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Abstract: Background: To evaluate whether a model based on radiomic and clinical features may
be associated with lymph node (LN) status and overall survival (OS) in lung cancer (LC) patients;
to evaluate whether CT reconstruction algorithms may influence the model performance. Methods:
patients operated on for LC with a pathological stage up to T3N1 were retrospectively selected
and divided into training and validation sets. For the prediction of positive LNs and OS, the Least
Absolute Shrinkage and Selection Operator (LASSO) logistic regression model was used; univariable
and multivariable logistic regression analysis assessed the association of clinical-radiomic variables
and endpoints. All tests were repeated after dividing the groups according to the CT reconstruction
algorithm. p-values < 0.05 were considered significant. Results: 270 patients were included and
divided into training (n = 180) and validation sets (n = 90). Transfissural extension was significantly
associated with positive LNs. For OS prediction, high- and low-risk groups were different according
to the radiomics score, also after dividing the two groups according to reconstruction algorithms.
Conclusions: a combined clinical–radiomics model was not superior to a single clinical or single
radiomics model to predict positive LNs. A radiomics model was able to separate high-risk and
low-risk patients for OS; CTs reconstructed with Iterative Reconstructions (IR) algorithm showed the
best model performance.
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1. Introduction

The lung represents the second most frequent site of cancer each year, and the first cause of death
from cancer [1]. For early stages, when surgery is the primary option, complete lymph node (LN)
excision with a microscopic evaluation is the most accurate method for determining LN metastasis.
However, the best local control and decreased risk of residual lesions guaranteed by the dissection
of a high number of LNs is associated with greater trauma for patients, such as prolonged air leaks,
excessive chest tube drainage and prolonged hospitalization [2–4]. A method that could non-invasively
predict the presence of LN metastasis would therefore be helpful to guide systematic dissection and
might be considered, for example, in patients with small tumours and no apparent enlarged LNs [5],
or in the presence of many co-morbidities.

Radiomics is an emerging translational field of research, aiming to extract mineable
high-dimensional data from clinical images, containing information that may reflect the underlying
patho-physiology of a tissue [6]. Many recent studies have evaluated the associations between
radiomics and the prognosis of various tumours, such as lung adenocarcinoma [7–9], renal cancer [10],
hepatocellular carcinoma [11,12], glioblastoma [13], and ovarian cancer [14].

Some methodological issues have been raised regarding radiomics studies, including the
possibility that differences in quantitative data may depend on different parameters of acquisition
and reconstruction [15]. It has also been widely demonstrated that at least internal, possibly external,
and independent validation of the model is always needed [16].

The purpose of this study was to evaluate whether a model based on quantitative CT radiomic and
clinical features of lung cancer patients may be associated with LN status and with overall survival (OS);
a secondary purpose was to assess the influence of CT reconstruction algorithms on the quantitative
parameters and on the performance of the predictive models.

2. Results

2.1. Patients

All patients underwent anatomical resection with radical lymphadenectomy; no cases of
intraoperative nodal upstaging to pN2 from cN0 or cN1 were observed.

A total of 270 patients were enrolled and randomly divided into training (n = 180) and
validation datasets (n = 90). The histological type was adenocarcinoma or squamous cell carcinoma
in 254/270 patients; other types were present in 16/270 patients. The distribution of histological
type between the training set and the validation set did not show significant differences (p = 0.16).
Other baseline characteristics of the cohort are summarized in Table 1.

The clinical and radiological parameters are comparable between the two datasets, although
a slightly higher percentage of patients with pT > 1 was randomly allocated in the validation set
(standardized mean difference = 0.21).

A total of 881 radiomic features was calculated for each patient. The numbers of radiomic
features which survived after elimination of identical features and selected as the most stable and
reproducible after phantom analysis and Analysis of Variance (ANOVA) are reported in Figure S1
for the different cases (analysis performed on the entire Filtered Back Projection (FBP) + Iterative
Reconstructions (IR) dataset and analysis performed separating the patients according to FBP or IR
reconstructing algorithm).
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Table 1. Baseline characteristics of the study population.

Characteristic
All Patients
(N = 270)
N (%)

Training Set
(N = 180)
N (%)

Validation Set
(N = 90)
N (%)

Age (years) ˆ 67.4 (61.0–72.6) 66.6 (60.7–72.2) 68.4 (62.3–72.8)

Gender

Female 103 (38%) 74 (41%) 29 (32%)

Male 167 (62%) 106 (59%) 61 (68%)

Grading

1 30 (13%) 21 (14%) 9 (12%)

2 82 (36%) 56 (37%) 26 (33%)

3 117 (51%) 74 (49%) 43 (55%)

Missing 41 29 12

Side

Right 153 (57%) 102 (57%) 51 (57%)

Left 117 (43%) 78 (43%) 39 (43%)

Site

Upper 154 (57%) 101 (56%) 53 (59%)

Medium 12 (4%) 9 (5%) 3 (3%)

Lower 93 (34%) 65 (36%) 28 (31%)

Mixed 11 (4%) 5 (3%) 6 (7%)

Nodule size (mm) ˆ 31 (18–45) 28 (17–45) 36 (22–46)

pT

0 3 (1%) 1 (1%) 2 (2%)

1 97 (36%) 74 (41%) 23 (26%)

2 124 (46%) 76 (42%) 48 (53%)

3 46 (17%) 29 (16%) 17 (19%)

pN

pN0 199 (74%) 139 (77%) 60 (67%)

pN1 71 (26%) 41 (23%) 30 (33%)

Algorithm type

FBP 187 (69%) 130 (72%) 57 (63%)

IR 83 (31%) 50 (28%) 33 (37%)

Status

Alive 202 (75%) 140 (78%) 62 (69%)

Deceased 68 (25%) 40 (22%) 28 (31%)

Follow-up (months) ˆ 46.1 (29.8–63.3) 47.0 (32.0–65.2) 45.5 (22.7–59.6)

FBP = Filtered Back Projection; IR = Iterative Reconstructions; ˆ Median (InterQuantile Range).
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2.1.1. Lymph Nodes

Analysis on the Entire Dataset (FBP + IR)

The radiomics score obtained for the prediction of positive lymph nodes (LNs) on the entire training
dataset consisted of three radiomic features: ClusterShade from GLCM25 category calculated along
135◦ direction with four voxels offset (GLCM25135, 4_CIusterShade), 70th percentile of the intensity
values in the cumulative histogram (IH_70PercentileArea), and the maximum diameter evaluated
on the 3D lesion volume (Shape_Max3DDiameter). Coefficients of the Least Absolute Shrinkage and
Selection Operator (LASSO) logistic regression model for the calculation of the radiomics score are
shown in Figure 1.
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significantly associated with lymph nodal status at univariable analysis (p < 0.10). Significant values 
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Receiving Operating Characteristic (ROC) curves for prediction of positive LNs showed no 
significant differences in performance of the combined clinical–radiomics model, as compared to a 
single radiomics or single clinical model in the training and validation sets (Figure 2). 

Figure 1. Values of the coefficients of the Least Absolute Shrinkage and Selection Operator (LASSO)
logistic regression model for the prediction of positive lymph nodes according to radiomic features
(training set). The plot shows the model coefficients of the three radiomic features selected as
significantly associated with lymph node status. These coefficients were used to calculate the radiomics
score used to predict lymph node status in the validation set.

Among clinical variables, univariable analysis in the training set showed that mixed site (meaning
that the tumour showed a transfissural growth into two lobes) and nodule size (the larger, the worse)
were significantly associated with positive LNs. Multivariable analysis confirmed the importance of
the site (Table 2).

Table 2. Univariable and multivariable Odds Ratios for the association between clinical variables with
positive lymph nodes (training set).

Variable
Univariable Analysis Multivariable Analysis *

OR (95%CI) p-value OR (95%CI) p-value

Age (years) 1.02 (0.98–1.06) 0.38 - -

Gender (females vs males) 0.78 (0.38–1.61) 0.50 - -

Side (left vs right) 0.61 (0.29–1.26) 0.18 - -

Site

Medium vs. Upper 0.42 (0.05–3.67) 0.14 0.35 (0.04–3.20) 0.13

Lower vs. Upper 0.85 (0.39–1.82) 0.22 0.79 (0.36–1.72) 0.27

Mixed vs. Upper 13.57 (1.44–127.43) 0.01 10.94 (1.13–105.40) 0.02

Nodule size (mm) 1.01 (1.00–1.02) 0.07 1.01 (1.00–1.02) 0.12

CI = Confidence Intervals; OR = Odds Ratio; * includes radiomic score and clinical variables significantly associated
with lymph nodal status at univariable analysis (p < 0.10). Significant values in bold.
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Receiving Operating Characteristic (ROC) curves for prediction of positive LNs showed no
significant differences in performance of the combined clinical–radiomics model, as compared to a
single radiomics or single clinical model in the training and validation sets (Figure 2).
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Figure 2. ROC curves for prediction of positive lymph nodes in (a) the training set and (b) the 
validation set according to clinical, radiomics and clinical–radiomics models. The plots show the ROC 
curves of the three models and the associated values of the Area under the Curves (AUC). 
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Figure 3 shows coefficients of the LASSO logistic regression model for the radiomics score 
prediction of positive LNs, separately for FBP and IR (training set). 

 
(a) 

Figure 2. ROC curves for prediction of positive lymph nodes in (a) the training set and (b) the validation
set according to clinical, radiomics and clinical–radiomics models. The plots show the ROC curves of
the three models and the associated values of the Area under the Curves (AUC).

Analysis on Datasets Separated According to FBP or IR Algorithm

Figure 3 shows coefficients of the LASSO logistic regression model for the radiomics score
prediction of positive LNs, separately for FBP and IR (training set).

In both cases, a prevalent role of the textural features is evident, whereas this was not observed
when considering the entire dataset including both FBP and IR. ROC curves in the training and
validation sets acquired with FBP and IR were separately evaluated (Figure S2).
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Figure 3. Values of the coefficients of the LASSO logistic regression model for the prediction of positive
lymph nodes according to radiomic features for (a) FBP algorithm and (b) IR algorithm (training
set). The plots show the model coefficients of the (a) five and (b) eight radiomic features selected as
significantly associated with lymph nodes in the two subsets of patients with (a) FBP algorithm and
(b) IR algorithm. These coefficients were used to calculate the corresponding radiomic scores used to
predict lymph node status in the validation set for the two separate sub-samples.

The overall performance of the combined model to predict LN positivity was higher for IR than
FBP algorithms, with an Area Under the Curve (AUC) of 0.76 for IR compared to 0.61 for FBP in the
validation set.

2.1.2. Overall Survival

Radiomic Analysis on the Entire Dataset (FBP + IR)

Looking at OS prediction, in the entire training set (including both FBP and IR), the Cox regression
LASSO model selected six radiomic features for the radiomics score (Figure 4).
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Table 3 shows parameters associated with OS in high-risk and low-risk patients, defined according
to the third quartile of the radiomics score.

Table 3. Overall Survival in high-risk and low-risk patients according to the radiomics score.

Training Data Set Validation Data Set

High-Risk
Group *

Low-Risk
Group Total High-Risk

Group *
Low-Risk

Group Total

No. of patients 45 (25%) 135 (75%) 180 (100%) 20 (22%) 70 (78%) 90 (100%)

Follow-up time

Median (IQR) 37.0
(19.3-62.2)

49.0
(35.5–68.4)

47.0
(32.6–66.1)

33.0
(17.2–56.4)

47.0
(28.9–61.6)

46.0
(23.6-60.6)

Shortest (months) 0.8 0.9 0.8 1.6 0.2 0.2

No. of events

At 1 year 8 (18%) 3 (2%) 11 (6%) 3 (15%) 3 (4%) 6 (7%)
At 3 years 17 (38%) 14 (10%) 31 (17%) 7 (35%) 13 (19%) 20 (22%)
At 5 years 20 (44%) 19 (13%) 39 (22%) 9 (45%) 16 (23%) 25 (29%)

* Radiomics score higher than the third quartile.

The percentage of deaths at the second and third years in the validation set for high-risk patients
was almost double that of the low-risk patients (respectively, 35% vs. 19% and 45% vs. 23%). As shown
in Figure 5, a significant difference in OS for the high- and low-risk groups according to the radiomics
score was observed in the training set and confirmed in the validation set.
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Radiomic Analysis on Datasets Separated According to FBP or IR Algorithm

The above-described results were further confirmed after dividing the two groups according to
the reconstruction algorithms (Figure 6).



Cancers 2020, 12, 1432 8 of 16

Cancers 2020, 12, 1432 8 of 16 

 

The above-described results were further confirmed after dividing the two groups according to 
the reconstruction algorithms (Figure 6). 

 
(a) 

 
(b) 

Figure 6. Kaplan–Meier curves and Log–Rank test for high * and low-risk groups according to the 
radiomics score for (a) FBP algorithm and (b) IR algorithm (* Radiomics score higher than the third 
quartile (q3)). 

Radiomic and Clinical Analysis 

Clinical variables associated with OS in the model including both FBP and IR algorithms were 
tumour side, site and pT—tumour site and pT were associated with OS for the subgroup of patients 
with FBP algorithm, while only tumour site was associated with OS for the subgroup of patients with 
IR algorithm. 

Table 4 summarizes the performance of the models including radiomic only, clinical only, and 
clinical–radiomic parameters, on both the entire FBP+IR datasets and on datasets separated according 
to reconstruction algorithm. 

Figure 6. Kaplan–Meier curves and Log–Rank test for high * and low-risk groups according to the
radiomics score for (a) FBP algorithm and (b) IR algorithm (* Radiomics score higher than the third
quartile (q3)).

Radiomic and Clinical Analysis

Clinical variables associated with OS in the model including both FBP and IR algorithms were
tumour side, site and pT—tumour site and pT were associated with OS for the subgroup of patients
with FBP algorithm, while only tumour site was associated with OS for the subgroup of patients with
IR algorithm.

Table 4 summarizes the performance of the models including radiomic only, clinical only,
and clinical–radiomic parameters, on both the entire FBP+IR datasets and on datasets separated
according to reconstruction algorithm.

The best model performance for prediction of OS was obtained with the combined clinical–radiomic
model for CT reconstructed with the IR algorithm.
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Table 4. Model performance statistics.

Model Algorithm C-Index (95%CI) Training Set C-Index (95%CI) Validation Set

Radiomic FBP + IR 0.73 (0.66–0.80) 0.59 (0.47–0.70)

Clinical (side, site, pT) FBP + IR 0.78 (0.71–0.85) 0.53 (0.41–0.65)

Clinical–radiomic FBP + IR 0.77 (0.69–0.84) 0.57 (0.46–0.69)

Radiomic FBP 0.69 (0.61–0.77) 0.61 (0.46–0.76)

Clinical (site, pT) FBP 0.66 (0.57–0.75) 0.57 (0.43–0.72)

Clinical–radiomic FBP 0.70 (0.63–0.78) 0.61 (0.46–0.75)

Radiomic IR 0.82 (0.66–0.98) 0.82 (0.53–1.00)

Clinical (site) IR 0.67 (0.50–0.85) 0.65 (0.38–0.91)

Clinical–radiomic IR 0.84 (0.68–1.00) 0.89 (0.60–1.00)

3. Discussion

In this series, selected clinical and radiomic features showed association with the positivity of
LN, although the combined radiomics–clinical model did not perform better than a single clinical or
radiomics model. Among the clinical features, the mixed site was significant in the univariate and
multivariate analysis. The importance of this feature is recognized by its role in Tumor-Nodes-Metastasis
(TNM) staging, where the invasion of the visceral pleura makes the tumour belong to the T2 category,
despite its size [17]. This result is concordant also with Li et al., who demonstrated a significant
association between adjacent lobe invasion through pleural fissure and LN positivity [18]. The size of
the tumour, measured on an axial image, was borderline-significant in the univariable and multivariable
analysis. Size is a well-known feature for prognosis, as demonstrated by the sub-division of tumours in
the T category according to size [17]. Its importance is confirmed in our series by the better performance
of the single clinical model, after the inclusion of size as a feature. Likewise, the importance of size as
a prognostic factor for LN positivity is demonstrated by one radiomic feature included in the score,
the Shape_Max3DDiameter. This feature represents a measure of the maximum dimension of the lesion,
evaluated in 3D, not directly related to the volume and is more precise than the maximum axial diameter.
This may also account for the slightly better performance of the radiomics model compared to the
clinical model, where the Max3DDiameter radiomic feature may provide a more precise definition of
size than the maximum axial diameter. Other significant features in the radiomics score for LN positivity
prediction were IH_70PercentileArea and GLCM25135, 4_ClusterShadeClShade. IH_70PercentileArea
belongs to the Intensity Histogram category and roughly indicates that the mean Hounsfield Units
(HU) number within the lesion is associated with LN status. GLCM25135, 4_ClusterShade, belonging to
the GLCM category, is a measure of the global skewness. When the Cluster Shade parameter is high,
the distribution of HU values is asymmetric. In our series, low values of this feature, that may be
associated with intratumoral necrosis, were more frequently associated with positive LNs, whereas
high values, encountered in lesions with calcifications and ground-glass opacities, were associated
with negative LNs.

Despite the abovementioned associations, the combined clinical and radiomics model did not
perform better than a single clinical or radiomics model. This result is discordant with Tan et al., who
demonstrated that, in patients with resectable oesophageal carcinoma, a radiomics nomogram provided
a good risk estimation of LN metastasis and outperformed size criteria [19]. However, unlike these
authors, we did not evaluate LN radiomic features, because our purpose was to predict the presence
of positive LNs according to the characteristics of the primary tumour. Conversely, Yang et al. [20]
demonstrated a good performance of a radiomics-based nomogram extracted from lung tumour to
predict LN metastases. Although we used a similar method, by performing the radiomics analysis
on the lung tumour volume, our results may be different because Yang et al. included patients with
CT examinations acquired with the same parameters and reconstructed with the same algorithm [20].
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In this regard, our entire sample is less homogeneous, because we included CTs obtained from different
scanners and reconstructed with two different algorithms. However, it must be pointed out that from a
methodological point of view, we tried to take this into account by performing a preliminary selection
with ANOVA to choose features that were not significantly affected by the use of different scanners or
reconstruction algorithms. This is important because reproducibility and differences in acquisitions
and reconstructions are frequent issues in retrospective studies, which currently represent the majority
of radiomics studies.

As a consequence, the poor performance of our predictive model, including radiomic and clinical
parameters, as compared to the model based on clinical variables alone, could be due to the fact
that feature selection with ANOVA may have eliminated features which potentially carry relevant
predictive information, but are significantly affected by the scanner or reconstruction algorithm. It is
possible that, in a more homogeneous dataset, such features would survive the feature selection process
and would enter the predictive model with a significant improvement in terms of performance.

In order to verify this hypothesis, we performed a separate analysis, according to reconstruction
algorithms: FBP, the most common analytical reconstruction method, which uses a 1D filter on the
projection data before back-projecting them onto the image space [20,21], and IR, which optimizes the
reconstruction with multiple iterations of forward and back projection between image and projection
space. With the advances in computing technology, IR has progressively replaced FBP in routine CT
practice because it makes it possible to reduce artefacts [22]. Therefore, while retrospective databases
are likely to include CT images reconstructed with either FBP or IR, future studies will mainly involve
IR, unless FBP is proved to be more indicated for quantitative analysis and expressly added to the
clinical IR reconstruction. In this series, for association with LN status, the radiomics score associated
with FBP included five quantitative features, where the most important coefficients were attributed to
two different features of Correlation type, belonging to the GLCM25 category. Correlation features
measure the linear dependency of voxel intensities at each point with those of neighbouring pixels
at fixed distances along different directions. In our series, this feature was high for lung tumours
with air bronchograms and with high heterogeneity due to contrast-enhancement (particularly in
the presence of subtle vascularization within the tumour). For CT examinations reconstructed with
IR, the most important coefficients were attributed to the InverseVariance feature from the GLCM2.5
category, calculated along 180◦ direction with one voxel offset, and to the LocalEntropyMax feature
from ID category. The larger the changes in grey values, the higher the GLCM contrast; the lower the
values, corresponding to an inhomogeneous texture, the higher the association with LN positivity.
LocalEntropyMax (Maximum of Local Entropy) is a primary-order statistics feature measuring the
entropy within the Region of Interest (ROI), and shows high values even for small areas of entropy
within a single voxel. Higher local entropies were associated with LN positivity. These results
confirmed that focusing on a more homogeneous dataset (as far as CT reconstruction algorithm is
concerned) may make it possible to identify texture features significantly associated with LN status,
not revealed in a heterogeneous dataset. We were still not able to demonstrate that, in a homogeneous
dataset, the performance of a combined clinical–radiomics model is superior to a model based on
clinical or radiomic data only, probably due to the fact that dividing the dataset according to a CT
reconstruction algorithm considerably reduced the size of each training and validation set. Nonetheless,
promising results were found in the IR dataset (Figure S2), which may deserve to be further investigated
on a larger sample.

The analysis of association between clinical and radiomic features with OS showed
a very good performance of the radiomics score, that significantly separated patients into
high-risk and low-risk groups (p < 0.0001 in the training set; p = 0.012 in the validation set).
Among radiomic features, GLCM25180, 1_InformationMeasureCorrelation1, GLRLM25_LongRunLow
GrayLevel Emphasis, GOH_Kurtosis and Shape_Max 3DDiameter were included in the score.
GLCM25180, 1_InformationMeasureCorrelation1 belongs to the GLCM category and quantifies
the degree of randomness within the tumour, in terms of entropy and statistical disorder.
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GLRLM25_LongRunLowGrayLevel Emphasis belongs to the GLRLM category, and quantifies runs,
intended as consecutive pixels with the same grey level. GOH_Kurtosis indicates the flatness of the
curve of values, without concern for spatial relationships. A prevalent direction for the voxel intensity
gradient indicates that structures within the 3D volume of interest (VOI) develop along a precise
direction (e.g., an intratumoral vessel). Shape_Max 3DDiameter (see features of the radiomics score for
LN) was associated with OS, with high values (large lesions) associated with worse OS.

This study has some limitations. The number of patients with malignant lymph nodes (pN1)
in our group was relatively small (71/270; 26%) and this may account for different results compared
to previous papers. However, the inclusion of patients with pN2 introduced a bias related to the
neo-adjuvant chemotherapy. The CT examinations included in this study were performed over quite
a long period of time (four years), and this may have affected the acquisition protocols. However,
we specifically performed a preliminary ANOVA test to select stable and reproducible radiomic
features. Furthermore, since the most important change in CT acquisition during the period selected
was the reconstruction algorithm, we performed a separate analysis according to the algorithm used,
as described. These subgroup analyses were performed on even smaller samples, which may have
generated incidental results; they could therefore be considered as exploratory analyses that need
to be validated in future, larger studies. Finally, segmentation was carried out by a single operator.
Although this has been considered a limitation in previous studies [23], the inclusion of multiple slices
to obtain a volume, instead of a single ROI, as well as the methods of extraction of the features by
dedicated software may overcome this limitation.

4. Materials and Methods

Patient selection. The Institutional Review Board approved this retrospective study (UID 2172),
waiving the need for informed consent. The study population was retrospectively selected from a
database of patients with lung cancer staged up to T3 N1, operated on between 01/01/2012 and 01/08/2016.
Preoperative staging was performed by whole body CT and Fluorodeoxyglucose Positron Emission
Tomography (FDG PET) scan; in the event of suspected cN2 disease, preoperative endobronchial
ultrasound trans bronchial needle aspiration (EBUS TBNA) was performed to rule out or to confirm
lymph node involvement. Inclusion criteria were: availability of pre-surgical CT at our Institution
after contrast medium injection, with helical mode, 120 kVp, 2.5 mm slice thickness, 2.5 mm spacing;
reconstruction performed with “Body” filter and “Standard” convolution kernel; surgery performed at
our Institution; availability of histology, pathological node status (pN0; pN1), grading. Exclusion criteria
were: CT performed with parameters different to those specified above; pre-operative chemotherapy.

CT imaging. Examinations were randomly performed on the following CT scanners: Lightspeed
Ultra, Lightspeed 16; Optima 660; Discovery CT750 HD (all GE Healthcare, Milwaukee, WI, USA).
All scans were acquired in the portal venous phase and segmentations were performed on that series.
All scanners implemented current modulation; Light speed 16 and Light Speed Ultra were equipped
only with longitudinal z-axis modulation, while Optima 660 and Discovery CT750 also had angular
xy modulation.

Clinical and radiological data recording. The following data were recorded: age; gender; grading;
side; site (upper, medium, lower, mixed); axial nodule size; pT; pN; CT scanner; CT reconstruction
algorithm (Filtered Back Projection, FBP, or Iterative Reconstruction, IR); exposure (mAs, defined as
mA_central slice * RevolutionTime * SliceThickness)/(Pitch*TotalCollimationWidth); contrast medium
(Visipaque® 320, GE Healthcare; Ultravist® 370, Bayer; Iomeron 350, Bracco Imaging; Xenetix 350,
Guerbet); status (alive or deceased); date of last contact or death.

Lesion segmentation: On each axial CT image including the lung nodule, a radiologist traced
free-hand 2D regions of interest, resulting in a 3D volume of interest (VOI) that was converted into a
DICOM RT Structure format (AW Server 2.0 workstation, GE Healthcare).

Radiomic feature extraction: CT images and VOI were imported into the IBEX V 1.0β tool (Imaging
Biomarker Explorer Software [24]) for the extraction of radiomic features. The “Resample_VoxelSize”
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pre-processing was used to resample images to the same pixel size, chosen as the value most frequently
observed in the dataset (0.7 × 0.7 mm2, the values in patient images ranging from 0.59 × 0.59 mm2 to
0.98 × 0.98mm2). “Threshold_Image_MaskXF” pre-processing, that excludes voxels on the ROI edge
having intensity outside a user-defined range, was used to exclude parenchyma voxels erroneously
included during manual delineation (threshold: −400 Hounsfield Units). All the features available in
IBEX for the following categories were extracted: Shape, Intensity Histogram (IH), Intensity Direct
(ID), Grey Level Co-occurrence Matrix (GLCM) 2.5, Grey Level Run Length Matrix (GLRLM) 2.5,
Neighbour Intensity Difference (NID) 2.5, and Gradient Orient Histogram (GOH). GLCM and GLRLM
were calculated comparing voxel intensities along 8 different directions (0◦, 45◦, 90◦, 135◦, 180◦, 225◦,
270◦, 315◦) and with three different offsets between voxels (1, 4 and 7 voxels). The full list of features
calculated by IBEX for each category is reported in [24], also including references for feature definition
and formula. The [0–4096] HU interval was discretized in 256 bins for GLCM2.5 calculation, and 64 bins
for the other categories.

Statistical Analysis

Repeatability and reproducibility: In order to select the most stable and reproducible radiomic
features, we first selected stable features with Overall Concordance Correlation Coefficient (OCCC)
>0.95 based on the test-retest experiments on a phantom, where identical measures in different tests are
expected. We then used one-way ANOVA to assess the features’ reproducibility according to contrast
medium, scanner, reconstruction algorithm, and exposure. Features with significantly different means
according to at least one of the abovementioned parameters were considered not robust and excluded.

Training and validation datasets: We randomly selected 2/3 of the patients as a training dataset,
and 1/3 as a validation dataset.

Positive LN prediction: The Least Absolute Shrinkage and Selection Operator (LASSO) logistic
regression model was used to select radiomic features associated with positive LNs. We combined
selected features into a radiomics score. We assessed the predictive accuracy of the radiomics score
for positive LNs by calculating the Area Under the Curve (AUC). The association of clinical variables
(age, gender, side, site, and nodule size) with positive LNs was assessed with univariable and
multivariable logistic regression analysis. A clinical score was obtained as a linear combination of the
selected clinical variables weighted by their respective coefficients; the corresponding AUC was then
calculated for both datasets. Finally, a radiomics–clinical score was obtained by applying a logistic
regression multivariable model to the above-mentioned scores, and the corresponding AUC was
calculated for both datasets. The AUC for the radiomics, clinical and clinical–radiomics models were
compared with the DeLong test [25]. We replicated all the analyses separately on the two subgroups of
patients with CT images reconstructed with FBP or IR algorithms. For each subgroup, AUCs for the
radiomic, clinical and clinical–radiomics models were compared with the DeLong test [25].

OS prediction: Overall survival was calculated from the date of CT to the date of death or last
follow-up, whichever occurred first. The LASSO Cox regression model was used to select the radiomic
features predicting OS. We combined the selected features into a radiomics score as a linear combination
of the selected features weighted by their respective coefficients. The association of the radiomics score
with OS was assessed in the training and validation datasets by using Kaplan–Meier survival analysis.
For this, the patients were classified into high-risk or low-risk groups according to the radiomics score,
by using the third quartile as the threshold. The difference in the survival curves of the high-risk and
low-risk groups was evaluated by using the Log–Rank test. The predictive accuracy of the radiomics
score for OS was assessed in both datasets [26]. The association of clinical variables (age, gender, side,
site, nodule size, histological type, grading, pT and pN) with OS was assessed with univariable and
multivariable analysis. A clinical score was obtained as a linear combination of the clinical variables
weighted by their respective coefficients. Finally, a combined radiomics–clinical score was obtained by
applying a Cox regression multivariable model to the above-mentioned scores, and the corresponding
C-index was calculated for the clinical–radiomics model in both datasets.
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To assess the role of reconstruction algorithms on the models, we replicated all the analyses
separately on the two subgroups, according to FBP and IR algorithms.

p-values < 0.05 were considered statistically significant. The analyses were performed using
SAS software (SAS Institute Inc., Cary, USA), version 9.4 and R software (http://www.Rproject.org),
version 3.5.3. (R Core Team, R Foundation for Statistical Computing, Vienna, Austria). More details
are provided in the Supplementary Materials.

Training and validation datasets: The subjects were randomly split into training and validation
groups so that 2/3rd of subjects were included in the training group and 1/3rd in the validation
group. This allocation proportion is commonly used to ensure the model is trained on a sufficient
number of patients, in order to obtain precise parameter estimates. From a previously published paper,
this commonly used strategy was demonstrated to be close to optimal for reasonably sized datasets
(n ≥ 100) with strong signals (i.e., 85% or greater full dataset accuracy) [27].

Positive LN prediction: The Least Absolute Shrinkage and Selection Operator (LASSO) logistic
regression model was used to select radiomic features predicting positive LNs. First, a 10-fold
cross-validation was computed to find the best lambda parameter. The regularization strength was
selected as the minimum value that maximized the Area Under the receiver operating characteristics
Curve (AUC). The R package “glmnet” was used to perform the LASSO logistic regression on the
training dataset with standardized features. The coefficients were then returned to the original scale.
We then combined the selected features into a radiomics score as a linear combination of the selected
features weighted by their respective coefficients. We also assessed the predictive accuracy of the
radiomics score for positive LNs both in the training and in the validation datasets by calculating
the AUC. The association of clinical variables (age, gender, side, site, and nodule size) with positive
LNs was assessed with univariable and multivariable logistic regression analysis. Multivariable
analysis included the clinical variables with a p-value < 0.10 at univariable analysis. A clinical score
was obtained as a linear combination of the selected clinical variables weighted by their respective
coefficients, and the corresponding AUC was calculated for the clinical model for both the training and
the validation datasets. Finally, a radiomics–clinical score for prediction of positive LNs was obtained
by applying a logistic regression multivariable model to the radiomics score and the clinical score,
and the corresponding AUC was calculated for the clinical–radiomics model for both the training and
the validation datasets. The AUC for the radiomics, the clinical and the clinical–radiomics models
were compared with the DeLong test [16].

Since the measurements of most radiomic features showed dependency according to the different
CT reconstruction algorithms and were excluded from the previous analysis, we replicated all
the above-mentioned analyses separately on the two groups of subjects, according to FBP and IR
reconstruction algorithms including all the features that proved to be repeatable after test-retest analysis.
A leave-one-out cross validation was performed for both algorithms and a LASSO logistic model was
implemented with the same settings as previously described. For each subgroup of patients, AUC for
the radiomics, clinical and clinical–radiomics models were compared with the DeLong test [16].

OS prediction: Overall survival was calculated from the date of CT to the date of death or last
follow-up, whichever occurred first. We censored patients who had not died during the study period
or until the date they were lost to follow-up, whichever occurred first, and we estimated their overall
survival time. The LASSO Cox regression model was used to select the radiomic features that are
most useful to predict OS. First a 10-fold cross-validation based on partial log-likelihood deviance was
computed to find the best lambda parameter. The regularization strength was selected as the minimum
value that minimizes the partial log-likelihood deviance. The R package “glmnet” was used to perform
the LASSO Cox regression as previously described. We then combined the selected features into a
radiomics score as a linear combination of the selected features weighted by their respective coefficients.
The potential association of the radiomics score with OS was assessed in the training dataset and validated
in the validation dataset by using Kaplan–Meier survival analysis. For this, the patients were classified
into high-risk or low-risk groups according to the radiomics score, by using the third quartile as the

http://www.Rproject.org
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threshold. The difference in the survival curves of the high-risk and low-risk groups was evaluated by
using the Log–Rank test. The predictive accuracy of the radiomics score for OS was assessed in both
datasets by calculating the Harrel concordance index (C-index) with 95% Confidence Intervals (CI) [17].
The association of clinical variables (age, gender, side, site, nodule size, histological type, grading, pT and
pN) with OS was assessed with univariable and multivariable Cox regression analysis. Multivariable
analysis included the clinical variables with a p-value < 0.10 at univariable analysis. A clinical score
was then obtained as a linear combination of the selected clinical variables weighted by their respective
coefficients and the corresponding C-index was calculated for the clinical model for both the training and
the validation datasets. Finally, a radiomics–clinical score for prediction of OS was obtained by applying
a Cox regression multivariable model to the radiomics score and clinical score, and the corresponding
C-index was calculated for the clinical–radiomics model for both the training and the validation datasets.

As described for positive LN prediction, we replicated all the above analyses separately on the
two groups of subjects with the FBP and IR reconstruction algorithm.

5. Conclusions

In conclusion, a combined clinical–radiomics model was not superior to a single clinical or
radiomics model in predicting LN metastases in lung cancer patients, whereas a radiomics score was
able to significantly separate high-risk and low-risk patients for OS.

For the prediction of OS, the combined clinical–radiomics model demonstrated the best model
performance for CT reconstructed with IR.

Based on these results, in the near future, clinical prediction of OS might include a radiomics
score for better precision; furthermore, in similar radiomics studies, the extraction of radiomic features
should include CT reconstructed with IR.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1432/s1,
Figure S1: Number of radiomic features selected as the most reproducible, robust and reliable, Figure S2: ROC
curves for prediction of positive lymph nodes in (a) the training set with FBP algorithm; (b) the validation set
with FBP algorithm; (c) the training set with IR algorithm; (d) the validation set with IR algorithm according to
clinical *, radiomics and clinical–radiomics models ˆ. (* clinical model includes site and nodule size as independent
variables; ˆ For the FBP algorithm: the clinical–radiomics model includes site, nodule size and radiomics score. For
the IR algorithm: the clinical–radiomics model includes site and radiomics score. Nodule size was not included
because of overlapping with the radiomic feature Shape_Max3DDiameter).
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