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Impact of galvanic vestibular stimulation-induced stochastic resonance
on the output of the vestibular system: A systematic review
Dear editor,

With an ageing population, techniques to improve balance func-
tion are necessary and likely to reduce the risk of falling due to age-
related vestibular dysfunction. Previous work has shown that
Galvanic Vestibular Stimulation (GVS) improves balance function in
regards to vestibular output measures including Centre of Pressure
(CoP) sway and Ocular Vestibular Evoked Myogenic Potentials
(oVEMPs) [1,2]. Presumably these improvements are due to themod-
ulation of primary vestibular afferents and vestibular hair cells,
possibly via the phenomenon of Stochastic Resonance (SR). Specif-
ically, SR is defined by the application of low-level noise which in-
creases the detectability of subthreshold signals in non-linear
systems, including the vestibular system [3]. Major limitations to
determining themost effective therapeutic approach to improve bal-
ance functionusingGVS-inducedSRare the limitednumberof studies
assessing thedirect impactofGVSonvestibular function, and thehet-
erogeneityof reportedGVSstimulusparametersused. Indeed, there is
a near complete paucity of comparative investigations between the
major types of GVS including stochastic and white noise stimuli.
Thus, thequestionarisesewhetheranoptimal setof stimulusparam-
eters to improve vestibular output can be ascertained from the
currently available data? We conducted a systematic appraisal of
the literature regarding the impact of GVS on vestibular function in
healthy individuals as a means for answering this question.

The literature search and selection was conducted using the
Population Intervention Comparison Outcome (PICO) procedure.
Studies were included if participants were healthy, bipolar binaural
trans-mastoid electrical stimulation used, and measured vestibular
output (Centre of Pressure sway, Ocular Counter Roll etc.).
Conversely, studies were excluded if they used participants neuro-
logical or balance related pathologies, animals, non-bipolar
binaural trans-mastoid electrical stimulation, non-vestibular mea-
sures (i.e. autonomic responses), reviews, conference submissions,
non-English publications and abstracts. The literature search was
performed using a range of electronic databases (Pubmed, Embase,
MEDLINE, Cochrane Library, Scopus, Web of Science) and searching
individual and combined terms (i.e. stochastic AND galvanic AND
vestibular AND stimulation). The initial search yielded 169 studies,
of which, 99 duplicates were removed, and 38 studies removed due
to titles or abstracts not fulfilling the inclusion criteria. After analy-
sing 22 full-texts, 12 studies were removed resulting in a small
dataset of 10 studies meeting our inclusion criteria for analysis.

The overall quality of the included studies was assessed as fair,
based on the Downs and Black study quality checklist. The majority
of studies were inadequate in reporting of adverse events, with
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only two studies reporting this [4,5]. None of the included studies
had blinded outcome assessments or adjustments for confounds.
Only one study concealed the intervention allocation from both
the investigators and participants [1], and only half of the studies
reported power analyses to justify sample sizes used [1,3,5e7].

The included studies highlighted improvements to static bal-
ance (Centre of Pressure (CoP) sway), dynamic balance (locomo-
tion) or vestibulo-ocular (Ocular Counter Roll; OCR) function in
response to GVS. Fig. 1 shows the performance improvements in
vestibular output measures across the included studies. An impor-
tant initial observation is that for both static and dynamic balance
measures, with the exception of one study [8], only white noise GVS
has been assessed (Fig. 1A and C). In contrast, for vestibulo-ocular
measures only stochastic noise GVS has been assessed (Fig. 1D).
These disparities limit the ability to compare the efficacy of
different stimuli on vestibular output measures, contributing to
the difficulty in establishing optimal GVS parameters to improve
balance performance.

Efficacy of white noise GVS

White noise GVS has been shown to improve measures of static
and dynamic balance with the overall improvement in these mea-
sures reported to range from 3.80% to 36.00% (Fig. 1A and C) with
varying improvements reported across vestibular output measures.
In our analysis, we compared the frequency bandwidth to the per-
centage improvement in static balance performance and found that
stimuli with narrower bandwidths (0e30 Hz) had significantly
greater performance improvement than stimuli with broad band-
widths (0.1e640 Hz; 16.20% vs 7.849%; p ¼ 0.008; Fig. 1B). When
the bandwidth is narrowed further (0.01e10 Hz), white noise GVS
does not produce greater improvements in dynamic balance (stride
time and stride length) [3] when compared with 0e30 Hz band-
width [9,10] (Fig. 1C). This suggests that for static and dynamic bal-
ance, a 0e30 Hzwhite noise GVSmay prove to be themost effective
frequency bandwidth. However, stochastic noise GVS cannot be
discounted since its impact has not yet been assessed using compa-
rable frequency bandwidths, or indeed, for dynamic balance func-
tion at all. Work providing this information may be crucial for
establishing themost effective GVS parameters for use in treatment
of balance dysfunction.

Efficacy of stochastic noise GVS

Unlikewhite noise GVS, only one study has used stochastic noise
GVS to measure static balance performance. In that study, Mulavara
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Fig. 1. A Normalised improvements in mediolateral (ML) sway, anteroposterior (AP)
sway and Sway Path Length (SPL) in response to GVS-induced SR. Triangles denote 1.0
mA and stars denote 0.4 mA GVS applied during the same study [7]. Two closed circles
represent a 3 hour GVS (higher circle, 14.0%) and a 30 minute GVS (lower circle, 11.0%)
[1]. B 0e30 Hz bandwidth white noise GVS is more effective at improving static bal-
ance than 0.1e640 Hz bandwidth white noise GVS (16.20% vs 7.85%, two-tailed un-
paired t-test p ¼ 0.0082). C Normalised improvements to gait function in response to
GVS-induced SR. GV, Gait Velocity; ST, Stride Time; SL, Stride Length; BS, Base of
Support; BPC, Bilateral Phase Coordination; GCV, Gait Cycle-time Variability; ML,
Mediolateral RMS; SI, Superior-Inferior RMS. D Normalised improvements to reflexive
eye movements in response to GVS-induced SR. Ocular Counter Roll (OCR) gain
measured at three rotational frequencies (0.03125, 0.125 and 0.2 Hz). Amplitudes of
the first negative peak (N1) and the second positive peak (N1eP1) of ocular Evoked
Myogenic Potentials (oVEMP). Figures AeD, open symbols denote stochastic noise GVS
and closed symbols white noise GVS and error bars indicate the standard error of the
mean. *** ¼ p < 0.01.
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et al. [8] used 1e2 Hz bandwidth stochastic noise GVS and observed
improvements to balance stability, although a 0e30 Hz bandwidth
white noise produced greater improvements (Fig. 1A). While this
strengthens the idea that a 0e30 Hz bandwidth white noise is an
effective stimulus, it is important to note that the authors did not
apply stochastic noise GVS at a comparable 0e30 Hz bandwidth.
This leaves open the possibility that stochastic noise GVS is equally
or more effective than white noise GVS. When considering
vestibulo-ocular measures, only two studies have applied stochas-
tic noise GVS. Both found significant improvements in OCR [4] and
oVEMPs [2] ranging from 15.33 to 75.9% (Fig. 1D). Crucially, neither
study assessed white noise GVS, again limiting the ability to deter-
mine optimal GVS character for improving vestibulo-ocular
function.
Conclusions

The apparent disconnect between stimulus character and pa-
rameters and vestibular output measures prevents most direct
comparison to determine the most effective GVS stimulus to
improve balance function. Further, the small number of studies
meeting our inclusion criteria of directly assessing vestibular
output in response to GVS, highlights the current difficulty in estab-
lishing clinically useful stimulus parameters. However, based on
our appraisal of the included literature, GVS within 0e30 Hz band-
width appears to be consistently beneficial. To confirm this howev-
er, it is important that future work apply stochastic and white noise
GVS with the same parameters (i.e. frequency bandwidth) to assess
its impact on each vestibular output measure directly.
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