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Abstract: In this study, we analyze how crop management will benefit from the Internet of Things
(IoT) by providing an overview of its architecture and components from agronomic and technological
perspectives. The present analysis highlights that IoT is a mature enabling technology with articulated
hardware and software components. Cheap networked devices can sense crop fields at a finer grain
to give timeliness warnings on the presence of stress conditions and diseases to a wider range of
farmers. Cloud computing allows reliable storage, access to heterogeneous data, and machine-
learning techniques for developing and deploying farm services. From this study, it emerges that
the Internet of Things will draw attention to sensor quality and placement protocols, while machine
learning should be oriented to produce understandable knowledge, which is also useful to enhance
cropping system simulation systems.

Keywords: Internet of Things; sensors; cloud computing; crop management; smart farming

JEL Classification: Q16; O13; O31

1. Introduction

Though agriculture is recognized as a fundamental activity for all activities of
mankind [1], it has had difficulties in accessing technology until the Green Revolution
(GR), which led it to a (irreversible) new concept of agriculture. Machinery and chemicals
were brought to agriculture to face environmental and sustainability problems, and other
injections of technology have been claimed to solve them. Advances in remote sensing
and Information and Communication Technologies (ICT) fostered Precision Agriculture
(PA), relying on satellite-based geo-referencing, remote sensing, and imagery for surfaces
survey and variable-rate applications, recently operated by autonomous vehicles [2,3].
Computers began to appear in farmers’ everyday lives to host Farm Management Informa-
tion Systems (FMIS) [4,5] formerly entailing administrative, accountancy, and warehouse
management tools. FMISs of the last generation include the Geographical Information
System [6] and Decision Support Tools (DST [7,8]). The latter is often based on Cropping
System Simulators (CSS), born for learning purposes and later used for irrigation schedul-
ing [9], hydrologic watershed management [10], and pest [11] and disease prediction [12].
The Internet, whose impacts on agriculture was envisaged more than twenty years ago [13],
allowed FMISs to become outsourced services (e.g., for irrigation service managed by farm-
ers associations) that profited from the growing amount of networked information (e.g.,
weather networks). The diffusion of Wireless Networks led to a number of applications rec-
ollected under the name of Smart Farming (SF) [3], centered on distributed Wireless Sensor
Networks (WSNs) of sensors and actuators [14]. Major applications of SF are in high-value
cropping systems such as greenhouse crops and vineyards [15]. Smart Agriculture (SA)
extended the concepts behind SF to every actor of the agri-food supply-chain and their
stakeholders [16]. Cloud Computing raised former problems of data ownership and em-
ployed leading software producers to follow different policies. Recently, the awareness of
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the added value of data redundancy and data-exchange in problem solving has grown [17].
Cloud Computing already signed the beginning of a new age [18] and of the birth of the
Internet of Things (IoT).

The first definition of IoT can be credited to Ashton et al. [19], who defined it as
“an open and comprehensive network of intelligent objects that have the capacity to auto-
organize, share information, data and resources, reacting and acting in face of situations and
changes in the environment”. Such “intelligent objects”, later called “things”, refer to every
physical and/or software devices that are identifiable and connected to a network with
processing, sensing, and acting capabilities [20,21]. During the last two decades, IoT has
become a consolidated reality consisting of a collection network of devices connected in a
dynamic (and commonly asynchronous) environment, enabling the possibility to provide
a massive amount of information to feed machine learning algorithms and may also react
proactively to environmental stimuli operating on actuators aimed at minimizing human
involvement [22]. IoT is invading every sector of everyday life and, despite the belief that
it is just at the beginning of Gartner’s IT development curve [23], IoT has already been
adopted by a considerable number of USA farms [5]. A recent analysis [24] estimated that
in 2027, the sector will be worth 34 billion USD, with an expected increase in productivity
of up to 70% by 2050 [25]. IoT is the technology characterizing Agriculture 5.0 (Figure 1).

IoT

robots
imaging

SFFMIS

clouds WN
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satellites gps

actuators

gis

metering
Figure 1. Major recent technologies involved in Agriculture 5.0. IoT—Internet of Things; PA—
Precision Agriculture; FMIS—Farm Management Information Systems; WN—Wireless Networks;
SF—Smart Farming; gis—geographic information systems; GPS—Global Positioning System.

The objective of this work is to draw a big picture of IoT and current solutions adopted
in crop management from an interdisciplinary perspective, with the aim to reveal gaps and
future directions. Two main questions are addressed: how is IoT going to improve crop
management? Is IoT offering new solutions to crop management problems?

In this analysis, an overview of the architecture of IoT systems is given in Section 2,
a synthesis of crop management practices with references to IoT is presented in Section 3;
we discuss solution designs to highlight the benefits and weaknesses of IoT technology
in crop management, together with open directions in Section 4. Finally, we draw the
conclusions in Section 5.

2. Architecture of an IoT system

Since its introduction, the term IoT has been often misused. Some refers to IoT as
its application in Industry 4.0 [26], others to its enabling factors: physical devices, internet,
and cloud computing.

IoT has witnessed many independent conceptualizations and architectures. We refer
to the well-known architecture discussed in [27] (Figure 2) that consists of four independent
layers (i.e., groups of functionalities) perception, network, service, and application. In this sec-
tion, we introduce the main functionalities of the first three levels, while actual applications
in crop production (e.g., smart fertilization and watering) are detailed in Section 3.
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Figure 2. Architecture of an Internet of Things system (inspired by [27]); this also reflects the structure
of the survey.

2.1. Perception Layer

The perception layer is oriented to connect “things” to the “CC” system, and acquires
and processes physical signals into data that will be transmitted by the network layer.

Though IoT is a construction of Information Technology, its backbone is represented
by hardware devices used to monitor and control the environment remotely (e.g., home
automation) [28]. All of these cases are characterized by a core technology, made of
internet-connected microcontrollers, whose major differences are given hereafter.

• Power—When far from power infrastructures (inside a building or engine vehicle),
IoT devices need to be self-powered, which often means that they should host few
sensors and stay awake for a short time: Low-Power IoT devices [29] are designed
to be in a sleeping state for most of the time, and recently, there has been a growing
interest in batteryless devices [30].

• Connectivity—An aspect related to power features and the amount of data to be commu-
nicated (payload); more diffused IoT-boards integrate/support radio modules for most
diffuse networks (see Table 1). A relevant interest exists in Low-Power Networks whose
IoT-oriented standards involve several organizations [31]. A point not to be forgotten
when choosing the board to be used for a given solution is the purpose of observation
and the need for bidirectional communication.

Table 1. More diffused radio networks used for IoT applications, with typical coverage and frequency
(from Farooq et al. [32]). GSM—Global System for Mobile Communication.

Technology Range Frequency

Bluetooth 50–150 m 2.4 GHz
Wifi 50 m 2.4 GHz
ZigBee 10–100 m 2.4 GHz
LoRaWAN 2–5 km country dep.
Sigfox 3–50 km 900 MHz
Neul 10 m country dep.
GSM 35 km 0.9, 1.8, 1.9, 2.1 GHz

• Modules—A major aspect affecting power management is related to the need of
hosting power electronics as actuators (e.g., valves) or cameras. IoT devices comprise
a main board and several shield/interfaces (GPS, SDcard, I2C, CAN) to connect
external sensors.

• Physicality—A non-negligible aspect of a device relating to its external design [33],
which includes that of the envelope/box; in the open air, devices are directly exposed
to rain, freezing and high temperatures, hard winds, and other possible dangers which
destroy electronic circuits and mechanical parts.
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The way design aspects and choices affect one another is presented in Figure 3.

costs

envelope - box sensors - actuators

network
(coverage, fee, payload)

maintenance
(guarantees)

power
(batteries, PV)

Figure 3. Major aspects to account for in IoT device design—dashed are the impacts of design choices,
while continuous lines are their impact on costs.

The number of possible combinations of elements is so wide, and the technology so
fluid that many applications are based on prototype-oriented development boards (e.g.,
Arduino, ESP, ST), and recipes for device assembling are continuously coined (e.g., Gerber
and Romeo [33]). Quasi-industrial scale ready-to-use boards also exist, which are quite
common for metering and localization purposes.

2.2. Network Layer

The network layer is responsible for the transmission of data through the IoT system;
it routes raw data from/to the perception layer to/from the service layer. This layer
moves data using communication technologies and protocols from the internet, which
can connect any thing at any time from any place [34]. While the internet involves a
plethora of protocols, we only mention those involved in IoT systems. According to
AlFuqaha et al. [35], IoT protocols can be categorized into application, service discovery,
and infrastructure.

• Infrastructure protocols The radio networks mentioned above, besides an electric
interface, also have a logic interface corresponding to the code of signal transmit-
ted/received. Their standards, namely, IEEE 802.15.4 (WiFi), BLE (Bluetooth Low
Energy), LTE-A, Z-Wave, etc. [35], include details about frequency range and mod-
ulation, the coding of data (packets, frames, datagrams), and features affecting the
velocity of a network (see Table 2).

Table 2. More diffused radio networks used for IoT applications.

Technology Data Rate Technology Data Rate

Bluetooth 1 Mbps GMS 35–170 kbps
Wifi 600 Mbps EDGE 120–384 kbps
ZigBee 250 kbps UMTS 384 Kbps–2 Mbps
LoRaWAN 0.3–50 kbps HSPA 600 kbps–10 Mbps
Sigfox 10–1000 bps LTE 3–10 Mbps
Neul 1–100 kbps LTE-M1 10 kbps

NB-IoT 100 kbps

The greatest difference in such sense is the connection procedure: in a traditional
mobile network (such as GSM—Global System for Mobile communication) the device
could take a (relatively) long time to access a radio network, and usually send long
data packets (expensive handshakes, headers, etc.). LoRa, and especially Sigfox, on the
other hand, allow Low-Power devices to wake-up, send a message, and sleep again in
less than 1 s.

• Application protocols—They allow the exchange of chunks of data [35,36]. The most
known of them is the Hypertext Transfer Protocol (HTTP), a foundation of communi-
cation for the World Wide Web. Though not specific for IoT applications, it is still used
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for traditional approaches. On the other hand, one of the most popular IoT protocols
is represented by Message Queuing Telemetry Transport (MQTT). The Constrained
Application Protocol (CoAP) is a web-based protocol that is used in constrained nodes
and constrained networks. Extensible Messaging and Presence Protocol (XMPP) is
based on exchanges of XML (eXtensible Markup Language) messages in real-time
that are defined to connect devices to servers. Advanced Message Queuing Protocol
(AMQP) is a queuing system designed to connect servers. Data Distribution Service
(DDS) is a fast data bus for integrating devices and systems optimized for direct device
communication (noncentralized). The main differences between them can be identi-
fied on the basis of publish and subscribe mechanisms, request/response interaction,
security level, supported quality of services (QoS) mechanisms, and payload size [35].
Other characteristics of network transport protocols are reported in Table 3.

Table 3. Most relevant characteristics of network transport protocols [36] as UDP (User Data-
gram Protocol) and TCP (Transmission Control Protocol), including the latency level (real-time),
the adoption of publish/submit or request/reply patterns, and acknowledgment (broker or bus-
based). MQTT—Message Queuing Telemetry Transport; AMQP—Advanced Message Queuing
Protocol; XMPP—Extensible Messaging and Presence Protocol; DDS—Data Distribution Service;
CoAP—Constrained Application Protocol.

Characteristics MQTT AMQP XMPP DDS CoAP

Transport TCP TCP TCP TCP/UDP UDP
Real-Time no no near RT yes no
Pattern pub/sub pub/sub pub/sub pub/sub req/reply
Broker/bus broker broker bus bus broker

Other popular protocols oriented to low-power devices as LoRa (Long Range) and
Sigfox, are optimized for specific connection requirements (e.g., uni-directional) and
topologies and (e.g., decentralized).

• Service discovery—This class of protocols is used to detect devices and services
offered through a network, reducing the effort to manage dynamic IoT systems
without the need for human intervention. A well-known discovery architecture is the
Domain Name System (DNS, which maps an IP address to a human-friendly name),
which is extended by multicast DNS (mDNS) and DNS Service Directory (DNS-SD) to
discover services by type and properties [37] in zero-configuration networks. In mDNS,
resolution information is stored locally on each device, and each device directly
answers incoming name resolution queries (each device acts both as a server and a
client). DNS-SD defines how a client queries DNS servers to discover services within a
domain using the service type as a selection criterion; a client gathers the descriptions
of all services and selects the most appropriate. This reduces the scalability of the
protocol in large networks [38].

2.3. Service Layer

The service layer ensures the functionalities necessary to route data produced from het-
erogeneous devices to clouds [39–41], shared pools of on-demand network resources [42]
including storage, applications, and services at a large scale that are provisioned without
humans in the loop [43].

Cloud computing complements the limits of “things”—that are widely distributed
and have limited reliability, performance, and security [44]. The synergy of IoT and cloud
computing also lies in elasticity, i.e., the degree to which a system can adapt to workload
changes. This is of essential importance in a scenario in which things can be attached to the
IoT system at any time from any place.

IoT prevents the need to build hardware and software solutions on-premises with
high costs of installation, maintenance, and scalability.
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To make it easier, clouds host IoT “frameworks” providing data structures, interfaces,
and functionalities with the purpose of standardizing the design, implementation, and
deployment of applications, relieving users from management and technological complexi-
ties, and enabling them to focus on the functional aspects. Well-known IoT frameworks
are Amazon IoT [39], Google IoT [40], and Azure IoT [41]. A recent comparison of the
three providers has been proposed in [44]. Examples of open-source IoT frameworks are
SiteWhere [45], OpenIoT [46]. A comparison between some open source and proprietary
frameworks has been proposed in [47]. FIWARE [48] is a framework specification sup-
ported by the European Commission that standardizes the development of IoT applications
and has an open-source implementation from ORION [49]. FIWARE introduces a “Context
Broker” component, surrounded by additional (third-party) components, which can supply,
process, and visualize context data through common interfaces. All the frameworks above
cover the following services, today included in most IoT applications.

• Device management—In IoT, device management plays a fundamental role: IoT sys-
tems could consist of fleets (from hundreds to millions of devices) of devices, to be
securely accessed, and kept up-to-date. In FIWARE [48], each device type is inter-
faced by a specific agent, whose goal is to translate IoT-specific protocols into data
exchange or information necessary to control the device. Device discoverability, to-
gether with most of the meta-data information on sensors, are increasingly maintained
by ontology-based systems [50].

• Data ingestion—This refers to the gathering of raw data from things (devices) to a
repository. This process can be either performed periodically, by pulling data from
sources into the repository, or continuously, by letting sources pushing data streams
into the repository. Examples of data ingestion technologies are Kaf [51] and AWS [52].

• Data storage—Data are collected into databases, structured and persistent repositories
organized atop a single conceptual model [53], classically represented by a relational
database (e.g., W3School [54]). However, the volume, variety, and complexity of data
demand for distributed and elastic storage systems increased the usage of OORDBs
(Object Oriented Relational Data Bases, e.g., [55,56]), recently further generalized to
data lakes (e.g., examples of data lake implementations are Ama [57] and Azu [58]),
that is, central repositories where raw data are organized in zones depending on the
elaboration to which they are devoted. Data lakes store raw data, as is, into their
original format, therefore, they eliminate the up-front costs of transforming data into
a format suitable for a database, opening data access to every thing/user in the IoT
ecosystem [59].

• Data processing—Such a functional process is aimed at extracting meaningful infor-
mation from raw data. Processing may start during data ingestion, for instance when
extract, transform, and load (ETL) procedures are applied before data storage (e.g.,
transforming raw data before copying them into a relational database). Depending on
both the responsiveness and the data necessary to back the decision-making process,
data processing takes different places. We distinguish processing at embedded, edge,
and cloud computing levels (Figure 4). Indeed, processing can be carried out on a
single board (embedded computing), on network devices (edge computing), and on
remote data servers (cloud computing). Cloud computing allows highly scalable pro-
cessing at the cost of moving data from IoT devices to data centers spread worldwide;
processing can be based on data from the whole system at the cost of higher latency
that is not negligible for real-time applications. “Edge” computing brings process-
ing closer to the IoT devices by allowing data processing on internet access points
(e.g., routers). This reduces the overall network latency and allows the processing
of smaller data aggregates [35]. “Embedded” computing moves processing to the
“thing” itself, eliminating network latency at the cost of lower processing resources
(to overcome these limits, technologies such as FPGA are developed). Well-known
processing models are streaming, minibatch, and batch. Streaming allows the processing
of single data items as soon as they are pushed into the data stream. Minibatch allows



Agronomy 2021, 11, 181 7 of 18

the processing of a window (e.g., a time window) of data items pushed into the
stream. Batch processing supports the processing of large volumes of data items at
once. While the latency of stream or minibatch processing is in the order of seconds or
minutes, batch processing has latency measured in hours. Examples of frameworks
supporting distributed processing at the cloud computing level are Spark [60] and
MapReduce [61], while Google recently introduced the Global Mobile Edge Cloud [62]
to enable edge computing on 5G networks. At the embedded level, processing can be
implemented by directly programming the “things”.

S A … S S …

Thing Thing

Edge computing
(Internet)

S A … A A …

Thing Thing

Embedded computing
(On-board)

Cloud computing
(Data center)

Aggregated data
More processingcapacity

Higher network latency

Localdata
Reduced processing capacity

No network latency

Figure 4. Data processing at embedded, edge, and cloud computing levels; moving from on-board
to data center processing allows higher processing capability, broader data aggregates, and higher
network latency. Things are composed of sensors, actuators, and processing capability.

3. IoT in Crop Management

Cropping systems are characterized by ecological, economic, and social aspects, and
a farmer needs to keep all of them under control. Though recently policies, labor, and
market are relevant aspects, ecological control represents the dominant tasks of a farmer,
and it is pursued in different stages. In the setup phase of a production system, control
means choosing a cropping technology, a long-term decision determined from landscape
(e.g., terrace cultivation), climate (e.g., rain-fed crops), social aspects, resource availability,
and market organization, the combination of which generated a multitude of different
scenarios [3].

In the management practices of everyday cropping systems, adopted technologies
determine relevant differences in the ability to control the environment. The main differ-
ence in cropping systems can be identified between indoor and outdoor, investigated by
Navarro et al. [63]. In indoor systems, almost all production factors are under control:
relevant environmental variables are regulated by hydro-electro-mechanical systems that
timely supply the proper lighting, openings, fans, water, and nutrients. Only partial control
can be performed in tunnels (temperature and humidity are conditioned by openings) and
nets (used to prevent the spreading of insects, bird flights, and hail). In field crops, chances
to control environmental factors are less available. Farmers are often unarmed in front of
weather, pests, and diseases.

All of the actions mentioned—planning, scheduling, decision, and control—are based
on direct and indirect continuous observations [64] of each factor affecting production.
Here, we recall the most important ones.

• Weather—Stations are present even in many non-experimental farms. The classical
outfit is that of a climatic station: rain-gauge, temperature, and relative humidity.
In the 1970s, pan evaporimeter was also added in agro-weather stations, while ra-
diation, wind velocity/direction, and leaf wetness became more frequent from the
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1980s with the diffusion of electronic stations. Less frequent is the availability of
soil temperature.

• Water availability—Water is recognized as the most important production factor
(e.g., GRIDA [65]); in dry-summer regions (Mediterranean areas) rainfall trends
determine huge risks in growing a crop, as prolonged drought in conjunction with
high temperatures in a sensitive period (e.g., seedling, flowering) have dramatic effects
on yield. As water availability is not always an option, it has a main role in crop choice
(e.g., irrigated vs. rain-fed) and checking soil availability in terms of water content
(e.g., [66]) or soil water potential (e.g., [67]), or directly by direct observation of plant
status (IR sensors); water excess scenarios are no less dangerous to a crop: rainfall of
long duration or high intensity, as much as an unexpected hail can do no less damage
to a crop (as they do to humans); drainage systems, relevant to hydrological network
management, together with channel, storage, and distribution systems, become really
important for water supply.

• Fertility—Nutritive substances are essential for plant growth, and in many cases
fertilizer is applied along the growing season (e.g., foliage fertilizer); soil water sen-
sors often include electric conductivity, used to deduct information on soil nutrient
contents. More reliable information on the nutritional state of a crop can be obtained
from multispectral and hyperspectral camera sensors set on field cameras.

• Pests and diseases—Detecting the presence and development stage of pests and
disease, spreading of insects and weeds is fundamental in growing a single species.
A main activity of every farmer is maintaining an artificial ecosystem and preventing
its shift toward a community of species that deteriorate the quality and quantity of
expected yield. Specific sensors are available to the purpose and are already used in
agro-weather networks as leaf wetness.

• Other production-related aspects—Detectors for carbon dioxide and other gases
(IRGA) are used (mostly for research purposes) to monitor plant and soil respiration
rates, including GHG emissions; IR sensors are also used for detecting heat anomalies
(we already mentioned water stress) as the presence of flames and intrusions (PIR)
from hot blood animals, eventually integrated with cameras. Increasing is the interest
in canopy monitoring by multipurpose cameras with sensors of variable sensitivity.

• Transponders—Machines have a particular role in control. They are a part of technol-
ogy and a production factor; they need to be controlled to be in a good working state,
and under constant survey in the case of autonomous vehicles because of dangers and
damages that failures may represent for human beings, crops, and the environment.
Moreover, vehicles may host sensors for self-monitoring [68], and fields from varying
distances (UAVs), allowing the increase of spatial detail and time resolution of most
sensing tasks listed above.

3.1. Using Observations

Observations are used in production systems following the expected model and
known application schemes.

Scientific knowledge has been used to build Cropping System Simulators (CSS) based
on physical and empirical modules, with a different conceptualization and operational
level [69]. Those with a hydrological component are also used to simulate floods, erosion,
and chemical leaching. Several of these models are already embedded in automatic control
(e.g., irrigation) operating as a common “home-thermostat”, and the same is also true
for crop growth, and pest and disease forecast, this time using growing degree day and
cardinal temperatures as thresholds for growth rate of populations during each phenology
stage. CSSs are used for planning land-use, selecting crop rotations, or to forecast the
spreading of pests and diseases, to produce bulletins/alerts of extension services. However,
they often require a lot of parameters from expensive calibrations to be applied to a specific
context, and require additional modules and algorithm refinement. Further, to be used as
DSTs, simulators produce indicators and indices to be interpreted as criteria around the
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objectives with strong subjective (stakeholder dependent) weights, while the final decision
always includes a risk component even more difficult to be estimated [70].

That is the reason why empirical knowledge is still largely used. Adopted cropping
systems are mostly based on recipes refined from experience. A proof is given from the
interest in “Crowd sourcing” which has been recognized as one of the most effective sources
of knowledge, e.g., to collect and make growing techniques available to other farmers [71].

Machine learning (ML) methodologies are expected to accelerate the production
of DSTs, by means of a class of methods recollected in the “prescriptive-analytics” [72].
ML processes data in the same way humans do in knowledge enhancement, a process
abstracted in the “knowledge pyramid” (Figure 5), a metaphor that represents—starting
from a large amount of raw data that individually have a limited information value—the
synthesis of insights with a progressively higher value.

World

Knowledge
(models)

Data
(abstracted elements)

Information
(linked data)

Decisions

Actions

Figure 5. The “knowledge pyramid” (adapted from [73]). Actions affect the “World” level.

Machine learning (ML), relying on many families of algorithms among which (deep)
neural networks [74] have recently become the most hyped, can simulate such a climbing
process. Of wide interest in PA applications (e.g., for species recognition [75]), ML is
based on a training phase, whose effectiveness can depend on the amount of data at
hand. For instance, deep neural networks tune millions (or more) parameters (i.e., the
weight of each neural connection); as a consequence, the bigger the data set, the better
the networks learn. This is why the terms big data and ML are often confused; big data
and huge computational capability—which can be accessed on-demand through cloud
computing—are the enabling factors for ML. However, there are trade-offs between quality
and quantity of data; high-quality small data can produce better inferences than low-quality
big data [76]. Big data can have poor informative content, this is the reason why the correct
design of a data warehouse, a repository that integrates data to make them accessible for
successive stages [77], is a fundamental step.

At present, most of the knowledge produced by ML is “hidden” in a matrix of empiri-
cal values and cannot be expressed in terms of a physical (dynamical) model. Nonetheless,
XAI (eXplainable Artificial Intelligence), aimed at producing explainable and comprehensi-
ble models, is becoming of increasing interest also in the domain of Machine Learning [78],
proving that extracting “something coherent and valuable” from numbers or images is
still the main task [5]. Figure 6 represents a decision tree, an explainable model made of
human-friendly rules [79], which emerged from an ML analysis of features of soybean
seeds related to different diseases (data set from [80]).



Agronomy 2021, 11, 181 10 of 18

area-damaged

external-decay leaf-malf

temp

phytophthora-rot
(5.05/0.05)

anthracnose (2.02/0.02)

phytophthora-rot
(82.84/0.84)

anthracnose (4.00/1.00)
herbicide-injury

(8.66/2.08)

= low-areas != low-areas

=firm- and-dry != firm-and-dry = absent != absent

!= norm=norm

Figure 6. Excerpt of a decision tree for soybean seed disease identification.

3.2. Existing Applications

From the literature, IoT technology appears to be applied in a number of pilot
applications [36,81,82] or dealing with research projects bearing on prototypes designed
from developer-oriented boards [81] and using public cloud computing services [83].

In some cases, Smart Farming and Robotization are already part of IoT systems.
Greenhouse control systems are integrated with the Internet and control actuated by Cloud-
based Intelligent Systems [3]. Robots and other UVs adopt communication protocols
typical of IoT systems such as ROS (derived from DDS) and allow them to be part of the
IoT ecosystem [84].

Sensor data can be accessed from everywhere, including those aboard field machinery
to trace their activities [36,85], adding details to crop management and yield [86] to produce
data useful to cropping system simulators and produce accurate costing and financial
reports; for instance, allowing for an appropriate allocation of indirect and general cost to a
specific crop or activity [87].

The IoT produces information to be used beyond the boundaries of farms, to help
farmers manage the relationships with the downstream tiers of the supply chain, allowing
them to fit the harvesting period to market demand.

Crop management details are of high interest for many stakeholders, including agricul-
tural cooperatives and quality certification bodies. Arena et al. [88] describe how IoT data
from interconnected sensors may rely upon a blockchain-based application for traceability
and certification.

Social aspects are expected to have benefits too, from the development of an informed
and connected rural community [89] useful for problem solving: disease alert, pest identifi-
cation, labor demand/offer.

A methodological survey [89] identifies 4 mayor areas of applications of IoT in agriculture:

• Monitoring environment (air, soil, water), crops (plant), and animals—62%;
• Remote control in irrigation, fertilization, pesticides, lighting, intrusions—25% of papers;
• Prediction of environmental conditions, production, growth—6% of papers;
• Logistics—7% of papers.

Table 4 reports a list of IoT applications affecting cropping systems.
To produce a closer view of the impact of IoT technology in cropping systems, one of

the most important applications is illustrated.
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Table 4. Major activities involving IoT technology.

Task

Services Know-how support/education [80,90]
DSS/Crop Models [91–95]
FMIS/accountability [4,5,87]
FMIS/PA/machine activity/resource usage [85,86]

Market quality/certification/traceability [7,87,90]
seeds/products/machinery/labour [82,90]

Crop monitoring environmental sensing [3,36,63,81,89]
detect crop stress/diseases/pests/weeds/ripening [82,91,96,97]

Crop practices smart farming/remote control/automation [2,32,36,84,98–100]
precision practices/prescription maps [5,36,85]

3.3. Case Study—Irrigation Scheduling

Irrigation scheduling is based on three estimates: “When”, “How-much”, and “Flow
Intensity” and three main approaches can be used.

• Direct estimate of “crop stress”, based on remote/proximal canopy sensing. Satellite
sensing [97], recently integrated with those of drone images [101]. Proximal measure-
ment of canopy temperature by IR sensors (e.g., Jones et al. [102]) and field IR cameras
integrated with an IoT system are also adopted [98] to the purpose.

• Water availability in soil, based on direct “soil moisture” observation, then use the
lower and upper thresholds criteria as in the previous method, to get advice on a
possible water stress condition [103].

• Water availability by “water budget”, based on the estimate of water loss of a canopy
(Evapotranspiration—ET [104]), from observed temperature, relative humidity, wind
speed, and solar radiation. ET is used as a boundary condition to a soil water redistri-
bution model to estimate soil water status. Logical (if-then) rules are finally used to
produce irrigation advice [92].

Irrigation scheduling is implemented by a number of Smart Irrigation applications [81]
and currently deployed as a WEB-service or embedded in a local controller [3]. A general
framework of the architectures of these systems—describing their major elements and
actors—is depicted in Figure 7.

The framework (Figure 7) hosts each of the strategy listed above, as much as their
integration, which proved to be able to offer a considerable enhancement [93]. Together,
it shows the actual role of IoT, and how different data are collected and managed. Moreover,
ML is getting a role to solve important flows of the mention approaches.

• Direct observation of stress can be guessed from cameras that substitute direct farmer
monitoring of surfaces: those from satellite, air-crafts, and UAVs (Visible or IR) can
also help (by indices as NDVI) by identifying anomalous conditions in the cropped
surface, which is supposed to be homogeneous, and made available to an assistance
service. However, imagery needs interpretation and lacks subsurface information.

• Soil water content can give more information on the water status of a rooted zone.
Nonetheless, identification of threshold values for water supply is still based on empir-
ical knowledge based on soil and plant type, therefore with a local validity. Moreover,
sampling a surface requires a number of sensors with prohibitive maintenance costs.

• For water budget potential, ET has to be complemented by empirical correction
coefficients to obtain the real crop water requirement. Moreover, soil dynamics
coefficients are required to estimate “Flow Intensity”, whose general physical low is
well-known while parameters are subject to high spatial heterogeneity and temporal
variations [94].
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Figure 7. General framework of a field irrigation scheduling system.

4. Discussion

The main applications of IoT in cropping systems do not fall far from those of Smart
Farming and Precision Agriculture, and are aimed toward their integration (e.g., [91]).

In such a framework, devices assume a primary role and, in particular, two typologies
can be recognized.

• Devices for field monitoring, of the soil–plant–atmosphere system. In the majority
of cases, continuous monitoring is not required, therefore, the “perception layer”
is conceived as a network of low-power devices that sleep for most of the time,
supported by a radio network with an easy connection protocol. Additionally, they
would mainly be for metering purposes and bi-directional communication, though
facilitating reconfiguration, could prove unnecessary. The payload is expected to
be reduced and messages are allowed to have a high-latency, though with a high
QoS (quality of service). Low-power networks such as Sigfox and LoRa could be a
good choice, though most recent networks (WiFi-halow, NB-IoT, CAT-M1) reduce
constraints and allows both usage of protocols to be managed (MQTT) and messages
to be digested (FIWARE) more easily. Such solutions can be adopted by almost
every board of class “Arduino” that, together with deep-sleep mode, includes easily
configurable electrical interfaces (e.g., I2C), together with a wide availability of shields
(e.g., Real-Time Clock and SD card).

• Power devices, such as actuators and cameras require a different approach, and de-
vices with embedded computing could be required, based on nano- or single-board
computers (e.g., Raspberry Pi), already adopted in the “wired” agriculture (e.g., hydro-
ponics). They allow for continuous monitoring (and surveillance) of plants, actuators,
and intrusions (including animals) and need low-latency/real-time response/alerts
to be sent to a supervisor (farmer). In these cases, a reliable wireless connection
is required, which, if properly optimized, can profit from networking technologies
mentioned in the previous point. Nanocomputers include LAN connectors and com-
mon wireless connection interfaces and are robust enough to be set in the outer
environment, but need to be adequately power supplied (Photovoltaic systems and
high-duration batteries). Their use in UV/AV enhances the spectrum of application
of IoT for decision support [99] allowing the collection of vehicle data, failure events,
and actions performed by tools.

On the cloud-computing side, two major aspects are to be put in evidence.

• Storage—Most of the cases reported in the literature are pilot projects that use a limited
number of devices, showing reduced exploitation of cloud computing potential. Major
needs seem to be represented by data security, service outsourcing, and No-SQL
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data storage due to information heterogeneity (inventories, satellite images, mobile
platform mission data, etc.). However, the number of IoT devices/solutions is growing
and, though at present such storage systems are mostly for research purposes and
country-level surveys, the increase of detail of information in space and time would
soon require data-lake storage and big data.

• Processing—As already put in evidence, though UV-oriented protocols (e.g., AVI-Link
and ROSlink protocol) are currently used also in UAV guidance. Most IoT applications
do not require real-time performances (latency < 1 s). Data collected from mobile
platforms and field monitoring stations are mostly batch-processed and delivered
to end-users by APP dashboards. Decision-oriented information and supervised
actuation are also provided (switching irrigation valves, heaters, vents, etc.) by the
processing framework. Direct commands operated by an artificial intelligence system
are still bounded to industrialized cropping systems (hydroponics and greenhouses).

Figure 8 reports the most relevant application types as a combination of technology
both for hardware devices (left) and data processing (right). As to the latter, the dotted line
divides the processing on cloud (batch, minibatch, and stream) from edge and embedded
computing.

Batch

Stream
Mini-B

atch

Embedded
Edge

Velocity

V
ol

um
e

B
ig

S
m

al
l

HighLowPower

P
ay

lo
ad

S
ig

fo
x

L
oR

a
M

Q
T

T
X

M
P

P

Batteryless Wired PV Battery

Meterin
g

Actuators

Alarm
s

Cameras

Figure 8. Device and cloud solutions in technological coordinates.

5. Conclusions

We finally may answer the foremost questions set above. IoT is going to improve crop
management in terms of accessibility due to the reduction of costs and efficiency due to
the timeliness of interventions, and IoT is increasingly offering solutions to crop manage-
ment problems, most of which are yet unsolved, by the means of AI-driven “prescriptive
analytics” implemented in CC systems.

In fact, from the literature analysis, IoT appears as a set of enabling technologies,
allowing for a vast combination of architectures (e.g., [36]) and acting as a glue between
FMISs, Smart Farming, and Precision Farming.

IoT has yet a little role in the choice and design of a cropping system, which is limited
to experienced reliable recipes and farmers’ focus on control.

IoT technology is making crop monitoring, crop data analysis, and automated con-
trol more accessible than ever, and wide adoption of IoT is expected where there is a
requirement for refinement of observations, prescriptions, timeliness of intervention, and
optimization of resources (machinery, pesticides, water, etc.).

At present, the following points can be emphasized.

• IoT is an enabling and mature technology, proven to be able to accelerate the adoption
of SF.

• Relying on IoT, many solutions to Smart Farming and Farm Management Systems are
going to be accessible even to small farm holders.

• IoT allows increasing access to crop monitoring and significantly enhances the avail-
ability of information and early warnings which, in turn, provide more reliable
predictions and decision-making support to farmers, managers, and policymakers.
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• IoT is based on easy-access technology, facilitating its adoption, which is limited from
financial resources [105]. Furthermore, IoT will influence the market and accelerating
the development of low-cost next-generation Precision Farming [100].

Critical steps in the IoT adoption should also be evidenced.

• Excitement in IoT is pumping the belief that a large number of cheap sensors could
increase data granularity in space and time with an acceptable decrease in data quality.
However, data (sensor) reliability remains a fundamental aspect of any technology.

• ML is, to date, too focused on solving problems, underestimating the data requirement
for learning stage and the need for explainable knowledge oriented to enhance models
for simulation of bio-agro-ecological, soil-plant-atmosphere, and value-chain systems.

• Ethical aspects also emerge. Industrialization and spreading of micro-IoT-devices, en-
visaging fleets of “artificial insects”, could require strong regulations, [106] including
a protocol for placement, location, and recollection.

Finally, the digital divide is still observed to be a concern [95,107], which also affects
cropping system technology and production efficiency. IoT can facilitate both exogenous
barriers, encouraging the spread of infrastructure [108], and endogenous ones. IoT may
help to change the mindset of many farmers, allowing them to easily access the available
solutions [109] and share knowledge on cropping systems [110].

Author Contributions: Conceptualization, G.V. and M.G.; methodology, G.V. and M.F.; investigation,
G.V. and M.F.; resources, G.V., M.F., M.C.; writing—original draft preparation, G.V., M.F., and M.G.;
writing—review and editing, G.V., M.F., and M.G.; visualization, G.V. and M.F.; supervision, M.G.
and M.C.; project administration, G.V.; funding acquisition, G.V. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by WeLaser H2020 project Grant Agreement N. 101000256.
https://cordis.europa.eu/project/id/101000256.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Blandford, D.; Braden, J.B.; Shortle, J.S. Economics of Natural Resources and Environment in Agriculture. In Encyclopedia of

Agriculture and Food Systems; Elsevier: Amsterdam, The Netherlands, 2014; pp. 18–34. [CrossRef]
2. Gondchawar, N.; Kawitkar, R.S. IJARCCE IoT based Smart Agriculture. Int. J. Adv. Res. Comput. Commun. Eng. 2016, 5.

[CrossRef]
3. Raja, L.; Vyas, S. The Study of Technological Development in the Field of Smart Farming. In Smart Farming Technologies for

Sustainable Agricultural Development; IGI Global: Hershey, PA, USA, 2019; p. 24. [CrossRef]
4. Sørensen, C.G.; Fountas, S.; Nash, E.; Pesonen, L.; Bochtis, D.; Pedersen, S.M.; Basso, B.; Blackmore, S.B. Conceptual model of a

future farm management information system. Comput. Electron. Agric. 2010, 72, 37–47. [CrossRef]
5. Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy

2020, 10. [CrossRef]
6. Zhang, N.; Taylor, R.K. Applications of a Field Level Geographic Information System (FIS) in Precision Agriculture.

Appl. Eng. Agric. 2001, 17. [CrossRef]
7. Wolfert, S.; Goense, D.; Sorensen, C.A.G. A future internet collaboration platform for safe and healthy food from farm to

fork. In Proceedings of the Annual SRII Global Conference, SRII, IEEE Computer Society, San Jose, CA, USA, 23–25 April 2014;
pp. 266–273. [CrossRef]

8. Jiber, Y.; Harroud, H.; Karmouch, A. Precision agriculture monitoring framework based on WSN. In Proceedings of the
IWCMC 2011—7th International Wireless Communications and Mobile Computing Conference, Istanbul, Turkey, 4–8 July 2011;
pp. 2015–2020. [CrossRef]

9. FAO. AquaCrop; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016.
10. Siad, S.M.; Iacobellis, V.; Zdruli, P.; Gioia, A.; Stavi, I.; Hoogenboom, G. A review of coupled hydrologic and crop growth models.

Agric. Water Manag. 2019, 224. [CrossRef]
11. Dalal, P.; Singh, J. Role of modeling in insect pest and disease management. J. Entomol. Zool. Stud. 2017, 5, 1773–1777.
12. Pan, Z.; Li, X.; Yang, X.B.; Andrade, D.; Xue, L.; McKinney, N. Prediction of plant diseases through modelling and monitoring

airborne pathogen dispersal. CAB Rev. 2010, 5. [CrossRef]

https://cordis.europa.eu/project/id/101000256
https://cordis.europa.eu/project/id/101000256
http://doi.org/10.1016/B978-0-444-52512-3.00122-4
http://dx.doi.org/10.17148/IJARCCE.2016.56188
http://dx.doi.org/10.4018/978-1-5225-5909-2.ch001
http://dx.doi.org/10.1016/j.compag.2010.02.003
http://dx.doi.org/10.3390/agronomy10020207
http://dx.doi.org/10.13031/2013.6829
http://dx.doi.org/10.1109/SRII.2014.47
http://dx.doi.org/10.1109/IWCMC.2011.5982844
http://dx.doi.org/10.1016/j.agwat.2019.105746
http://dx.doi.org/10.1079/PAVSNNR20105018


Agronomy 2021, 11, 181 15 of 18

13. Richardson, D. The Internet and Rural and Agricultural Development; Technical Report; Food and Agriculture Organization of the
United Nations: Rome, Italy, 1997.

14. Xu, M.; David, J.M.; Kim, S.H. The fourth industrial revolution: Opportunities and challenges. Int. J. Financ. Res. 2018, 9, 90–95.
[CrossRef]

15. Bacco, M.; Barsocchi, P.; Ferro, E.; Gotta, A.; Ruggeri, M. The Digitisation of Agriculture: a Survey of Research Activities on Smart
Farming. Array 2019, 3–4, 100009. [CrossRef]

16. Kernecker, M.; Busse, M.; Knierim, A. Exploring actors, their constellations, and roles in digital agricultural innovations.
Agric. Syst. 2021, 186, 102952. [CrossRef]

17. Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [CrossRef]
18. Bayrak, E.; Conley, J.P.; Wilkie, S.; Bayrak, E.; Conley, J.; Wilkie, S. The Economics of Cloud Computing. Korean Econom. Rev. 2011,

27, 203–230.
19. Ashton, K. That ‘internet of things’ thing. RFID J. 2009, 22, 97–114.
20. ITU. Overview of the Internet of Things; Technical Report;International Telecommunications Union: Geneva, Switzerland, 2012.
21. Voas, J. Networks of “things”; NIST Special Publication 800-183; National Institute of Standards and Technology: Gaithersburg,

MD, USA, 2016.
22. Calderoni, L.; Magnani, A.; Maio, D. IoT Manager: An open-source IoT framework for smart cities. J. Syst. Archit. 2019,

98, 413–423. [CrossRef]
23. Madakam, S.; Ramaswamy, R.; Tripathi, S. Internet of Things (IoT): A Literature Review. J. Comput. Commun. 2015, 03, 164–173.

[CrossRef]
24. Marketsandmarkets Agriculture IoT Market; Report; Markets and Markets: Pune, India, 2020; Available online: https://www.

marketsandmarkets.com/Market-Reports/iot-in-agriculture-market-199564903.html (accessed on 20 July 2020).
25. Mariani, J.; Junko, K. The Second Green Revolution and the Internet of Things; Deloitte Insights: London, UK, 2016.
26. Greengard, S. The Internet of Things; MIT Press: Cambridge, MA, USA, 2015.
27. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies,

Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [CrossRef]
28. Schoenberger, C. The Internet of Things. 2002. Available online: http://www.forbes.com/global/2002/0318/092.html

(accessed on 20 July 2020).
29. Heble, S.; Kumar, A.; Prasad, K.V.; Samirana, S.; Rajalakshmi, P.; Desai, U.B. A low power IoT network for smart agriculture.

In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; Institute of
Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018, Volume 2018, pp. 609–614. [CrossRef]

30. Damien, B.; Granath, E. Ultra-Low Power Technology for Battery-Less IoT Sensors. 2019. Available online: https://www.power-
and-beyond.com/ultra-low-power-technology-for-battery-less-iot-sensors-a-885246/ (accessed on 20 July 2020).

31. Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutor. 2017,
19, 855–873. [CrossRef]

32. Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of
Smart Farming. IEEE Access 2019, 7, 156237–156271. [CrossRef]

33. Gerber, A.; Romeo, J. Choosing the Best Hardware for Your Next IoT Project—IBM Developer. 2017. Available online: https:
//developer.ibm.com/technologies/iot/articles/iot-lp101-best-hardware-devices-iot-project/ (accessed on 15 October 2020).

34. Khan, R.; Khan, S.U.; Zaheer, R.; Khan, S. Future Internet: The Internet of Things Architecture, Possible Applications and
Key Challenges. In Proceedings of the IEEE 10th International Conference on Frontiers of Information Technology, Islamabad,
Pakistan, 17–19 December 2012; pp. 257–260.

35. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey on enabling technologies,
protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]

36. Koksal, Ö.; Tekinerdogan, B. Architecture design approach for IoT-based farm management information systems. Precis. Agric.
2019, 20, 926–958. [CrossRef]

37. Jara, A.J.; Martinez-Julia, P.; Gómez-Skarmeta, A.F. Light-Weight Multicast DNS and DNS-SD (lmDNS-SD): IPv6-Based Resource
and Service Discovery for the Web of Things. In Proceedings of the Sixth International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, IMIS 2012, Palermo, Italy, 4–6 July 2012; You, I., Barolli, L., Gentile, A., Jeong, H.J.,
Ogiela, M.R., Xhafa, F., Eds.; IEEE Computer Society: Piscataway, NJ, USA, 2012; pp. 731–738.

38. Stolikj, M.; Cuijpers, P.J.L.; Lukkien, J.J.; Buchina, N. Context based service discovery in unmanaged networks using mDNS/DNS-
SD. In Proceedings of the IEEE International Conference on Consumer Electronics, ICCE 2016, Las Vegas, NV, USA, 7–11 January
2016; IEEE: Piscataway, NJ, USA, 2016; pp. 163–165.

39. Spark. Available online: https://aws.amazon.com/iot/ (accessed on 22 October 2020).
40. Google IoT. Available online: https://cloud.google.com/solutions/iot (accessed on 22 October 2020).
41. Azure IoT. Available online: https://azure.microsoft.com/en-us/overview/iot/ (accessed on 22 October 2020).
42. Mell, P.M.; Grance, T. The NIST Definition of Cloud Computing; Technical Report; National Institute of Standards and Technology:

Gaithersburg, MD, USA, 2011; [CrossRef]
43. Baldwin, K.P. Cloud Services. In Encyclopedia of Big Data; Schintler, L.A., McNeely, C.L., Eds.; Springer: Berlin/Heidelberg,

Germany, 2017; pp. 1–4. [CrossRef]

http://dx.doi.org/10.5430/ijfr.v9n2p90
http://dx.doi.org/10.1016/j.array.2019.100009
http://dx.doi.org/10.1016/j.agsy.2020.102952
http://dx.doi.org/10.1016/j.agsy.2017.01.023
http://dx.doi.org/10.1016/j.sysarc.2019.04.003
http://dx.doi.org/10.4236/jcc.2015.35021
https://www.marketsandmarkets.com/Market-Reports/iot-in-agriculture-market-199564903.html
https://www.marketsandmarkets.com/Market-Reports/iot-in-agriculture-market-199564903.html
http://dx.doi.org/10.1109/JIOT.2017.2683200
http://www.forbes.com/global/2002/0318/092.html
http://dx.doi.org/10.1109/WF-IoT.2018.8355152
https://www.power-and-beyond.com/ultra-low-power-technology-for-battery-less-iot-sensors-a-885246/
https://www.power-and-beyond.com/ultra-low-power-technology-for-battery-less-iot-sensors-a-885246/
http://dx.doi.org/10.1109/COMST.2017.2652320
http://dx.doi.org/10.1109/ACCESS.2019.2949703
https://developer.ibm.com/technologies/iot/articles/iot-lp101-best-hardware-devices-iot-project/
https://developer.ibm.com/technologies/iot/articles/iot-lp101-best-hardware-devices-iot-project/
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1007/s11119-018-09624-8
https://aws.amazon.com/iot/
https://cloud.google.com/solutions/iot
https://azure.microsoft.com/en-us/overview/iot/
http://dx.doi.org/10.6028/NIST.SP.800-145
http://dx.doi.org/10.1007/978-3-319-32001-4_37-1


Agronomy 2021, 11, 181 16 of 18

44. Pierleoni, P.; Concetti, R.; Belli, A.; Palma, L. Amazon, Google and Microsoft Solutions for IoT: Architectures and a Performance
Comparison. IEEE Access 2020, 8, 5455–5470. [CrossRef]

45. SiteWhere. Available online: https://sitewhere.io/en/ (accessed on 15 October 2020).
46. OpenIoT. Available online: https://openiot.in/ (accessed on 15 October 2020).
47. Guth, J.; Breitenbücher, U.; Falkenthal, M.; Leymann, F.; Reinfurt, L. Comparison of IoT platform architectures: A field study

based on a reference architecture. In Proceedings of the 2016 Cloudification of the Internet of Things, CIoT 2016, Paris, France,
23–25 November, 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6.

48. FIWARE. The Open Source Platform for Our Smart Digital Future—FIWARE. Available online: https://www.fiware.org/
(accessed on 23 October 2020).

49. ORION. Welcome to Orion Context Broker. Available online: https://fiware-orion.readthedocs.io/en/master/ (accessed on
30 October 2020).

50. Bermudez-Edo, M.; Elsaleh, T.; Barnaghi, P.; Kerry, T. IoT-Lite Ontology. Available online: https://www.w3.org/Submission/iot-
lite (accessed on 10 October 2020).

51. Apache Kafka. Available online: https://kafka.apache.org/intro (accessed on 22 October 2020).
52. AWS Glue. Available online: https://aws.amazon.com/glue (accessed on 20 October 2020).
53. Ozsu, M.T. Database. In Encyclopedia of Database Systems; Liu, L., Ozsu, M.T., Eds.; Springer: New York, NY, USA, 2017; p. 4355.
54. W3School. SQL Tutorial. Available online: https://www.w3schools.com/sql/ (accessed on 20 October 2020).
55. MongoDB. The Database for Modern Applications. Available online: https://www.mongodb.com/1 (accessed on 30 Octo-

ber 2020).
56. CouchDB. CouchDB—Seamless Multi-Master Sync, That Scales from Big Data to Mobile,with an Intuitive HTTP/JSON API and

Designed for Reliability. Available online: https://couchdb.apache.org/ (accessed on 30 October 2020).
57. Amazon S3. Available online: https://aws.amazon.com/s3/ (accessed on 20 October 2020).
58. Azure Data Lake. Available online: https://azure.microsoft.com/ (accessed on 20 October 2020).
59. Couto, J.; Borges, O.T.; Ruiz, D.D.; Marczak, S.; Prikladnicki, R. A Mapping Study about Data Lakes: An Improved Definition

and Possible Architectures; Knowledge Systems Institute Graduate School: Chicago, IL, USA, 2019; pp. 453–578. Available on-
line: https://www.researchgate.net/publication/335150494_A_Mapping_Study_about_Data_Lakes_An_Improved_Definition_
and_Possible_Architectures (accessed on 17 January 2021).

60. Spark. Available online: https://www.spark.co.nz/iot/home/ (accessed on 20 October 2020).
61. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
62. Global Mobile Edge Cloud. Available online: https://cloud.google.com/blog/topics/inside-google-cloud/google-cloud-

unveils-strategy-telecommunications-industry (accessed on 20 October 2020).
63. Navarro, E.; Costa, N.; Pereira, A. A Systematic Review of IoT Solutions for Smart Farming. Sensors 2020, 20, 4231. [CrossRef]
64. Beers, S. Decision and Control: The Meaning of Operational Research and Management Cybernetics; Wiley: Hoboken, NJ, USA, 1995.
65. GRIDA. Water-Food-Energy-Ecosystems Nexus Approach | GRID-Arendal. 2020. Available online: https://www.grida.no/

publications/478 (accessed on 3 October 2020).
66. Maughan, T.; Allen, L.N.; Drost, D. Soil Moisture Measurement and Sensors for Irrigation Management. Agriculture 2015.

Available online: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1777&context=extension_curall (accessed on
17 January 2021).

67. Shock, C.; Flock, R.; Feibert, E.; Shock, C.; Pereira, A.; Jensen, L. Irrigation Monitoring Using Soil Water Tension. Sustain.
Agric. Technol. 2005. Available online: https://www.researchgate.net/publication/237786409_Irrigation_Monitoring_Using_Soil_
Water_Tension#fullTextFileContent (accessed on 17 January 2021).

68. Pedersen, S.; Lind, K. Precision Agriculture: Technology and Economic Perspectives— Google Libri; Springer: Berlin/Heidelberg,
Germany, 2002.

69. Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Shelia, V.; Wilkens, P.W.; Singh, U.; White, J.W.; Asseng, S.; Lizaso, J.I.; Moreno, L.P.; et al.
The DSSAT crop modeling ecosystem. In Advances in Crop Modelling for a Sustainable Agriculture; Burleigh Dodds: Cambridge, UK,
2019; pp. 173–216. [CrossRef]

70. Hansson, S.O. Decision Theory;Taylor & Francis Group: Abingdon, UK, 2018; pp. 1–185. [CrossRef]
71. Kim, T.; Bae, N.J.; Shin, C.S.; Park, J.W.; Park, D.; Cho, Y.Y. An approach for a self-growing agricultural knowledge cloud in

smart agriculture. In Lecture Notes in Electrical Engineering; Springer: Dordrecht, The Netherlands, 2013; Volume 240, pp. 699–706.
[CrossRef]

72. GARTNER. Definition of Prescriptive Analytics—Gartner Information Technology Glossary. Available online: https://www.
gartner.com/en/information-technology/glossary (accessed on 20 October 2020) .

73. Stuart, D. The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences. Online Inf. Rev. 2015, 39, 272.
74. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, UK, 2016.
75. Abdullahi, H.S.; Sheriff, R.E.; Mahieddine, F. Convolution neural network in precision agriculture for plant image recognition

and classification. In Proceedings of the Seventh International Conference on Innovative Computing Technology (INTECH 2017),
Luton, UK, 16–18 August 2017; pp. 1–3. [CrossRef]

76. Faraway, J.J.; Augustin, N.H. When small data beats big data. Stat. Probab. Lett. 2018, 136, 142–145. [CrossRef]
77. Golfarelli, M.; Rizzi, S. Data Warehouse Design: Modern Principles and Methodologies; McGraw-Hill Inc.: New York, NY, USA, 2009.

http://dx.doi.org/10.1109/ACCESS.2019.2961511
https://sitewhere.io/en/
https://openiot.in/
https://www.fiware.org/
https://fiware-orion.readthedocs.io/en/master/
https://www.w3.org/Submission/iot-lite
https://www.w3.org/Submission/iot-lite
https://kafka.apache.org/intro
https://www.w3schools.com/sql/
https://www.mongodb.com/1
https://couchdb.apache.org/
https://aws.amazon.com/s3/
https://azure.microsoft.com/
https://www.researchgate.net/publication/335150494_A_Mapping_Study_about_Data_Lakes_An_Improved_Definition_and_Possible_Architectures
https://www.researchgate.net/publication/335150494_A_Mapping_Study_about_Data_Lakes_An_Improved_Definition_and_Possible_Architectures
https://www.spark.co.nz/iot/home/
http://dx.doi.org/10.1145/1327452.1327492
https://cloud.google.com/blog/topics/inside-google-cloud/google-cloud-unveils-strategy-telecommunications-industry
https://cloud.google.com/blog/topics/inside-google-cloud/google-cloud-unveils-strategy-telecommunications-industry
http://dx.doi.org/10.3390/s20154231
https://www.grida.no/publications/478
https://www.grida.no/publications/478
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1777&context=extension_curall
https://www.researchgate.net/publication/237786409_Irrigation_Monitoring_Using_Soil_Water_Tension#fullTextFileContent
https://www.researchgate.net/publication/237786409_Irrigation_Monitoring_Using_Soil_Water_Tension#fullTextFileContent
http://dx.doi.org/10.19103/as.2019.0061.10
http://dx.doi.org/10.4324/9780203793695
http://dx.doi.org/10.1007/978-94-007-6738-6_86
https://www.gartner.com/en/information-technology/glossary
https://www.gartner.com/en/information-technology/glossary
http://dx.doi.org/10.1109/intech.2017.8102436
http://dx.doi.org/10.1016/j.spl.2018.02.031


Agronomy 2021, 11, 181 17 of 18

78. Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018,
6, 52138–52160. [CrossRef]

79. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson: London, UK, 2002.
80. The Large Soybean Database. Available online: https://archive.ics.uci.edu/ml/datasets/Soybean+(Large) (accessed on 23 Octo-

ber 2020).
81. Poonia, R.C.; Gao, X.Z.; Raja, L.; Sharma, S.; Vyas, S. Smart Farming Technologies for Sustainable Agricultural Development; Advances

in Environmental Engineering and Green Technologies; IGI Global: Hershey, PA, USA, 2019; [CrossRef]
82. Verdouw, C.; Sundmaeker, H.; Tekinerdogan, B.; Conzon, D.; Montanaro, T. Architecture framework of IoT-based food and farm

systems: A multiple case study. Comput. Electron. Agric. 2019, 165, 104939. [CrossRef]
83. Abbasi, M.; Yaghmaee, M.H.; Rahnama, F. Internet of Things in agriculture: A survey. In Proceedings of the 3rd IEEE International

Conference on Internet of Things and Applications, IoT 2019, San Diego, CA, USA, 25–30 June 2019; [CrossRef]
84. Harms, H.; Schattenberg, J.; Schmiemann, J.; Frerichs, L. A Communication Layer for UAV/UGV Swarm Applications.

In Proceedings of the 5th International Conference on Machine Control & Guidance, Vichy, France, 5–6 October 2016; p. 6.
85. Layton, A.; Balmos, A.; Sabpisal, S.; Ault, A.; Krogmeier, J.V.; Buckmaster, D. ISOBlue: An Open Source Project to Bring

Agricultural Machinery Data into the Cloud. In Proceedings of the 2014 ASABE and CSBE/SCGAB Annual International Meeting,
Montreal, QC, Canada, 13–16 July 2014; American Society of Agricultural and Biological Engineers (ASABE): St. Joseph, MI, USA,
2014; pp. 1–8. [CrossRef]

86. Lokesh Krishna, K.; Silver, O.; Malende, W.F.; Anuradha, K. Internet of Things application for implementation of smart agriculture
system. In Proceedings of the International Conference on IoT in Social, Mobile, Analytics and Cloud, I-SMAC 2017, Palladam,
India, 10–11 February 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 54–59. [CrossRef]

87. Carli, G.; Canavari, M.; Grandi, A. Introducing Activity-Based Costing in Farm Management: the Design of the FarmBO System.
Int. J. Agric. Environ. Inform. Syst. 2014, 5, 69–84. [CrossRef]

88. Arena, A.; Bianchini, A.; Perazzo, P.; Vallati, C.; Dini, G. BRUSCHETTA: An IoT Blockchain-Based Framework for Certifying Extra
Virgin Olive Oil Supply Chain. In Proceedings of the 2019 IEEE International Conference on Smart Computing (SMARTCOMP),
IEEE, Washington, DC, USA, 12–15 June 2019; pp. 173–179. [CrossRef]

89. Talavera, J.M.; Tobón, L.E.; Gómez, J.A.; Culman, M.A.; Aranda, J.M.; Parra, D.T.; Quiroz, L.A.; Hoyos, A.; Garreta, L.E. Review
of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 2017, 142, 283–297. [CrossRef]

90. Wigboldus, S.; Klerkx, L.; Leeuwis, C.; Schut, M.; Muilerman, S.; Jochemsen, H. Systemic perspectives on scaling agricultural
innovations. A review. Agron. Sustain. Dev. 2016, 36, 46. [CrossRef]

91. Debauche, O.; Mahmoudi, S.; Elmoulat, M.; Mahmoudi, S.A.; Manneback, P.; Lebeau, F. Edge AI-IoT Pivot Irrigation, Plant
Diseases and Pests Identification. Procedia Comput. Sci. 2020, 177, 40–48. [CrossRef]

92. Steduto, P.; Raes, D.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; Howell, T.A.; Evett, S.R.; Rojas-Lara, B.A.; Farahani, H.J.; Izzi, G.; et al.
Concepts and applications of AquaCrop: The FAO crop water productivity model. In Crop Modeling and Decision Support; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 175–191.

93. Aguilar, J.; Rogers, D.; Kisekka, I. Irrigation Scheduling Based on Soil Moisture Sensors and Evapotranspiration. Kans. Agric. Exp.
Stat. Res. Rep. 2015, 1, 20. [CrossRef]

94. Dukes, M.D.; Zotarelli, L.; Liu, G.D.; Simonne, E.H. Principles and Practices of Irrigation Management for Vegetables; Technical
Report; UF/IFAS Extension: Gainesville, FL, USA, 2018.

95. Rose, D.C.; Sutherland, W.J.; Parker, C.; Lobley, M.; Winter, M.; Morris, C.; Twining, S.; Ffoulkes, C.; Amano, T.; Dicks, L.V.
Decision support tools for agriculture: Towards effective design and delivery. Agric. Syst. 2016, 149, 165–174. [CrossRef]

96. Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Martínez, J. Precision agriculture design method using a
distributed computing architecture on internet of things context. Sensors 2018, 18, 1731. [CrossRef]

97. Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and future perspectives of multi-/Hyperspectral thermal
infrared remote sensing for crop water-stress detection: A review. Remote Sens. 2018, 18, 1240. [CrossRef]

98. Jayaraman, P.P.; Yavari, A.; Georgakopoulos, D.; Morshed, A.; Zaslavsky, A. Internet of things platform for smart farming:
Experiences and lessons learnt. Sensors 2016, 16, 1884. [CrossRef]

99. Triantafyllou, A.; Tsouros, D.C.; Sarigiannidis, P.; Bibi, S. An architecture model for smart farming. In Proceedings of the 15th
International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini Island, Greece, 29–31 May 2019;
pp. 385–392. [CrossRef]

100. Cruz Ulloa, C.; Krus, A.; Barrientos, A.; Del Cerro, J.; Valero, C. Robotic Fertilisation Using Localisation Systems Based on Point
Clouds in Strip-Cropping Fields. Agronomy 2020, 11, 11. [CrossRef]

101. Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping Maize Water Stress Based on UAV Multispectral Remote Sensing. Remote Sens.
2019, 11, 605. [CrossRef]

102. Jones, H.G.; Hutchinson, P.A.; May, T.; Jamali, H.; Deery, D.M. A practical method using a network of fixed infrared sensors for
estimating crop canopy conductance and evaporation rate. Biosyst. Eng. 2018, 165, 59–69. [CrossRef]

103. Davis, S.L.; Dukes, M.D. Methodologies for Successful Implementation of Smart Irrigation Controllers. J. Irrigat. Drainag. Eng.
2015, 141, 04014055. [CrossRef]

104. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56—Crop Evapotranspiration; Technical
Report 56; FAO: Rome, Italy, 1998.

http://dx.doi.org/10.1109/ACCESS.2018.2870052
https://archive.ics.uci.edu/ml/datasets/Soybean+(Large)
http://dx.doi.org/10.4018/978-1-5225-5909-2
http://dx.doi.org/10.1016/j.compag.2019.104939
http://dx.doi.org/10.1109/IICITA.2019.8808839
http://dx.doi.org/10.13031/aim.20141929380
http://dx.doi.org/10.1109/I-SMAC.2017.8058236
http://dx.doi.org/10.4018/ijaeis.2014100104
http://dx.doi.org/10.1109/SMARTCOMP.2019.00049
http://dx.doi.org/10.1016/j.compag.2017.09.015
http://dx.doi.org/10.1007/s13593-016-0380-z
http://dx.doi.org/10.1016/j.procs.2020.10.009
http://dx.doi.org/10.4148/2378-5977.1087
http://dx.doi.org/10.1016/j.agsy.2016.09.009
http://dx.doi.org/10.3390/s18061731
http://dx.doi.org/10.3390/rs11101240
http://dx.doi.org/10.3390/s16111884
http://dx.doi.org/10.1109/DCOSS.2019.00081
http://dx.doi.org/10.3390/agronomy11010011
http://dx.doi.org/10.3390/rs11060605
http://dx.doi.org/10.1016/j.biosystemseng.2017.09.012
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000804


Agronomy 2021, 11, 181 18 of 18

105. Paustian, M.; Theuvsen, L. Adoption of precision agriculture technologies by German crop farmers. Prec. Agric. 2017, 18, 701–716.
[CrossRef]

106. Georgakopoulos, D.; Jayaraman, P.P. Internet of things: From internet scale sensing to smart services. Computing 2016,
98, 1041–1058. [CrossRef]

107. Jat, D.S.; Madamombe, C.G. Wireless Sensor Networks Technologies and Applications for Smart Farming. In Smart Farming
Technologies for Sustainable Agricultural Development; Ramesh, C.P., Ed.; IGI Global: Hershey, PA, USA, 2018; pp. 25–39. [CrossRef]

108. OECD. Digital Opportunities for Better Agricultural Policies; OECD: Paris, France, 2019; [CrossRef]
109. Hennessy, T.; Läpple, D.; Moran, B. The digital divide in farming: A problem of access or engagement? Appl. Econom. Perspect.

Policy 2016, 38, 474–491. [CrossRef]
110. Chesbrough, H.W. The era of open innovation. MIT Sloan Manag. Rev. 2003, 44, 35–42.

http://dx.doi.org/10.1007/s11119-016-9482-5
http://dx.doi.org/10.1007/s00607-016-0510-0
http://dx.doi.org/10.4018/978-1-5225-5909-2.ch002
http://dx.doi.org/10.1787/571a0812-en
http://dx.doi.org/10.1093/aepp/ppw015

	Introduction
	Architecture of an IoT system
	Perception Layer
	Network Layer
	Service Layer

	IoT in Crop Management
	Using Observations
	Existing Applications
	Case Study—Irrigation Scheduling

	Discussion
	Conclusions
	References

