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Abstract—In this paper we present a novel defogging technique,
named CurL-Defog, aimed at minimizing the creation of un-
wanted artifacts during the defogging process. The majority of
learning based defogging approaches rely on paired data (i.e.,
the same images with and without fog), where fog is artificially
added to clear images: this often provides good results on mildly
fogged images but does not generalize well to real difficult cases.
On the other hand, the models trained with real unpaired data
(e.g. CycleGAN) can provide visually impressive results but they
often produce unwanted artifacts. In this paper we propose a cur-
riculum learning strategy coupled with an enhanced CycleGAN
model in order to reduce the number of produced artifacts, while
maintaining state-of-the-art performance in terms of contrast
enhancement and image reconstruction. We also introduce a
new metric, called HArD (Hazy Artifact Detector) to numerically
quantify the amount of artifacts in the defogged images, thus
avoiding the tedious and subjective manual inspection of the
results. The proposed approach compares favorably with state-
of-the-art techniques on both real and synthetic datasets.

I. INTRODUCTION

Images captured under bad weather conditions such as fog,
mist or haze, suffer from limited visibility, poor contrast, faded
colors and loss of sharpness. This not only makes the images
aesthetically less pleasant, but can seriously deteriorate the
accuracy of computer vision applications such as autonomous
driving, which heavily relies on object detection, tracking,
classification, and segmentation [19]. Defogging (or dehazing)
is the task of removing the fog from a given image, aimed at
reconstructing the same scene as if it were taken in good (or
at least better) weather conditions.

In recent years, a plethora of defogging approaches have been
proposed, based on both classical neural networks [5, 23, 16]
and generative adversarial networks [22, 18, 9, 20]. Though
these methods often outperform the preexisting state-of-the-
art, they usually must be trained with paired data, namely the
same scene acquired with and without fog. The impossibility to
acquire perfectly paired data, alongside the increased need for
big datasets, pushed the researchers to create and use synthetic
data, where the fog is automatically inserted according to a
physical model (see Equation 1) [17, 26, 8]. Moreover, the
majority of the existing defogging technique cannot handle
images with severe fog, where the visibility of the scene is
highly compromised [1], limiting their practical application in
real scenarios. When totally unpaired models (e.g., CycleGAN)
are applied to images with severe fog, the results are visually
pleasant but often affected by the presence of unwanted

(a) (b) (c)

Fig. 1: (a) real severe fogged images (b) defogging with a state-
of-the-art unpaired approach [9] that exhibits clear artifacts in
the sky (c) the results produced by the proposed CurL-Defog
denote a good compromise between image enhancement and
fidelity to the original scene. Better viewed if zoomed on a
computer monitor.

artifacts (see Figure 1), added by the “imagination” of the
model. Such artifacts can be extremely dangerous in some
applications: for example, non-existent pedestrians or obstacles
added to a defogged road scene could lead an autonomous car
to take wrong decisions.

In this paper we present a novel defogging technique, based
on recent developments in generative adversarial networks
and style transfer. To reduce the insertion of artifacts, we
exploit the concept of curriculum learning [3], where a model
is trained firstly on simpler tasks, and then the complexity
of the examples is increased as the training progresses. We
first train our model on artificial paired data, comparing the
defogged image with the ground truth real scene. This highly
penalize the insertion of artifacts, thus introducing a bias
which is not destroyed in successive training phases when the
model is exposed to real unpaired data to learn more difficult
transformations.

As shown in section V, our model is able to perform defogging
more effectively on real foggy images than the majority of
model trained only on artificial data. In addition, the pres-
ence of artifacts is significantly reduced with respect to the



CycleGAN-based approaches.

In order to numerically quantify the amount of artifacts
introduced by a defogging technique we also propose (in
section IV) a novel referenceless metrics denoted as HArD.

II. RELATED WORKS

A. Single Image Defogging (or Dehazing)

In presence of fog or haze particles, the original irradiance
received by the camera gets attenuated, proportionally to the
distance of the objects. This effect is combined with the
scattering of atmospheric light. A simple mathematical model
can be formulated as [14, 21]:

I(x) = J(x)t(x) +A(1− t(x)) (1)

where I(x) and J(x) are the hazy and clear images re-
spectively, A is the global atmospheric light and t(x) is the
transmission map of the scene, defined as t(x) = e−βd(x),
where d(x) is the depth map of the scene and β the scattering
coefficient of the atmosphere.

Some earlier methods directly tried to invert the aforemen-
tioned physical model, estimating the parameters directly from
examples or exploiting some statistical properties of images
[11, 31, 4]. In recent years, classical approaches have been
surpassed by deep-learning techniques, often based on con-
volutional neural networks (CNNs). Some learning methods
estimate the transmission map t(x) and then invert the physical
model to reconstruct the clear image [23, 5], others directly
produce the clear image [16].

The application of generative adversarial networks (GANs) to
dehazing is even more recent [22]. The use of GANs as end-to-
end models that directly produce the haze-free image without
estimating the transmission map was developed by Li et al.
[18]; in this model the discriminator receives a pair of images,
the hazy image and the clear one, and its goal is to estimate
the probability that the given pair is the ground truth, i.e. the
haze-free image is the real one given the foggy picture, and it
was not produced by the generator.

All the approaches reported above are trained on paired
datasets of foggy and clear images. Unfortunately, these
datasets are often synthetic and the quality of results may
decrease if the resulting model is tested with real hazy
photographs. Defogging with unpaired data was explored by
Engin et al. [9], where an inception loss computed by features
extracted from a VGG network [25] was used as a regularizer.
In [20], a model similar to CycleGAN is used in conjunction
with the physical model to apply fog to real images during the
inverse mapping.

B. Defogging Metrics

Assessing the quality of defogging is a particularly difficult
task, especially without information about the depth map of
the scene. At today, human evaluation is often preferred w.r.t.

automatic evaluation to assess the quality of defogging. How-
ever, human evaluations are subjective, tedious and impractical
for large amount of data.

The most common metrics used to evaluate image defogging
are structural similarity (SSIM) [29] and peak signal-to-noise
ratio (PSNR)), both well-known in image processing (e.g. to
estimate the quality of compression or deblurring techniques).
The main problem with these metrics is the need of a reference
clear image that, as stated before, is a nearly impossible to
obtain in a real world scenario. In addition, SSIM and PSNR
often do not correlate well with human judgment or with
referenceless metrics [17].

Recently, some referenceless metrics specifically designed for
defogging have been proposed [10, 7]. One of these “blind”
metrics was introduced by Hautière et al. [10]; it consists of
three different indicators: e, σ and r̄. The value of e is based
on the number of visible edges in the defogged image relative
to the original foggy picture. The value of σ represents the
percentage of pixels that become saturated (black or white)
after defogging. Finally, r̄ denotes the geometric mean of the
ratio of the gradient at visible edges; in short it gives an
indication of the amelioration of the contrast in the defogged
image: high values of r̄ mean a more effective defogging.
Unfortunately, as discussed in section IV, some of these
metrics are negatively affected by the presence of artifacts.

III. THE CURL-DEFOG MODEL

In order to train a model with real images and, at the same
time, reducing the artifacts inserted during the defogging,
we propose CurL-Defog, an approach inspired by curriculum
learning [3], where the model is first guided towards a desirable
parameters-space region via a pix2pix-like [13] training using
synthetic paired image. The model is then refined by a more
complex CycleGAN-like training, where real unpaired images
are progressively provided.

A. The model

The two training phases of the proposed model are not
separated, but there is a gradual transition from the paired
training to the unpaired one. Indeed, at each epoch the model is
trained with some synthetic images and some real images. As
the epochs goes on, the number of artificial images is reduced
while the number of real examples grows, thus progressively
increasing the influence of unpaired training.

During the paired training (where the model is trained with
artificial data) we use two different pix2pix models, one for
defogging fogged images and one for fogging clear images;
these two submodels are trained separately in this phase.
Conversely, during the unpaired training, the model can be
seen as a CycleGAN-based model, where both the fogging
and defogging networks are used in combination to enforce
the cycle consistency loss.

Overall, CurL-Defog is composed of four networks: a gener-
ator Gdefog used for defogging, a generator Gfog used for



fogging, a discriminator Dclear used to discriminate between
real and defogged images, and a discriminator Dfog used to
discriminate between real and generated foggy images. The
overall approach is graphically shown in Figure 2, and the
training algorithm is summarized in Algorithm 1.

Algorithm 1 CurL-Defog training algorithm. More details are
provided in subsection III-C. The number of artificial and real
images used in every epoch (lines 2-3) is discussed in section V

1: for number of epochs do
2: k = nr. of artificial images in the current epoch
3: j = nr. of real images in the current epoch
4: for k do . paired training
5: Draw a pair (c, f) from the paired dataset.
6: ĉ← Gdefog(f)
7: f̂ ← Gfog(c)
8: Calculate Lpair using Equation 2.
9: BACK-PROPAGATE Lpair

10: UPDATE Gdefog, Gfog, Dclear and Dfog .
11: end for
12: for j do . unpaired training
13: Draw c from the real clear dataset.
14: Draw f from the real foggy dataset.
15: ĉ← Gdefog(f)
16: f̂ ← Gfog(c)
17: frec ← Gfog(ĉ)
18: crec ← Gdefog(f̂)
19: Calculate Lunpair using Equation 6.
20: BACK-PROPAGATE Lunpair
21: UPDATE Gdefog, Gfog, Dclear and Dfog .
22: end for
23: end for

B. Networks

1) Generator networks: The architecture of the generator is
the same for both Gdefog and Gfog . The networks contain
three convolutional blocks in the encoding module and three
convolutional blocks in the decoding module. Every convolu-
tional block is followed by an instance normalization [27] layer
and a ReLU activation layer. In the encoder, the fist layer has
64 filters with a kernel size of 7×7 and stride 1. The second
and third layers have 128 and 256 filters respectively, with a
kernel size of 3×3 and stride 2. Each layer of the decoder
module has the same number of filters of its symmetric layer
in the encoder module, but the convolutions have stride 1/2
(transposed convolution). To perform the translation, we have
used 9 residual blocks [12], similar to the original CycleGAN
implementation.
2) Discriminator networks: Both discriminators Dclear and
Dfog are based on the same architecture: a 70×70 patchGAN
[15] aimed at classifying 70×70 overlapping image patches
as real or fake. Such model contains fewer parameters than
a classical image classification network, and can operate on
images of any size, due to its fully convolutional architecture.

C. Full objective

1) Paired training: During paired training the losses of the
model are similar to the original pix2pix implementation [13].
The adversarial loss for defogging is joined with the L1 loss,
calculated between the translated and the ground truth images
as follow:

Lpair = Ldefogadv + Lfogadv + λL1LL1 (2)

where λL1 controls the relative importance of the L1 loss.
2) Unpaired training: During unpaired training the model is
trained with unpaired foggy and clear images, so the L1 loss
cannot be used. Instead, we use the cycle consistency loss
derived from the CycleGAN model [30]:

Lcyc = ‖Gfog(Gdefog(f))− f‖1
+ ‖Gdefog(Gfog(c))− c‖1 (3)

where f and c represents the foggy and clear images respec-
tively.

In order to make the defogging more effective and preserve
details in the results, a cycle perceptual loss based on feature
extracted with a pretrained VGG-16 network [25] is intro-
duced, following the work of Engin et al. [9]. The cycle
perceptual loss is defined as:

Lperc = ‖φ(f)− φ(Gfog(Gdefog(f)))‖22
+ ‖φ(c)− φ(Gdefog(Gfog(c)))‖22 (4)

where φ(·) represents features extracted from the 2nd and the
5th pooling layers of the VGG-16 network.

Furthermore, similar to the original CycleGAN implementation
[30], we also include an identity loss, aimed to preserve the
original tint and color of the images. The identity loss is
defined as:

Lidt = ‖Gfog(f)− f‖1+‖Gdefog(c)− c‖1 (5)

Finally, the overall objective of the model during the unpaired
training can be expressed as:

Lunpair = Ldefogadv + Lfogadv + λcycLcyc
+ λpercLperc + λidtLidt (6)

where λcyc, λperc and λidt control the relative importance
of cycle consistency loss, perceptual loss and identity loss
respectively.

IV. THE HARD METRIC

As discussed in section II, some ad-hoc metrics have been
proposed in the literature for assessing the quality of defogging
techniques, each focusing on a different aspect, such as the
level of fog [7] or the amelioration of contrast [10].

However, the aforementioned metrics do not take into account
the presence of artifacts in the defogged image, which is a
critical issue especially when unpaired image-to-image trans-
lation models are used. For example, the metrics proposed in
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Fig. 2: CurL-Defog architecture. (a) During the paired training: two separate pix2pix models are used, one for defogging and
one for fogging images. (b) During the unpaired training the two generators are used in combination to enforce the cycle
consistency loss and the cycle perceptual loss; to keep the notation simple in (b) only the defogging cycle is displayed, since
the foggy cycle (starting from the clear image) is symmetrical and can be easily derived. For each training epoch the model
behaves as (a), for a subset of the training iterations, and as (b) for the rest of the iterations.

[10] can be deceived by the presence of artifacts (especially
the descriptor e), since the addition of nonexistent objects can
raise the number of visible edges in the defogged image.

Here we propose HArD (Haze Artifact Detector) a new ref-
erenceless metrics to quantify the amount of artifacts in a
defogged image, given the corresponding foggy scene. HArD
is based on the assumption that if a region in the original
foggy image does not present any edge (i.e. is a region of
constant intensity), the defogging method should not introduce
any object in that region, since there is no information to
exploit for reconstructing the scene. The pseudocode of the
HArD metric is illustrated in Algorithm 2.

HArD can be implemented through a sequence of image
processing steps (see Algorithm 2): first, a map of edges
concentration in the foggy and defogged images are computed
by determining the module of the gradient (Prewitt operator)
and smoothing it by convolution with a Gaussian. The maps
are then normalized in the range [0,1] using statistics derived
from the entire training dataset. After that, both the maps
are saturated multiplying them by a constant and applying
the hyperbolic tangent function: this step is aimed at making
the edge regions in the two images comparable even if the
defogged image is usually much more contrasted. Finally, the
artifact regions in the defogged images are determined by
subtracting the saturated foggy edge density map from the
defogged edge density map. The obtained difference map has
high values in regions denoted by the presence of edges in

Algorithm 2 HArD metric calculation.

Require: f = original foggy image in range [0,1]
Require: d = automatically defogged image in range [0,1]

1: procedure HARD(f , d)
2: f ′ ← PREWITT(fgray)
3: d′ ← PREWITT(dgray)
4: f ′smooth ← GAUSSIANFILTER(f ′) . σ = 20
5: d′smooth ← GAUSSIANFILTER(d′) . σ = 20
6: f ′scaled ← NORMALIZE(f ′smooth)
7: f ′sat ← tanh(νfog · f ′scaled) . νfog = 7.5
8: d′scaled ← NORMALIZE(d′smooth)
9: d′sat ← tanh(νdefog · d′scaled) . νdefog = 1.5

10: diff ← min(0, d′scaled − f ′sat)
11: return MEAN(diff )
12: end procedure

the defogged image but not in the fogged one. An example is
shown in Figure 3.

V. EXPERIMENTS AND RESULTS

In this section we evaluate the proposed CurL-Defog approach
and compare it with some state-of-the-art methods. We report
experiments both on artificial and real foggy images, with a
particular emphasis on scenes with severe fog and reduced
visibility.



TABLE I: Average SSIM and PSNR scores of the dehazing on the HSTS testing set.

DCP [11] CAP [31] NLD [4] DehazeNet [5] MSCNN [23] AOD-Net [16] Pix2Pix [13] CurL-Defog
PSNR 14.84 21.53 18.92 24.48 18.64 20.55 24.22 24.83
SSIM 0.7609 0.8727 0.7411 0.9183 0.8168 0.8973 0.8991 0.9037

(a) (b) (c) (d)

(e) (f)

Fig. 3: Overall sequence of steps in HArD metrics calculation.
(a) input images: top row is the real fogged image, second row
is the same image defogged by a pure unpaired approach [30].
(b) gradient computation by the Prewitt operator. (c) smoothing
with a Gaussian filter and scaling in the interval [0,1]. (d)
saturation of the maps through the hyperbolic tangent. (e)
difference between the two maps in (d). (f) the regions where
the metrics detected the presence of artifacts superimposed
over the defogged image. Better viewed if zoomed on a
computer monitor.

A. Training details

During training all the images were scaled to 286×286 pixel,
using a bicubic interpolation, and then a random crop of
size 256×256 was taken and used as input to the networks.
To reduce oscillation when the model was trained in the
unpaired training phase, we followed the strategy proposed by
Shrivastava et al. [24] where the discriminators are updated
by using a history of generated images instead of the last
produced by the generators. We kept an image pool of the
last 50 generated images and randomly chose one of them to
train the discriminators. For all the experiments we maintained
the same parameters:

λL1 = 100 λcyc = 10

λperc = 0.1 λidt = 0.5 · λcyc

These parameter values have been manually selected, without
performing any systematic grid search: so we believe that
accuracy can be further improved. In all the experiments the
model was trained for 200 epochs. The learning rate was

initially set to 0.0002, kept unaltered for the first 100 epochs
and then linearly decayed to zero in the last 100 epochs.

Curriculum Learning Strategy

The definition of the curriculum learning strategy is not
explicitly specified in CurL-Defog, so many approaches could
be used. The simplest strategy, denoted as linear, works as
follows: at the first epoch the model is trained only with
artificial data; as the epochs progresses, the number of artificial
images is linearly decreased, reaching zero at the last epoch;
conversely, the number of real images is linearly increased,
reaching the maximum in the last epoch.

We experimented other possible strategies, in particular other
two approaches denominated linear-saturate and step. In the
step strategy only artificial images are used for the first half of
the epochs, and only real images for the remaining half. The
linear saturate strategy is similar to the linear strategy, but the
model is trained only with real data for the last k epochs.
These two alternatives did not show any advantage over the
simple linear strategy, so the linear strategy was used for all
the subsequent experiments.

B. Experiments on synthetic data

To assess the performance of CurL-Defog on synthetic data
we have used the classical SSIM and PSNR metrics. In fact,
even if improved metrics have been introduced (such as MS-
SSIM [28]), SSIM and PSNR have been used by most of the
methods we considered for comparison. In this experiment we
compare our approach with both classical methods [11, 31, 4]
and machine learning techniques [5, 23, 16]. We also include
the pix2pix model [13] in our experiments. The datasets used
are:

• Synthetic paired dataset (training): Outdoor Training Set
(OTS), included in the RESIDE dataset [17]. The dataset
is composed of 2,061 clear images where, for each
image, 35 different levels of haze are applied (varying
the parameters A and β of Equation 1), for a total of
72,135 training images.

• Real unpaired dataset (training): LIVE image defogging
[6], composed of 500 clear and 500 foggy real pho-
tographs. The major issues with LIVE dataset is the low
number of images, and the marked difference between
foggy and clear photographs. Hence, we substitute the
500 clear images with 2.651 clear photographs taken from
the RESIDE dataset [17] (with no intersection between
the images used for the synthetic dataset experiments).
The clear images were manually selected in order to
include only daytime photographs, with clear skies and
good lighting.



• Test dataset: Hybrid Subjective Testing Set (HSTS), in-
cluded in RESIDE dataset and used as a test dataset in
the recent benchmark by Li et al. [17].

The results are reported in Table I. It is worth noting that
our approach is in line with state-of-the-art models, reaching
the first score for PSNR and the second for SSIM, even if
Curl-Defog was not designed to rival existing state-of-the-art
approaches on synthetic data.

C. Experiments on real images

Real data is intrinsically unpaired, so SSIM and PSNR cannot
be used to assess the effectiveness of defogging. Therefore, the
metric proposed by Hautière et al. [10] was used to evaluate
the results, alongside the proposed HArD metric to detect the
presence of artifacts. CurL-Defog is here compared against the
Cycle-Dehaze unsupervised approach [9] and a pix2pix model
[13]. The datasets used in this experiment are:

• Synthetic paired dataset (training): Outdoor Training Set
(OTS), included in the RESIDE dataset [17].

• Real unpaired dataset (training): LIVE image defogging
[6], enhanced with more images as described in the
experiment on synthetic data.

• Test dataset: test set of the LIVE image defogging dataset
(100 images) [6].

The results are reported in Table II and some examples are
shown in Figure 4. As we can see from Figure 4, our defogging
method often produces more realistic results compared to
Cycle-Dehaze [9] with almost no artifacts in the defogged
image, even if the contrast and color saturation are lower.
At the same time the amount of details, especially on very
foggy regions, is better than pix2pix. The HArD values in
Table II support these observations. Regarding the Hautière et
al. metrics e and r̄, these value are affected by the insertion
of artifacts, which produce edges that contribute to increase
them: therefore, they cannot be considered in isolation.

TABLE II: Indicators e and r̄ from [10] and HArD metric
calculated on the LIVE test set. ↑ indicates that a higher value
is better, ↓ indicates that a lower value is better.

CycleDehaze [9] Pix2Pix [13] CurL-Defog
e (↑) 32.70 25.74 28.41
r̄ (↑) 3.290 2.135 2.636

HArD (↓) 2.535 0.3786 1.374

D. Experiments on Severe Fog

To further assess the quality of the proposed approach in
presence of dense fog, we tested our model on the recently
released Dense-Haze dataset [1], which is composed of 55
images where fog is artificially inserted with fog-machines in
controlled conditions. This makes possible a direct comparison
(in terms of classical PSNR and SSIM) with clear images
of the same scene. The level of fog of the images is very
high, and the visibility is almost zero in all the photographs.

We compared our method with several state-of-the-art learning
based defogging techniques [23, 5, 9, 13]. The datasets used
in this experiment are:

• Synthetic paired dataset (training): Outdoor Training Set
(OTS), included in the RESIDE dataset [17].

• Real unpaired dataset (training): O-Haze dataset [2],
which is composed of 45 high resolution pairs of fog
and real images. The fog is inserted with fog machines
and its very similar to real fog. We randomly crop each
of the 45 images 45 times, producing an unpaired dataset
of 2,025 images.

• Test dataset: Dense-Haze dataset (55 images with severe
fog) [1].

The results are reported in Table III. Note that our method was
not trained with images of the Dense-Haze dataset, nor with
images with a comparable high level of fog. The results in
Table III demonstrate the effectiveness of CurL-Defog: our
approach shows similar performance on the PSNR metrics
w.r.t. the best baseline, but greatly outperform all the methods
on the SSIM metric.

TABLE III: Average SSIM and PSNR scores of the dehazing
on the Dense-Haze dataset

PSNR SSIM

MSCNN [23] 12.52 0.369
DehazeNet [5] 11.36 0.374

CycleDehaze [9] 10.54 0.261
Pix2Pix [13] 10.55 0.311
CurL-Defog 12.24 0.469

VI. CONCLUSIONS

In this work, we proposed CurL-Defog, a curriculum based
approach that exploits both paired and unpaired data to effec-
tively defog images even in the presence of severe fog. The
main goal of CurL-Defog is to reduce the amount of artifacts
inserted by unpaired defogging methods, while maintaining the
same performance in terms of contrast enhancement and edge
restoration. To numerically estimate the amount of artifacts in
the defogged images we proposed HArD, a referenceless met-
rics that automatically detect regions in the resulting images
that contains unwanted artifacts. We performed experiments
both on synthetic and real fog, obtaining results in line with
state-of-the-art approaches but with significantly less artifacts.
Our study confirmed that the paired information provided by
synthetic data are very useful to guide the model towards
regions of the parameter space that minimize the insertion of
artifacts especially in the case of severe fog. In the future, we
intend to combine Hautière et al. metrics [10] with HArD in
order to define artifact-immune referenceless metrics for image
defogging.



(a) (b) (c) (d)

Fig. 4: Qualitative comparison of defogging on real images with severe fog. (a) foggy images, (b) unpaired approach [9] (note
the heavy insertion of artifacts), (c) paired approach [13], (d) CurL-Defog.
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