Australia has 

also experienced the introduction of viruses and domestic species, and an expansion of 

urbanization, all of which have shifted the dynamics of disease and ecology among native 

species. This crockpot of co-evolution and introductions mean that Australian fauna have 

highly heterogenic roles for transmitting different viruses within the community (Figure 1), or 

are affected by viruses in different ways (i.e., asymptomatically vs. symptomatically; Table 1). 

 

Figure 1. Relationship between Australian wildlife, mosquitoes, and humans. Often mosquito-

borne diseases are often spread from human to human via the bite of a mosquito; however, 

consideration of Australian wildlife is important as they are often hosts for these pathogens. There 

are also many factors that can determine the spread of mosquito-borne disease, including the 

change in wildlife distribution, which should be considered when developing strategies to 

minimize the spread of disease. 

Marsupials 

There are more than 300 extant marsupial species globally, of which close to 70% 

occur on the Australian continent (the mainland, Tasmania, New Guinea, and nearby 

islands), representing the most diverse extant marsupial radiation [71]. Many species 

exhibit unique physiological characteristics, such as adaptations to specific climatic 

envelopes, which have allowed them to succeed in even the harshest of Australian 

environments. However, immunological characteristics of marsupials may increase their 

susceptibility to infection for mosquito-borne viruses. When compared to eutherian 

mammals, neonatal marsupials are born without histological mature immune tissues 

[72,73] and are therefore unable to mount specific immune responses and are presumably 

highly reliant on maternal and innate immune strategies. Furthermore, some studies have 

reported marsupial immune systems are slower to mount some specific immune 

responses and occur at lower levels than those mounted by eutherian species [74,75]. 

However, the impact of such differences on disease susceptibility are poorly understood 

and the many similarities between eutherian and marsupial immune systems [76] cannot 

be overlooked (Figure 1). 

The immediate threat of land use and climate change on the survival of many 

Australian marsupial species highlights a need to better understand the impacts disease 

on marsupial health and reproductive fitness. Additionally, we need to consider the 

ecological impacts of exotic mosquito introductions and range expansions on native 
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species. The proliferation of global trade and travel makes the introduction exotic 

mosquito species highly likely (see [77,78] for reviews), whereas climate change is already 

changing native species distributions [3].  

4. Ross River Virus 

Ross River virus (RRV; belonging to the family Togaviridae and genus Alphavirus) is 

the most common arboviral disease in Australia [79–81]. Human infection can lead to 

chronic polyarthritis, with some symptoms lasting more than a year [82]. Although 

predominantly endemic to Australia, emerging evidence suggests RRV circulation is 

occurring in Pacific Island countries, including Fiji [83], American Samoa [84], Cook 

Islands [85], and French Polynesia [86]. Identifying the cause of RRV outbreaks is critical 

in Australia, as human infections are reported nationwide. Australia has approximately 

5000 RRV human infection cases reported annually [23]. RRV is maintained in the 

environment through complicated transmission dynamics with multiple vectors and 

hosts. Since it was first identified in 1948, RRV has been isolated from more than 40 

different mosquito species [87]. Under laboratory investigations the most prominent 

vectors are thought to be Aedes camptorhynchus, Aedes notoscriptus, Ae. Vigilax, and Cx. 

annulirostris based on their ability to amplify RRV in their saliva and transmit RRV in 

mouse-models [19,88]. 

Of the 81 non-human vertebrate species that have been serologically tested in 

Australia, 60 have had positive antibodies to RRV including domestic and livestock 

species including dogs (Canis lupus familiaris), cattle (Bos taurus), and horses (Equus 

caballus), and native birds, marsupials (possums and macropods), and flying foxes 

(Pteropus spp.) [20]. Recently, a sero-survey of koalas in Queensland, Australia found 

more than 80% have been exposed to RRV [89]. Not all of these species are thought to be 

important as reservoirs of RRV. Under experimental infection conditions, marsupials 

develop one of the highest-longest lasting viraemias [90]. Given the extensive length of 

marsupial viremias, it formed the basis of a long-held dogma that marsupials are better 

reservoirs than eutherian mammals and birds. The absence of marsupials in some Pacific 

Islands where local transmission of RRV is reported suggests that other species likely act 

as reservoirs. There is evidence that suggests birds may be important. Firstly, 

experimentally infected little corellas (Cacatua sanguinea) infected 14% of susceptible 

mosquito vectors, despite developing a relatively low-short lived viraemia [90]. Secondly, 

the first isolates of RRV from three bird species, magpie larks (Grallina cyanoleuca), 

Australian brown flycatcher (Microeca leucophaea), and masked finch (Poephila personata) 

[19], demonstrating that the virus circulates among bird populations. Overall, RRV in 

birds has been largely understudied and requires further investigation. Another 

understudied, but potential reservoirs of RRV are murids. Murids demonstrate moderate 

viraemia under experimental infection conditions [90] and one modelling study found 

house mouse (Mus musculus) abundance closely correlated with human notifications of 

RRV in Victoria [91]. 

Horses are the only species other than humans that have been reported to have 

clinical symptoms associated with RRV, including joint swelling and muscle stiffness [92]. 

Serological surveys of horses in Australia have varied between 26% [21] and 91% [93] 

being seropositive for RRV. Horse populations in Australia are estimated to exceed 1.2 

million individuals and the thoroughbred industry was estimated to be $6.3 billion alone 

in 2001 [94]. In 2011, a national outbreak of equine diseases show high RRV infections in 

horses showing neurological or muscular symptoms [22]. As such, RRV can have large 

economic and ethical implications for horses in Australia and potentially internationally. 

Further studies are needed to determine the true burden of RRV in horse populations, and 

to develop appropriate treatments and preventative measures. 

Future investigations of RRV in non-human vertebrates would benefit from 

additional field surveillance to identify ecological traits (such as habitat, seasonality, 

feeding behavior, and reproduction) that may be important for ongoing transmission 
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[95,96]. There is some evidence to suggest that landscapes with proximity close to water 

reservoirs and the presence of some marsupial reservoirs is considered high risk for RRV 

disease transmission [97]. Further, animals with longer gestation periods, have dietary 

specialization and small population density are also more likely to have a history of RRV 

infection, suggesting that these animals should be monitored prior to an outbreak [98]. 

More localised research is needed to determine the significance of these trends in a given 

area. 

5. Barmah Forest Virus 

Barmah Forest virus (BFV) is a zoonotic alphavirus with humans infections reported 

nationally. In humans, BFV presents with similar clinical signs as RRV including 

polyarthritis, rash, fever, and myalgia [99]. BFV was first isolated from Cx. annulirostris 

mosquitoes in northern Victoria in 1974 [100]. However, given the similarity in clinical 

symptoms to RRV [80], it is likely that human cases of BFV may have been previously 

misdiagnosed and believed to be RRV. On average, there are 2400 notifications of BFV in 

Australia annually, with the majority of cases reported in Queensland [23]. The 2012–2013 

period marked the largest BFV epidemic on record in Australia, with more than 2223 

notifications in Queensland and 1024 notifications in Western Australia [23]. 

BFV has been isolated from a number of wild-caught mosquito species, including Cx. 

annulirostris [101] and Ae. vigilax [101–104]. Other insect vectors include the biting midge 

(Culicoides marksi) [105–107]. Vector competence studies found that an urban freshwater 

species, Ae. notoscriptus, was moderately susceptible to infection with transmission 

occurring between days 5 and 12, and an average transmission rate of 45% [108]. Ae. vigilax 

and Aedes procax have also demonstrated a high susceptibility to infection under vector 

competence studies [24], but Cx. annulirostris is a relatively ineffective vector of BFV with 

infection not exceeding 8% [109]. 

Evidence for BFV transmission in non-human vertebrates is limited. Serological 

investigations have found exposure of BFV in a diversity of non-human vertebrates. 

Moderate exposure has been reported in eastern grey kangaroos (Macropus giganteus) 

(44%) [25] and cattle (29%) [110], and low seropositivity in common brushtail possums 

(Trichosurus vulpecula) (10.7%) [21], koalas (Phascolarctos cinereus) (9%) [25], quokkas 

(Setonix brachyurus) (3.2%), domestic cats (Felis catus) (2%) [27], domestic dogs (Canis lupus 

familiaris) (1.3%) [27], and horses (1.2%) [70]. Despite a relatively large number of bush 

rats (Rattus fuscipes) and swamp rats (Rattus lutreolus) being tested, no exposure to BFV 

was found in these species [26]. Only common brushtail possums, dogs and cats have 

been experimentally infected with BFV, all of which demonstrated poor capability as 

amplifiers. Two of the 10 possums developed an immune response to the infection and 

had detectable antibodies for at least 45 days following the infection, however the species 

did not develop sufficient viraemia to infect susceptible mosquitoes [42]. Similarly, none 

of the 10 dogs or cats developed a detectable viraemia for BFV, and just one dog and three 

cats developed antibodies post infection [111]. Future serological, experimental and 

modelling studies on the non-human vertebrates of BFV would greatly improve current 

understandings for this medically important arbovirus. 

6. Sindbis Virus 

Sindbis virus (SINV) is one of the most commonly isolated arboviruses in Australian 

mosquitoes, despite rare instances of human infection. There are two different genotypes 

of the Sindbis virus: (i) the Oriental/Australian strain circulating throughout most of 

Australia (excluding Tasmania) and other surrounding countries including Malaysia and 

Papua New Guinea; and (ii) a strain endemic to southwestern Australia, with the 

Oriental/Australian SINV strain first isolated in 1960 from Cx. annulirostris in far north 

Queensland [28]. More recently, a new strain of SINV endemic to the south-west region of 

Western Australia, which differs in nucleotide sequences from the Oriental/Australian 

strain and Paleoarctic/Ethiopian strain by 25.4–28.9% and 16.8–19.4%, respectively [30]. The 
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higher similarity between the endemic south-west Western Australia isolates and 

Paleoartic/Ethiopian strain suggested that this particular strain was imported by a traveler 

or migratory bird, and selective pressures in that region resulted in a new SINV strain. 

Isolations of SINV have been found in Cx. annulirostris, Aedes normanensis, Ae. 

camptorhynchus [29], and Aedes pseudonormanensis [30]. There is evidence for the vertical 

transmission of SINV, particularly in Ae. camptorhynchus [29]. It has been reported that 

SINV infection is higher in Ae. aegypti mosquitoes that were reared at 30 °C compared to 

20 °C [112], suggesting that warmer temperatures as a result of climate change could 

potentially increase SINV transmission 

Migratory birds are considered the main amplifying host for SINV, particularly those 

that have migration patterns connecting Australia [30], United Kingdom [113], northern 

Europe [114], South Africa [115], and China [116]. Birds that are vectors for SINV have 

persistent infections without any clinical symptoms, and are therefore healthy and able to 

travel between countries [113]. Although birds are considered one of the primary vectors 

for SINV, they do not necessarily contribute to outbreaks [116]. Additionally, many 

endemic birds found in south-west Western Australia are sedentary, suggesting that the 

new south-west Western Australia isolate is maintained through birds that do not travel 

long distances or vertebrate hosts available in its surrounding areas which includes 

marsupials [30]. Antibodies to SINV have been found present in one chuditch (Dasyurus 

geoffroi), emus (Dromaius novaehollandiae), European rabbits (Oryctolagus cuniculus), and 

horses in Australia [31]. 

7. Murray Valley Encephalitis Virus 

Murray Valley encephalitis virus (MVEV) human infections are often asymptomatic, 

however approximately 1:150 to 1:1000 MVEV infections result in symptomatic encephalitic 

disease, which may include neurological features [117,118]. Although cases of MVEV in 

humans are not common, its high mortality/morbidity rate relative to other circulating 

flaviviruses is cause for concern when outbreaks occur. Several large outbreaks and 

epidemics have been reported since the early 20th century following its isolation from a 

human in 1951 [118]. To date, cases of MVEV have been reported in most Australian states, 

with four major outbreaks on the east coast, including two human MVEV isolations in 

Papua New Guinea in 1956 [119] and 1960 [120]. Despite this large historical distribution, 

MVEV is only considered endemic across northern Australia and Papua New Guinea [118]. 

MVEV has been isolated from Culex sitiens and other Culicine mosquitoes [36] but the 

major vector implicated in MVEV transmission is Cx. annulirostris [35]. Vector competence 

studies found that Cx. annulirostris from two different colonies (Queensland and Victoria) 

have been shown to transmit MVEV at a 75–100% success rate, even at temperatures as 

low as 20 °C [121]. Culex pipiens quinquefasciatus has also been assessed as a potential vector 

for MVEV, but had a poor average infection rate of 12.9% [122]. 

Mammalian species likely play an important role in the secondary transmission 

MVEV. MVEV was implicated in the 2011 national equine outbreak, though the number 

of infections is less compared to RRV and West Nile virus (WNV) [22]. That same year, 

seroconversion in sentinel chickens along Murray River was detected after high rainfall 

and flooding, indicating an increased risk of MVEV infections [117]. Of the currently 

investigated marsupial species, western grey kangaroos (Macropus fuliginosus) may play a 

role as important reservoirs as they develop sufficient viraemia to infect Cx. annulirostris 

mosquitoes, whereas agile wallabies (Macropus agilis) do not as they do not develop high 

enough or long lasting viraemias [37]. MVEV transmission without detectable viremia in 

several other marsupial species may occur although it is unknown whether this 

contributes significantly to the maintenance of MVEV in the wild [37]. 

Following a major outbreak of MVEV in the Murray Valley in 1951, serological 

investigations were undertaken for a number of other wild and domestic vertebrate species 

[123,124]. These early investigations found that waterbirds are commonly infected with 

MVEV. Further serological investigations in waterbirds following a 1974 outbreak of MVEV 
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in south-western New South Wales and northern Victoria found that Ciconiiformes, 

particularly rufous night herons (Nycticorax caledonicus), had the highest seropositivity rate 

(55%) [34]. Australian avian species are also implicated in the transmission of MVEV, 

including galahs (Eolophus roseicapilla), sulphur-crested cockatoos (Cacatua galerita), and Pacific 

black ducks (Anas superciliosis). These bird species can develop a moderate viraemia lasting 1–

9 days and infect up to 50% of susceptible Cx. annulirostris following a blood meal [38]. Thus, 

MVEV is speculated to be maintained in an enzootic cycle largely involving waterfowl and 

ornithophilic mosquitoes in the north of Western Australia and the Top End of the Northern 

Territory [118,125]. However, the importance of marsupials and other non-avian vertebrates 

in the transmission of MVEV warrants further investigation. 

8. West Nile Virus 

West Nile virus (WNV) was first isolated in 1937 in Uganda, Africa, and currently 

circulates throughout the Americas, Europe, and Asia [126]. The virus is thought to have 

been introduced into Australia, possibly through travellers from Europe and the 

transportation of convicts [127]. WNV Kunjin strain (WNVKUN) is endemic to tropical 

northern Australia and was first isolated from Cx. annulirostris in 1960 in northern 

Queensland [128]. Overall, WNVKUN has been isolated from all Australian states [42,43] and 

is especially prevalent around tropical areas in northern Queensland and the Northern 

Territory [62], though incidents of the disease are rarely reported in humans. WNVKUN has 

consistently been isolated from Cx. annulirostris since 1984 and is found in all states in 

Australia [44], but the virus has also been isolated from Cx. australicus, Cx squamosus, Cx. 

quinquefasciatus, Ae. tremulus, Ae. alternans, Ae. nomenensis, Ae. Vigilax, and Anopheles 

amictus [45,46]. 

In 2011, a new strain of WNVKUN, WNVKUN2011, was characterized due to an 

unprecedented outbreak in horses [42]. Clinical signs were recorded in more than 1000 

horses with a fatality rate of 10–15% [42]. Previous WNVKUN infections usually occurred 

when flooding occurs due to high rainfall that supported mosquito and waterbird 

populations; however, even though high rainfall did occur during the outbreak, mosquito 

populations remained small in many of the affected areas suggesting that WNVKUN2011 is 

more virulent compared to WNVKUN [22,42]. Additionally, it was found that Cx. 

annulirostris transmitted WNVKUN2011 more efficiently compared to other WNVKUN strains 

[48]. 

Historically, mammals have been thought to be dead-end hosts because of their 

short-term, low viremia [129]. However, more recent studies have shown that this may 

not be the case with some wild mammals having high seroprevalence. In the United States, 

urban mosquitoes such as Aedes albopictus and wild mammals are increasingly implicated 

in maintenance of WNV and may be establishing a unique transmission cycle that does not 

involve birds [130–132]. Wild mammals implicated in WNV transmission include the 

Virginian opossum (Didelphis virginiana), certain species of tree squirrel (Sciurus spp.), 

eastern chipmunks (Tamias striatus), and eastern cottontail rabbits (Sylvilagus floridanus) 

[133–136]. Although these overseas studies have not investigated the Australian strain, 

WNVKUN, it is important to be aware of these transmission dynamics, as Australian 

mammals could be used as indicators for future transmission studies should overseas 

strains enter Australia. 

It is well-known that WNV is spread by migratory birds (see [43] for a review), with 

the rufous night heron considered one of the main reservoirs [137], however a study found 

one Australian white ibis (Threskiornis moluccus) had antibodies to the virus [47]. 

Australian white ibis are common in urban areas around Australia, which suggests that 

they could be effective reservoirs for zoonotic pathogens. WNVKUN have been exposed to 

house sparrows (Passer domesticus), however, was shown to be non-virulent as opposed to 

the West Nile virus Afro-European and North American strain [49]. With no other 

comparative viremia profiles among urban Australian birds, the ibis should be considered 
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a potential host in future studies. The role of other Australian fauna in the transmission 

WNVKUN is poorly understood and further investigations are necessary. 

9. Japanese Encephalitis Virus 

Japanese Encephalitis virus (JEV) is an acute arbovirus disease associated with 

encephalitis. The first outbreak was detected in Torres Strait in 1995 after the viral 

isolation of two Badu Island residents. Cx. annulirostris was implicated as the major vector 

for the JEV outbreak as mosquito surveys revealed that their populations bred near the 

Badu community in pigpens and JEV isolations were only found in Cx. annulirostris at the 

time [53]. Enzootic transmission is suspected to occur between migratory birds, 

frugivorous bats, or mosquitoes [53,138]. Most humans exhibit little to no symptoms, but 

some can develop encephalitis and 25% of these cases can be fatal [139], making JEV a 

significant public health threat where endemic. 

In northern Australia and Papua New Guinea, JEV occurs sporadically due to 

migratory birds, travelling mosquitoes, and the close proximity of domestic pigs to 

humans [53,54]. Domestic pigs are considered one of the main reservoirs for JEV, 

alongside frugivorous bats that are suspected to be involved in the introduction of JEV 

into Australia [138], particularly because they have high titres of JEV antibodies in other 

countries [140]. Black flying foxes (Pteropus alecto) are common throughout north and 

eastern Australia [141]. Experimental JEV inoculations in black flying fox resulted in no 

JEV symptoms and only one (out of five) inoculated individuals showed low-level 

viremia, despite detection of anti-JEV antibodies in all individuals. While little to no 

viraemia were detected in all individuals infected, some were still capable of infecting Cx. 

annulirostris, suggesting the potential of black flying fox populations to cause JEV 

outbreaks [60]. As these bats show no detectable viremia but still infect vectors it suggests 

that their potential role in the transmission of JEV should be more thoroughly 

investigated. Moreover as bats are known hosts of many other viruses that are pathogenic 

to a wide range of mammals including humans, and exhibit no clinical symptoms, future 

studies should further investigate bats as potential reservoirs for JEV and other 

arboviruses (see [142,143] for reviews). Furthermore, additional studies including the 

other three species of Australian flying fox, the little red (Pteropus scapulatus), spectacled 

(P. conspicillatus), and grey-headed (P. poliocephalus) may provide insights into the 

potential of future viral outbreaks given the wide distribution of flying foxes in northern 

and eastern Australia, as observed in studies on Hendra virus [144]. This includes areas 

where the distribution of competent vector species and flying foxes overlap, particularly 

given bats can transmit JEV with no detectable viremia [138]. Studies should also 

investigate flying foxes, and other potential reservoir species, in terms of physiological 

stress. For example, McMichael, et al. [145] indicated an indirect association between 

lower temperatures and physiological stress in black flying foxes and increased Hendra 

virus infection and excretion. These factors may also have implications for arbovirus 

outbreaks due to reservoir species biology. 

10. Kokobera and Related Viruses 

There are currently five known members of the Kokobera virus (KOKV) group which 

are native to Australia [128]. These include the KOKV (isolated in 1960, Queensland), 

Stratford (STRV) (isolated in 1961, Cairns), New Mapoon (NMV) (isolated in 1998, Cape 

York Peninsula), Bainyik (BAIV) (previously strain MK7979; isolated in 1966, Papua New 

Guinea), and Torres (previously strain TS5273; isolated in 2000, Torres Strait) viruses [146]. 

Compared to the prototype strain (KOKV), other members in the Kokobera virus group 

have different antigenic profiles based on their monoclonal antibody binding patterns 

[146,147]. 

Altogether, the KOKV group has many different mosquito vectors. STRV alone has 

been isolated in six mosquito vectors, which include five Aedes spp. (Aedes aculeatus, Ae. 

alternans, Ae. notoscriptus, Aedes procax, and Ae. vigilax) and Anopheles annulipes [63]. STRV 
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was first isolated in Ae. vigilax from Cairns [90]. Similar to KOKV, the NMV was also first 

isolated from Cx. annulirostris [146]. BAIV and Torres virus were isolated from a pool of 

mosquitoes [148,149]. 

An experimental study found that only BAIV produced signs of encephalitis in mice, 

and while virus were detected up to day 3 post-infection, hardly any were detected in the 

organs of the experimental mice [65]. When inoculated directly into mouse brain, all 

viruses in the Kokobera virus group (except NMV) caused mortality in mice suggesting 

the possibility of replication in the brain and high neurovirulence [65]. Antibodies to 

KOKV have been found in kangaroos, horses, cattle, and wallabies in Australia [17,64]. 

While considered endemic to certain regions of Australia, KOKV antibodies have 

previously been found in Indonesian cattle from Java and Bali [150]. Marsupials 

(specifically macropods) are suspected to be an important reservoir for KOKV and STRV, 

particularly because these viruses remained largely limited to Australia even after 

European colonization and consistent to the main distribution of macropods [151,152]. 

Horses could also be implicated in the transmission of KOKV as KOKV group-specific 

antibodies have been detected in Australian horses, and it is currently unknown whether 

viruses in the KOKV group is associated with known equine disease [64,65]. At this stage, 

all five members of the KOKV group will need further characterization and definition. 

Recently, the complete coding sequences of STRV, BAIV and Torres virus have become 

publicly available and is first step towards understanding the virus’ virulence [153]. 

11. Gan Gan and Trubanaman Viruses 

Bunyaviruses are negative-stranded RNA viruses, consisting of three RNA segments 

which are named small, medium and large due to the length of nucleotides [154]. The Gan 

Gan virus (GGV) and Trubanaman virus (TRUV) were first isolated in 1966 (isolate 

MRM3630) [68] and 1970 (isolate NB6057) [67], respectively. Both viruses were only 

genetically characterized recently in 2016 [154]. Currently, GGV and TRUV have only 

been reported in Queensland, New South Wales and Western Australia [66]. 

GGV and TRUV cause polyarthritic illness, with symptoms similar to RRV. Because 

of its similarity to RRV, it is speculated that RRV-like infections that have negative 

serology for RRV may have been GGV or TRUV infections [154]. Generally, GGV 

neutralizing antibodies have higher titres and prevalences in humans compared to TRUV 

in most reported areas [26,70,155] except for Cape York Peninsula in Queensland [154]]. 

Humans are most likely a dead-end host as no horizontal or vertical transmissions have 

been reported [156]. There are currently no treatments for GGV or TRUV. 

Bunyaviruses have multiple vectors that include arthropods, murids and bats; 

however, mosquitoes are the main vectors for GGV and TRUV [154]. Isolation of TRUV 

has been reported in An. annulipes [66] and Cx. annulirostris [62] mosquitoes, whereas GGV 

is most commonly isolated from Ae. vigilax [67], but has also been isolated in Cx. 

annulirostris [68] and Anopheles meraukensis [69]. 

In general, there is limited knowledge of the clinical signs and symptoms of GGV 

and TRUV and its effect on vertebrates, however serological studies have found 

antibodies in a broad range of mammals. A report in 1991 found GGV and TRUV 

antibodies in macropods, cattle, and horses in New South Wales [26]. Antibodies to GGV 

were also found in one out of 76 bush rats (Rattus fuscipes), suggesting that the virus is 

able to infect murids [26]. Antibodies to TRUV have been found in western grey 

kangaroos, feral pigs, rabbits, European red foxes (Vulpes vulpes), quokkas (Setonix 

brachyurus), and horses [70]. Despite exposure across a broad range of vertebrate species, 

research has indicated that macropods are a key host for both viruses [26,70]. The wide 

range of species reported to be seropositive for these bunyaviruses may reflect the wide 

ranging host range of host mosquitoes in Australia [26,70]. 
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12. A Changing Australia and Its Consequences 

The infection, amplification and transmission of the pathogens mentioned are often 

affected by environmental and climatic change (see [157] for a review). A study collating 

19 articles concerning the impact of climate change on RRV outbreaks demonstrated that 

the complex ecology, interactions between social and environmental factors, and climate 

change and socioeconomic development needs to be considered when trying to 

understand the ecology of RRV and prevent/reduce viral transmission [158]. Climate 

change can influence mosquito and wildlife distribution directly and/or indirectly by 

changing behaviors or movements. For example, while rainfall is predicted to decrease in 

certain areas of Australia, sea levels are predicted to increase which can potentially create 

another source of water for mosquito breeding [158]. This potential environmental change 

should be considered particularly for viruses that can be transmitted by various mosquito 

species. While the population of some mosquito species will decrease, others may 

consequentially thrive. Additionally, humans respond to climate change by altering their 

surroundings, which could influence the survival of wildlife and distribution of mosquito 

species depending on their ability to adapt. Human land-use change is one of the primary 

drivers of a range of infectious disease outbreaks and modifiers of the transmission of 

endemic infections [159]. Anthropophilic mosquito species such as Aedes aegypti often 

increase in response to urbanization, particularly taking advantage of man-made objects 

and preferentially feeding on human hosts [160]. 

Australia also has one of the highest extinction rates of mammalian fauna in the 

world [161,162]. The surviving Australian species are currently threatened by competition 

and predation from a range of introduced mammalian species, the low levels of 

conservation funding compared to other countries and the effects of climate change. The 

problem with losing biodiversity in Australia is that it can result in the loss of a “dilution 

effect”, which predicts that high host species richness can lower pathogen transmission 

[163]. This particularly applies to vectors that feed on multiple host species varying in 

their competence for a particular pathogen. For example, lower incidence of human WNV 

and Lyme disease has been observed in areas of the United States with greater host 

diversity [164,165]. Thus, continued population decline, and loss of species represents a 

significant public health threat in Australia. 

There is also concern for the transmission of mosquito-borne diseases between 

countries. Other than migrating animal reservoirs such as birds and bats, increased 

human movements are now influencing mosquito and mosquito-borne disease 

distribution. Many mosquito species have been found to survive long-distance flights, 

including Anopheles mosquito species which transmits malaria [137,166]. Global travel and 

trade also enables the establishment of exotic zoonotic pathogens due to the availability 

of suitable vectors and hosts in many different countries [167]. It is therefore important to 

discuss the potential effects of such changes in Australia, particularly for future disease 

management purposes. 

12.1. Climate and Its Significance to Australia’s Unique Vertebrate Communities 

Climatically, higher temperatures have swept the whole of Australia and have 

created a dry landscape that is prone to bushfires. Bushfires have occurred in areas 

unaccustomed to fires, and are predicted to be more severe and frequent in the future 

[168]. Unexpected fires cause stress on wildlife, triggering immunosuppression, which 

increases the chances of infectious diseases [169]. Most recently in 2019, New South Wales, 

Queensland, South Australia and Victoria experienced intense bushfires [170], and 

undoubtedly have led to a decrease in wildlife populations [171]. Previous intense 

bushfires have caused devastating impacts on various marsupials including the koala 

[172], quokka [173], and possums [174]. 

Drought is a long term trend that is a natural part of the Australian hydroclimate; 

however, in addition to natural drought, the continuously changing agriculture and 
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infrastructure landscape and societal context leads to a limited time to learn, adapt and 

prepare for droughts (see [175] for a review). While it is true that egg laying by mosquitoes 

decline during droughts, some mosquito species are able to retain their eggs for extended 

periods allowing them to search out remnant water sources during prolonged periods of 

drought [176]. Drought conditions may also increase the vector competence of Cx. 

quinquefasciatus for WNV by altering the immune response against the virus [177]. 

Increased temperatures associated with drought may also extend the length of disease 

transmission by increasing the normal seasonal activity of major vector species. For 

example in urban environments, Culex mosquitoes have been shown to breed earlier and 

extend their breeding season due to an increase in environmental temperatures [178]. 

Drought also leads to humans storing more water containers around houses, leading to 

increased mosquito breeding and disease outbreaks, particularly diseases associated with 

container-inhabiting species like dengue, chikungunya, and Zika [179,180]. 

Increased drought will also likely affect the abundance and distribution of competent 

vector species. In Australia, repeated drought events have decreased the survival and 

reproductive fitness of some smaller marsupials. After experiencing drought, the female 

agile antechinus (Antechinus agilis) survival and number of young per litter decreased and 

some females failed to give birth [181]. The brush-tailed phascogale (Phascogale tapoatafa) 

delayed births by increasing period of sperm storage beyond the drought and while 

beneficial, would decrease populations if the drought was long-term [182]. Bigger 

marsupials such as kangaroos change their distribution depending on drought and 

rainfall, with red kangaroo (Macropus rufus) populations moving long distances and 

aggregating at areas with a higher quality food supply and water [183]. Higher 

temperatures also lead to heat stress, which coincides with larger admissions of 

Australian birds and marsupials into veterinary clinics [184]. It is also important to 

mention that some Australian animals have a proven ability to cope with higher 

temperatures, however many also suffer from heat stress [185]. 

12.2. Climate and Its Significance to Mosquitoes 

Climatic factors influence mosquito breeding and disease transmission [9]. The 

Australian continent has increased in temperature by 0.9 °C between 1910 to 2011, which 

is higher than the global temperature increase of 0.7 °C [186]. Predicted climate change in 

Australia will likely increase the distribution of Australian vector-borne diseases such as 

RRV [187]. Disease distribution also relies on the type of vector and its efficiency in 

spreading disease. For example, the Ae. aegypti population in Australia migrated from 

Western Australia, Northern Territory and New South Wales to Queensland, which led 

to repeated outbreaks of dengue [188]. Thus, the spread of disease will ultimately rely 

upon the distribution of suitable vector species. The distribution of the principal vectors 

of dengue, malaria, and other global vector-borne diseases are projected to increase 

considerably under current climate change scenarios as warming temperatures will allow 

them to spread to areas previously unsuitable for survival [189–191]. If correct, such 

increases will surely result in the spread of disease to previously uninfected areas. 

Although transmission of vector-borne diseases can be limited by seasonal temperature 

change in temperate environments [192], many mosquito species have proven highly 

adaptable to survive in areas of lower humidity [193] and even in areas that under winter 

[194]. 

Rising sea levels in response to climate change will dramatically change shoreline 

hydrology, causing marshes and seagrass beds to migrate landward, and will push 

salinity up the estuary [195]. The landward expansion of saline habitat may increase the 

risk of vector-borne disease outbreaks in many regions of the world by increasing the 

distribution of salt-associated mosquito species [196]. In Australia, the major salt marsh 

mosquitoes Ae. vigilax and Ae. camptorhynchus are important vectors of RRV and BFV [16] 

and any increase in their distributions represents a significant public health threat [197]. 

In addition to increased disease risk, the landward expansion of saline environments will 



Viruses 2021, 13, 265 14 of 22 
 

 

increase the already extreme biting nuisance potential of these species [198,199] 

decreasing the quality of life in may coastal areas. 

12.3. Urbanization and Habitat Fragmentation 

Ecological change resulting from land-use modification often leads to the 

transmission of infectious diseases from wild animals to humans [200], and Australia is 

no exception. Vector-borne disease outbreaks from Australian wildlife almost always 

involve the installation of wetlands, encroachment of residential developments on 

reclaimed coastal wetlands or remote locations and deforestation (see [201] for a review). 

Although urbanization has led to the decline of certain marsupial populations due to 

decreased habitat [202,203], the impacts of such reductions on endemic arboviruses is not 

currently known. 

Deforestation also leads to changes in wildlife movements, either away from the 

development, or adapting to human settlement. Whereas, urbanization decreases host 

species richness, as only some are capable of adaptation. Marsupials such as koalas have 

been historically and significantly affected by changing landscapes. As koalas are 

specialized feeders of predominantly Eucalyptus and Corymbia species, their diet also 

varies within regional areas due to different soil characteristics, tree structures, leaf water, 

and chemical content [204,205], which makes it difficult for koalas to adapt with the 

cumulative threats from environmental and landscape changes. They are also threatened 

by disease (i.e., chlamydial infections and koala retrovirus) and stress from habitat 

fragmentation or clearing, is expected to result in population decline (see [206] for a 

review). Some koala populations persist in urban landscapes where resources are 

available; however, patchy resources also increase their risk of death [207]. Reduced 

nutritional and population health likely compromise immunological fitness [208] and 

enhance the potential of some koala species to act as reservoirs or reduce the removal of 

certain pathogens from a host. 

Even marsupials that are found in high densities in urban landscapes have been 

affected by urbanization and human population growth. The eastern grey kangaroo 

declined in overall population by 42% in south east Queensland, with a further decline 

anticipated with the increase of humans [202]. Additionally, land clearing and timber 

harvesting have also had an impact on the structure and distribution of various marsupial 

species because of the change in predation and food availability. For example, eastern 

grey kangaroos prefer the relatively open foraging sites for grazing and swamp wallabies 

prefer dense vegetation sites for feeding, suggesting that there will be changes of 

marsupial distribution depending on specific preferences of the species (see [209] for a 

review). Koalas from south east Queensland, Australia are more exposed to major RRV 

mosquito vector, Cx. annulirostris, because of their confinement to edges of permanent 

wetlands that are not suitable for urban development [89]. However, while some 

Australian wildlife species are struggling to adapt to rapid environmental and climatic 

change, some are proliferating. Possums, for example, have been seen thriving in urban 

environments as they are more tolerant of disturbances compared to other marsupials 

[203,210]. While this is good for the maintenance of the possum population, it is also 

suspected that they might cause disease outbreaks in urban areas due to the lack of 

biodiversity and the close proximity to humans or domestic animals [211]. 

13. Conclusions 

This review summarises the current literature on mosquito-borne viruses in non-

human species in Australia. Mosquito-borne viruses threaten both human and non-

human vertebrate health; as such it is critical to periodically review the impacts of 

mosquito-borne pathogens in non-human species. Since Australian marsupials are 

considered key hosts for endemic mosquito-borne diseases such as RRV and BFV, these 

vertebrates could potentially be reservoirs for introduced mosquito-borne diseases. 

Alternatively, Australia’s diverse faunal species could prevent the spread of disease, 
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reinforcing the importance of studying the role non-human vertebrates’ play in mosquito-

borne disease transmission, although this diversity is currently under threat. We 

emphasise that it is important to consider the impact of non-human vertebrates on 

mosquito-borne diseases, particularly in mosquito control strategies and predicting future 

disease outbreaks. Environmental conditions in prediction studies are important, but 

there have been circumstances where they do not significantly affect the distribution of 

mosquitoes or contribute to disease outbreaks in Australia [212,213]. However, there is a 

possibility that the environment may influence animal behavior, further influencing the 

spread of disease. Understanding the complexity of factors that influence the transmission 

of mosquito-borne diseases will help us develop strategies to minimize the risk of 

outbreaks. 
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