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ABSTRACT Fog Computing is a recent and compelling paradigm that proposes to run information-
processing services at the edge of the network. While interesting standardization efforts in Fog Computing
are being currently pursued by many organizations, most of them focus on management and orches-
tration functions, and primarily propose the adoption and adaptation of programming models designed
for Cloud applications. Instead, Fog Computing applications would significantly benefit from innovative
solutions that, on the one hand, adopt an ‘‘acceptable lossiness’’ perspective and manage information
processing/dissemination in a dynamic and integrated way and, on the other hand, support a Multi Layer
Routing (MLR) approach to exploit multiple routing options at different abstraction levels at the same time.
This paper presents an overview of the opportunities and challenges of Fog Computing-based Internet of
Things (IoT) applications by jointly exploiting acceptable lossiness andMLR. In addition, the paper proposes
the innovative Holistic pRocessing and NETworking (HORNET) Software Defined Networking (SDN)
solution which leverages an information-centric and value-based service model and the MLR approach to
support IoT applications. The reported preliminary experimental results show the feasibility and effectiveness
of the proposed approach.

INDEX TERMS Fog computing, IoT, network softwarization, value-of-information (VoI).

I. INTRODUCTION
Fog Computing is a recently emerged paradigm that allocates
information-processing services at the edge of the network,
that is, on top of edge devices in proximity of raw data
sources, information consumers, or both [1], [2]. Fog Com-
puting is of significant relevance for Internet of Things (IoT)
applications, as it reduces response latency (and consequently
improves the quality) of IT services and alleviates the burden
on the network infrastructure [3]–[5].

While several related standards have been recently pro-
posed [6], Fog Computing still remains a rapidly evolving
industrial and academic research topic. Several proposals
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focus on concurrent solutions managing resources at the
information processing and communication layers. Among
those, some relevant works investigate resource allocation
[7], [8], QoS-aware application deployment [9], [10], and
network softwarization issues at the Software Defined Net-
working (SDN) [11], [12] and slicing [13] levels.

Most of those proposals adopt an approach that extends to
Fog environments concepts that were developed for Cloud
ones, such as application programming models and QoS
paradigms. Instead, we believe that Fog Computing appli-
cations would significantly benefit from innovative solutions
specifically designed to consider the fundamental aspects of
that environment, such as the time-sensitive, location-aware,
and information-centric nature of IT services and the scarcity
of resources. In this context, approaches that jointly address
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the issues of information prioritization for processing and dis-
semination and of traffic engineering seem particularly well
suited to address the intrinsic dynamicity of Fog Computing
scenarios.

This paper investigates the aforementioned challenging
but compelling research avenue and proposes the HOlistic
pRocessing and NETworking (HORNET) solution.
HORNET adopts an innovative holistic SDN-based

approach that simultaneously and jointly considers both
transport (for packet re-routing and engineering) and appli-
cation (for dynamic deployment and de/activation of ser-
vices) layers. This represents a significant difference from
traditional SDN approaches focusing only on the networking
perspective and allows HORNET to perform an optimal man-
agement of both computational resources and network flows
configuration.

Within this general approach, HORNET adopts a service
model whichwas specifically designed to address the require-
ments and challenges of Fog computing applications. First,
the HORNET service model follows an ‘‘acceptable lossi-
ness’’ perspective to Fog service development, at both the
processing and communication levels. The assumption is that
Fog environments are resource scarce and might not be able
to fully support application requirements. For this reason,
services should focus their effort on the processing of a subset
of data that allows them to maintain acceptable Quality of
Experience (QoE) levels, eventually dropping packets related
to data deemed as less crucial.

In addition, HORNET Fog services are information-
centric, adaptive, and realized on top of service compo-
nents instantiated along the communication path from (raw)
information producers to (processed) information con-
sumers. Service components are loosely-coupled and
composition-friendly software modules that can be quickly
chained to create applications, and just as quickly rearranged
in case of need. This paradigm is inspired by research on SDN
and Network Function Virtualization (NFV), and extends the
service chaining concept as a composition of different Virtual
Network Functions (VNFs) to a higher-level application-
driven perspective, by considering information-centric ser-
vice components instead of VNFs. In addition, HORNET
addresses the dynamicity of the application scenario by
implementing at the single service component level a process-
ing logic which is adaptive and capable of reducing require-
ments to match the level of resources currently available in
the deployment location, i.e., the edge device on which the
component is running.

To dynamically control and optimize information
dissemination between service components, HORNET also
introduces an important innovation. More specifically,
HORNET leverages Multi Layer Routing (MLR), which pro-
vides three different forwarding dissemination tools to tackle
the needs of different types of applications. MLR dynam-
ically uses multiple routing solutions at different abstrac-
tion layers, ranging from native IP ones to more expressive
but resource-consuming packet dispatching techniques, also

considering the actual content within packet payload. The
adoption of MLR allows HORNET to tailor the specific
dissemination solution for processed information according
to service requirements and the current execution context,
by dynamically choosing the most suitable among a wide
array of different options.

Finally, HORNET adopts Value-of-Information (VoI) as a
unifying criterion for the optimization of resource allocation
and management. Originally born as an extension of Shan-
non’s information theory in the 1960s for decision making
purposes, the VoI concept has been recently attracting interest
in scientific literature on tactical and Fog computing appli-
cations as a subjective metric that measures the utility that
Information Objects (IOs) deliver to end recipients [14], [15].
Compared to other criteria, VoI naturally enables a much
more effective usage of the scarce and heterogeneous compu-
tational and bandwidth resources in information processing
and dissemination.

The adoption of these innovative models provides to
HORNET several advantages compared with traditional solu-
tions. It allows to achieve the desired Quality of Experience
(QoE) levels by focusing on the processing and dissemination
of the most valuable pieces of information from the end
users’ point of view, possibly delaying or even dropping less
valuable ones.

However, since it is a radical change of paradigm to take
advantage of the HORNET platform each service would have
to be developed in accordance with HORNET concepts and
API, thus allowing a VoI-based management of both net-
work flows and service components. To address this issue,
we explicitly consider backwards compatibility in the design
of HORNET. We envision that HORNET can be adopted
either in full as a comprehensive architecture or embed-
ded into an existing system. In the latter case, HORNET
would manage the behaviour of existing services and solu-
tions by means of more traditional methodologies such as
native IP.

This paper extends our previous conference work [16]
about the HAN middleware. The proposed HORNET solu-
tion introduces significant improvements at the architec-
tural and implementation levels over HAN. Specifically,
to develop effective solutions able to tackle the complex-
ity and dynamicity of Fog Computing applications, we put
our efforts in integrating the VoI concept inside both the
management logic of the control plane and the dissemi-
nation data plane, thus allowing to prioritize the process-
ing and dissemination of most valuable application-specific
information.

The paper also presents a thorough experimental evalu-
ation of the HORNET solution, both in a real testbed and
in a realistic simulated environment. The results show that
HORNET is capable of quasi real-time network layer recon-
figurations, even on resource limited hardware, and validate
the HORNET VoI-based resource allocation approach by
demonstrating its effectiveness in a dynamic context with
multiple concurrent services.
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II. RELATED WORK
While the SDN approach has been traditionally adopted (and
by now it is considered the standard solution) in datacen-
ters and huge enterprise networks [17], some first research
efforts demonstrate its validity also in Fog environments [12],
[18]–[21]. To this purpose, the section revises state-of-the-
art contributions along three primary directions: i) the current
literature proposing to adopt the SDN approach in Fog envi-
ronments, ii) the recent trend towards softwarization of net-
work services taking advantage of the SDN, and iii) dynamic
service composition and task offloading to better manage
Fog nodes and related computational/resources, eventually
also adopting Quality-of-Information (QoI) and Value-of-
Information (VoI) concepts.

As presented in a recent survey [22], most of SDN-based
Fog routing solutions propose the adoption of SDN tech-
nologies in Fog Computing to provide efficient routing
mechanisms capable of addressing low latency, low band-
width, and security requirements of Fog Computing envi-
ronments. In addition, the paper presents an SDN solution
based on a hierarchy of Fog controllers distributed between
the Cloud and the edge; the primary idea is that frequent
events are locally managed on Fog controllers and rare events
are globally managed by the Cloud controller. Other papers
focus on security aspects related to the adoption of SDN in
Fog Computing. For instance, [23] analyzes security vulner-
abilities of the OpenFlow channels and proposes an attack
model and related countermeasure based on Bloom filters.
Moreover, [12] proposes a novel approach based on the com-
bination of SDN and Blockchain to securely manage compu-
tational resources (Fog nodes) at the edge, with the primary
goal of exploiting the Blockchain to connect togethermultiple
SDN controllers deployed in a distributed manner in the Fog
layer. Finally, [24] outlines how another relevant application
of SDN in Fog Computing can be the identification of threats
and anomalies. In particular, the paper exploits the SDN con-
trol plane to dynamically deploy software agents monitoring
the traffic to identify anomalies and eventual attacks.

The wide adoption of SDN together with Network
Function Virtualization (NFV) has more recently pushed the
attention on the softwarization of network services tradition-
ally implemented in hardware [25], [26]. In this scope, Ser-
vice Function Chaining (SFC) aims at providing an efficient
composition and/or orchestration of different and related net-
work applications/functions to achieve a chain of services
(building block services) suitable for devices and users in
Fog Computing environments. In [27], Yu et al. propose
the adoption of SDN as the enabling methodology for QoS
traffic steering in SFC. More specifically, the authors give
a mathematical definition and formulate a polynomial time
approximation algorithm. Instead, Zhang et al. discuss rule
management in SDN-based IoT and propose to aggregate and
minimize the number of forwarding rules by multiplexing
different traffic flows flowing in the same path aggregat-
ing them with a VLAN ID label [11]. In [28], the authors

describe a network function virtualization-aware orchestra-
tion for SFC placement in the Cloud. In particular, the authors
propose an heuristic for component orchestration in small-
and large-scale DC network (BACON) that minimizes the
intra- and end-to-end latency of the SFC. A similar approach
is given in [29], where authors formulate an optimization
problem for the deployment of service function chain in 5G
mobile networks. Furthermore, [30] presents an interest-
ing survey focusing on Fog Computing applications, point-
ing out some of the current challenges that orchestration
techniques usually find in Fog Computing scenarios: churn
and unreliability of nodes at the edge, heterogeneity of
resources, security and privacy related issues, and location
issues.

Finally, some work focus on dynamic service deploy-
ment [31] and data management optimization in [32] in
IoT environments. For instance, [33] proposes Data-intensive
Service Edge deployment scheme based on Genetic Algo-
rithm (DSEGA) to identify a perfect fit for component ser-
vices and data deployment on edge nodes in relation to stor-
age constraints and load balancing conditions. Instead, [34]
presents a work offload solution considering the geographic
location of mobile edge servers and IoT devices to better
serve service subscribers, also to decide if and when a task
should be run locally or on a remote edge node. Moreover,
[35] introduces an innovative approach to predict the QoS
in IoT environments based on Neural Collaborative Filter-
ing (NCF) and fuzzy clustering. The main idea is to cluster
contextual information and exploit a new combined similarity
computation method to identify latent features in historical
QoS data.

More recently the QoI and VoI concepts are starting
to emerge in the literature [36]. In fact, the adoption of
VoI-based metrics could enable information and flow prioriti-
zation at multiple levels and abstraction layers, and represents
a particularly interesting research avenue for IoT applica-
tions [37]. Bellavista et al. proposeVoI as criterion to develop
a sensor service rankingmechanism called VoISRAM in [38].
The main goal is to exploit the ranking mechanism gateway
services to achieve a trade-off between application specific
QoS requirements and the network energy consumption.
Bisdikian et al. present an application-agnostic QoI specifi-
cation to enable the assessment of information quality across
different applications. In [39], the authors propose a dis-
tributed algorithm for data collection called EQRoute that
uses QoI criterion to maximize information value and reduce
energy consumption.

In conclusion, we claim that the SDN adoption on the edge
side of Fog environments requires more efforts since there
is the need to adopt a wider and holistic point of view. The
objective is to support Fog service reconfiguration not only
considering networking features and resources (such as most
of the current literature propose) but also service composition
based on the aggregation of processed data (as we originally
propose in this paper).
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III. REFERENCE SCENARIO
To better illustrate how HORNET addresses the issues of
Fog computing applications, let us consider a Smart City
scenario hosting several services: pollution monitoring, traf-
fic monitoring, and plate recognition. Pollution monitoring
analyzes environmental data collected from, e.g., CO2, NOx ,
humidity, and temperature sensors to produce a report on
pollution levels, then disseminated to citizens in the area.
Traffic monitoring analyzes data from traffic cameras and
vehicle counting sensors to evaluate the level of traffic con-
gestion in the city; then, it disseminates situation reports to
citizens (either pedestrians or drivers) and police officers in
the surrounding area. Finally, the plate recognition service
monitors the traffic plates, e.g., to make sure that only cars
with a specific permit are driving through restricted areas.
Cars not complying with this restriction are automatically
reported to the police.

All these services have a long-time/continuous running
nature and will thus leverage software components running
on Fog nodes deployed and administrated by the municipal-
ity. The fair allocation of resources to this set of various and
ever-running services represents a challenge. In fact, static
allocation of resources, simply based on weights assigned to
service types, would be inadequate in this scenario. In fact,
in steady state, all the above mentioned services will likely
have access to all the resources they require. But this alloca-
tion would not make the system responsive to quick changes
of the environment context.

For instance, consider the case of a stolen car report,
leading to the insertion of a car plate code to look for in
the plate recognition service with high priority. In this case,
the plate recognition service becomes significantly more
important and the VoI of its associated traffic flows increases
considerably. Our SDN-based HORNET solution dynami-
cally manages the transport layer of the Fog environment by
configuring how traffic flows with higher VoI are dispatched,
i.e., by tuning routing tables to reroute such flows towards less
loaded links, thus prioritizing relevant flows promoting them
from regular data streams (whose messages may be delayed
or eventually dropped by adopting an ‘‘acceptable lossiness’’
approach) to high-priority data streams (that have full access
to networking resources of municipality Fog nodes), or both.

Furthermore, consider the case of a missing child report,
requiring to analyze a huge amount of data (dramatically
greater than in the plate recognition service) collected from
cameras by applying computationally expensive face recog-
nition algorithms. The effective and efficient provisioning
of such a service would require not only the prioritization
of associated traffic flows (like in the previous example),
but also (and most relevant) the on demand deployment and
instantiation of service components close to raw data sources,
i.e., cameras. To this purpose, our SDN-based HORNET
solution adopts a two-layer approach: at the application layer
it selects if, where, and when there is the need of instanti-
ating novel service components, while at the transport layer
it prioritizes messages carrying the new service (either its

configuration or the service component itself) to quickly
activate it. Let us note that by applying face recognition algo-
rithms in newly deployed fog devices close to the cameras it is
possible to achieve the notable twofold benefit of increasing
the scalability of the service (thus reducing its latency) and of
decreasing the traffic on the network (since video streams can
be locally processed instead of dispatched to a central server
running on a Cloud platform).

To this end, traditional management solutions, or even
recent SDN ones leveraging the concept of network slicing,
are not enough to address all the issues raised by the above
challenging scenarios. Therefore, to tackle the impelling
requirements of such scenarios there is the need to develop
solutions capable of reallocating networking and computa-
tional resources to service components in a rapid, fair, and
fine-grained manner, while addressing the issue of modu-
lating the information dissemination substrate to match the
current state and application requirements.

IV. THE HOLISTIC pRocessing AND
NETworking (HORNET) APPROACH
We devised theHOlistic pRocessing and NETworking (HOR-
NET) SDN-based solution to address the issues discussed
in the previous reference scenario. HORNET integrates and
extends our past work on the Real Ad-hoc Multi-hop Peer-to-
peer (RAMP) [40] and the Sieve, Process, and Forward (SPF)
middleware [41], by dynamically managing the deployment
and composition of Fog services according to VoI optimiza-
tion criteria and by dynamically re-configuring end-to-end
communications to maximize QoS [42], [43].

As illustrated in Fig. 1, HORNET executes its middle-
ware services on top of edge devices (nodes N1-N5 in the
figure) capable of hosting information processing tasks and
of operating as routers for traversing flows, coordinated by
a centralized Fog SDN Controller. At each node, HORNET
instantiates and manages information processing and dis-
semination tasks in an integrated and context-aware way by
leveraging a two-layer approach, with a top service layer and
a bottom communications layer.

FIGURE 1. The HORNET Concept.

At the service layer, the Fog SDN Controller dynamically
re/deploys and de/activates service components on fog/edge
devices. Service components can be any software module,
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ranging from shell scripts and OSGi bundles to containers
and even virtual machines, of course with different supported
capabilities and different performance in terms of deployment
latency. To this purpose, the Fog SDN Controller analyzes
service requirements and the generated VoI to modulate
resource allocation, by possibly deploying missing HORNET
components when and where needed. At the communication
layer, the Fog SDN Controller dynamically manages Fog
nodes to improve the QoS of packet dispatching not only by
computing best paths towards the destination and by tuning
forwarding rules on intermediate nodes, but also by adopt-
ing an SDN-based MLR approach to select the most proper
routing mechanism among different abstraction layers.

A. SDN-BASED MULTI LAYER ROUTING
We believe that to support efficient deployment and inte-
gration of information-centric services with highly varying
fan-in and fan-out there is the need of a communication
layer capable of implementing a flexible and context-aware
network fabric. To this end, HORNET takes advantage of
the MLR-based data plane (in conjunction with the RAMP
middleware) supporting three primary routing mechanisms
at increasing expressiveness power: pure IP forwarding,
(VoI-oblivious) overlay-based dissemination, and VoI-aware
overlay-based dissemination.
Pure IP forwarding works by dynamically modifying

per-device routing tables with traditional iptables command
to reroute vanilla UDP and TCP traffic flows based on IP
address destination. This mechanism manages legacy appli-
cations in a completely transparent way for edge devices, thus
simplifying QoS management.
Overlay-based dissemination supports collaborative

packet dispatching among edge devices by adopting routing
schemes based on flow ids. In this case, the Fog SDN Con-
troller provides a flow id to applications to label generated
traffic with. In addition, the Fog SDN Controller manages
Fog nodes by specifying, e.g., that the traffic labeled with a
given flow id has higher priority and thus other lower-priority
traffic flows should be temporarily delayed.
VoI-aware overlay-based forwarding extends the previ-

ous mechanism allowing to tune packet forwarding not only
based on the flow id, but also on the VoI carried by each
packet. To this purpose, the Fog SDN Controller manages
edge nodes by offering routing rules based on VoI values.
Let us note that in this manner it is possible to support
VoI-dependent information dissemination, e.g., by specifying
that for a given traffic flow packets carrying data with VoI
values below a threshold should be discarded, or differenti-
ating destination nodes based on VoI ranges at the sender as
well as on intermediary nodes. In other words, this mecha-
nism dynamically modifies the pipeline of fog services by
also permitting the definition of different pipelines for the
same data, based on time-varying VoI values. Furthermore,
the VoI-aware forwarding also enables a prioritized delivery
of service components to Fog nodes, thus allowing a fast

instantiation of high VoI service components even in case of
a network congestion.

The Fog SDN Controller selectively adopts one or more
of the above MLR mechanisms, with per-application gran-
ularity, depending on the current state of the network and
on the specific application needs. To this end, the Fog
SDN Controller would likely adopt Pure IP forwarding
or Overlay-based forwarding for legacy applications, while
applications built on the top of VoI would adopt VoI-aware
overlay-based forwarding. For instance, the Fog SDN Con-
troller can decide that a legacy application with strict low
latency requirements (such as video streaming for face
recognition [44] or image captioning [45]) should exploit
pure IP forwarding, with no overhead due to overlay net-
working. On the contrary, more articulated applications
could be effectively provided only if supported by addi-
tional dynamically deployed components, eventually coupled
with value-dependent packet dissemination techniques, e.g.,
by disseminating plate recognition information in a differen-
tiated manner to prioritize newly stolen vehicles.

Let us note that while the data plane is based on and
enabled by the MLR approach (thus IP native, overlay net-
working, and VoI-aware dispatching), the control plane is
based on the overlay network only. In this manner, infor-
mation and commands sent to Fog nodes and the Fog SDN
Controller can take advantage of the routing flexibility of
overlay networking. For instance, in this way it is possible to
identify destinations based on a network-independent unique
node id rather than an IP address that could change or could
be duplicated in different subnets of the same multi-hop Fog
environment. In other words, the Fog SDN Controller can
dispatch packets related to the control plane independently of
how (and whether) routing tables on intermediary Fog nodes
have been configured.

The reference scenario presented in Section III can greatly
benefit from the MLR approach adopted by HORNET. For
instance, the Fog SDN Controller can exploit MLR to con-
figure the network to reroute low-priority pollution traffic
towards limited bandwidth longer paths supported by the
overlay network. On the contrary, it can setup IP routing
tables on intermediary Fog nodes to forward high-priority
video streams for face recognition towards IP-based short
paths.

B. VALUE-BASED INFORMATION PROCESSING
The HORNET solution adopts the MLR approach and
extends it with the Adaptive, Information-centric, and
Value-based (AIV) service and information maturity
model [46]. On the one hand, AIV proposes an information
maturity model that classifies messages in two different
categories: raw-data if a message is generated by a sensor
and Information Object (IO) if the message is the processing
result of a service component. On the other hand, AIV
proposes an innovative Fog service model that leverages
VoI-based concepts to enable the development of services
capable of automatically scaling their resource requirements
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to their current execution context while preserving high QoE
levels.

More specifically, AIV assumes that the processing func-
tion of a Fog service emerges as the result of the coor-
dinated orchestration of adaptive and composition-friendly
service components, in which each component is responsible
to deal with a part of the information processing. This loose
definition of Fog services allows to easily support dynamic
architectures where single instances of service components
can be migrated to different devices along the Cloud-IoT
continuum according to the current execution context (service
requirements, resource availability, user preferences, etc.).
Above this concept, Fog services are defined as a topology
of service components connected together with respect to a
service description that defines the semantics, the charac-
teristics, and the interactions between service components.
For example, the face recognition service mentioned in the
reference scenario implements the processing of video feeds
collected from nearby cameras (raw-data) through several
phases: video transcoding, face detection, and face recog-
nition processing. In this case, a first service component
takes care of video transcoding operations by transforming
the cameras frame raw-data into IOs that will feed the face
detection service component, which in turn passes its output
IOs to the face recognition service component to produce
valuable IOs for end users interested in consuming them.

The development of VoI-aware Fog services requires
explicit support at the middleware level. In fact, there is the
need of VoI evaluation mechanisms of raw data and IOs
that are of generic applicability and can be configured to
match the needs of the specific service components where
the VoI evaluation is used. To this end, we developed the SPF
middleware, which aims to be the reference implementation
of the AIV service model, and released it as open source at:
https://github.com/DSG-UniFE/spf [41].
SPF evaluates the VoI of messages and keeps track of it

along their lifecycle. More specifically, the initial VoI associ-
ated to an IO m is calculated as a function of the messages
processed for the IO generation and of the priority of the
originating service component:

VoI0(m) = SSV (I(m))× FSP(sc(m)) (1)

where I(m) is the set of input messages processed for the
generation of IO m and sc(m) is the service component
that generated m. (Note that I(m) will typically consist of
raw data messages, but might also include IOs, as it is not
rare for IoT services to perform information processing at
different abstraction levels.) SSV (I(m)), as in ‘‘Service Spe-
cific Value (calculation)’’, is a factor that takes into account
service-specific considerations when assessing the value of
the information extracted from I(m). FSP(sc(m)), as in ‘‘Fog
Service Priority’’, is a factor that considers the priority of the
service that component sc belongs to, thus assigning higher
VoI to the IOs produced by higher priority services.

The result of equation (1) represents the basis to calculate
the VoI that message m delivered to its recipients. More

specifically, m needs to consider other elements such as the
decrease in the value for time sensitive information and the
decrease in the value for location-aware information.We then
have:

VoI (m, r) = VoI0(m)× TRD(r t ,mot )× PRD(r l,mol) (2)

where TRD(r t ,mot ), as in ‘‘Timeliness Relevance
(of Request) Decay’’, is a factor that takes into account the
loss of VoI in the time elapsed between message generation
mot and receival r t and, PRD(r l,mol), as in ‘‘Proximity
Relevance (of Request) Decay’’, is a factor that considers the
loss of VoI as it traveled from the originating location mol to
its recepient location r l .

The total VoI delivered by an IO messagem then becomes:

VoI (m,MR(m)) = VoI0(m)

×

∑
r∈MR(m)

[TRD(r t ,mot )×PRD(r l,mol)]

(3)

where MR is the (set of) receivers for message m. As it can
be seen, the total VoI produced by a service can be high
either because the messages it generates are dispatched to a
considerable amount of users or because associated service
components are providing highly valuable IOs. For more
details about VoI tracking, both within SPF and as a general
framework, we kindly refer the reader to [15].

At the single node level, SPF keeps track of the total
VoI of the IOs generated by the service components running
in that node. It then uses this information to assign local
(computation, storage, and bandwidth) resources to service
components according to the VoI they generate.

C. OPTIMAL PROCESSING AND NETWORKING
CONFIGURATION
HORNET builds on top of SPF to run VoI-based information
processing services and leverages its VoI tracking capabilities
to tailor the communication layer according to the application
requirements and the current VoI they are producing. More
specifically, HORNET aims at finding the service component
allocation α and network configuration γ which optimize the
total VoI delivered to end users:

argmax
α,γ

∑
m∈M(tn,tn+1)

VoI (m,MR(m)) (4)

where M(tn, tn+1) are the messages received by end users
within the (tn, tn+1) time window.

To optimize service component allocation and traffic engi-
neering, HORNET needs up-to-date information about the
VoI delivered by Fog services. To this end, SPF continuously
monitors service components and, through the local Fog Con-
trol Agent, periodically informs the Fog SDN Controller of
the total VoI of generated raw data and IOs and if they require
additional resources. By using the total VoI associated to raw
data and IOs as a resource assignment criterion, the Fog SDN
Controller selects the best path for traffic flows and prioritizes
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the assignment of resources to services that are providing
the highest VoI value to their end users. Furthermore, when-
ever the Fog SDN assesses that rerouting and prioritization
together do not achieve the required QoS (or the generated
VoI is extraordinarily high), it can also select to re/deploy new
service components.

HORNET uses its knowledge base about the services
currently running in the network and the VoI tracking infor-
mation collected from SPF to optimize service component
allocation and traffic engineering at the entire system level.
More specifically, HORNET solves the holistic optimization
problem in equation (4) by leveraging a continuous optimiza-
tion solution based on an advanced genetic algorithm variant
with adaptive mutation. Genetic algorithms are particularly
well suited for optimization problems with complex search
spaces, because of their remarkable flexibility in chromo-
some representation, and dynamic aspects, which they are
capable of addressing effectively using a varying intensity
mutation process (controlled by feedback on convergence
speed) [47] and hypermutation triggering to deal with abrupt
changes in the system state [48]. As a result, genetic algo-
rithms represent a very good choice for HORNET. However,
genetic algorithms are known to suffer from relatively slow
convergence rate in some cases. To address that issue, we are
also exploring alternative optimization solutions leveraging
Quantum-based Particle Swarm Optimisation and greedy
algorithms.

Let us clarify that the VoI function in equation 4 repre-
sents a scalar/univariate quantity. This allows to formulate the
resource assignment problem as a single-objective optimiza-
tion one, and actually represents a significant advantage of
the adoption of VoI as an underlying theoretical framework.
Alternatively, non VoI-based multi-objective formulations of
the resource allocation optimization problems would have
required the adoption of a significantly more sophisticated
optimization solution, for instance NSGA-II, and most likely
less performing from the convergence rate perspective.

The holistic approach to information processing and traffic
engineering management adopted by HORNET allows to
effectively maximize the overall QoS of the most important
service components, i.e., those producing the highest VoI.
For example, in case of a stolen vehicle, information about
car plates suddenly becomes much more important – hence
valuable – for the police. As a result, since the plate recogni-
tion service starts delivering higher VoI, the HORNET SDN
controller exploits MLRmechanisms at the transport layer by
increasing the priority level of packets carrying information
about car plates. Once notified about the new priority level,
intermediary nodes start dispatching such packets with higher
priority as soon as they arrive, but only if the per-packet VoI is
high. For instance, a packet carrying a car plate whose picture
is blurred (i.e., not useful for the service) has a high priority
but low VoI, and thus it can be delayed. On the contrary,
intermediary nodes forward packets related to other services
with lower priority only if and when there are no plate packets
in the queue. In other words, the dispatching of packets with

lower priority is delayed whenever a car plate packet arrives;
in case the queue of outgoing lower VoI packets increases
too much (and thus packets are delayed for a long period),
eventually they can be dropped in an ‘‘acceptable lossiness’’
fashion.

This is even more relevant in the case of missing child
report. Since it generates IOs with a very high VoI, the SDN
controller exploits the application layer mechanisms to trig-
ger the deployment of new service components in charge
of applying face recognition algorithms close to cameras,
thus providing more computational resources to process most
relevant raw-data. To this purpose, it exploits MLR to provide
maximum priority to packets carrying software components
to be deployed, temporarily delaying the dispatching of traffic
flows related to any service despite their priority and VoI.
In this manner, it is possible to achieve the notable benefit
of promptly delivering service components also in case of
congested network. Then, if the child missing alarm is called
off, the Fog SDN Controller sets priority to former levels and
stop/decommission service components to release computing
and networking resources.

Finally, let us stress that the VoI-aware MLR approach
allows HORNET to decide how to optimize the communica-
tion layer during service provisioning, with no need to impose
service stops for static reconfigurations at service launch
time. For instance, the traffic monitoring service typically has
a high number of consumers and can be efficiently carried
on top of the overlay based dissemination mechanism, also
taking advantage of device-to-device (D2D) communications
and step-wise efficient multicasting. Furthermore, HORNET
can transfer high-VoI video streams for face recognition over
high quality paths without any delay and without dropping
any packet, while assigning limited network resources to
low-VoI video streams for plate recognition that can afford
to be slightly delayed or partially dropped (‘‘acceptable
lossiness’’).

D. ARCHITECTURE AND IMPLEMENTATION INSIGHTS
Fig. 2 outlines the overall architecture of a Fog service node
in HORNET. The depicted components are deployed and
activated on each Fog node and allow the node participa-
tion to the HORNET Fog environment. In addition, for each
Fog environment there is one node acting as the Fog SDN
Controller by registering itself to the local RAMP as ‘‘Fog
SDN Controller’’ service, thus allowing remote Fog nodes to
dynamically discover and register to it. Based on the informa-
tion provided by remote Fog nodes, the Fog SDN Controller
generates a weighted graph representation of the topology.

Delving into finer details of each Fog node, the overall
architecture is divided into the Control Plane and the Data
Plane. The Control Plane (Fig. 2, top) primarily consists of
Link Connectivity Manager (LCM) and Control Agent (CA).
LCM manages single-hop links and provides network status
information. CA gathers information and exploits the over-
lay network to send data to the SDN controller and receive
commands from the SDN controller. More specifically,
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FIGURE 2. Architecture of the HORNET SDN solution.

the Communication sub-component appropriately controls
the underlying MLR component to dynamically con-
figure available routing mechanisms, while the Service
sub-component dynamically deploys and activates software
modules to enrich Fog nodes with additional capabilities
required to correctly provide requested services.

The Data Plane (Fig. 2, bottom) consists of the RAMP
middleware, the MLR component, and the SPF middleware
enhanced for Fog service dynamic composition. The RAMP
middleware supports the creation of the multi-hop overlay
network with best-effort packet dispatching. MLR properly
manages packets received by the RAMP middleware on a
per-flow basis, by adopting the listener-based Data Plane
Forwarder (DPF) to intercept incoming overlay network data
packets and apply routing rules related to overlay-based and
VoI-aware MLR layers. Furthermore, it is worth noting that
Pure IP is logically part of the MLR component (and it is
configured by the local SDN CA), but packet forwarding is
actually performed by the operating system through kernel
routing tables based on the received HORNET indications.

The MLR layer extracts the content (together with VoI
metadata if available) of incoming packets of interest to any
of the services running on the Fog node and forwards it to
SPF, which in turn dispatches it to the concerned service
component(s). In the (likely) case the processing leads to
the generation of higher level IOs, the latter – along with
their VoI metadata – will be forwarded to MLR in charge of
selecting the proper communication mechanism and finally
dispatching it.

The current implementation of the Fog SDN Controller
adopts the Graph Stream library to identify best paths to pro-
vide Fog service, e.g., by applying Breadth First or Dijkstra’s
algorithms based on different cost functions. In particular,

when an application requires to the Fog SDN Controller the
best path to access a service, it also gets one of the three
already developed routing mechanisms: Pure IP, i.e., manag-
ing the Fog environment to modify operating system rout-
ing tables of intermediary nodes; Overlay-based dispatching,
i.e., exploiting the RAMP middleware to forward packets
based on a flow id senders have to tag transmitted packets
with; and VoI-aware, identifying the path towards the desti-
nation based on the dynamically calculated VoI of packets,
e.g., to exploit large bandwidth and small latency for packets
with high VoI (thus ensuring better QoE) and less capable
paths for packets with low VoI.

V. EXPERIMENTAL EVALUATION
We have evaluated the proposed solution with a Java pro-
totype as well as in a simulated scenario, with the twofold
objective of demonstrating i) its feasibility and efficiency in
a real-world (but small-scale) scenario and ii) its capability of
dynamically deploy and and compose service components in
a wider simulated environment.

In particular, in-the-field experiments (based on the RAMP
middleware, see Section V-A) allow to evaluate the perfor-
mance of MLR-based network reconfiguration by measuring
the control plane latency, also considering the challeng-
ing case of service component deployment with band-
width saturation due to high traffic load. Then, performance
results achieved with the prototype are used to configure a
larger-scale simulated environment (based on the Phileas
simulator, see Section V-B). In this manner, we are able to
faithfully reenact an actual prototype in a simulated envi-
ronment to evaluate how the proposed solution is able to
promptly reconfigure service components (and the network
in general) by considering the activation of multiple devices
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and heterogeneous service instances to optimize the overall
VoI.

A. IN-THE-FIELD PERFORMANCE EVALUATION OVER
REAL TESTBED
Let us preliminarily notice that most related papers in
the existing literature do not include experimentation over
real testbeds and deployment environments, due to the
time-consuming effort that this requires. On the opposite,
we claim the relevance of such experimentation to col-
lect feedback from the experience of real deployment and
to determine real setting values for the configuration of
associated simulations. To that purpose, we have built a
testbed of 5 Raspberry Pi 3 Model B+ connected one
another in a kite-like network topology via either Ethernet
or IEEE 802.11 and based on our Java prototype available at
https://github.com/DSG-UniFE/ramp.

We have evaluated the efficiency of the control plane along
two primary guidelines: the time required to setup MLR for-
warding rules on Fog nodes and the capability of dynamically
deploying service components.

On the one hand, we have evaluated the overhead due to
rule management by measuring the rule management cost,
i.e., the time spent from when a node requires to the SDN
controller the deployment of a new traffic rule to when the
new traffic rule starts to be enforced on Fog nodes. In the case
of pure IP, the SDN controller has to setup a new routing rule
and send it to a Fog node, in charge of applying it. In case of
VoI-aware forwarding, the SDN controller prepares the Java
class containing the logic of the rule and sends it to a Fog
node, deploying and registering it to the overlay networking
RAMPmiddleware (we also tested the overlay-based dissem-
ination case, with performance results that are very similar to
the VoI-aware one).

To this end, Fig. 3 depicts measured traffic rule deployment
costs in a regular situation, i.e., without network congestion.
In the (native) IP case it takes about 483 ms, while in the
VoI-aware case only 59 ms. Such a difference is justified by
the fact that in the former case there is the need of modify-
ing routing rules at the operating system layer, which is a
time-consuming operation also due to the required context
switch and the time required to execute the iproute2 com-
mand. Instead, in the latter case, once the VoI-aware routing
rule reaches the interested Fog nodes, the deployment and
registration procedures take less time since they are imple-
mented within HORNET directly at the overlay layer (they

FIGURE 3. Rule management cost.

do not require reconfiguration at the operating system layer).
In fact, at the reception of a file representing the rule as a
Java class, HORNET stores the file locally, then instantiates it
by directly interacting with the Java class loader (specialized
to specify custom source directories specifically containing
VoI-aware routing rules), and finally registers it in a key-value
store with the available VoI-aware rules. Such procedure
does not involve any time-consuming operation and can be
efficiently done inmuch less than 100ms as reported in Fig. 3.
On the other hand, Fig. 4 shows the qualitative trend

related to the delivery throughput of a service component
(size of 5 MB) via a congested link (nominal bandwidth
of 3000 KB/s). More specifically, at time 1 s a traffic flow
carrying data packets starts to fully exploit the available band-
width. Then, at time 7 s the SDN controller exploits the same
link to deliver the service component at maximum priority.
Slightly after the new control traffic flow starts, the previous
one is inhibited by delaying the dispatching of its packets.
Finally, at time 9 s the service component is completely
delivered and networking resources provided again to the
previous flow. In other words, the proposed solution is able
to deliver control messages even if data flows saturate the
bandwidth.

FIGURE 4. Priority management of control and data flows.

Finally, we have evaluated the rule enforcement cost met-
ric, i.e., the time required to enforce rules on intermediary
nodes. In this manner, we can better assess the suitability of
the proposed solution for challenging use cases requiring the
prompt dispatching of packets. To this purpose, we compared
the time required on a Fog node to identify the next node
without and with considering the VoI. In the former case,
it requires to retrieve the flow id from the packet header
and look up the overlay network routing table maintaining
<flow id, next hop> mappings. In the latter case,
there is the non-negligible additional overhead due to payload
deserialization, required to retrieve the packet content and
then compute the VoI.

Fig. 5 depicts how the rule enforcement value varies while
increasing the payload size (from 100 B to 10 KB) at high
packet rate (250 packets per second). In the overlay network
case it takes about 50 ms, with limited rise at increasing
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FIGURE 5. Rule enforcement cost at varying payload size (250 packets
per second).

payload size, mainly due to slightly more complex memory
management. In the VoI-aware case it takes from 50 ms for
100 B payload to more than 250ms for 10 KB payload. In this
case the payload size relevantly impacts on the achieved
performance, due to the additional time required for deserial-
ization and to inspect the payload content.

Overall, performance results achieved on a real-world
testbed composed of Raspberry Pi devices based on our
Java prototype demonstrate the feasibility of the proposed
solution. In fact, by adopting the proposed SDN-based MLR
solution it is possible to remotely deploy new service com-
ponents in a prompt manner (also in case of bandwidth
saturation thanks to our priority-based flow dispatching
mechanism), while the time required to enforce rules is lim-
ited also in the challenging case it is required to deserialize
huge packets.

B. SIMULATION OF REFERENCE SCENARIO
We also evaluated the HORNET framework in a simulated
environment with the primary goal of testing the articulated
reference scenario discussed in Section III, composed of
several devices and different services. In particular, simu-
lated experiments allow to present how the the dynamic
deployment and activation of services composition, trig-
gered by the time-varying requirements and resources of
the target environment, influence the service-specific and
overall VoI. In the following subsections we first intro-
duce the adopted simulator and the target use-case; then,
we detail run experiments and discuss about achieved
results.

1) THE PHILEAS SIMULATOR AND THE TARGET USE-CASE
For the purpose of this experiment we adopted Phileas,
a discrete event simulator that enables the reproducible
evaluation of Fog applications in a realistic environment,
which we developed and released as open source at:
https://github.com/DSG-UniFE/phileas [46].
Phileas allows to simulate applications built on the AIV
service model, tracking the VoI of each information during
the whole processing, from the generation of a message to its
consumption.

In fact, the VoI associated to each message depends on
several factors, i.e., information type, service characteristics,
end user interests, context, etc., and typically changes sig-
nificantly throughout the message lifetime. In the simulated
simulator, at the moment of its generation each raw data
message is assigned an initial VoI attribute, while the VoI of
IO messages generated by service components is calculated
from the VoI of messages that were processed to generate that
message according to service-specific policies. Moreover,
each message has a VoI decay profile that models the loss
of value as time passes and the information travels from
its originating source, according to the configuration of the
entity that generated the message.

Phileas alsomodels communications, adopting a pragmatic
approach oriented to allow the accurate evaluation of the VoI
produced by Fog services running in the simulated scenarios.
More specifically, Phileas models communication latency by
sampling from a random variable with a long tail distribu-
tion, in accordance with several research studies [49]–[51].
In addition, it adopts a logarithmic propagation loss, which
is suited for urban environments. We believe this approach
represents a reasonable tradeoff between model complexity
and accuracy, as it allows to account message losses and
communication delays while dismissing lower-level and pro-
tocol specific aspects such as transmission rate, interference
modeling, etc.

As depicted in Fig. 6, we chose to implement the reference
scenario of Section III in the downtown area of Washington
DC,USA.More specifically, we setup 7 different data sources
(4 environmental stations and 3 traffic cameras) in an area
between the National Mall, Capitol Hill, and Union Station.
We assume that these data sourceswill generate raw datames-
sages with random and exponentially distributed initial VoI
values. The VoI of raw data messages will decay exponen-
tially in both space and time as messages get disseminated.
The time between the generation of subsequent messages,
i.e., the inter-generation time, and the message size are also
random and exponentially distributed.

FIGURE 6. Positions of sensors and devices on the map as defined in the
scenario.
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TABLE 1. Characterization of service processing.

The raw data collected from IoT sensors serves as an input
for the Fog services. At the beginning of the simulation, three
services are running on the devices at the edge, analyzing
data and disseminating the results in real-time: Traffic Moni-
toring (TM), Pollution Monitoring (PM), and Plate Recogni-
tion (PR). PM collects environmental data from local stations
and generates reports with information about the air quality
nearby. TM and PR gather video frames from traffic cam-
eras in the downtown area and processes them, respectively,
to assess the current viability status and to identify cars with
plates of interest.

These services are implemented on top of 10 different
components hosted in 4 devices deployed andmanaged by the
municipality. Service components process incoming infor-
mation according to a lossy and service-specific buffering
policy: if they do not have enough resources they will drop
messages when the buffer is full. In addition, to mimic the
behavior of information processing services, we assume that
an IO message m will be generated only after a random
number 2(m) of raw data messages, sampled from a proba-
bility distribution with service specific parameters, have been
received. In the experiment, we adopted the discrete uniform
distribution DU (a, b) to model 2(m).

For the purpose of these experiments, equation (1) is
approximated as shown in eq. (5). The initial VoI VoI0 of an
IO message m is obtained by calculating the average VoI of
raw datamessagesRDi processed to obtain IOm and applying
a service component specific multiplier V (s)

M as a weight that
takes into account the overall parameters defined in equa-
tion (1). As with raw data messages, the VoI of IOs will decay
in both space and time as they are disseminated, according to
service specific policies and equations (2) and (3). For the
purpose of these experiments, we considered linear time and
space decay, with service specific half-life parameters. All
the parameters we considered for service specific modeling
are summarized in Table 1.

VoI0(m) = V (s)
M ∗

2(m)∑
i=1

VoI (RDi)
2(m)

(5)

2) VoI-AWARE SERVICE MANAGEMENT
The objective of the simulations is to demonstrate that
HORNET is able to promptly manage monitored Fog envi-
ronments by appropriately considering a service compo-
nents and network re-composition solution that optimizes
the overall system VoI. To this purpose, we defined 6 user

TABLE 2. Characterization of user groups.

FIGURE 7. VoI produced by each service during the simulation.

FIGURE 8. Comparison of (smoothed) VoI produced by each service
during the simulation.

groups interested in the information provided by the services,
with the characteristics described in Table 2. Groups 1-4
represent a mixture of citizens and municipality officers,
while groups 5 and 6 represent police enforcement. Each user
group modeled in the scenario has different share interests in
receiving information from one of the three services, depend-
ing on the type of user and her/his location.While PMandTM
provide valuable information for a wider range of users, PR is
for municipality/police enforcement use only. We modeled
the number of users at time t as a Gaussian random variable
with distribution N (µ, σ ).
We configured Phileas to reenact the scenario for 24 hours.

We assume that after 4 hours from the beginning of the simu-
lation a missing child report arrives, leading to the immediate
activation of the Face Recognition (FR) service and of an
additional device, as well as of another device one hour later.
These changes to the set of service activated and resources
available prompted HORNET to activate 5 additional service
components (replicas) for FR between 4 and 7 hours from
the beginning of the simulation to maximize the total VoI
produced. In addition, after 6 hours from the beginning of the
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FIGURE 9. Total VoI (scaled) generated during the simulation, in correlation with: a) the number of active
services (left), and b) the number of active devices (right).

simulation, a stolen car report arrives, leading to the increase
of the VoI generated by PR (which we simulated by changing
the corresponding value of V (s)

M to 6.0) and the activation of
an additional device from the police. Again, the detection of a
change in the VoI produced by PR, as well as of the availabil-
ity of more resources, prompted HORNET to immediately
allocate 2 additional service components (replicas) for PR.
Then, to assess how HORNET would respond in case the
stolen car and the missing case were found, we scheduled the
deactivation of the 3 extra devices and reset the value of V (s)

M
for PR between 14 and 17 hours from the beginning of the
simulation.

As expected the VoI changes heavily throughout the simu-
lation. Fig. 7 depicts with high granularity and at per service
level the instantaneous VoI delivered by the IO delivered
to users (y axis) versus the corresponding simulation time
(x axis). Fig. 8 presents the same data but in a different form,
comparing the curve VoI delivered by each service, smoothed
through the interpolation at the entire simulation time level.
Both figures clearly depict how the activation of new devices
and of the face recognition service impacts the VoI provided
to end users of Fog Computing applications. In fact, note how
the activation of FR impacts TM and PM in a negative way,
even after the activation of new devices. At the same time,
the increased VoI of PR after the stolen car report event means
that the service receives enough resources to deliver a good
amount of VoI. Finally, after the deactivation of FR and of the
on demand devices, the VoI curves return to the state at the
beginning of the simulation.

Fig. 9 provides a different insight on the behaviour of
HORNET. It shows the normalized and interpolated VoI
accordingly to a color scale based on the number of active ser-
vices (Fig. 9.a, on the left) and devices (Fig. 9.b, on the right).
More specifically, we normalized the VoI value of each output
messages in a [0, 1] range and we choose a 1-hour time inter-
polation window. The figure clearly shows that a high total

FIGURE 10. Number of raw data messages processed every 10 minutes
throughout the simulation.

VoI is correlated with a high number of active services instan-
tiated and/or devices available for computation, as this allows
more valuable information to be disseminated to interested
users. This is also confirmed by the data in Fig. 10, which
shows the number of raw data messages during the simula-
tion. The figure illustrates the number of raw data messages
processed every 10 minutes during the simulation, divided
per message type. These results demonstrate how the service
composition stemming from a triggering-event (the need of
locating a missing child) affects the VoI, thus highlighting
the framework effectiveness in dynamically (re)allocating
resources to optimize the total VoI generated at the system
level.

Let us also note that the computational overhead intro-
duced by the VoI estimation is negligible. In fact, the VoI
approach implemented within HORNET allows to selectively
filter raw-data messages, thus resulting in a considerably
lower amount of information to be processed by service com-
ponents. Therefore, the computational overhead introduced
by the VoI estimation is dramatically lower than the compu-
tational resource-saving due to the VoI filtering. To quantify
these values, let us specify that during the simulation time
only 23.6% of the collected video frames and 14.4% of
pollution samples were processed.
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Overall, results achieved with the Phileas simulator high-
light the effectiveness of the integrated VoI-based prioritiza-
tion at both the service and communication layer performed
byHORNET. In fact, by considering the time-varyingVoI it is
possible to dynamically deploy service components when and
where needed, with the positive consequence of increasing
the overall VoI itself. In other words, achieved results confirm
the capability of HORNET to leverage the availability of
more devices to improve the total VoI produced.

VI. CONCLUSION AND FUTURE WORK
The development of Fog Computing applications can signifi-
cantly benefit from innovative solutions designed to prioritize
the processing of the most valuable portion of information
and to disseminate the results in a context-aware fashion.
To this end, we devised the HORNET SDN-based solution,
which enables the effective use of the scarce and heteroge-
neous computation and bandwidth resources in Fog Com-
puting environments, by adopting an ‘‘acceptable lossiness’’
perspective together with the MLR approach. HORNET
significantly facilitates the development of IoT applications
while addressing the most important challenges that are
raised by deployment environments such as the reference
scenario discussed in Section III.

The experimental evaluation presented in Section V
demonstrates the HORNET effectiveness in addressing opti-
mal service component re-composition and MLR-based net-
work configuration capable of maximizing the overall VoI in
the simulated reference scenario. More specifically, results in
Section V-A show that the HORNET Java prototype is capa-
ble of implementing fast (50-500ms) network layer recon-
figurations, allowing quasi real-time responsiveness even in
the worst case of large packets processed on resource limited
hardware such as Raspberry Pi devices. In addition, the exper-
iments in V-B demonstrate the effectiveness and robustness of
VoI resource allocation in a simulated environment reenact-
ing a highly dynamic scenario with multiple concurrent and
heterogeneous services, thus validating the HORNET model
and approach.

Encouraged by the already achieved and promising results
reported in this paper, we are currently working on the
HORNET middleware implementation to further increase its
flexibility. To this purpose, our primary ongoing work at the
moment is the extension of HORNET to support the dynamic
and flexible federation of hierarchically organized SDN con-
trollers, each one in charge of managing a part (i.e., a locality)
of the Fog environment.

At a later stage, we intend to investigate the refinement of
VoI evaluation models – a topic that scientific literature has
relatively neglected so far. We believe that this represents a
concern that goes beyond the aims and scope of the present
proposal. However, in the future we aim at performing a
step towards practical adoption of VoI based solutions by
reducing or eliminating altogether the theoretical possibility
that services competing for the same set of resources might
receive unfair treatment.
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