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Abstract

Juries are a fundamental element of the criminal justice system. In this paper,
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juries or small unanimous juries are alternative ways to maximize the accuracy
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1 Introduction

Jury design is a critical element of criminal adjudication. After more than six cen-

turies without changes, the structure and functioning of juries have recently undergone

several significant transformations regarding jury size and voting requirements. Juries

in a criminal case were traditionally composed of 12 members, who needed to reach a

unanimous agreement to render a decision.1 Although most Americans view the 12-

member jury as a fixture of American legal procedure, several U.S. Supreme Court

decisions have affirmed the constitutionality of juries with fewer than 12 members,

as well as juries operating under a voting requirement less stringent than unanimity.

This paper seeks to evaluate the desirability – or lack thereof – of these institutional

transformations, comparing the impact of changes in jury size to that of changes to vot-

ing requirements on the probability of wrongful convictions and of wrongful acquittals

(i.e. convicting the innocent and acquitting the guilty, respectively), as well as of hung

juries.

Prior literature on jury design has investigated jury size and voting requirement

as independent policy variables or in pairwise choice frameworks, but often neglected

their critical interdependence in maximizing the accuracy of verdicts. Prior contribu-

tions have separately investigated how large a jury should be (Paroush, 1997; Ben-

Yashar and Paroush, 2000; Dharmapala and McAdams, 2003; Helland and Raviv,

2008; Luppi and Parisi, 2013), and how juries should vote to reach an accurate ver-

dict (Klevorick and Rothschild, 1979; Klevorick et al., 1984; Ladha, 1995; Young,

1995; Neilson and Winter, 2005).

Our paper contributes to the existing literature by exposing the critical interplay be-

tween jury size and voting requirement in criminal adjudication. We extend the criminal

trial model developed in Neilson and Winter (2000, 2005) by both relaxing the unanim-

ity requirement and varying the jury size. We investigate how different combinations

1In the leading 1898 case Thompson v. Utah, the Court construed the Sixth Amendment to require
that in all criminal cases, a jury must be comprised of exactly 12 persons.
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of these two institutional variables affect the probabilities of accurate verdicts, wrong-

ful verdicts, and hung juries. Our results reveal that jury size and voting requirements

should inversely depend on one another: large non-unanimous juries or small unani-

mous juries are alternative solutions to maximize the accuracy of verdicts. We discuss

these findings in the light of recent legal transformations to jury structure and we offer

insights for policy analysis.

The paper is organized as follows. Section 2 briefly reviews the legal and economic

backgrounds on jury design. Section 3 presents the criminal trial model. Section 4

introduces a numerical example to investigate how different combinations of a jury’s

institutional characteristics affect the probability of wrongful convictions and wrongful

acquittals, as well as the ability for the jury to reach a deliberation. Section 5 concludes

with a discussion of our results and their relevance for policy purposes.

2 Related Literature

For the last six centuries, criminal verdicts have been rendered by juries composed

by 12 members, deliberating unanimously. In recent years, the U.S. Supreme Court has

granted states the freedom to reduce the size of juries and to relax the juries’ voting

requirement, allowing non-unanimous verdicts. The changes have taken place through

a series of cases decided by the U.S. Supreme Court between 1968 and 1979. In one of

these cases, the well-known Williams v. Florida,2 the Supreme Court recognized that a

verdict rendered unanimously by fewer than 12 jurors was not necessarily inconsistent

with the Constitutional right to have a trial by jury. In a subsequent decision, Ballew

v. Georgia,3 the Supreme Court set a lower limit on jury size, affirming that any jury

with fewer than 6 members would be unconstitutional because it would be too small to

be representative of the relevant community.

Other important changes took place with respect to the jury’s voting requirement.
2Williams v. Florida, 3399 U.S. 78. (1970).
3Ballew v. Georgia, 435 U.S. 223 (1978).
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Unanimity for criminal verdicts has generally been viewed as an important requirement

to preserve the public confidence in the criminal justice system, since wrongful convic-

tions of innocent defendants are less likely under unanimity (Coughlan, 2000).4 How-

ever, unanimity allows any single juror to veto a proposed verdict and single-handedly

lead to a mistrial. The increasing administrative and financial cost of mistrials led some

states to consider criminal justice reforms that relaxed the unanimity requirement.5

These state reforms were challenged at the federal level.

In the leading cases — Duncan v. Louisiana, Johnson v. Louisiana, and Apodaca

v. Oregon — the U.S. Supreme Court ruled that verdicts reached under a qualified ma-

jority rule do not violate the U.S. Constitution.6 This gave states the flexibility to

pursue criminal justice reforms by allowing verdicts to be reached under a qualified

majority rule. In 1979, Burch v. Louisiana held that states could reduce jury size or

lessen the voting requirement but could not do both at the same time: non-unanimous

verdicts could only be rendered by juries of 12, and smaller juries could only deliberate

unanimously.7 As of today, only the states of Oklahoma, Oregon, and Louisiana allow

non-unanimous verdicts in misdemeanor cases; Oregon and Louisiana allow them also

in felony cases.8

The abolition of the unanimity requirement for criminal verdicts was met with

a mixture of approval and skepticism. Supporters viewed non-unanimous decision-

making as a possible solution to the hung-jury problem (e.g., Amar, 1994; Glasser,

1996; Morehead, 1997). Opponents viewed the abolition of the unanimity requirement

4See Rule 31 of the Federal Rules of Criminal Procedure.
5See, for example, the multi-phased Hannaford-Agor et al.’s (2002) NCSC research on mistrials,

motivated by the concern that mistrials were reaching unacceptably high levels in some jurisdictions. See
also Kalven and Zeisel’s (1966) study of the American jury, which briefly discussed the phenomenon of
mistrials in criminal cases.

6See Duncan v. Louisiana, 391 U.S. 145 (1968); Apodaca v. Oregon, 406 U.S. 404 (1972); Johnson
v. Louisiana, 406 U.S. 356 (1972).

7Burch v. Louisiana, 441 U.S. 130 (1979).
8See Oregon Revised Statutes §136.450, and Louisiana Laws Code of Criminal Procedure 782. Sev-

eral states permit non-unanimous verdicts in civil trials. See State Court Organization, 1998, Figure 42
(Trial Juries: Size and Verdict Rules). For a more extensive discussions on these state regulations and
mistrials, see Hannaford-Agor et al. (2002) and Luppi and Parisi (2013).
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as a violation of a fundamental principle of criminal justice for the protection of inno-

cent defendants (e.g., Kachmar, 1996; Smith, 1996; Klein and Klastorin, 1999).9 The

views in the literature are split, revealing an objective difficulty in balancing the policy

goals of accuracy in adjudication and reduction of the costs of criminal justice.

Several law and economics contributions have investigated the effects of changing

jury size on the expected trial outcomes. A central argument in the literature on juries

and jury decision-making is that a group will make a better decision than an individual

(Condorcet’s Jury Theorem). Some contributions refined the Condorcet’s Jury Theorem

and demonstrated that, under certain conditions, this theorem does not hold (e.g., in

the presence of strategic voting, as shown by Feddersen and Pesendorfer, 1998). For

example, larger, unanimous juries may be more likely to reach an accurate deliberation,

but may fail to reach any decision at all. Hence, a tradeoff emerges between accuracy

and decisiveness (Luppi and Parisi, 2013). Notwithstanding the widespread adoption of

smaller juries in state criminal courts, statistics indicate that overall mistrial rates have

not declined (Kalven and Zeisel, 1966; Hannaford-Agor et al., 2002). A few empirical

studies have attempted to evaluate how jury size affects trial results. Most of them

concluded that there is no detectable difference between 6-member and 12-member

juries with respect to mistrial rates (e.g., Hannaford-Agor et al., 2002; Eisenberg et al.,

2005). By contrast, experimental studies and statistical models on jury size found that

jury size does affect trial outcomes and jurors’ behavior (e.g., Mukhopadhaya, 2003;

Helland and Raviv, 2008; Guarnaschelli et al., 2000). For example, Guarnaschelli et al.

(2000) revealed that larger juries may convict fewer innocent defendants than smaller

juries under unanimity.

Our key original contribution to the literature is the specification of a different ob-

9See also Ben-Yashar and Nitzan (1997), proving that the optimal rule for fixed-size committee in
dichotomous choice situations is the qualified weighted majority. Feddersen and Pesendorfer (1998)
showed that, when jurors behave strategically, the probability of convicting the innocent in large juries
is higher under the unanimity rule than under qualified majority rules. When there is uncertainty about
jurors’ preferences, in the presence of strategic jurors with private information the unanimity rule may
still be preferable to protect innocent defendants against wrongful convictions (Luppi and Parisi, 2013).
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jective function that should guide the design of juries. While previous studies focused

on either jury size or voting requirement, in this paper we reveal the crucial interdepen-

dence of these two variables and we analyze their optimal combination in minimizing

the probabilities of wrongful convictions and hung juries.

3 Criminal Trial Model

In this section we construct a simple model of the criminal trial process to analyze

how varying jury size and voting requirement affects different expected trial outcomes.

Our model relies upon Neilson and Winter’s (2005) theoretical setup, with the main

difference that we vary not only voting requirements, but also jury size.10

We consider a criminal trial where nature chooses whether or not the defendant

committed a crime (guilty), and the strength of evidence that is found against the de-

fendant. Let P(G) denote the probability that nature chooses the defendant to be guilty

and 1−P(G) the probability that nature chooses the defendant to be innocent. Let s

be the strength of evidence found against the defendant, whereby stronger evidence is

associated with a higher probability of guilt. Let f (s|G) and f (s|I) be the probabil-

ity density functions of the strength of evidence given that the defendant is guilty or

innocent, respectively – and let F(s|G) and F(s|I) be the corresponding cumulative

functions. The two density functions are represented in Figure 1.

The traditional standard of proof in criminal trials in the United States is proof

beyond a reasonable doubt, where each juror must individually believe in the guilt of

the accused beyond any reasonable doubt.11

As in Neilson and Winter (2000, 2005), to model the reasonable-doubt standard we

assume that some evidence is inconsistent with an innocent defendant. Specifically,

10For a similar formulation of the court’s problem, see also Rubinfeld and Sappington (1987).
11The beyond a reasonable-doubt standard has been used in criminal trials since at least the 1700s. It

was adopted by most jurisdictions even before the case In re Winship (397 U.S. 358, 1970) and recog-
nized it as a constitutional requirement.
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Figure 1: The distribution of evidence (Neilson and Winter, 2000, 2005)

an innocent defendant can generate evidence in the interval [0,sI], whereas a guilty

defendant can generate evidence in the interval [sG,1], with 0≤ sG < sI < 1. If a juror

observes s ≥ sI , that juror can state that the defendant is guilty beyond a reasonable

doubt. The opposite holds when s < sI . Put another way, sI represents the reasonable-

doubt standard threshold.12

Analytically, this is equivalent to assuming that the probability density function

for a guilty defendant first-order stochastically dominates the probability distribution

function of an innocent defendant. Thus, under first-order stochastic dominance, it

is more likely to find incriminating evidence for a guilty defendant than an innocent

12The reasonable-doubt standard threshold follows from Judge Blackstone’s dictum, that it is “better
that ten guilty persons escape than that one innocent suffer” (Blackstone, 1769). Blackstone’s ratio of
10 to 1 – or any variation of such ratio in state case law (Rizzolli and Saraceno, 2013; Pi et al., 2019)
– follows from the fact that a wrongful conviction in criminal adjudication (convicting the innocent) is
perceived to be worse than a wrongful acquittal (acquitting the guilty). For a discussion on the standard
of proof in criminal law, see, e.g., Garoupa (2017) and Wickelgren (2017). Variations in the standard of
proof may impact the optimal combination of jury size and voting requirement, and vice-versa. For an
analysis on the optimal standard of proof in conjunction with alternative combinations of jury size and
voting requirements, see Guerra et al. (2019).
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defendant.13 Graphically, the first-order stochastic dominance is represented by the fact

that the f (s|G) distribution is shifted further to the right than the f (s|I) distribution.14

As in Neilson and Winter (2005), we introduce juror heterogeneity by assuming

that they do not directly observe the true evidence s, but they rather observe signals of

varying strength related to the evidence.15 Juror heterogeneity is a necessary assump-

tion: if all individual jurors were perfectly able to observe the true strength of evidence,

juries would always reach unanimous verdicts. However, this is not the case in real-

world criminal trials, as the actual rates of hung juries and judicial errors show (e.g.,

Hannaford-Agor et al., 2002). Each juror assesses evidence differently and, as a result,

can express different opinions when deliberating for a verdict.

Specifically, each juror has a probability π of receiving a strong signal of incrim-

inating evidence, sS = s+ x, with x ≥ 0, and a probability 1−π of receiving a weak

signal of incriminating evidence, sW = s− y < sS, with y ≥ 0. A juror who receives

the strong signal votes to convict if sS ≥ sI , that is, if s ≥ sI − x, as represented in

Figure 1. A juror who receives the weak signal votes to convict if sW ≥ sI , that is, if

s ≥ sI + y, as represented in Figure 1. Basically, a juror receiving the strong signal is

more likely to believe that the defendant is guilty beyond any reasonable doubt than is

a juror receiving the weak signal.

Let N ∈ [3,12] denote the size of a jury, ranging between a 3-member jury and a

12-member jury. This allows us to determine when a jury with fewer than 6 members –

which is the lower limit set forth by the U.S. Supreme Court – could be warranted. Let

m ∈ [0.5,1] denote the required percentage of votes to reach a verdict. For the majority

13The assumption of first-order stochastic dominance has also been used by Rubinfeld and Sappington
(1987); Miceli (1990); Miceli (2009, p.125); and Feess and Wohlschlegel (2009).

14Formally, for any evidence level s, f (s|G)≥ f (s|I). Equivalently, in terms of cumulative distribution
function, F(s|G) ≤ F(s|I). Note, in the following analysis, as jury design changes the shapes of the
functions, f (s|I) and f (s|G) remain unchanged. For a similar setting, see Miceli (1990), Neilson and
Winter (2005), and Rizzolli and Saraceno (2013).

15This is equivalent to assuming that jurors observe s with bias, as in Neilson and Winter (2000), or
that jurors hold different beliefs about the true strength of evidence, as in Feddersen and Pesendorfer
(1998) and Guarnaschelli et al. (2000). For other forms of juror heterogeneity, see, e.g., Arce et al.
(1996); Alpern and Chen (2017).
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rule case, mN is the least integer greater than N/2; for the unanimity case, m = 1.16

Let B(mN,N,π) denote the binomial probability distribution of having at least mN

jurors receiving the strong signal, where m is the majority requirement. Put another

way, let PC denote the probability that the jury is entirely prone to convict, with PC =

B(mN,N,π). Similarly, let PA denote the probability that the jury is entirely prone to

acquit (or, equivalently, the probability that mN jurors receive the weak signal), with

PA = B(mN,N,1−π). The probability that a jury is neither entirely prone to convict

nor entirely prone to acquit is PB = 1−PA−PC.

We can now derive the probabilities of a wrongful conviction, a wrongful acquittal,

and a hung jury in a single trial.17

A wrongful conviction occurs when: (a) the defendant is innocent, which occurs

with probability 1−P(G); (b) the jury is likely to convict (or, equivalently, mN jurors

receive the strong signal), which occurs with probability PC; and (c) the evidence is

sufficiently strong to meet the reasonable-doubt standard, that is s≥ sI−x. Putting this

all together, the probability of a wrongful conviction PWC is given as:

PWC = [1−P(G)][1−F(sI− x|I)]PC (3.1)

A wrongful acquittal occurs when: (a) the defendant is guilty, which occurs with

probability P(G), but (b) the evidence is not strong enough to convict him. Formally,

the probability of a wrongful acquittal PWA is given as:

PWA = P(G)[PAF(sI + y|G)+(1−PA)F(sI− x|G)] (3.2)

16For the purpose of our analysis, we assume that a jury reaches a decision by taking a simultaneous
vote, that is, jurors ignore any group strategy aspects and decide independently from other jurors. This
means that jurors do not vote against their signal: if a juror receives a guilty (innocent) signal, he votes
to convict (acquit). This assumption – which is the behavior assumed by Condorcet – allows us to
isolate the role of our two institutional variables from the possible effects of signaling and informational
cascades (e.g., Luppi and Parisi, 2013), and the possibility of strategic voting of jurors (e.g., Ladha,
1992; Feddersen and Pesendorfer, 1998; Kaniovski and Zaigraev, 2011).

17For the purpose of the present analysis, we focus on the outcome of a single trial. Our basic frame-
work can be extended to consider appeals and retrials. See Neilson and Winter (2005).
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The first term within the squared brackets is the probability that at least mN jurors

receive the weak signal (PA) and the evidence is not enough strong to convict (s <

sI + y). The second term is the probability that at least mN jurors receive the strong

signal (PC), or receive both the strong and weak signals (1−PC−PA), but the evidence

is not enough strong to convict (s < sI− x).

The probability of a wrongful verdict is given by PW = PWC +PWA.

A hung jury occurs (a) if the jury is neither entirely prone to convict nor entirely

prone to acquit, which happens with probability PB = 1−PA−PC, and (b) if the true

strength of evidence is sufficiently close to the reasonable-doubt standard, i.e., it ranges

between sI − x and sI + y (the hung jury range, as shown in Figure 1). In this range,

jurors who receive the strong signal vote to convict, and those who receive the weak

signal vote to acquit, resulting in a mistrial. Formally, the probability of a hung jury PH

is given as:

PH = [1−P(G)][1−F(sI− x|I)]PB +P(G)[F(sI + y|G)−F(sI− x|G)]PB (3.3)

where the first term is the probability of a mistrial when the defendant is innocent, and

the second term is the probability of a mistrial when the defendant is guilty.

From the equations above, it is straightforward to derive the probability of an accu-

rate verdict, that is PV = 1−PW −PH .

The social loss function – which depends on the social costs of a wrongful convic-

tion, of a wrongful acquittal, and of a mistrial – can be expressed as following:

min
N,m

L(N,m) = PWCCWC +PWACWA +PHCH (3.4)

where CH , CWA, and CWC are the monetary social costs for a hung jury, wrongful ac-

quittal and wrongful conviction, respectively.18

18As in Neilson and Winter (2000), the administrative costs of increasing N are omitted. The social
function in Equation (3.4) is similar to the social loss function considered by Miceli (1990). The main
differences are that Miceli (1990) did not analyze jury size and voting requirement as factors influencing
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The objective of the social planner is to minimize the social loss as expressed in

Equation (3.4) by optimally choosing jury size and voting requirement. In the next

section, we analyze how different combinations of the two aforementioned institutional

variables affect accuracy in adjudication and probability of mistrials through changes

in PWC,PWA, and PH .

4 Optimal Jury Size and Voting Requirement

In this section, we analyze how different combinations of jury size and voting re-

quirement affects expected trial outcomes. We use a numerical example to explore the

implications of the model depicted in Section 3.19

Following Neilson and Winter (2000, 2005), in the numerical analysis we assume

that sG = 0.4 and sI = 0.6, and that f (s|I) and f (s|G) follow a triangular distribution.

We also assume that P(G) = 0.8, and that the signals toward conviction and the signals

toward acquittal are of equal magnitude, x = y = 0.05. These parameters yield the

probability of mistrial to range between 0% and 10%, which is consistent with stylized

facts.20

We focus on the relative probability of different trial outcomes, without resorting to

any restrictive assumptions on the relative magnitude of CWC, CWA, CH introduced in

the social function (3.4). This allows us to engage in a positive economic analysis on

accuracy of decisions, and omitted to consider the costs associated with mistrials. Our social function
is also comparable to the social loss function considered by Neilson and Winter (2000). The main
differences are that Neilson and Winter (2000) did not analyze how different combinations of jury size
and voting requirement affect the accuracy of adjudication and the probability of mistrials.

19We use a numerical example for several reasons. As pointed out by Urken and Traflet (1983),
numerical example depict scenarios that we can expect under idealized conditions. As in Neilson and
Winter (2005), it is here impossible to derive simple mathematical characterizations (e.g., comparative
statics derivatives) because variations in the voting requirement, and/or in jury size, make the binomial
distributions to change in discontinuous ways.

20For example, among others, Klaven and Zeisel (1966) found a hung jury rate of 5.5% in their sample
of more than 3,500 criminal trials. Flynn (1977) and Hannaford et al. (1999) analyzed criminal trials in
California and found hung jury rates to often exceed 10% and even 20%. Hannaford-Agor et al. (2002)
further examined hung jury rates in federal and state courts, finding an average rate between between 2%
and 3% in federal state courts, and of approximately 6% in urban state courts.
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the accuracy and effectiveness of jury decision-making, avoiding normative or ethical

considerations on desirability of alternative jury structures.

Let us start by discussing the benchmark case of varying jury size under unanimous

verdicts. By restating the Condorcet’s jury theorem under unanimity, we obtain the

following lemma:

Lemma 4.1 (Jury-Size Effect). The probability of a wrong verdict decreases in jury

size. However, given the greater incidence of mistrials, the probability of reaching an

accurate unanimous verdict decreases in jury size.

Lemma 4.1 unveils an interesting paradox. Larger juries are less likely to be wrong

but are also less likely to reach an accurate verdict, because of the greater difficulty in

deliberating unanimously. An increase in the majority required for a verdict reduces

the probability of wrongful convictions but leads to an increase in mistrial.

Next, let us discuss the implications of varying the voting requirement under a given

jury size.

Lemma 4.2 (Voting Requirement Effect). For any given jury size, the probability of

a wrong verdict decreases with the required majority, whereas the probability of a

mistrial increases with the required majority.

Similar to what we observed in Lemma 4.1, we can see that changes in the voting

requirement have a double-edged effect. Relaxing a jury’s voting requirement (i.e., al-

lowing non-unanimous verdicts) facilitates the reaching of a verdict, but at the same

time increases the probability of adjudication errors. As the majority requirement is re-

duced, more verdicts will be reached, but wrongful convictions (wrongful convictions)

and wrongful acquittals (wrongful acquittals) will also increase.

The effect of changes in jury size and voting requirements are quantitatively sim-

ilar, but as it will be discussed in Section 4, they are qualitatively different. The two

alternative modifications to jury structure allowed by the U.S. Supreme Court under

Burch v. Louisiana have different effects on juries’ accuracy in criminal adjudication.

12



4.1 Smaller Unanimous Juries vs. Larger Non-Unanimous Juries

As a first step, we consider the constraint sets out by the U.S. Supreme Court in

Burch v. Louisiana on jury size and voting requirements. Based on that decision, state

courts are not allowed to modify jury size and voting requirement at the same time.

In the following, we consider the respective advantages of reducing jury size (under

unanimity) and relaxing the unanimity requirement (in a 12-member jury).

Figure 2: Reducing Jury Size versus Relaxing Voting Requirement

(a) Reducing Jury Size

4 6 8 10 12
N

0.02

0.04

0.06

0.08

0.10
pW,pH

Probability of Wrong Verdicts under Unanimity

Probability of Mistrials under Unanimity

(b) Relaxing Unanimity

0.6 0.7 0.8 0.9 1.0
m

0.02

0.04

0.06

0.08

0.10
pW,pH

Probability of Wrong Verdicts under 12-Member Jury

Probability of Mistrials under 12-Member Jury

Notes. Figure 2 plots the probability of wrongful verdicts (pW ) and the probability of hung jury (pH ) as
functions of jury size N (Figure 2a) and voting requirement m (Figure 2b).

Figure 2 compares the two alternative jury structures allowed by Burch v. Louisiana,

under the parameters of our example. Specifically, Figure 2a shows how changes in

jury size N affect trial outcomes under unanimity. Figure 2b shows how changes in the

voting requirement m affect expected trial outcomes in 12-member juries.

These results validate the restatements of Condorcet’s Jury Theorem under unanim-

ity: the probability of a mistrial increases with jury size (Lemma 4.1). However, the

probability functions indicate that varying jury size under unanimity has a relatively

small impact on the probabilities of mistrials (Figure 2a). Conversely, relaxing the vot-

ing requirement can more significantly mitigate the problem of mistrials (Figure 2b).
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Further, any marginal change in jury size (under unanimity) or any marginal change

in voting requirement (in a 12-member jury) have a negligible impact on the probabil-

ity of wrong verdicts (either wrongful conviction or wrongful acquittals), as shown in

Figure 2b.

These results can be summarized in the following proposition:

Proposition 4.3. Relaxing the unanimity requirement is a more effective alternative to

restricting jury size.

Another way to look at Burch v. Louisiana’s trade-offs is to focus on a jury’s overall

accuracy in reaching a verdict. Figure 3 shows that, for a given voting requirement

changing jury size has a relatively small impact on the accuracy of verdicts (Figure 3a),

compared to a change in the voting requirement keeping jury size unchanged (Figure

3b). Relaxing unanimity yields greater net benefits compared to a reduction in jury size.

Variations in the accuracy of verdicts are mainly driven by variations in the probability

of mistrials: when fewer cases end in mistrials, more verdicts are rendered, some of

which are correct.

Figure 3: Accuracy of Verdicts Under the Burch v. Louisiana Constraints

(a) Reducing Jury Size

4 6 8 10 12
N

0.86

0.88

0.90

0.92

0.94

pV

Prob. of Accurate Verdicts under Majority Req.

Prob. of Accurate Verdicts under Unanimity

(b) Relaxing Unanimity

0.5 0.6 0.7 0.8 0.9 1.0
m

0.86

0.88

0.90

0.92

0.94

pV

Prob. of Accurate Verdicts under 6-Member Jury

Prob. of Accurate Verdicts under 12-Member Jury

Notes. Figure 3 plots a jury’s probability of reaching an accurate verdict, pV as a function of jury size N
(Figure 3a) and voting requirement m (Figure 3b).

The accuracy of verdicts is higher in the presence of non-unanimous juries, whereby

varying jury size does not significantly alter the result. Relaxing the unanimity require-
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ment while keeping the 12-member jury size unchanged is a solution the U.S. Supreme

Court allows under Burch v. Louisiana, which has interestingly been adopted only by

three states for misdemeanor cases and only two states for felony cases. Our results

suggest that this solution, albeit less popular among U.S. jurisdictions has some advan-

tages over the more popular alternative of jury-size reduction.

In the following, we will move beyond the constraints set forth by Burch v. Louisiana

to investigate the extent to which it might be desirable to allow the unanimity require-

ment to be relaxed even in the presence of smaller juries.

4.2 Beyond Burch v. Louisiana

In this section we abstract away from the constraint set forth by Burch v. Louisiana

to consider different combinations of jury size and voting requirements. We will exam-

ine the effects of relaxing both the 12-member jury size and the unanimity requirement

on the accuracy of verdicts.

Figure 4 shows how different combinations of jury size and voting requirement

affect the accuracy of verdicts, the probabilities of wrongful acquittal and of wrongful

conviction, as well as the probability of a hung jury.

Figure 4a depicts the core of Proposition 4.3: relaxing the unanimity requirement

can increase the accuracy of verdicts. Furthermore, relaxing unanimity can substan-

tially reduce the probability of mistrials (Figure 4d). The effect of a change in the vot-

ing requirement on wrongful convictions and wrongful acquittals is instead relatively

small for any jury size (Figures 4b and 4c).

In economic terms, this implies that a small departure from the unanimity rule is

capable of generating large benefits with respect to mistrial rates, with no substantial

increase in adjudication errors. In contrast, a reduction in jury size only generates

a modest reduction in mistrial rates, with a more noticeable increase in error rates.

Changes in voting requirement and jury size have asymmetric effects on social welfare.

Along the optimal jury frontier, jury size and voting requirements inversely depend
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Figure 4: Optimal Jury Size and Voting Requirement to Maximize Accuracy of Verdicts

(a) Probability of Accurate Verdicts
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(b) Probability of Wrongful Convictions
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(c) Probability of Wrongful Acquittals
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(d) Probability of Hung Jury
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Notes. Figure 4 plots the probabilities of alternative trial outcomes as functions of jury size N and voting
requirement m.

on one another, as stated in the following proposition:

Proposition 4.4. The accuracy of verdicts is maximized when the majority requirement

increases as jury size decreases, and vice-versa.

The probability of adjudication errors (convicting an innocent or acquitting a guilty)

is minimized by requiring unanimous verdicts for small juries, while allowing non-

unanimous verdicts with large juries. The probability of a mistrial is minimized if the
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unanimity requirement is relaxed, regardless of jury size. Hence, to minimize the prob-

ability of a mistrial, the adoption of a majority rule is more effective than a reduction

in jury size. This result is in line with the empirical evidence on mistrial rates: Oregon

and Louisiana, the two states allowing majority verdicts in felony cases, had about half

the mistrial rates of the states that adjudicated felonies requiring unanimity, while states

that reduced jury size did not observe any noticeable decrease in mistrial rates (Luppi

and Parisi, 2013).

If the sole social objective is to minimize the probability of a wrong verdict, the

unanimity requirement is always optimal regardless of jury size.21 When additional ob-

jectives are taken into account, unanimity is strictly preferable in small juries, whereas

majority voting could be a superior alternative in large juries, since adjudication errors

are less likely in large juries. These findings provides a rationale for the constraints

introduced by the U.S. Supreme Court in Burch v. Louisiana. Even in the absence of

Burch v. Louisiana, a combined use of small juries and non-unanimous verdicts would

not be desirable as a policy matter.

As a final remark, it is worth further distinguishing between the probability of

wrongful convictions and wrongful acquittals. Variations in jury size and voting re-

quirements have a relatively small impact on the probability of wrongful convictions,

the magnitude of which ranges in a narrow interval. The impact of variations in jury

size and voting requirement on the probability of wrongful acquittals is instead greater.

We show that in general, the probability of both types of errors is lower under unanim-

ity or in the presence of a large jury. This is in line with Neilson and Winter (2005), and

it is driven by a combination of the following parameters set in our numerical example:

the probability that a defendant is innocent is 20%; the reasonable-doubt standard of

21Helland and Raviv (2008) stated that, under specific conditions and if jury deliberation follows a
random walk, the probability of wrongful convictions and wrongful acquittals is not sensitive to the
number of jurors, and is equal to the probability that a single juror would commit these errors. Helland
and Raviv (2008) concluded that, since the number of jurors in a trial increases cost, the optimal number
of jurors per trial is one. In this paper, we demonstrate that the optimal jury size depends on voting re-
quirement, and vice versa. The optimal combinations of these institutional characteristics should balance
the probability of adjudication errors and the probability of mistrials.
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s≥ sI is severe; only a jury entirely prone to conviction can convict an innocent person.

This yields wrongful convictions to be a relatively unlikely event, which is one of the

main objectives of the legal system. Hence, using larger juries or requiring unanimous

verdicts has a limited impact on the probability of convicting an innocent defendant

while more substantially increasing the probability of acquitting a guilty defendant.

5 Discussion and Conclusion

Let us now step back to review the previously stated results from a bird’s-eye per-

spective. Our findings help evaluate the effect of the changes to jury structure that have

been brought about by the U.S. Supreme Court and state legislation. The results on

the capacity of a jury to reach an accurate verdict taken in isolation provides an eco-

nomic rationale for the constraints introduced by the Burch v. Louisiana decision. Large

non-unanimous juries or small unanimous juries are alternative ways to maximize the

accuracy of verdicts while preserving the functionality of juries. In the choice between

these alternatives, the unanimity rule has been retained by the large majority of jurisdic-

tions and it is almost universally required in capital murder cases given the severity of

the consequences resulting from wrongful convictions. In these cases the probability of

convicting an innocent should be kept to a minimum, avoiding as much error as possi-

ble. Notwithstanding the limited adoption of non-unanimous juries in U.S. state courts,

our results lend support to the elimination of the unanimity requirement in the presence

of large juries: as we move away from capital murder cases, combining a qualified ma-

jority rule with larger juries would seem desirable, inasmuch as the undesirability gap

between wrongful convictions and wrongful acquittals narrows. Furthermore, our pa-

per shows that under certain parameters, optimal jury size can fall below the lower-limit

of 6 members set by the U.S. Supreme Court in the Burch v. Louisiana case.

Our result on the capacity of a jury to reach a verdict largely aligns with the con-

ventional wisdom in the existing literature. The use of smaller juries could reduce the
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probability of a single juror causing a deadlock and thus facilitate the reaching of ver-

dict: small juries may be desirable to empower the jury with the capacity to reach a

verdict.

Future research in this field should extend our analysis to investigate how optimal

jury design would change when considering retrials (Neilson and Winter, 2005), corre-

lated votes (Rubinfeld and Sappington, 1987), endogenous social values of adjudication

errors (Miceli, 1990), behavioral cascades (Luppi and Parisi, 2013), and strategic vot-

ing by jurors (Feddersen and Pesendorfer, 1998). For all these extensions, our model

could usefully serve as a building block for the understanding of more complex jury

decision-making scenarios.

Finally, as shown in Pi et al. (2019), the choice of different Blackstonian ratios by

U.S. jurisdictions indirectly implies the jurisdiction’s commitment to different “beyond

a reasonable doubt” thresholds. The next objective in our research agenda is to explore

how the jurisdictions’ choices of different standards of proof should influence their

choices regarding jury size and voting requirements (Guerra et al., 2019).
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