
This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Valeria Simoncini, On the numerical solution of a class of systems of linear matrix
equations, IMA Journal of Numerical Analysis, Volume 40, Issue 1, January 2020,
Pages 207–225

The final published version is available online at
https://dx.doi.org/10.1093/imanum/dry083

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1093/imanum/dry083

ON THE NUMERICAL SOLUTION OF A CLASS OF SYSTEMS OF

LINEAR MATRIX EQUATIONS ∗

V. SIMONCINI†

Abstract. We consider the solution of systems of linear matrix equations in two or three
unknown matrices. For dense problems we derive algorithms that determine the numerical solution
by only involving matrices of the same size as those in the original problem, thus requiring low
computational resources. For large and structured systems, we show how the problem properties can
be exploited to design effective algorithms with low memory and operation requirements. Numerical
experiments illustrate the performance of the new methods.

Key words. Linear matrix equations. Large scale equations. Schur complement. Sylvester
equation.

AMS subject classifications. 65F10, 65F30, 15A06

1. Introduction. We are interested in solving

A1X+XA2 +BTP = F1,
BX = F2

(1.1)

where Ai ∈ R
ni×ni , B ∈ R

m×n1 are the coefficient matrices, and F1, F2 are matrices
of conforming dimensions. The matrices X ∈ R

n1×n2 and P ∈ R
m×n2 are to be deter-

mined. In the following we shall use boldface to denote unknown (solution) matrices
to be numerically computed or approximated. We assume that A1 and −A2 have
disjoint spectra, ensuring that the Sylvester operator X 7→ A1X +XA2 is invertible.
Moreover, we assume that the full rank matrix B is “fat”, that is it has more columns
than rows, with m and n1 of the same order of magnitude. We stress the fact that
B is rectangular: the problem would be characterized by quite different properties
if all coefficient matrices were square (and nonsingular). In fact, the square setting
has been largely explored in the literature, both in terms of algebraic properties and
computational procedures, because of its connection with invariant subspace compu-
tations; see, e.g., [5],[4],[31],[11], and references therein. Note however, that most
known articles deal with the small scale case. Moreover, in the large majority of cases
in the literature, one matrix term per unknown in each matrix equation is considered;
see, e.g., [29]. Hence, in our setting the presence of the Sylvester operator provides
additional complexity to the problem, while being encountered in applications; see
below and section 2.

The system (1.1) can be generalized so as to consider three matrix equations and
three unknown matrices, that is1

A2X+XAT
1 +BT

1 P = F1

A1Y +YAT
2 +PB2 = F2 (1.2)

B1X+YBT
2 = F3.

∗Version of October 8, 2018. Part of this work was supported by the Indam-GNCS 2017 Project
“Metodi numerici avanzati per equazioni e funzioni di matrici con struttura”. The author is a member
of the GNCS-Indam activity group.

†Dipartimento di Matematica, Alma Mater Studiorum Università di Bologna, Piazza di Porta
San Donato 5, I-40127 Bologna, Italy (valeria.simoncini@unibo.it), and IMATI-CNR, Pavia.

1Note that here A1 and A2 denote generic square matrices, and are not necessarily related to A1

and A2 in (1.1).

1

2 V. Simoncini

Here B1, B2 ∈ R
n1×n2 , F1 ∈ R

n2×n1 , F2 ∈ R
n1×n2 and F3 ∈ R

n1×n1 , so that X ∈
R

n2×n1 , Y ∈ R
n1×n2 and P ∈ R

n1×n1 .
Many application problems can be naturally formulated in the matrix setting

described in (1.1) or (1.2). For instance, coupled matrix equations naturally arise in
the discretization of certain systems of partial differential equations (PDEs) in the
deterministic, stochastic or constrained settings, or in the control analysis of time-
invariant linear dynamical systems. In section 2 we briefly describe some of these
classes of problems.

Possibly for the sake of generality, little attention has been given to the matrix
equation form in the past, especially in the PDE literature. The associated vector
form has been preferred. Indeed, by using the Kronecker product the two matrix
equations in (1.1) can be rewritten as the standard (vector) system Mu = b with

[
A BT

B O

] [
x

p

]
=

[
f1
f2

]
, A = I ⊗A1 +AT

2 ⊗ I, B = I ⊗B, (1.3)

while x = vec(X), p = vec(P), fi = vec(Fi), i = 1, 2, where vec is the usual function
that stacks all matrix columns one after the other to form a long vector. We shall
refer to this linear system as the monolithic equation. The advantages of (1.3) are
clear: a rich literature can be employed to solve the linear system, see, e.g., [28], while
the saddle point structure of M can be exploited to devise effective preconditioners
if iterative methods are used; see, e.g., [2]. From a theoretical point of view, the Kro-
necker form ensures nonsingularity conditions on M based on the original coefficient
matrices, and thus existence and uniqueness of the problem solution. Unfortunately,
disadvantages are enormous: the dimension of the system in (1.3) becomes huge, as A
has size n1n2×n1n2, and the same for B. Sparse direct methods explicitly applied to
M are unlikely to be able to exploit the Kronecker structure, while iterative methods
require storing a certain number of extra working vectors of length n2n1 +mn1. In
this paper we go further in this argumentation. We show that numerical methods
that directly attack the matrix formulation, as opposed to the Kronecker form, not
only use memory allocations in a more sober manner, but can also be much faster,
especially if the structure is taken into account.

The idea of focussing on the matrix form of a given problem has recently proven to
be very effective in various contexts. For instance, linear convection-diffusion PDEs
with separable coefficients and elliptic PDEs with random inputs can be rewritten
as generalized Sylvester linear matrix equations with sparse data; see, e.g., [18],[21].
Rank structure of the problem can also be exploited. We refer the reader to [26]
for a discussion of typical application problems that can be conveniently put into a
matrix form. Here we extend this idea to include systems of matrix equations in more
than one unknown matrix. We focus on the case of two or three matrix equations
with one or two matrix terms per unknown, as they arise in application problems
associated with PDEs. We are unaware of numerical procedures that can effectively
and explicitly handle (1.1) or (1.2) when the problem size ni, i = 1, 2 is larger than
1000. The homogeneous case of (1.1), that is with F1 = 0, F2 = 0, was treated for
instance in [24]. This reference will be our starting point for one of the proposed
methods.

The recent literature discusses systems with a general (large) number of matrix
equations, for which different classes of approaches have to be considered; in [32]
for instance, a gradient based iterative algorithm was employed, that minimizes a
linear combination of the squared residual norm of each matrix equation. As already

Numerical methods for systems of two and three matrix equations 3

mentioned, however, most efforts in the literature focus on a single term per unknown,
with all square matrices; see, e.g., [13] and references therein.

In section 4 we discuss a nullspace based method for (1.1) that is particularly effi-
cient whenever B has small to medium dimensions, so that a dense QR decomposition
is feasible; the method can be implemented for either small or large A2. In section 5
we derive an iterative method for (1.1) that is able to handle the large scale case for
all coefficient matrices, when the right-hand sides have a low rank structure. Finally,
in section 7 we discuss a Schur complement based method that is tailored towards
the three matrix equations in (1.2); although the approach is also applicable to the
problem (1.1), it is not competitive with respect to the previously discussed methods
for that problem, whereas it is particularly efficient for the three matrix equation case.

All experiments were performed using Matlab [16] on a Dell computer with an
Intel Core processor i7-3687U, with four CPUs at 2.10GHz.

2. Examples of applications. Many application problems can be formulated
by means of one of the matrix equation systems above. Here we provide a few exam-
ples.

2.1. Regulator equations in constraint control. Systems of matrix equa-
tions (1.1) can arise in tracking and regulation, or in the robust model-reference
control of continuous-time systems, see, e.g., [15, Th.2.6], [30, Chapter 8],[7],[8],[22,
Chapter 2]. For instance, the dynamical system may represent a controllable plant
subjected to step disturbances at a regulated output. Indeed, let us consider the
following time-invariant dynamical linear system2

ẋ = Ax+Bu, y = Cx, (2.1)

while the reference model is written as ẋm = Amxm+Bmum, ym = Cmxm. Then the
following result holds.

Theorem 2.1. ([8]) Assume that there exists a stabilizing gain matrix K for the
system in (2.1), and that X,P satisfy the equations

AX+XAm +BP = 0, CX = Cm. (2.2)

Let us also define Q = −(BTB)−1BTXBm. When the controller u = us + uc with
us = Kx and uc = (P−KX)xm −Qum is applied to the unperturbed system, it holds
that limt→∞(y(t)− ym(t)) = 0.

For C = BT the form in (1.1) is obtained.

2.2. Mixed FE formulation of the stochastic Galerkin diffusion prob-

lem. Let us consider the stochastic steady-state diffusion problem −∇ · (c∇p) = f
with zero boundary conditions; here p = p(x, y) is the displacement, with (x, y) ∈ D
where D is a spatial domain, and c : D×Ω → R is the diffusion coefficient, depending
on the sample space Ω. In case the flux ~u := c∇p is explicitly of interest, the problem
can be restated in mixed form as follows

c−1~u−∇p = 0, in D × Ω (2.3)

−∇ · ~u = f, in D × Ω (2.4)

p = 0, on ∂D × Ω. (2.5)

2For the sake of a streamlined presentation a simplified model is considered.

4 V. Simoncini

Assume c−1 can be written as a truncated Karhunen-Loève expansion, that is c−1 =
c0 +

∑m

r=1

√
λrcr(~x)ξr(ω), where ξr are properly selected random variables; see, e.g.,

[14, section 9.3]. Assume then that an appropriate class of finite elements is used
for the discretization of the problem; here we follow the derivation in [9]. Then after
discretization the problem reads

[
G0 ⊗K0 +

∑m

r=1

√
λrGr ⊗Kr GT

0 ⊗BT
0

G0 ⊗B0

] [
u
p

]
=

[
0
f

]
.

The number m of terms in the sum is usually computed a priori, taking into account
the eigenvalue decay of the covariance function of c−1 [14, Chapter 9]. For m = 1,
that is assuming fast decaying eigenvalues, we obtain a pair of matrix equations very
similar to the one in (1.1), that is

K0XG0 +K1XG1 +BT
0 PG0 = 0, B0XG0 = F,

where the operator X 7→ K0XG0 + K1XG1 is a generalized form of the Sylvester
operator seen before.

2.3. Matrix formulation of discretized Stokes and Navier-Stokes equa-

tions. We consider the following two-dimensional steady-state Navier-Stokes equa-
tion system,

−ν∆~u+ (~u · ∇)~u+∇p = ~f
∇ · ~u = 0

in Ω (2.6)

with appropriate boundary conditions on ∂Ω, where Ω is an open bounded set of
R

2. For simplicity of exposition in the following we will assume that Ω is the open
unit square. The constant ν > 0 is the viscosity parameter. Coordinate-wise with
~u = (u, v) this reads

−ν∆u+ u(ux) + v(uy) + ∂xp = f1 (2.7)

−ν∆v + u(vx) + v(vy) + ∂yp = f2 (2.8)

∂xu+ ∂yv = 0. (2.9)

A finite difference discretization of the linearized version of these equations - the Oseen
equations - on a 2D staggered square grid (MAC scheme, see, e.g., [10]) leads to the
standard saddle point type linear system

Fu BT

x

Fv BT
y

Bx By

u
v
p

 =

f1
f2
f3

 , (2.10)

where n2 pressure unknown at cell centers are used, and n(n− 1) velocity unknowns
at each horizontal/vertical cell side are introduced. The diagonal blocks discretize the
diffusion operators as

Fu = A1 ⊗ In−1 + In ⊗A2, Fv = A2 ⊗ In + In−1 ⊗A1.

In the case of constant nonzero wind coefficients, the matrices A1 and A2 also contain
the discretization of the convection operator. More generally, for non-constant but

Numerical methods for systems of two and three matrix equations 5

separable wind coefficients, certain matrices replace the identity matrices in Fu and
Fv (see, e.g., [18]). The discretization of the divergence operator gives

Bx = In ⊗B, By = B ⊗ In,

where B ∈ R
n×(n−1); we refer to [10] for a more detailed description of the problem

discretization. By unfolding the Kronecker form of these matrices we obtain the three
matrix equations in (1.2). Neglecting the non-linear term in (2.7) yields the Stokes
problem, whose MAC discretization follows the same lines.

The discretization of the biharmonic equation also leads to a similar 3 × 3 sys-
tem, see, e.g., [25, equation (1.14)], where the first two diagonal blocks refer to the
mass matrix at interior and boundary nodes, respectively, while the non-diagonal el-
ements correspond to stiffness matrices, with a possible Kronecker structure. The
discretization of certain PDE-constrained optimization problems also lead to systems
of equations in Kronecker form, that can be reformulated in matrix terms; see, e.g.,
[6].

We conclude this section with a general comment on discretization and matrix
equations. Several numerical methods can take advantage of the form above when
discretizing (systems of) partial differential equations. Indeed, discretizations proce-
dures using tensor bases can appropriately handle separable coefficients in the PDE,
so as to guarantee a matrix formulation of the discretized problem. This may oc-
cur for instance in finite differences with transfinite grid interpolation type methods
[12], Isogeometric Analysis methodologies (see, e.g., [23]), and in certain spectral and
finite volume methods (see, .e.g, [3, Polynomial approximation chapter]). Most of
these strategies map the original 2D domain onto a rectangle, after which the ma-
trix discretization is directly applicable to separable coefficient PDEs; see, e.g., the
discussion in [26, Section 3].

3. Solvability conditions. We mentioned in the introduction that the saddle
point formulation of the system of two equations allows one to give sufficient conditions
for the nonsingularity of the coefficient matrix M in (1.3) and thus for the solvability
of the associated linear system. Indeed, let H be the symmetric part of A in (1.3),
that is H = (A + AT)/2. If ker(H) ∩ ker(B) = {0} then M is invertible; see, e.g.,
[2, Theorem 3.4]. As a special situation, consider the case where A is symmetric and
nonsingular, so that H = A, and let the columns of U0 span the null space of B.
Then the columns of U0 = I ⊗ U0 span the null space of B. Therefore, the condition
ker(H) ∩ ker(B) = {0} corresponds to saying that UT

0 AU0 is nonsingular. With the
aid of the properties of the Kronecker product, this latter quantity can be written in
terms of the original matrices as

UT
0 AU0 = I ⊗ UT

0 A1U0 +AT
2 ⊗ I. (3.1)

Hence this matrix is nonsingular if and only if the spectra of UT
0 A1U0 and −A2 are

disjoint. This hypothesis will be assumed throughout the rest of the paper. The
above nonsingularity condition is fulfilled, for instance, if A1 and A2 have their field
of values in the same half complex plane. Weaker assumptions can be considered.

Solvability conditions for the system of three matrix equations can be derived
accordingly, by using for instance the Kronecker formulation in (2.10).

4. Null space method. The first method we consider is aimed at the coupled
system (1.1), and uses dense methods, based on factorizations. Hence, the described
procedure is appealing when dealing with small, possibly dense coefficient matrices.

6 V. Simoncini

More precisely, sizes of the order of up to a few hundreds may be appropriate for this
strategy.

In the computational literature, the term “nullspace method” is often associated
to one of the possible strategies for solving saddle point linear systems in (1.3); see,
e.g., [2, Section 6]. Clearly, any strategy that relies on (explicitly or implicitly) com-
puting a nullspace basis can go under this name. In our context, the nullspace under
consideration is that associated with B. If a saddle point matrix in the form (1.3)
were considered, then the nullspace method would rely on computing the null space
of B. Without further structure information, computing this last null space usually
becomes intractable for large dimensions. Taking into account the problem structure
both in the generation of the nullspace basis and later in the computation, the way
we propose, allows one to drastically limit memory and computational efforts.

Let the orthonormal columns of U0 span the null space of B, so that BU0 = 0,
and let the orthonormal columns of U1 span the range of BT . We can thus write
X = U0X̂+ U1X⊥, with [U0, U1] orthogonal matrix. Substituting X into the second
matrix equation we obtain

X⊥ = (BU1)
−1F2.

We separately multiply the first matrix equation by UT
0 and also by UT

1 , thus obtaining

UT
0 A1U0X̂+ UT

0 A1U1X⊥ + X̂A2 = UT
0 F1 (4.1)

UT
1 A1U1X⊥ + UT

1 A1U0X̂+X⊥A2 + UT
1 BTP = UT

1 F1. (4.2)

The first matrix equation is a Sylvester equation in X̂,

UT
0 A1U0X̂+ X̂A2 = −UT

0 A1U1X⊥ + UT
0 F1. (4.3)

Thanks to the discussion in section 3, the two matrices UT
0 A1U0 and −A2 have disjoint

spectra, so that this equation can be solved for X̂, thus completely determining X

as X = U0X̂ + U1X⊥. Note that since we assume that the null space of B has
small dimension, the matrix UT

0 A1U0 will be small. If A2 has small dimensions as
well, then the Sylvester equation can be solved by Schur-based methods such as the
Bartels-Stewart algorithm [1]. Otherwise, an iterative procedure can be used, and
this is outlined in section 4.1.

The second matrix equation in (4.2) can be used to determine P, that is

P = (UT
1 BT)−1(UT

1 F1 − UT
1 A1U0X̂−X⊥A2 − UT

1 A1U1X⊥).

The whole procedure is summarized in Algorithm 1.

Algorithm 1 (small size A2)
1. Determine [[U1, U0], R1] =qr(BT)

(full QR factorization, with R1 square m×m matrix)

2. Compute X⊥ by solving the system (BU1)X⊥ = F2

(that is, RT

1
X⊥ = F2)

3. Solve UT
0 A1U0X̂+ X̂A2 = −UT

0 A1U1X⊥ + UT
0 F1 for X̂

4. Compute P by solving the system
R1P = UT

1 F1 − UT
1 A1U0X̂−X⊥A2 − UT

1 A1U1X⊥.
5. Construct X = U0X̂+ U1X⊥

In case BT has a large range, the computation of an orthonormal basis U1 may be
too memory consuming. In this case, it may be convenient to generate U0 separately,

Numerical methods for systems of two and three matrix equations 7

and only determine R1 with a “Q-less” QR factorization, while implicitly dealing
with U1 as U1 = BTR−1

1 whenever multiplications with U1 are needed. Note that the
triangular matrix R1 may be sparse, if B is sparse. The computational cost is driven
by the cost of dense matrix-matrix multiplications, which may significantly exceed all
other costs, especially if m is significantly smaller than n1, n2.

In the case that F2 = 0 the procedure simplifies, since then X⊥ = 0. The first
matrix equation in (4.1) thus becomes A1U0X̂+ U0X̂A2 + BTP = F1. Solving (4.3)

with right-hand side UT
0 F1 yields the unique solution X̂, so that X = U0X̂.

Remark 4.1. If F1 is low rank, then depending on the spectral properties of the
coefficient matrices in (4.3), the solution X̂, and thus X, may have low numerical
rank. In this case, as a consequence, also P will be low rank. Under these cir-
cumstances, the solution matrices can be stored by using far less memory than their
dimension would suggest.

4.1. The nullspace method. Large scale case. Whenever A2 has large di-
mensions, the numerical solution of the Sylvester equation (4.3) requires an iterative
solver. Various approaches can be considered, which take into account the signifi-
cantly different sizes of the two coefficient matrices, see, e.g., [26, section 4.3]; here

we focus on a projection-type method. The solution matrix X̂ can be approximated
as X̂ ≈ X̃WT

k , where the columns of Wk span an approximation space of dimension
k, with k much smaller than the dimension of A2. In other words, an approximate
solution to X in (1.1) is sought as X ≈ U0X̃WT

k + U1X⊥ = U0X̃WT
k + U1R

−T
1 F2,

for some X̃, which is the solution of the original matrix equation projected onto a
smaller subspace. The nullspace constraint already performs the basis reduction from
the left.

Equation (4.3) is peculiar in that the first coefficient matrix has small dimensions,
therefore only the matrix A2 requires to be reduced. According to [26, section 4.3],

and setting F̃ = −XT
⊥U

T
1 AT

1 U0 + FT
1 U0 in (4.3), a typical approximation space is

the Krylov subspace Kk(A
T
2 , F̃) = range([F̃ , AT

2 F̃ , . . . , (AT
2)

k−1F̃]), or its rational
variants. We omit the algorithmic details for this approach, and instead refer to [26,
section 4.3] for a description and for convergence properties.

5. Iterative solution for large scale problems. If the original problem (1.1)
has truly large matrix dimensions, then the previous approaches may show high com-
putational costs. On the other hand, the Kronecker formulation becomes completely
intractable.

In the following we assume that the real part of the eigenvalues of A1, A2 have
the same sign; without loss of generality, we can assume that this sign is positive.
Moreover, we assume that the right-hand side matrix F below, is low rank. This allows
us to use projection type methods, and look for low rank approximate solutions. The
case of banded matrices has been recently analyzed in [19].

We remark that our analysis in this section focuses on the two matrix equations
in (1.1); the current implementation does not seem to be directly applicable to (1.2).

We first notice that we can rewrite the system of matrix equations as the following
generalized Sylvester equation (see also, e.g., [7])

[
A1 BT

B 0

] [
X

P

]
+

[
In1

0
0 0

] [
X

P

]
A2 =

[
F1

F2

]
, ⇔ MZ+D0ZA2 = F, (5.1)

with coefficient matrices M,D0 ∈ R
(n1+m)×(n1+m) and A2 ∈ R

n2×n2 . Note that D0 is
highly singular. We can then transform the equation above into a standard Sylvester

8 V. Simoncini

equation, by writing

ZA−1
2 +M−1D0Z = F̂ , with F̂ = M−1FA−1

2 , (5.2)

and this is the single matrix equation we propose to solve, in place of the two original
matrix equations.

Explicit computations show that

M−1D0 =

[
A−1

1 (I −BTS−1BA−1
1) 0

S−1BA−1
1 0

]
, S = BA−1

1 B, (5.3)

and in particular, we clearly see that M−1D0 is highly singular. Note also that if A1

is symmetric (and positive definite), then the matrix A−1
1 (I − BTS−1BA−1

1) is also
symmetric (and positive semidefinite). Since the eigenvalues of A−1

1 (I−BTS−1BA−1
1)

are contained in the spectral interval of A1, it follows that for A1 symmetric and
positive definite the standard Sylvester equation in (5.2) admits a unique solution.

An effective strategy for solving Sylvester equations with low rank right-hand side
is given by projection onto small dimensional spaces; typically, these are rational or
polynomial Krylov subspaces generated by employing the available coefficient matri-
ces. The former are (far) more effective than polynomial spaces as long as solving
with shifted versions of the coefficient matrices is affordable; we refer the reader to
[26] for a detailed discussion. These nested spaces are generated iteratively in a way
so that the spaces expand with the iterations, and a better approximation is expected
as the iterations proceed. In our setting, we are looking for an approximation Z̃ to Z

of the form Z̃ = VkZkW
T
k , where the columns of Vk,Wk span distinct subspaces to

be determined next.
For a square matrix T and a tall matrix Y , let us introduce the block Krylov

subspace

Kk(T, Y) := Range([Y, TY, T 2Y, . . . , T k−1Y]),

where k corresponds to the number of performed iterations. At the ith iteration a
new tall matrix T i−1Y is added to the space by using powers of T . This gives rise
to a sequence of nested spaces, that is Kk(T, Y) ⊆ Kk+1(T, Y), in which Kk(T, Y)
has dimension at most knY , where nY is the dimension of Range(Y). Computational
and theoretical developments in the past decades have shown that Krylov subspaces
involving shift-and-invert powers of T may be more effective than polynomial Krylov
spaces for solving problems such as matrix function evaluations and matrix equations.
These “second generation” Krylov spaces are called rational Krylov spaces. We refer
the reader to [26] for a discussion on convergence properties of these spaces, together
with relevant references. Let us see how to take advantage of these advanced spaces
in the selection of Wk and Vk.

Let F̂ = F̂lF̂
T
r be a full rank factorization of F̂ . Within the rational Krylov

subspace setting, a sometimes particularly effective choice is to have the columns of
Wk span the extended Krylov subspace

Range(Wk) := Kk

(
A−T

2 , A−T
2 F̂r

)
+Kk

(
AT

2 , F̂r

)
.

This is a specific rational space that involves both powers of AT
2 and A−T

2 . Note that

Range(Wk) contains Range(F̂
T)=Range(F̂r).

Numerical methods for systems of two and three matrix equations 9

The construction of Vk is more involved, if one is willing to use an extended type
method: Firstly, the space Kk((M−1D0)

−1, (M−1D0)
−1F̂l) cannot be built, due to

the singularity of the matrix M−1D0. Following a similar approach developed in [24],
we propose to use the “augmented” extended Krylov space

Range(Vk) := Kk(M−1D0, F̂l) +Kk

(
(M−1D0 + σI)−1, (M−1D0 + σI)−1)F̂l

)
, (5.4)

where σ > 0 is a small parameter that makes the coefficient matrix nonsingular.
Secondly, because of the structure of M−1D0 in (5.3), the polynomial part of the

space in (5.4) adds new vectors only if the first block of F̂l of n1 rows is nonzero; oth-
erwise, Range(Vk) will only be formed by powers of (M−1D0 + σI)−1. Alternatively,
one can initialize the iterative procedure by appropriately selecting a starting guess
Z0. Indeed, substituting Z = Z0 + Z⋆ in (5.1) and moving to the right-hand side all
terms involving Z0, the equation to be solved in Z⋆ will have the new right-hand side
F −MZ0−D0Z0A2. Thus Z0 can be chosen so that the right-hand side first block is
nonzero, while the right-hand side is still low rank. Let us thus continue by assuming
that the first block of F̂l is nonzero.

From a computational perspective, we stress that to generate these rational
spaces, no inverses need to be explicitly computed; rather, system solves with the
corresponding matrices are performed at each iteration.

After k iterations, the procedure has generated Wk and Vk. To be able to deter-
mine a projected approximation Zk, an additional condition is required. To this end,
for the sought after approximation Ẑ = VkZkW

T
k we impose that the residual matrix

Rk := ẐA−1
2 +M−1D0Ẑ− F̂ satisfies the following matrix Galerkin condition,

V T
k RkWk = 0,

that is, the residual is orthogonal to the approximation space, in a matrix sense.
Since F̂ = VkΦkW

T
k for some Φk by construction, no information is lost in the known

term F̂ when projecting onto the reduced space via this orthogonality condition; we
refer the reader to [26] for a more detailed discussion on the Galerkin condition.

Explicitly writing down the residual, and taking into account both the form of Ẑ and
the orthogonality of the columns in Vk,Wk we obtain

V T
k ẐA−1

2 Wk + V T
k M−1D0ẐWk = V T

k F̂Wk,

that is

ZkW
T
k A−1

2 Wk + V T
k M−1D0VkZk = V T

k F̂Wk,

which is again a Sylvester equation, but of reduced dimension. If both Vk,Wk have
small dimensions, the equation above also has small size, and classical dense solvers
such as the Bartels and Stewart algorithm can be used [1]. The accuracy of the
approximation is monitored by computing in a cheap manner the Frobenius norm
of the residual matrix [24]. If the solution is not sufficiently good, then the two
approximation spaces are expanded, and the reduced Sylvester equation is updated
and solved. The complete iterative projection procedure for the Sylvester equation can
be found, e.g., in [26, Algorithm 5, section 4.4.1]. Here we would like to stress that the
major difference with respect to the classical Extended Krylov subspace procedure is
that an augmented space is generated, so as to deal with a singular coefficient matrix,
while maintaining the good convergence properties of rational Krylov subspaces. In
the following we shall refer to this approach as the Extended Krylov (EK(σ)) method
with parameter σ.

10 V. Simoncini

6. Numerical Experiments. We report on our numerical experience with the
methods we have introduced, compared with the numerical solution of the monolithic
equation Mu = b, by either a direct method (Matlab backslash) or by some iterative
method. In particular, in this section we use both the nullspace method of section 4,
and the projection method for the large scale problem described in section 5.

Example 6.1. We consider the problem in (1.1) where A1 (A2) is the scaled five-
point stencil finite difference discretization of the operator L1(u) = −uxx−uyy (of the
operator L1(u) = −(e−10xyux)x−(e10xyuy)y+10(x+y)ux) in the unit square, with the
same number of nodes in the two directions. Here [F1;F2] is a rank-one matrix with
uniformly distributed random entries, while B = bidiag(−1, 1) ∈ R

(n1−
√
n2)×n1 . The

convergence tolerance is set to 10−6, while the shift parameter in (5.4) is σ = 10−2.
The numerical results are reported in Table 6.1.

n1 n2 size(A) Monolithic Direct Nullspace Iterative EK(σ)
400 100 79,000 6.9769e-02 9.4012e-02 3.1523e-02 (4)
900 225 401,625 3.4808e-01 6.3597e-01 5.0447e-02 (4)
1600 400 1272,000 1.1319e+00 4.7888e+00 7.8018e-02 (4)
2500 625 3109,375 3.1212e+00 1.5063e+01 1.5282e-01 (5)
3600 900 6453,000 1.0210e+01 3.9419e+01 2.8053e-01 (5)
4900 1225 11,962,125 3.7699e+01 1.0721e+02 1.4754e+00 (5)

Table 6.1

Example 6.1. Elapsed time (in parentheses is the number of iterations) for the direct solution
of the monolithic equation, for the nullspace method and for the iterative method.

For this class of problems the nullspace method is never competitive, as it does
not exploit the sparsity of the given data. This is instead done by the direct solver,
which is able to constrain computational costs up to a problem of size 105. Larger sizes
clearly show the limitation of the approach, compared to the new iterative method.
We should keep in mind, however, that the new method is effective for low rank F ,
while solution methods for different structural properties remain largely unexplored.

Example 6.2. We consider the stochastic finite element discretization of the
one-dimensional Stokes problem with a stochastic component for the viscosity (see
section 2). In the standard implementation, this gives the following linear system

[
H BT

B 0

] [
x

p

]
=

[
f1
f2

]

where

H = (ν0G0 + ν1G1)⊗Ax, B = G0 ⊗Bx,

while ν = ν0 + ν1ξ(ω) is the uncertain viscosity, with ξ the random variable, while
Ax, Bx are standard finite element matrices, while G0, G1 are associated with the
discretization of the random variables. Here G0 = I and G1 is symmetric, tridiagonal
with eigenvalues in [−

√
3,
√
3] [20].

Let A = Ax and B = Bx ∈ R
nB×n1 . We rewrite the problem as

ν0AXG0 + ν1AXG1 +BTPG0 = F1, BXG0 = F2.

Numerical methods for systems of two and three matrix equations 11

With the block formulation of the previous section and G0 = I we obtain the same
form as in (5.1), that is

[
ν0A BT

B 0

] [
X

P

]
+

[
ν1A 0
0 0

] [
X

P

]
G1 =

[
F1

F2

]
, ⇔ MZ+D0ZG1 = F,

Here we took F = f1T , where f is a random vector taken from a uniform distribution
in the interval (0,1), and 1 is the vector of all ones. For G1 nonsingular, we can

rewrite the problem as ZG−1
1 + M−1D0Z = F̃ and the procedure described in the

previous section applies. The performance of the new method is compared with both a
direct sparse method and an iterative procedure for solving the monolithic equation.
Following [20], the considered iterative solver is preconditioned minres, where the
preconditioner is given by the symmetric and positive definite matrix

P =

[
µG0 ⊗ ν0A

µG0 ⊗BA−1BT

]
.

The (1,1) block is applied exactly, preceded by a Cholesky factorization of A. For
the (2,2) block an incomplete Cholesky factorization (with zero fill-in and diagonal
pivoting) of the Schur complement BA−1BT is performed. For the largest problem
size this last matrix could not be explicitly constructed, and the code broke down.
The computational cost of building the preconditioner is not taken into account in
the reported timings.

Table 6.2 shows the results for ν0 = 1/10 and ν1 = 3ν0/10, with data taken
from [20]. We notice that for a still quite modest value of n2, the CPU time of the
sparse direct method for the monolithic equation becomes prohibitive. Preconditioned
minres applied to the monolithic equation is more efficient, however it becomes too
slow, and eventually the Schur complement matrix used to generate the preconditioner
cannot be created. The matrix-oriented iterative method succeeds pretty quickly for
all tested problem parameters. We also explicitly notice that the approximate solution
has rank two for all values of n1 and both values of n2. This is to be expected, since
with two terms, the truncated Karhunen-Loève expansion of the solution gives rise
to a rank two solution. This inherent property cannot be exploited in the Kronecker
formulation. Such a feature allows us to obtain a memory-saving approximation,
Z = Z1Z

T
2 with Z1, Z2 having only two columns.

n1 n2 nB size(A) Monolithic Monolithic Iterative
direct minres EK(σ)

1256 4 389 6,580 0.1852 0.146 (11) 0.19 (2)
3526 4 990 18,064 0.9063 0.275 (11) 0.52 (2)
9812 4 2615 49,708 4.6418 0.981 (10) 2.09 (2)

n1 n2 nB size(A) Monolithic Monolithic Iterative
direct minres EK(σ)

1256 165 389 271,425 2.91 1.53 (11) 0.20 (2)
3526 165 990 745,140 12.16 7.43 (11) 0.45 (2)
9812 165 2615 2050,455 - - 1.87 (2)

Table 6.2

Example 6.2. One-dimensional Stokes problem with true (n2 = 4) and artificial (n2 = 165)
number of stochastic terms.

To further exercise the algorithm, we have artificially enlarged the size of the G
matrices. More precisely we have taken the matrices G0, G1 obtained by a choice of

12 V. Simoncini

the parameters associated with the stochastic space so as to give n2 = 165 (this would
in fact give a larger number of G terms, which we omit in our analysis). The results of
these experiments are reported in Table 6.2. The size of B is unchanged and it is not
reported in the table. While for n2 small the solution of the monolithic equation by
means of preconditioned minres was still competitive, this is no longer so for larger
n2, eventually leading to a memory failure for the largest problem considered. The
new approach remains competitive throughout. Note that both iterative methods
are mesh independent, that is their iteration number to reach convergence does not
depend on the problem size. As already mentioned, for the new method this is related
to the particular form of the problem.

n1 n2 size(A) Monolithic Monolithic Iterative
direct minres EK(σ)

2512 4 11,604 0.55 0.12 (12) 0.28 (2)
7052 4 32,168 3.73 0.36 (12) 1.22 (2)
19624 4 88,956 11.93 1.51 (12) 4.37 (2)

n1 n2 size(A) Monolithic Monolithic Iterative
direct minres EK(σ)

2512 165 478 665 7.60 3.16 (17) 0.33 (2)
7052 165 1 326 930 34.08 15.52 (18) 1.32 (2)
19624 165 3 669 435 – – 5.69 (3)

Table 6.3

Example 6.3. Two-dimensional Stokes problem with true (n2 = 4) and artificial (n2 = 165)
number of stochastic terms.

Example 6.3. We consider the two-dimensional counterpart of the problem in
Example 6.2. This gives the following linear system

[
H BT

B 0

] [
x

p

]
=

[
f1
f2

]

where

H = blkdiag((ν0G0 + ν1G1)⊗Ax, (ν0G0 + ν1G1)⊗Ay), B = [G0 ⊗Bx, G0 ⊗By];

here Ax, Ay, Bx, By are standard finite element matrices, and G0, G1 are associated
with the discretization of the random variables. Again, G0 = I and G1 is symmetric,
tridiagonal with eigenvalues in [−

√
3,
√
3].

Let A = blkdiag(Ax, Ay) and B = [Bx;By]; Here Ay and Ax have the same
dimensions, and the same holds for Bx and By, with data dimensions the same as
those in the 1D case of Example 6.2. We rewrite the problem as

ν0AXG0 + ν1AXG1 +BTPG0 = F1, BXG0 = F2.

With the block formulation of the previous section and G0 = I we obtain the same
form as in (5.1), that is

[
ν0A BT

B 0

] [
X

P

]
+

[
ν1A 0
0 0

] [
X

P

]
G1 =

[
F1

F2

]
, ⇔ MZ+D0ZG1 = F.

We considered F = 11T . Once again, for G1 nonsingular, we can rewrite the problem
as ZG−1

1 +M−1D0Z = F̃ and the procedure described in the previous section applies.
Table 6.3 shows the results for ν0 = 1/10 and ν1 = 3ν0/10, with data taken from [20].

Numerical methods for systems of two and three matrix equations 13

Also in the two-dimensional case, preconditioned minres is the best performing
method, as long as memory requirements remain limited. The direct method on the
monolithic equation becomes very inefficient also for moderate dimensions. The new
method is to be preferred when dimensions become truly large, also because of the
low memory requirements. Note that both iterative methods are mesh independent
also in this case.

7. Schur complement method. In this section we derive a matrix-based Schur
complement approach for solving the given system of matrix equations. We first
apply the Schur complement approach to the problem (1.1), and then generalize it
to (1.2). This methodology is yet another way of attacking the solution of saddle
point problems, see, e.g., [2, section 5]. Once again, we describe how to exploit the
structure so as to avoid dealing with huge dimensional matrices; this turns out to
be crucial in the case of (1.2). The key idea is to exploit a matrix-oriented version
of standard Krylov subspace methods, where the coefficient matrix is an operator
acting on a matrix. This way, computations with matrices of the original sizes can
be performed. Moreover, the structure of the original matrices, such as low rank or
banded structure, can be exploited to significantly lower the computational costs and
memory requirements of the method; see [19] for one such example. For reference, the
general matrix-oriented version of cg for the matrix equation L(X) = F is described
in Algorithm 2, for L being self-adjoint and positive definite.

Algorithm 2 Given the operator L, the matrix F and the approximation X0

Set R0 = F − L(X0), P0 = R0

For k = 0, 1, 2, ...
Wk = L(Pk)

αk =
‖Rk‖2

F

〈Pk,Wk〉F
Xk+1 = Xk + Pkαk

Rk+1 = Rk −Wkαk

If ‖Rk+1‖F /‖R0‖F < tol then Stop

βk =
‖Rk+1‖2

F

‖Rk‖2
F

Pk+1 = Rk+1 + Pkβk

In the following we derive the specific forms of L and F when the Schur com-
plement formula is applied to both cases of two and three matrix equations. The
Kronecker (vector) version (1.3) of the matrix problem (1.1) can be solved by means
of a Schur complement approach. Indeed, for A nonsingular in (1.3) we can write
x = A−1(f1 − BTp), and substituting into the second block of equations yields the
well known Schur complement linear system BA−1BTp = BA−1f1 − f2 to be solved
in p. In the following we show that this system can be implicitly posed in a matrix-
oriented framework directly from (1.1), thus avoiding the Kronecker formulation.

Let us consider the linear operator

L12(X) = A1X +XA2.

The matrix X = L−1
12 (D) is the action of the inverse operator to a matrix D, and it

corresponds to the solution of the linear matrix equation A1X + XA2 = D. Then
from the first equation in (1.1) we obtain

X = L−1
12 (F1 −PB)

14 V. Simoncini

which, substituted into the second matrix equation in (1.1) yields

BL−1
12 (B

TP) = −F2 +BL−1
12 (F1). (7.1)

Explicit computation shows that vec(L−1
12 (PB)BT) = BA−1BTp, therefore the matrix

operator BL−1
12 (B

T ·) : P 7→ BL−1
12 (B

TP) is symmetric and positive definite if A is
symmetric and positive definite. Since the equation (7.1) is mathematically equivalent
to the vector Schur complement equation, it is possible to solve the linear matrix
equation by using a matrix-oriented iterative solver, as desired. The application of
the operator P 7→ BL−1

12 (B
TP), that is W = BL−1

12 (B
TP) can be performed in three

steps as follows:

1. Given P , compute P̂ = BTP

2. Solve the Sylvester equation A1V +VA2 = P̂ for V

3. Compute W = BV

All other operations can be performed as matrix-matrix products and sums, as
described in Algorithm 2.

A matrix equation solve in step 2 needs to be employed at each iteration. If the
size of the Sylvester equation is such that a dense solver such as the Bartels-Stewart
method is used, then it may be convenient to first perform a Schur decomposition of
the matrices A1 and A2, and perform the whole computation by the iterative solver
with the transformed problem. More precisely, let

A∗
1 = Q1R1Q

∗
1, A2 = Q2R2Q

∗
2 (7.2)

be the two Schur decompositions, with Qi unitary and Ri block upper triangular3.
Here “∗” denotes conjugate transposition. Then by multiplying (1.1) by Q∗

1 and Q2

from the left and from the right, respectively, we obtain

R∗
1X̂+ X̂R2 + (Q∗

1B
∗)P = (Q∗

1F1Q2), BQ1X̂ = (F2Q2).

The Schur complement approach can thus be applied to the transformed problem,
and a matrix-oriented Krylov subspace method employed for its solution.

It is important to realize that, although the computation of two Schur decompo-
sitions may appear costly, this is performed on matrices that may be relatively small,
compared with the original problem in Kronecker form. For instance, matrices of size
n1 = n2 = 500, m = 400 are associated with a Kronecker form having a coefficient
matrix of size n1n2 + n1m = 450 000.

For the system of two matrix equations this approach is not competitive with
respect to the strategies developed in the previous sections, both in the small and
large scale cases. Therefore, we shall mainly focus on its performance for the system
of three matrix equations, for which the previous methods did not give a natural
generalizations.

Remark 7.1. If the coefficient matrix (the operator in our case) are well con-
ditioned, the cg method can conveniently exploit the structure in the data, whenever
present. Therefore, if the right-hand side is low rank, the first few iterates can be well
represented by low rank matrices. The same holds for banded matrices. We refer the
interested reader to the discussion in [19].

3Here we assume complex arithmetic. If real arithmetic is preferred, then real orthogonal matrices
can be obtained, at the cost of a block upper triangular matrix R.

Numerical methods for systems of two and three matrix equations 15

7.1. The Schur complement method for the three matrix equation case.

The procedure can be naturally extended to the system of three matrix equations in
(1.2), while exploiting the Sylvester structure of the “diagonal” blocks. Indeed, the
coefficient operator can be written as

(X,Y,P) 7→ (L21(X) +BTP, L12(Y) +PB, BX+YBT)

with obvious notation for L12. Proceeding like in the previous case, we obtain the
matrix-oriented Schur complement equation

BL−1
21 (B

TP) + L−1
12 (PB)BT = −F3 +BL−1

21 (F1) + L−1
12 (F2)B

T , (7.3)

to be solved for P. Expanding the left-hand side operator via the Kronecker product
shows that the coefficient matrix is symmetric and positive definite as along as A2

and A1 are.
Solving (7.3) requires the application of the operator coefficient, which involves

two Sylvester equation solves with the same coefficient matrices. As in the case of
two matrix equations, an a-priori Schur decomposition of the matrices A1, A2 can
be particularly advantageous, since here the transformation can be exploited in two
of the three matrix equations. As before, using the decompositions in (7.2) we can
rewrite (1.2) as

R2X̂+ X̂R∗
1 + (Q∗

2B
T
1 Q1)P̂ = (Q∗

2F1Q1) (7.4)

R1Ŷ + ŶR∗
2 + P̂(Q∗

1B2Q2) = Q∗
1F2Q2 (7.5)

(Q∗
1B1Q2)X̂+ ŶQ∗

2B
T
2 Q1 = Q∗

1F3Q1, (7.6)

where X̂ = Q∗
2XQ1, Ŷ = Q∗

1YQ2 and P̂ = Q∗
1PQ1.

The use of a matrix-oriented iterative solver such as cg for approximating P

affects the accuracy of the third matrix equation, that is the cg residual norm corre-
sponds to the matrix residual norm associated with the third equation. The solution
matrices X and Y are recovered a-posteriori by explicitly using the first two ma-
trix equations. This implies that the first two matrix equations are solved much more
accurately than the third one, that is, the associated residual norms are much smaller.

We proceed with an experiment with the Schur complement method. Compar-
isons are performed with respect to the iterative solver preconditioned minres on the
monolithic equation.

Example 7.2. We consider the MAC finite difference discretization of the Stokes
operator on a staggered grid; this corresponds to the linear version of (2.7). There are
n2
1 pressure unknowns at cell centers and n1(n1−1) velocity unknowns on each of hori-

zontal and vertical cell sides, so that n2 = n1−1. Both A1 ∈ R
n1×n1 and A2 ∈ R

n2×n2

have diffusion coefficient equal to ν = 10−2; B ∈ R
n1×n2 and B = B1 = B2. Runs

were obtained for n1 ∈ {100, 200, . . . , 500}. The right-hand side accounts both for the
forcing term as well as for the boundary conditions. In this case, F1 is a rank-one ma-
trix, while F2 and F3 are the zero matrices. Experimental comparisons of the Schur
complement method and preconditioned minres are displayed in Table 7.1: CPU
time (in seconds) is reported, together with the number of iterations in parenthesis.
In the Schur complement approach, the cg method in Algorithm 2 is used. Moreover,
the eigendecomposition of the symmetric matrices A1 ∈ R

n1×n1 and A2 ∈ R
n2×n2 ,

n2 = n1−1 is computed once for all. This way, the Sylvester equations to be solved at

16 V. Simoncini

dim minres Schur compl. method
29 800 0.221 (23) 0.018 (10)
119 600 1.568 (23) 0.055 (11)
269 400 4.866 (23) 0.148 (11)
479 200 11.457 (23) 0.378 (12)
749 000 29.533 (25) 2.128 (12)

Table 7.1

Example 7.2. Performance of the Schur complement method compared with preconditioned
minres. Here dim=3n1(n1 − 1) is the dimension of the monolithic equation, with n1 ∈
{100, 200, . . . , 500}.

each cg iteration only involve diagonal coefficient matrices of eigenvalues; see (7.4).
The computational cost of the eigendecomposition is included in the reported timings.
For minres a block diagonal preconditioner is considered, P = blkdiag(Fx, Fy,Mp),
where Mp is the mass matrix. For this discretization Mp is a multiple of the identity
matrix. This is known to be an optimal preconditioner for the problem, in the sense
that the number of minres iterations is bounded independently of the problem size,
that is, of the mesh parameter. This property can be clearly seen in our experiments.
The matrix P was factorized as P = P1P

T
1 , where the factor P1 was obtained by

computing the (complete) Cholesky factorization of the two blocks Fx, Fy. The cost
of building the preconditioner is not taken into account in the reported performance.
We also stress that the factor P1 is banded with a narrow bandwidth, so that solving
with P1 is rather cheap. The iteration number in Table 7.1 shows that the perfor-
mance of both methods is independent of the problem dimension. In terms of CPU
time, the Schur complement method is clearly superior to preconditioned minres,
with one order of magnitude lower timings.

7.2. The Schur complement method. Considerations for the large-scale

setting. If the involved coefficient matrices are themselves very large, the Bartels-
Stewart algorithm becomes expensive. An iterative method can thus be used to
approximately solve the two Sylvester equations associated to the operator-matrix
operation. This gives rise to a typical inner-outer iteration, where not only the coeffi-
cient matrix is not know explicitly, but it cannot even be applied with high accuracy.
In this setting, one usually talks about inexact procedures, and the convergence theory
of the underlying method no longer applies. Several strategies have been proposed,
some of which quite successful, to make the whole procedure robust. In the symmet-
ric and positive definite case, the algorithm in [17] provides a good trade-off between
efficiency and robustness of the inexact procedure. We also recall that if a method
such as GMRES is employed with inexact operator-matrix products, the inexactness
of this operator can be actually increased as convergence takes place, further lowering
the computational cost; see, e.g., [27] and references therein.

8. Conclusions. We have proposed several algorithms for solving systems of
two and three matrix equations, stemming from the numerical modelling of real ap-
plication problems. Our results show that by taking into account the original problem
structure, we are able to solve very large problems in a few seconds.

In the three matrix equation case we have shown the feasibility of an iterative
method based on the Schur complement. With the given generality of the dimensions
the derivation of a direct procedure was considered to be too cumbersome to be
pursued.

Numerical methods for systems of two and three matrix equations 17

The discussed problems can be generalized in several directions. In connection
to (1.1) we can readily handle the case in which the coefficient matrix in the second
equation is not the transpose of that in the first equation. Moreover, we can transform
the generalized case, that is that having nonsingular coefficient matrices on both sides
of X, say, into the considered setting by one sided multiplication.

The case of a multi-term system is by far more challenging. This may arise by
either including many terms in one of the main variables (X and/or Y), or by adding
more matrix equations with the corresponding number of unknowns. The first setting
is typical of stochastic partial differential equations, and will be the focus of future
research.

Acknowledgements. We thank two reviewers for helpful comments. We thank
Catherine Powell and Howard Elman for providing us with the data for the stochastic
Stokes 1D and 2D problems, and for the (Navier-)Stokes problem, respectively.

REFERENCES

[1] R. H. Bartels and G. W. Stewart. Algorithm 432: Solution of the Matrix Equation AX+XB =
C. Comm. of the ACM, 15(9):820–826, 1972.

[2] Michele Benzi, Gene H. Golub, and Jörg Liesen. Numerical solution of saddle point problems.
Acta Numerica, 14:1–137, 2005.

[3] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral methods. Scientific
Computation. Springer-Verlag, Berlin, 2006.

[4] Feng Ding and Tongwen Chen. On iterative solutions of general coupled matrix equations.
SIAM J. Control Optim., 44:2269–2284, 2006.

[5] Andrii Dmytryshyn. Tools for Structured Matrix Computations: Stratifications and Coupled
Sylvester Equations. PhD thesis, Department of Computer Science, Umea University, 2015.

[6] S. Dolgov and M. Stoll. Low-rank solution to an optimization problem constrained by the
Navier-Stokes equations. SIAM J. Sci. Comput., 39(1):A255–A280, 2017.

[7] Guangren Duan. A note on combined generalized Sylvester matrix equations. Journal of
Control Theory and Applications, 4:397–400, 2004.

[8] Guangren Duan and Biao Zhang. Robust model-reference control for descriptor linear systems
subject to parameter uncertainties. Journal of Control Theory and Applications, 5(3):213–
220, 2007.

[9] H. C. Elman, D. G. Furnival, and C. E. Powell. H(div) preconditioning for a mixed finite element
formulation of the diffusion problem with random data. Math. of Comp., 79(270):733–760,
2010.

[10] Howard C. Elman. Preconditioning for the steady-state Navier-Stokes equations with low
viscosity. SIAM J. Sci. Comput., 20(4):1299–1316, 1999.

[11] B. K̊agström and P. Poromaa. LAPACK-Style algorithms and software for solving the general-
ized Sylvester equation and estimating the separation between regular matrix pairs. ACM
Transactions on Mathematical Software, 22(1):78–103, 1996. Also as LAPACK Working
Note 75.

[12] Patrick M. Knupp and Stanly Steinberg. The fundamentals of grid generation. Knupp, 1992.
[13] Sheng-Kun Li. Iterative Hermitian R-conjugate solutions to general coupled Sylvester matrix

equations. Filomat, 31(7):2061–2072, 2017.
[14] G. J. Lord, C. E. Powell, and T. Shardlow. An introduction to computational stochastic PDEs.

Cambridge University Press, 2014.
[15] M. Mariton. Jump Linear Systems in Automatic Control. Marcel Dekker, 1990.
[16] The MathWorks, Inc. MATLAB 7, r2017b edition, 2017.
[17] Y. Notay. Flexible conjugate gradients. SIAM J. Sci. Comput., 23(4):1444–1460, 2000.
[18] D. Palitta and V. Simoncini. Matrix-equation-based strategies for convection-diffusion equa-

tions. BIT Numer. Math., 56:751–776, 2016.
[19] D. Palitta and V. Simoncini. Numerical methods for large-scale Lyapunov equations with

symmetric banded data. arXiv 1711.04187, Dipartimento di Matematica, Università di
Bologna, 2017. To appear in SIAM J. Scientific Computing.

[20] C. Powell and D. Silvester. Preconditioning steady-state Navier-Stokes equations with random
data. SIAM Journal Sci. Comp., 34(5):A2482–A2506, 2012.

18 V. Simoncini

[21] C. E. Powell, D. Silvester, and V. Simoncini. An efficient reduced basis solver for stochastic
Galerkin matrix equations. SIAM J. Sci. Comput., 39(1):A141–A163, 2017.

[22] A. Saberi, A. A. Stoorvogel, and P. Sannuti. Control of Linear Systems with Regulation and
Input Constraints. Communications and Control Engineering. Springer-Verlag, New York,
1999.

[23] G Sangalli and M Tani. Isogeometric preconditioners based on fast solvers for the sylvester
equation. SIAM Journal on Scientific Computing, 38(6):A3644–A3671, 2016.

[24] S. Shank and V. Simoncini. Krylov subspace methods for large scale constrained Sylvester
equations. SIAM J. Matrix Anal. Appl., 34(4):1448–1463, 2013.

[25] D. Silvester and M. Mihajlovic. A black-box multigrid preconditioner for the biharmonic equa-
tion. BIT Numerical Mathematics, 44:151–163, 2004.

[26] V. Simoncini. Computational methods for linear matrix equations. SIAM Review, 58(3):377–
441, Sept 2016.

[27] V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and applications
to scientific computing. SIAM J. Sci. Comput., 25(2):454–477, 2003.

[28] V. Simoncini and D. B. Szyld. Recent computational developments in Krylov subspace methods
for linear systems. Num. Lin. Alg. with Appl., 14(1):1–59, 2007.

[29] Qing-Wen Wang, Hua-Sheng Zhang, and Guang-Jing Song. A new solvable condition for a pair
of generalized Sylvester equations. Electronic Journal of Linear Algebra, 18:289–301, June
2009.

[30] W. Murray Wonham. Linear Multivariable control: a geometric approach. Springer, second
edition, 1979.

[31] Ai-Guo Wu, Gang Feng, Guang-Ren Duan, and Wei-Jun Wu. Iterative solutions to coupled
Sylvester-conjugate matrix equations. Computers and Mathematics with Applications,
60:5466, 2010.

[32] Bin Zhou, Guang-Ren Duan, and Zhao-Yan Li. Gradient based iterative algorithm for solving
coupled matrix equations. Systems & Control Letters, 58(5):327–333, May 2009.

