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Protein stability predictions are becoming essential in medicine to develop novel immunotherapeutic
agents and for drug discovery. Despite the large number of computational approaches for predicting
the protein stability upon mutation, there are still critical unsolved problems: 1) the limited number
of thermodynamic measurements for proteins provided by current databases; 2) the large intrinsic vari-
ability ofDDG values due to different experimental conditions; 3) biases in the development of predictive
methods caused by ignoring the anti-symmetry of DDG values between mutant and native protein
forms; 4) over-optimistic prediction performance, due to sequence similarity between proteins used in
training and test datasets. Here, we review these issues, highlighting new challenges required to improve
current tools and to achieve more reliable predictions. In addition, we provide a perspective of how these
methods will be beneficial for designing novel precision medicine approaches for several genetic disor-
ders caused by mutations, such as cancer and neurodegenerative diseases.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Protein structure is determined by the interactions among the
amino acids and with the environment, resulting in a stable 3D
structure. In the folding process, a stable 3D conformation of the
protein corresponds to a minimum of the Gibbs free energy (DG)
of the protein-environment system. DG of folding includes both
the entropic contributions (hydrophobic effects and protein config-
urations) and the interaction energies within the protein (like Van
der Waals interactions, hydrogen and electrostatic bonding, etc.).
In many cases, the functional cycle of the protein is accomplished
by switching among a few stable 3D conformations, implying the
existence of several local free energy minima experienced by the
same protein and the need of keeping the energy barriers among
them relatively low. Non-synonymous DNA variations, which alter
the amino acid sequence, may change protein function by either
increasing or decreasing protein stability, which may prevent the
conformational changes required for the protein to function [1].
Mutations occurring at the surface of a protein domain are often
neutral. Yet, they may affect the binding affinities for other pro-
teins or the inter-domain compactness in multi-domain proteins.
Mutations occurring in the core may alter the stability in the
Fig. 1. Summary of the main issues affecting the prediction of stability changes upon mu
rDB < 2 kcal/mol, and intrinsic variability of the available DDG values, which are obtaine
charts represent the distribution of proteins clustered by sequence similarity for the t
obtained using blastclust (www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html),
clusters with a size representing <= 1%, 1–5% and > 5% of the size of the entire DB are h
cluster size, the lower the probability of choosing proteins with sequence identity or high
(green slices). B) Anti-symmetric properties of the folding process. U = unfolded; F = folded
in current databases. D) Biased datasets, due to unbalance between destabilizing and stab
which generate inappropriate training/testing sets leading to over-fitting issues during th
panel D). (For interpretation of the references to colour in this figure legend, the reader
domain fold [2]. Indeed, protein stability changes have been shown
to constitute one of the major underlying molecular mechanisms
in several mutation-induced diseases [3] and might prove to be
an even more frequent cause of function loss and disease than pre-
viously thought. Understanding how specific mutations in a
patient affect protein stability or interactions can identify possible
drug resistance/sensitivity in that patient, allowing better thera-
peutic approaches. In addition, such knowledge is important for
improving the protein design through site-directed or random
mutagenesis, leading to promising new approaches for precision
medicine.

The effects of non-synonymous variants on protein stability are
quantified in terms of the Gibbs free energy of unfolding (DG). DG
is a nonlinear function of several factors, like temperature, pH val-
ues, concentrations of salt, organic solvents, urea and other chem-
ical agents. From the experimental point of view, the measure of
interest is the difference of the unfolding free energy between
the mutated and wild-type proteins (DDGu). Thus DDGu =
DGu

mutant- DGu
wild-type, which is the difference of the free energy of

unfolding between the mutated and wild-type proteins (Fig. 1, cen-
tral box). The sign of DDG indicates if the variation decreases
(DDGu < 0) or increases (DDGu > 0) the protein stability. However,
tation. A) Distribution of DDG values from current databases (DB), characterized by
d under different experimental conditions (upper-right corner of panel A). The pie-
wo largest and most widely used datasets (S2648 and VariBench). Clusters were
using a threshold cut-off of 25% of identity. The proportion of proteins belonging to
ighlighted in the pie-charts in green, orange and red, respectively. The smaller the
sequence similarity. Only a small fraction of the datasets can be randomly selected
. C) Low upper-bound for correlation estimates due to low variability ofDDG values
ilizing (< 30%) variants and to the presence of proteins with high sequence identity,
e learning process (e.g yellow-green set in cross validation and the blind test set in
is referred to the web version of this article.)

http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html
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the opposite convention is also possible (DDGf = DGf
mutant �

DGf
wild-type). Thus, it is crucial to specify which definition is adopted.

In this review, we will use the symbol DDG to refer to DDGu.
Protein stability has been traditionally measured with circular

dichroism, differential scanning calorimetry, fluorescence spec-
troscopy using thermal and denaturant unfolding methods [4].
Although experimental approaches to measure differences
between mutant and wild-type proteins are accurate, they are
demanding in terms of time and costs. Therefore, several computa-
tional methods have been developed for assessing and predicting
how protein stability is affected by single-point mutations [5].
Most of them aim at either classifying the effect (stabilizing/desta
bilizing/neutral) or quantifying the DDG values.

Several tools for predicting pathogenic variants have been
developed and reviewed [6–10]. In this work, we focus on the
methods and issues related to the robust prediction of DDG values,
providing a comprehensive evaluation of both the limits of current
approaches and some possible solutions to achieve better predic-
tions by minimizing the bias in the performance assessment.
Recent critical reviews were already provided by Pucci et al. [11]
and Fang [12]. Here we will extend those reviews by introducing
some further crucial points, discussing: 1) the unbalance and
intrinsic variability of the thermodynamic data; 2) the failure of
taking into account the anti-symmetric property of the folding pro-
cess (DDGu = �DDGf ); 3) the best practices for providing a fair
assessment of prediction performance. Beyond discussing these
critical points, an additional aim of the present review is to provide
a perspective in using these prediction approaches for direct
biomedical applications. Such tools could help clinicians in select-
ing the most appropriate treatments and creating novel therapeu-
tic strategies based on a more thorough genetic understanding of
the patient’s disease.

2. Stability data and benchmark sets

As pointed out by Pucci and Rooman [13], current experimental
and computational techniques provide only a partial picture of
Table 1
The most used datasets and subsets derived from ProTherm Database.

Dataset Total Variants (Proteins) Stabilizing Variants (Proteins) D

Broom2017 [16] 605 (58) 147 (37) 4
Cao Test [17] 276 (37) 79 (21) 1
Cao Train [17] 5,444 (204) 1,233 (150) 4
Fold-X [18] 964 (38) 110 (25) 8
Myoglobin [19] 134 (1) 36 (1) 9
p53 [20] 42 (1) 11 (1) 3
PTmul [21] 914 (90) 310 (57) 6
Q3421 [22] 3,421 (148) 763 (114) 2
S1615 [23] 1,615 (41) 449 (35) 1
S1676 [24] 1676 (95) 453 (53) 1
S1859 [25] 1,859 (64) 583 (48) 1
S1925 [20] 1925 (55) 582 (42) 1
S1948 [26] 1,948 (58) 592 (45) 1
S2156 [27] 2,156 (84) 472 (61) 1
S238 [28] 238 (25) 45 (16) 1
S2648 [28] 2,648 (131) 602 (96) 2
S3366[29] 3,366 (130) 836 (103) 2
S350 [28] 350 (67) 90 (35) 2
S388 [23] 388 (17) 48 (12) 3
S3568 [30] 3,568 (154) 947 (110) 2
S630 [30] 630 (39) 467 (26) 1
Ssym* [11] 342 (15) 90 (10) 2
VariBench [31] 1,564 (89) 436 (70) 1
VariBench3D[31] 1,423(79) 382 (60) 1

Unique Variants: Only one DDG value for each variation. Replicated Variants: Multiple d
same variant are replaced with their average. Multiple Variant: The dataset includes var
protein used as a reference for calculating the DGs is different from the wild-type. Phy
direct variants.
protein folding and adaptation processes, making the comparison
between different prediction approaches a non-trivial task. Fur-
thermore, despite the large number of benchmark datasets pro-
vided by VariBench and VariSNP used for variation interpretation
[14], only a few sources are available for protein stability studies.
The main repository to retrieve protein stability information used
to be ProTherm [15], which provided a collection of thermody-
namic measures including Gibbs free energy change, enthalpy
change, heat capacity change, transition temperature etc. for both
wild-type and mutant proteins. The last version (5.0) con-
tained ~ 17,000 entries from 771 proteins. Reported thermody-
namic measurements for wild-type proteins, single, double and
multiple mutants were 7014, 8202, 1277 and 620, respectively.
However, this database is not available anymore, and it is known
to present several inconsistencies [14], including missing thermo-
dynamic values and DDG values with opposite sign. Data need to
be filtered and manually cleaned for collecting reliable datasets.
For these reasons, a large number of curated benchmark datasets
was derived from ProTherm. The most used ones are reported in
Table 1. Despite the several considered subsets, there is an urgent
need for new experimental data, particularly for stabilizing muta-
tions: they account for <30% of the datasets reported above; the
worst case is represented by S388, with only 11% stabilizing muta-
tions. Indeed, the available datasets are still limited compared to
the thousands of three-dimensional (3D) protein structures avail-
able in the Protein Data Bank (PDB) [34], which in total
includes ~ 167,000 proteins (as of July 2020). A major limitation
of the currently available data is the intrinsic variability character-
izing the DDG values. Two experimental DDG measurements of
the same variant may disagree if not carried out under the same
conditions and by the same experimental technique. Therefore,
methods have to deal with DDG values that have different uncer-
tainties associated with their measurements (see Fig. 1A) and mul-
tiple experimental DDG values for the same mutation. As an
example, in Keeler et al. [35] the variation of Histidine 180 to Ala-
nine in the human prolactin measured at 25 �C, but different pH,
corresponds to a DDG = 1.39 kcal/mol at pH = 5.8 and DDG = -0.
estabilizing Variants (Proteins) Additional Details

58 (54) Unique Variants/Background Variants
97 (35) Replicated Variants
,211 (185) Replicated Variants
54 (36) Unique Variants
8 (1) One Protein
1 (1) One Protein
04 (68) Unique Variants/Multiple Variants
,658 (131) Unique Variants/Averaged DDG
166 (35) Unique Variants
,223 (62) Unique Variants/Averaged DDG
,276 (55) Replicated Variants/Averaged DDG
,343 (48) Replicated Variants
,356 (50) Replicated Variants
,684 (68) Unique Variants/Averaged DDG
93 (20) Unique Variants/Subset of S1948
,046 (118) Unique Variants/Averaged DDG
,530 (110) Unique/Single and Multiple Variants
60 (57) Unique Variants/Subset of S2648
40 (15) Unique Variants/Physiological Conditions
,621 (138) Replicated Variants
63 (32) Replicated Variants
51 (13) Unique/Symmetric Variants
,128 (78) Unique Variants
,041 (68) Variants with available structures from [31]

ata for the same variant are included. Averaged DDG: Multiple DDG values for the
iation data for protein with multiple-site variants. Background Variants: The initial
siological Conditions: Temperature 20–40 �C and pH: 6–8. *Reported data only for
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04 at pH = 7.8. In Ferguson and Shaw [36], the variation of Leucine
3 to Serine in the calcium-binding protein S100B, measured under
two different starting conditions and techniques but at the same
temperature (25 �C) and pH (7.2), yielded two different DDG:
1.91 and �2.77 kcal/mol. In addition, some works used all the
DDG values for training/testing, while other analyses focused on
selected subsets ofDDG values obtained under specific experimen-
tal conditions (e.g. S388) or took their average or weighted average
(e.g. S2156 and S2648). Considering the overall DDG value distri-
butions for the most used databases, the observed variability is
high (Fig. 1A); e.g. DDG standard deviation is 2.06 kcal/mol in
ProTherm, 1.91 kcal/mol in Varibench [31], 1.47 kcal/mol in
S2648 [25]. Actually, a meaningful comparison of different meth-
ods should be based on the same datasets.

A possible solution to generate new DDG data might be the
application of molecular dynamics (MD) simulations. MD is a pow-
erful tool that enables the investigation of conformational changes
in proteins [32–35]. However, to use this approach, an extensive
number of simulations under different conditions (e.g. with differ-
ent force fields) would be necessary, given the high number of
experimental variations with a DDG lower than single hydrogen-
bond energy. This requires a super-accurate force field and MD
tuning. Nonetheless, with the increasing computational power
and force field accuracy, MD simulations might play a relevant role
in this field in the future, at least as data-augmentation tools.
3. Computational tools for predicting protein stability change

Existing prediction algorithms use one or a combination of the
following features, characterizing protein stability:

- Structural-based features: residue contact networks, residue/
atom distances, protein geometry, etc.

- Sequence-based features: based on conserved sequences and
amino acid positions. They can provide the impact on protein
viability but no information at a functional level.

- Energy-based features: energy of unfolding of the target protein
as the sum of various energies such as Van der Waals interac-
tions, solvation energy, extra-stabilizing free energy, etc.

- Molecular-based features: solvent accessible surface area of the
interface, hydrophobic and hydrophilic area. Most of these fea-
tures are derived by the structure-based ones; however, some
of them, such as hydrophobicity or molecular weight, are
related to the chemistry of the residue, and can be described
without the structure information.

Most of the current methods use a mixture of all the above-
described features, although some of them focus only on a specific
subset. The first predictive approaches for protein stability have
been developed through the application of force fields based on
physical free energy functions derived from molecular mechanics
[32], which are often combined with molecular dynamics or Monte
Carlo simulations [33–35]. A force field is a collection of bonded
and non-bonded interaction terms that are related by a set of equa-
tions, which can be used to estimate the potential energy of a
molecular system. However, these approaches are computationally
intensive, and this limits their practical application to small sets of
protein mutants. For this reason, problem-specific physical-based
methods have been introduced, such as methods based on empir-
ical energy functions [18,28,36], which apply the Maxwell-
Boltzmann statistics to estimate the propensities of interaction
between atoms from a set of known protein structures. These func-
tions are also known as scoring functions, empirical potentials,
knowledge-based potentials, or statistical potentials. In contrast
to the force fields approaches, empirical potentials are based on
geometrical descriptors, reporting information from experimental
data of known protein structures. The advantage of these models,
based on principles from statistical physics, is that they provide a
trade-off between computational cost and accuracy of the free
energy function. Among the most popular approaches, FoldX [18]
uses van der Waals and electrostatic energies with additional
hydrogen bond and solvation contributions. Model parameters
are fitted to a given set of experimental data and the resulting
model is used to predict newmutation-induced folding free energy
changes. To model mutations, FoldX uses a rotamer approach,
allowing conformational changes of sidechains and keeping the
backbone fixed.

Another group of classical linear DDG predictors are based on
Molecular Mechanics/Poisson � Boltzmann Surface Area (MM/
PBSA) or Molecular Mechanics/Generalized Born Surface Area
(MM/GBSA) methods [37,38]. These methods typically use ensem-
bles of conformations from molecular dynamics simulations, com-
bining the molecular mechanics energies with solvation energies.
Among the most recent of these approaches, SAAFEC [39] combi-
nes a MM/PBSA component and a set of knowledge-based terms
of biophysical characteristics into a multiple linear regression
model. The goal is not only to accurately predict DDG values,
but also to characterize the structural changes induced by muta-
tions and the physical nature of the predicted folding free energy
changes. In general, these MM/PBSA-based methods demonstrate
a rather good prediction performance at a reasonable computa-
tional cost.

Data-driven computational tools based on both simple regres-
sion or machine-learning approaches like Support Vector Machine
(SVM), Random Forest (RF) and Artificial Neural Network (ANN)
methods have also been explored to predict DDG. Most known
and recent approaches are reported in Table 2, together with the
tools mentioned above. These methods are based on a first training
phase using examples of proteins and their mutants, for which the
DDGs have been experimentally measured. Machine learning
approaches do not require a full understanding of the principles
underlying the target function, since these are modeled during
the learning process. This aspect increases the flexibility of these
approaches in building new features, revealing unrecognized pat-
terns, relationships and dependencies not considered by
knowledge-based models. By construction, these methods can
combine all kinds of computable features. In addition, these
approaches are much less time-consuming compared to the previ-
ous techniques since, once a model is built from the data, the pre-
diction is immediate. Most of these methods use statistical
potentials of environmental propensities, substitution frequencies
and correlations of adjacent residues found experimentally in pro-
tein structure, enabling non-energy-like terms to be incorporated
into the scoring function. However, these estimations are highly
dependent on the availability of large and diverse experimental
training data, increasing the risks of over-fitting issues, and their
results might not be easily interpreted in physical terms.

According to the type of data considered, there might be some
restrictions. Structure-based approaches (e.g. methods using 3D
structure in Table 2) cannot be used if the 3-dimensional structures
of the proteins are unavailable. This limitation can be resolved by
using sequence-based prediction tools (referred as 1D in Table 2),
which use the amino acid sequence of proteins along with different
machine-learning methods to predict changes in the folding free
energy. These methods have the advantage of being applicable
when the three-dimensional (3D) structure is not available. Meth-
ods using the 3D structure of the wild-type protein, e.g. I-Mutant
[23,26,40], PoPMuSiC [28] or DUET [41], turned out to perform bet-
ter than purely sequence-based approaches in general [42]. Inter-
estingly, the recent sequence-based method INPS [43] was
shown to complement and improve structure-based approaches.



Table 2
A selection of the most popular methods to predict the functional effects of missense variants in terms of protein stability, i.e. prediction of DDG values.

Method 3D/1D
features
required

Algorithm Basic idea and advantages Anti-
Symmetry

Multiple
mutations

URL

FoldX [18] 3D linear regression Based on empirical physical-based energies NO YES http://foldxsuite.crg.eu/
MUpro [51] 3D and

1D
ANN and SVMs It predicts from sequence NO NO http://mupro.proteomics.

ics.uci.edu/
CUPSAT

[36]
3D combined statistical

potentials
It provides information about the site of mutation and
protein structural features

NO NO http://cupsat.tu-bs.de/

I-Mutant
(3.0/2.0)
[26,40]

3D or 1D SVM It classifies the predictions into three classes: neutral, large
increase or decrease

NO NO http://gpcr2.biocomp.
unibo.it/cgi/predictors/I-
Mutant3.0/I-Mutant3.0.
cgi

iPTREE-
STAB
[25]

1D Decision trees and
adaptive boosting

It also provides numerical stability values NO NO http://bioinformatics.
myweb.hinet.net/iptree.
htm

AUTO-
MUTE
(2.0)
[69]

3D Random Forest It considers spatial perturbations or 3D neighbors of the
modified residue

NO NO http://binf.gmu.edu/
automute/

Prethermut
[29]

3D SVM + Random Forest It predicts single- and multi-site mutations NO YES http://www.mobioinfor.
cn/
prethermut/download.
htm

POPMUSIC
(3.1/2.1)
[28]

3D ANN + Statistical
potential

Linear combination of statistical potentials whose
coefficients depend on the solvent accessibility of the
modified residue

NO NO http://babylone.ulb.ac.
be/popmusic

Pro-Maya
[52]

3D and
1D

Random Forest
regression

It uses available data on mutations occurring in the same
position and in other positions

NO NO http://bental.tau.ac.il/
ProMaya

PROTS-RF
[51]

3D and
1D

Random Forest Derived from a non-redundant representative collection of
thousands of thermophilic and mesophilic protein structures

YES YES Unavailable

iStable(2.0)
[30,53],

3D or 1D meta-predictor It uses either sequence or structure information NO NO http://predictor.nchu.
edu.tw/iStable/

NeEMO [54] 3D ANN regression Based on residue-residue interaction networks NO NO http://protein.bio.unipd.
it/neemo/help.html

DUET [41] 3D meta-predictor (SVM
regression)

It integrates mCSM and SDM in a consensus prediction NO NO http://biosig.unimelb.
edu.au/duet/stability

mCSM [20] 3D Gaussian process
regression and
random forest

It translates the distance patterns between atoms into graph-
based signatures providing complementary data to potential
energy-based approaches

NO NO http://biosig.unimelb.
edu.au/mcsm/

EASE-MM
[24]

1D SVM It combines 5 SVM models and makes the final prediction
from a consensus of 2 models selected based on the
predicted secondary structure and accessible surface area of
the mutated residue

NO NO http://sparks-lab.org/
server/ease

INPS(3D)
[43,55]

3D or 1D SVM regression It takes into account evolutionary information from
sequence

YES NO http://inps.biocomp.
unibo.it

STRUM [22] 3D and
1D

Gradient boosting
regression trees

It combines sequence profiles with low-resolution 3D
models constructed by iterative threading assembly
refinement simulations

NO NO https://zhanglab.ccmb.
med.umich.edu/STRUM/

ELASPIC
[56]

3D and
1D

Stochastic Gradient
Boosting of Decision
Trees

It predicts the mutation effects on protein folding using
homology modeling

NO YES http://elaspic.kimlab.org/

SAAFEC
[39]

3D Molecular Mechanics
Poisson-Boltzmann

It represents the non-polar solvation energy through a linear
relation to the solvent accessible surface area

NO NO http://compbio.clemson.
edu/SAAFEC

MAESTRO
(web)
[57]

3D Multi-agent
prediction
(ANN + SVM + linear
regression)

It provides confidence estimations and multiple-site
predictions

NO YES https://biwww.che.sbg.
ac.at/maestro/web

SDM [46] 3D and
1D

environment-specific
substitution tables
(ESSTs)

It uses conformationally constrained environment-specific
substitution tables from 2,054 protein family sequence and
structure alignments

YES NO http://marid.bioc.cam.ac.
uk/sdm2

TML-MP
[58]

3D and
1D

Gradient boosting Topology-based predictor using persistent homology to
reduce the geometric complexity and the number of degrees
of freedom of proteins

NO NO http://weilab.math.msu.
edu/TML/TML-MP/

ThreeFoil
[16]

3D and
1D

meta-predictor using
11 tools

It assigns weight to any tool’s prediction proportionally to its
performance on similar types of mutations

YES NO http://meieringlab.
uwaterloo.ca/
stabilitypredict/

DynaMut
[59]

3D meta-predictor based
on Normal Mode
Analysis

It allows the study of harmonic motions in a system,
providing insights into its dynamics and accessible
conformations

YES NO http://biosig.unimelb.
edu.au/dynamut/.

DDGun [21] 3D or 1D Linear combination
of features

Untrained method introducing anti-symmetric features
based on evolutionary information; it predicts also for
multiple site variations

YES YES http://folding.biofold.org/
ddgun/

DeepDDG
[17]

3D and
1D

ANN It is based on a deep neural network architecture trained
on > 5,700 manually curated experimental data

YES NO http://protein.org.cn/ddg.
html

ProTstab
[60]

1D Gradient boosting of
regression trees

It exploits a cellular stability based on limited proteolysis
and mass spectrometry

NO NO http://structure.bmc.lu.
se/ProTstab/index/
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However, so far, no known polynomial-time and polynomial-space
algorithms are available to solve the full-optimization of protein
geometry since it is a combinatorial NP-hard problem [44]. There-
fore, every tool implements heuristics and approximations. When
no experimental structure is available, predicted structures can
be used as models [45]. However, evaluations of the current meth-
ods have been systematically performed on the basis of the exper-
imental structures and of the modeling procedure used for
generating the predicted structures [16].
Table 3
Performance evaluation reported for each method, highlighting possible biases.

Method Validation Training data Test Data

FoldX [18] none S339 S625
MUpro [51] 20-fold CV

and LOO
S1615 S1615, S388

CUPSAT [36] 3/4/5-fold CV S1538, S1603 S1538, S1603
I-Mutant(3.0/2.0)

[26,40]
10/20/30-
fold CV

S1948 S1948

iPTREE-STAB [25] 4/10/20-fold
CV

S1859 S1859

AUTO-MUTE (2.0)
[69]

20-fold CV Subsets of S1948,
S1615, S388,S1791,
S1396, S2204

Subsets of S1948, S161
S388,S1791, S1396

Prethermut [29] 10-fold CV S3366, S2156 S3366, S2156
POPMUSIC(3.1/

2.1) [28]
5-fold CV S2648 S2648

Pro-Maya [52] 5/10-fold CV
and LOO

S2648, S2156 S2648, S2156

PROTS-RF [51] 5/10-fold CV S2156 S2156 + D180, D140 (2
and 19 proteins)

iStable(2.0)
[30,53]

5-fold CV
v2.0: 10-fold
CV

S2648, S1948 v2.0:
S3528

M1311, M1820 (from
S2648, S1948, no
redundancies) v2.0: S63

NeEMO [54] 10-fold CV S2399 (113 proteins) IM_631 (from S2399)
DUET [41] S350, p53 S2648 p53,S350
mCSM [20] 5/10/20-fold

CV
S2648, S1925 S350

EASE-MM [24] 10-fold CV
and blind

1676 mutations from
S1948

S543, S236

INPS(3D) [43,55] 5-fold CV S2648, p53 S2648, p53

STRUM [22] 5-fold CV Q3421 S2648, S350, Q306 (sub
of S2648)

ELASPIC [56] 20-fold CV
and LOO

S3463 (159 proteins) S2636 (134 proteins),
S2104 (79 proteins)

SAAFEC [39] 5-fold CV 983 mutations from
Protherm (42
proteins)

983 mutations from
Protherm (42 proteins)

MAESTRO(web)
[57]

5/10/20-fold
CV

S2648, S1925 (from
S1948), S1765, S2244

S2648, S350

SDM(2) [46] None None S2648, S350, p53, S140
TML-MP [58] 5-fold cross

validation
S2648 S350, M233 2648 S350, M233

ThreeFoil [16] 2-fold CV
with 1000
reshuffling

Broom2017 Broom2017

DynaMut [59] 10-fold CV
and blind TS

S2648 S351

DDGun [21] S2648, Ssym,
p53,
Myoglobin

Untrained S2648, Ssym, p53,
Myoglobin

DeepDDG [17] Cao Train Cao Test

ProTstab [60] 10-fold CV Varibench Varibench

Possible biases can be due to anti-symmetry and lack of checking for sequence identi
MCC = Matthews Correlation Coefficient, q = correlation, q_dir-inv = correlation betwee
3.1. DDG Anti-symmetry

An important property considered only by few predictors is the
DDG anti-symmetry, which represents a physical principle at the
basis of any thermodynamic transformation (Fig. 1B). Given a
chemical (or conformational) transformation from A to B, the rela-
tive concentrations of A and B (i.e. [A] and [B]) at equilibrium (and
at constant temperature and pressure) are described by the follow-
ing Gibbs free energy difference:
Correlation
(q)

Anti-symmetry
(q_dir-inv)

Sequence Identity/homologs

0.82 Biased* (�0.38) not declared
0.13–0.76 Biased* (�0.02) Homologs removed from S1615

(SR1496, SR1135, SR1023,
SR1539)

0.55–0.78 Biased* (�0.54) not declared
0.62–0.71 Biased* (0.02) not declared

0.7 not evaluated not declared

5, 0.74–0.79 Biased* (�0.06) not declared

0.67–0.72 not evaluated not declared
0.63–0.79 Biased* (�0.29);

unbiased version
POPMUSICsym (�0.77)

not declared

0.59–0.8 not evaluated <30% identity and keeping
information on the mutation site

7 0.62–0.86 Unbiased <30% identity in CV

0

0.85 v2.0:
0.67–0.71

Biased* (�0.05) v2.0:
not evaluated

Meta predictor combining
several predictors and using the
same protein variant to train the
combined model

0.5–0.79 Biased* (0.09) Evaluated but not used in CV
0.71–0.82 Biased* (�0.21) not declared
0.51–0.82 Biased* (�0.26) 5-fold cross-validation

separating by protein
(Pearson = 0.51)

0.51–0.59 not evaluated max 25% sequence identity
between folds and train/test sets

0.53–0.71 Unbiased for sequence-
only* (�0.99 1D, �0.86
3D)

5-fold cross-validation
separating by protein as in
mCSM

set 0.4–0.8 Biased* (0.34) Q306 as test, with sequence
identity < 60%

0.77 not evaluated 90% sequence identity
redundancy reduction

0.61 not evaluated not declared

0.63–0.76 Biased* (�0.34) Lowest correlation (0.63) when
separating by protein in 5-fold
CV as in mCSM

0.52–0.63 Biased* (�0.75) not declared
0.54–0.82 not evaluated not declared

0.73 not evaluated not declared

0.58–0,70 Biased Homology included, use in input
Duet, trained on the same S2640

0.45–0.71
(0.54–
0.68)

Unbiased* (�0.99) not applicable

0.56 not evaluated Homologs (>25%) removed from
test set

0.79 not evaluated not declared

ty on training/test data. CV = cross-validation, LOO = leave-one-out, TS = test-set,
n direct and inverse variation. *Evaluated on Ssym database [11].
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DGAB ¼ �RTlog
A½ �
B½ �

� �

This relation is anti-symmetric in A and B, since the inverse
transformation (from B to A) is described by:

DGBA ¼ �RT log
B½ �
A½ �

� �
¼ �DGAB

This general principle, which can be also applied to the protein
folding/unfolding process, leads to the basic anti-symmetry of the
free energy change upon residue variation. In the case of a protein
variation, if the unfolded and folded states of a protein X are
defined as U(X) and F(X), two protein sequences p and q that differ
by few aminoacids will be characterized by the following anti-
symmetric equation:

DDGpq ¼ RT log
UðpÞ½ �
FðpÞ½ �

� �
� RT log

UðqÞ½ �
FðqÞ½ �

� �
¼ �DDGqp

Machine learning approaches have started to consider reverse
variants with inverse DDG signs in the training step. Referring to
Table 2, only the following methods consider this aspect: SDM
[46], DDGun(3D) [21], ThreeFoil [43], PROTS-RF [47], INPS [43]
and DeepDDG [17]. In particular, PROTS-RF was the first approach
to assess its performance by taking into account also reverse muta-
tions, while DDGun(3D) implemented anti-symmetric scoring
functions used in the prediction model, i.e. evolutionary,
hydrophobicity and residue contact scores.

The simplest way to measure the anti-symmetry bias is to com-
pute the Pearson correlation between the predictions on a varia-
tion set against the predictions on the corresponding reverse
variation set. Correlation values shifted away from �1 indicate
the extent of the anti-symmetry bias (Table 3). To fulfill the anti-
symmetry constraint, Usmanova et al. [48] showed that the meth-
ods should generate the lowest energy structure of the mutant
starting from the native one and vice versa, which may be hard,
considering internal specific features of the programs. FoldX, for
instance, keeps fixed the backbone and side-chain of all residues
but neighbors upon mutation. As a result, the modeled structure
of the mutant (B) is expected to be less stable than the native struc-
ture (A) by some value dAB and vice versa. Thus, the average muta-
tion bias (<d > ) can be calculated as <d> = <(dAB + dBA)/2> =
<(DDGAB + DDGBA)/2>. This bias does not depend on the experi-
mental determination of the free energy of the protein structure
nor on the definition of wild-type and mutant proteins.

3.2. Multiple-site variations

Another challenge is the prediction of protein stability in the
occurrence of multiple mutations. Multiple-point mutations are
common variations of the protein sequence that may be needed
in protein engineering when a single-point mutation is not enough
to yield the desired stability change. Dealing with multiple-site
variations adds another level of complexity beyond the prediction
of the effect of a single variant on protein stability, since it requires
the learning of many types of combinatorial effects (compensatory,
additive, following linear or nonlinear combinations, threshold
effects, etc.) [49]. Moreover, experimental DDG data for multiple-
point mutations are less abundant than for single-point ones. This
shortage of data, together with difficulties arising from the combi-
natorial nature of the problem, make the effects of multiple-point
mutations hard to predict. For these reasons, most of the methods
only handle single-point mutations.

Generally speaking, it is expected that substitutions that are clo-
ser (in sequence or structure) interact more than those that are far-
ther away from each other. In this latter case, predicting the DDG
values due to each substitution independently and then adding the
predicted values should provide a good approximation of the
multiple-point mutation DDG [50]. This additive approach is most
naturally employed by linear methods like FoldX [18] and DDGun
[21]. However, it can be trivially used to extend all single-point
methods to multiple-point mutations. Another approach, imple-
mented by PROTS-RF [47] and Prethermut [29], calculates the aver-
age input features across multiple substitutions. However,
averaging may not be appropriate in case of cooperative effects.
4. Best practice and pitfalls in prediction assessment

4.1. A prediction accuracy upper bound

As shown above (see Fig. 1A), given a set of experimental DDG
values for a specific variation, two samples canbe considered ashav-
ing similar DDG values if they are within the experimental error
(uncertainty).However, sinceacertainvariabilitycharacterizeseach
dataset, a question to address is: given the standard deviation of the
dataset (rDB) and the measure uncertainty (r), is there an upper
bound to the prediction performance? Starting from a set of mea-
sured DDG protein variations, the best predictor can be estimated
according to its similarity to another set of experimentally-
determined DDG values. The assumption is that no computational
method can be better than a set of similar experiments. To derive
an upper bound of the Pearson correlation as a function of the noise
anddistribution of theDDGdata, the idea is that, starting fromanar-
row dataset distribution with a variance having the same order of
magnitude of the experimental uncertainty, the theoretical upper
bounds can be lower than expected. Some studies provided a theo-
retical estimation of the upper bound of the Pearson correlation as
a functionof theaverageuncertaintyof thedata (r) and the standard
deviation of the dataset (rDB see Fig. 1C) [61,62]. As an example, the
popular datasets S2648 andVariBenchhave arDB < 2kcal/mol, lead-
ing to an upper bound for the Pearson correlation coefficient of ~ 0.8
and a lower bound for the root mean square error between experi-
mental and predicted DDG values of ~ 1 kcal/mol. This implies that
the methods using these data for estimating their performance and
reporting Pearson correlation above 0.8 are likely to be affected by
over-fitting biases in the training step.
4.2. The burden of sequence identity

The reliability of machine learning approaches depends on the
size and quality of the training dataset. Therefore, it is essential
to use high-quality experimental observations with high consis-
tency when training and testing these methods. Table 3 reports
the main features characterizing the performance evaluations of
each method listed in Table 2. In particular, the size and balance
of training data must be considered carefully. Datasets with a
few hundred or thousand cases, as those mostly used, might be
too small to identify useful descriptors in the learning process. In
addition, low heterogeneity within training datasets might lead
to prediction tools not able to generalize. As a consequence, the
weights assigned to the descriptors identified by these predictive
models can be biased by the over-representation of some partial
descriptors in the training data, sometimes ignoring general pre-
dictive descriptors. A common error made by the current methods
is not taking into account similarities between training and test
sets, leading to over-fitting issues (see Fig. 1D).

Evolution has selected proteins that are well-suited to maintain
certain specific functions. Although evolutionary pressure con-
strainsprotein structure, sequence-level variations canbehigh,with
very different sequences having a similar structure. Two proteins
with different sequences but evolutionary or functionally-related
are called homologs. Quantifying these evolutionary relationships
is very important for preventing undesired information leakage
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between data splits. However, wemainly rely on sequence identity,
which measures the percentage of exact amino acid matches
between aligned subsequences of proteins. For example, filtering
at a 25% sequence identity thresholdmeans that no pairs of proteins
in the training and test sets have >25% exact amino acid matches.
Unfortunately, not all the current approaches have considered
sequence identity in dividing training and test sets (Table 3), which
meansmeasuring the performance of themethod using test sets not
containing proteins similar (or identical) to those of the training set.
One of the most representative examples explaining the similarity
issue between training and testing is shown in Pires et al. [20]. The
Pearson correlation of the method mCSM ranges between 0.7 and
0.8 when a random selection of the variations is used. However,
the correlation drops down to the range 0.54–0.51 when the cross-
validation is performedusing ‘per site-’ and ‘per protein-’ clustering,
respectively. Different protein positions tend to bemore or less sen-
sitive to mutations independently of the residue substitution (Pro-
Maya [52]). Thus, using the same site (or same protein) in training
and testing leads to a wrong and over-optimistic performance. Fur-
thermore, amethod trainedunder these conditions tendsnot to gen-
eralize well. For these reasons, a simple random split of the datasets
should be avoided.

The problem of similarities among training and testing sets is
more pronounced when meta-predictors are used. In the last years
new stacked methods, combining multiple different predictors,
have been developed, e.g. DUET [41], iStable(2.0) [30,53], Dynamut
[59] and ThreeFoil [16]. Meta-predictors offer the main advantage
that even a simple majority voting approach over several methods
yields better results than any individual method, each character-
ized by its strengths and weaknesses. However, the performance
reported by these methods might be misleading. For example,
ThreeFoil combines predictions from 11 freely available tools, each
originally trained on different datasets, all derived from ProTherm.
Themeta-predictor was built such that the weight given to the pre-
diction from any particular tool was based on that tool’s perfor-
mance against similar types of mutations from a training set of
605 mutations. Matthews Correlation Coefficient (MCC) values
were determined through cross-validation and a dataset of 605
mutations was split into halves, with one half used to determine
MCC values as weights and the other half used to test the overall
performance, repeating the procedure 1000 times. However, 60%
of the proteins used for this dataset were used by some of the pre-
dictors during their training step, introducing the similarity issues
between training and test sets described above. Similarly, Dyna-
mut combines the effects of mutations on protein stability and
dynamics calculated by Bio3D [63], ENCoM [82] and DUET to gen-
erate an optimized and more robust predictor. DUET, in turn, com-
bines two approaches, SDM and mCSM. These approaches were
trained on S2648, which was the same dataset used by Dynamut
for training the meta-predictor, making cross-validation, and for
extracting a ‘‘blind” set of 351 variations for the performance eval-
uation. In iStable 2.0 the authors introduced two datasets for train-
ing and testing [30]. In the test set of 630 variations, 442 were
derived from the same proteins used in the training sets. The
two datasets contain repeated mutations, 703 and 77 for training
and test sets, respectively. In terms of protein sequence similarity,
only three proteins (corresponding to 81 mutations) can be safely
used in S630 to test the methods. Therefore, there is an urgent
need of reviewing these methods by testing their predictive mod-
els with data that have no sequence similarity (trained on similar
proteins) to those of the training set.

4.3. Unbalanced experimental datasets and anti-symmetry

Unbalanced training datasets with large differences in the num-
ber of cases representing specific categories might also lead to
erroneous estimations (see Fig. 1D). As an example, a training data-
set with 80% of destabilizing mutations would allow the predictor
to erroneously classify most mutations as destabilizing. This can
hamper both classification (DDG sign) and regression (DDG value).
Given this unbalance, the most recommended measures of accu-
racy in the context of classification are the MCC and the harmonic
mean between precision and recall (F1) [64].

Another important feature described above, which has a great
impact on the algorithm performance, is represented by the anti-
symmetric properties of the free energy changes. Recently, differ-
ent studies addressed this problem as bias in most predictors
[11,12,48,61,65], and specifically designed datasets including both
the variations and the corresponding inverses (such as A->B and B-
>A on the same protein) have been introduced: Ssym [11],
Usmanova-DB [48] and Fang-DB [12]. The results show that only
INPS and PopMusic [11] were sufficiently robust to be defined
compliant with the anti-symmetric properties [61,65]. The Pearson
correlation between the predictions on a variation set and the pre-
dictions on the corresponding inverse variation set (q_dir-inv) can
measure the method bias. In Table 3 we report the anti-symmetry
bias of different methods (when measured). A perfect method
should show a Pearson correlation equal to �1.
4.4. Developing a new method

Most of the predictors were trained using random splits of the
selected datasets (Table 1). However, as mentioned above, this pro-
cedure is not correct since there is a huge level of redundancy in
the datasets. Considering the pie-charts represented in Fig. 1A, only
few protein sequences show no significant sequence similarity
(<25%) with other proteins of the same database (only 15 and 5
proteins in S2648 and Varibench, respectively). The percentage of
proteins clustered into large groups (i.e. clusters including > 5%
of the proteins present in the entire database) with high sequence
similarity is significantly high, involving 32% and 41% of the pro-
teins annotated in S2648 and Varibench, respectively. This redun-
dancy characterizes all the available datasets. Thus, given the
difficulty of comparing methods and assessing the performance
on fair bases, here we provide sequence-identity-reduced datasets
(see Supplementary Materials). We clustered the variants accord-
ing to the sequence identity of the protein sequences they belong
to, using a threshold cut-off of 25% identity. The variants of
S2648, VariBench3D, sSym, P53 and Myoglobin datasets are
grouped in a way that it is possible to perform 10-fold cross-
validation on S2648 and, using the models trained in the different
folds, to predict the variations of the other datasets excluding
sequence similarity issues. With our clustering, new methods can
be developed and fairly compared. We adopted a circular cross-
validation procedure (with either 10 or 5 sets): 8 (or 3) folds at a
time are kept for the training while the other 2 are considered
for validation and test, respectively. By rotating along all the folds,
it is possible to use the whole dataset both for the validation and
for the test (see Supplementary). It is compulsory that the tuning
of the hyper-parameters or method selections should be done by
analyzing the performance computed on the validation sets, with-
out ‘‘peeping” at those obtained on the test sets, otherwise the
whole procedure would be spoiled.
5. The test case of CAGI experiments

The Critical Assessment of Genome Interpretation (CAGI) is a
community experiment aimed at fairly assessing the computa-
tional methods for genome interpretation [66]. In the latest edition
(CAGI 5) data providers measured unfolding free energy of a set of
variants with far-UV circular dichroism and intrinsic fluorescence



Table 4
Performance of state-of-the-art methods on 8 variants of the CAGI FXN challenge.

Method rP rS Ks RMSE MAE Q2 MCC AUC

DDGun [21] 0.90 0.69 0.57 2.15 1.93 0.70 0.45 0.80
ELASPIC [56] 0.82 0.69 0.50 2.38 1.71 0.80 0.60 0.93
SAAFEC [39] 0.74 0.83 0.71 2.71 2.08 0.83 0.75 0.93
PopMusic [28] 0.83 0.54 0.40 2.68 2.00 0.90 0.78 0.80
EASE-MM (1D) [24] 0.81 0.64 0.64 2.88 2.22 0.70 0.45 0.80
INPS (3D) [55] 0.76 0.60 0.43 3.18 2.36 0.80 0.60 0.87
NeEMO [54] 0.83 0.62 0.50 3.39 2.44 0.70 0.45 0.87
INPS (1D) [43] 0.70 0.60 0.43 3.35 2.52 0.80 0.60 0.87
MAESTRO [57] 0.72 0.60 0.43 3.40 2.48 0.70 0.45 0.67
iStable [30,53] 0.82 0.55 0.43 3.57 2.73 0.70 0.45 0.80
DUET [41] 0.53 0.55 0.36 3.34 2.46 0.70 0.45 0.73
DeepDDG [17] 0.73 0.38 0.29 3.10 2.43 0.53 0.07 0.67
I-Mutant2 (1D) [26,40] 0.69 0.36 0.21 3.52 2.68 0.80 0.60 0.67
SDM [46] 0.54 0.52 0.36 3.49 2.73 0.63 0.26 0.67
mCSM [20] 0.54 0.43 0.21 3.30 2.49 0.37 �0.26 0.60
I-Mutant2 (3D) [26,40] 0.75 0.04 �0.05 3.60 2.55 0.63 0.35 0.58
AUTOMUTE (TR) [69] 0.33 0.26 0.14 3.64 2.67 0.53 0.07 0.73
DynaMut [59] 0.37 0.29 0.14 3.94 2.89 0.60 0.29 0.67
MUpro (1D) [51] 0.14 �0.10 �0.07 3.89 2.80 0.70 0.45 0.53
CUPSAT (DN) [36] 0.20 �0.12 �0.14 4.98 3.97 0.50 0.00 0.20

Methods are ranked using 8 measures of performance. rP and rS: Pearson and Spearman Correlation Coefficients, respectively. Ks: Kendall-Tau Coefficient. RMSE and MAE:
Root Mean Square and Mean Absolute Errors. Q2: Accuracy: MCC: Matthews Correlation Coefficient. AUC: Area Under the Receiving Operator Characteristic (ROC) Curve. A
binary classification threshold between destabilizing and neutral variants has been set to �1.0 kcal/mol. Measures of performance were defined as in Baldi et al. [69]. DN:
Denaturant. TR: Tree Regression. 1D and 3D: sequence-based and structure-based predictions, respectively. DDGs were calculated at the experimental conditions of pH = 8
and T = 20C.
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spectra on Frataxin (FXN), a highly-conserved protein fundamental
for the cellular iron homeostasis in both prokaryotes and eukary-
otes. These measurements were used to calculate the change in
unfolding free energy between the variant and wild-type proteins
at zero concentration of denaturant (DDGH2O). The experimental
dataset [67], including eight amino acid substitutions, was used
to evaluate the performance of the web-available tools for predict-
ing the value ofDDGH2O associated with the variants and to classify
them as destabilizing or not-destabilizing [68]. Eight performance
measures were applied to test the methods, five for assessing the
predictions in regression (Pearson and Spearman Correlation Coef-
ficients, Kendall-Tau Coefficient, Root Mean Square and Mean
Absolute Errors) and three for the classification performance, i.e.
Accuracy, Matthews Correlation Coefficient and Area Under the
Receiving Operator Characteristic Curve (AUC). A prediction
threshold equal to �1 kcal/mol was set to discriminate between
destabilizing (DDG < �1 kcal/mol) and not-destabilizing (neutral)
variants (DDG��1 kcal/mol) [69]. According to this classification,
5 variants destabilize the protein structure and 3 variants are non-
destabilizing. These protein variations were submitted to the web
server of each method for the assessment of its predictions. The
results confirmed that ELASPIC and INPS3D, as well as DDGun
and PopMusic that were optimized for the anti-symmetric prop-
erty, are among the best methods in predicting theDDG associated
with the variants included in the challenge (see Table 4). Although
the FXN dataset includes only 8 variants, it represents a first
attempt to validate the performance of DDG prediction tools using
a blind test set.
6. Challenges in the applications of protein stability predictions
in biomedicine and precision medicine

Sequence variations and structural changes that cause disease
were first linked in 1949 for sickle-cell anemia [70,71], which is
an autosomal recessive disorder caused by the amino acid substi-
tution E6V in the b-chain of human hemoglobin [72], i.e., a replace-
ment of glutamic acid (E) by a valine (V) at position 6. Currently,
the Human Gene Mutation Database (HGMD [73]), Online Men-
delian Inheritance in Man (OMIM [74]), the Catalogue of Somatic
Mutations in Cancer (COSMIC) [75], and other resources collect
thousands of such single amino acid variants causative of, or asso-
ciated with, diseases, in addition to many other types of sequence
variations. However, the number of pathogenic variants in those
databases represents only a small fraction of the potential number
of pathogenic mutations in the world-wide human population.

Engineering stability-changing mutations are opening promis-
ing perspectives for several approaches in precision medicine.
Analyses linking the effects of a mutation on a protein thermody-
namic stability with pathogenicity indicate that loss of stability
could be a main driver of inherited diseases. Thus, an improved
understanding of the complex relationships among protein
sequence, structure, folding and stability could provide new possi-
bilities for diagnosis and even novel treatments specific for the
patients. Casadio et al. [76] made the first effort in assessing the
relationships among stability changes in proteins and their
involvement in human diseases at large-scale by analyzing the
Human Proteome [2]. By estimating for each single amino acid
polymorphism the probability of being disease-related, they
showed that protein stability changes can also be disease-
associated at the proteome level. The probability indexes were
statistically derived from a dataset of 17,170 single amino acid
variations in 5,305 proteins retrieved from data available at Uni-
ProtKB (release 2010_04), dbSNP (build 132), OMIM and ProTherm
[15]. SDM2, mCSM and DUET have been used to evaluate the
effects of stability changes in different applications: human
cancer-related genes in the COSMIC database [77], inhibition of
inosine-50-monophosphate dehydrogenase, isoniazid and rifampi-
cin resistance in Mycobacterium Tuberculosis [78], phosphodi-
esterase somatic mutations implicated in cancer and retinitis
pigmentosa [79], protein presenilin 2 linked to familial Alzheimer’s
disease [80].

A challenging task for medical applications is predicting how
mutations in proteins alter their ability to function, distinguishing
mutations that are ‘‘drivers” of disease or drug resistance from
‘‘passengers” that are neutral, or even selectively advantageous
for the organism. This task requires understanding the impact of
missense mutations in protein function, and mapping genetic vari-
ations to 3D protein structures [81]. In particular, mutations on
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protein surfaces in the protein–protein interfaces were associated
with larger global effects than mutations occurring elsewhere in
protein surfaces [2,81]. Protein stability may directly be related
to functional activity, and changes in stability or incorrect folding
could be the major effects of pathogenic missense mutations. In
most cases, missense mutations are deleterious due to the decrease
in stability of the corresponding protein [82]. In other cases, mis-
sense mutations may cause diseases by enhancing the stability of
the corresponding protein [83]. The mutant kinase EGFR can be
taken as an example of both kinds of disease-inducing changes,
at the same time illustrating emblematically how complex the
path from the detection of mutation-induced free energy changes
to precision medicine might be. Kinase activation commonly
involves a rotation and shift of the aC-helix between these states,
a conformational change that is governed by an allosteric switch.
Driver mutations can control that switch. Oncogenic driver muta-
tions act by either stabilizing the active conformation, or disrupt-
ing interactions that stabilize the inactive one. 41% of the EGFR
mutations in lung cancer present the oncogenic Leu858 driver
mutation [84], which stabilizes the aC-helix in the active confor-
mation. By contrast, the T790M mutation in EGFR stabilizes the
hydrophobic R-spine, which destabilizes the inactive conforma-
tion. The outcome is similar: the mutations allosterically switch
the preferred states towards a constitutively activated kinase. In
brief, driver mutations can adopt one of three mechanisms: desta-
bilize the inactive state, stabilize the active state, or both. In terms
of free energy, those effects can be seen as changes in the relative
depths of minima, with the outcome of favoring or disfavoring the
asymmetric or symmetric dimer conformation [85]. This kind of
knowledge clearly impacts on the choice of treatment for lung can-
cer patients. For instance, Gefitinib is an EGFR inhibitor used to
treat lung cancer, but, as expected by the reasons described above,
it improves the outcome only in a subset of patients bearing very
specific genetic changes.

Another research field that might benefit from future applica-
tions of engineering stability-changing mutations is represented
by the immunogenomics studies. In the last years, immunothera-
pies have shown high rates of success as treatments for several
types of cancer. Recent approaches employ the adoptive transfer
of autologous T cells from a patient, genetically modified either
with an engineered Chimeric Antigen Receptor (CAR) or with an
engineered T Cell Receptor (TCR), for recognition of the appropriate
peptides in complex with the Major Histocompatibility Complex
class I (MHC-I).

However, finding suitable candidates (for CAR-T and TCR-T cell
therapy) is very costly and time-consuming. For this reason, com-
putational methods for predicting the immunogenicity of peptide-
MHC-I complexes are being developed.

In particular, the role of protein-complex stability has been rec-
ognized as crucial for the immunogenicity prediction of the
peptide-MHC-I complexes (for example NetMHCstab [86] and
NetMHCstabpan [87]). These methods are expected to speed up
therapy implementation for each patient significantly. The intrinsic
effects of fold stability on immunogenicity have wide potential
applications also in the vaccine field. The first examples of
stability-optimized vaccines have been demonstrated [88], and
further major advances on protein design for novel therapies
within the next years are expected.
7. Summary and outlook

The prediction of protein stability changes upon variation is
essential for protein design and precision medicine. The current
methods, although far from being perfect, achieved sufficient levels
of performance to complement experimental studies [68]. How-
ever, several issues need to be addressed to enhance such levels
of performance, in particular:

1. increasing the quality and the size of the current datasets, add-
ing more carefully curated experimental data;

2. building methods that are intrinsically anti-symmetric (DDG
(A->B) = -DDG(B->A));

3. for machine-learning approaches, it is essential that the model
training has to be performed using low levels of sequence iden-
tity between learning and testing sets. To facilitate the scientific
community in this task, we provide similarity-free cross-
validation folds for the most relevant datasets (Supplementary
materials).

If these indications are taken into account, the next generation
of predictors can achieve more reliable and more consistent
performances.
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