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Abstract 

The discharge of coal mine generated wastewater has degraded the Georges River downstream of 

the discharge point. This study measured the water quality, sediment quality and 

macroinvertebrate community of the upper Georges River to determine the impact of the influx of 

wastewater from an underground coal mine. The investigation revealed that the wastewater 

discharge from the West Cliff Colliery into the Georges River was highly polluted. The pollution of 

the river is characterised by increases in; electrical conductivity, pH levels and a suite of metals 

including; antimony, aluminium, arsenic, barium, boron, cobalt, lithium, molybdenum, nickel, 

strontium, titanium, uranium and zinc. The elevated concentrations of metals downstream of the 

wastewater discharge point has caused a suite of metals including; aluminium, barium, chromium, 

cobalt, copper, iron, lead, lithium, manganese, nickel, strontium, titanium, uranium and zinc to 

accumulate within the sediment. The altered water chemistry downstream of the wastewater 

discharge point is expected to be the salient factor in the significant loss of biodiversity within the 

macroinvertebrate community. The aquatic macroinvertebrate community downstream of the 

wastewater discharge is characterised by a loss of pollution sensitive taxa and an increase in 

pollution tolerant taxa. A laboratory experiment has identified that a suite of metals including; 

aluminium, boron, barium, cobalt, copper, iron, lithium, manganese, molybdenum, nickel, 

strontium and uranium present in the coal mine wastewater discharge are able to bioaccumulate 

within plants that are exposed to the wastewater. This research has demonstrated that the current 

implementation of environmental protection legislation has failed to protect one of Sydney’s major 

waterways from the effects of coal mining. Consequently, it is essential that we better manage our 

aquatic ecosystems to avoid further instances of degradation and to preserve ecosystem functions 

and services.   

 

Keywords 

Conservation, Waterway Management, Water Quality, Sediment, Macroinvertebrate Community 

Structure, Metal Accumulation in Plants, Georges River, Environmental Regulation  
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1. Introduction  
 

In New South Wales (NSW) there is a serious disconnect between the value that we place on our 

natural environment and the implementation of the measures that we have constructed to protect 

it. This issue is evident within the underground coalmining sector and the resulting discharge of 

wastewater into the receiving waterway which often results in the degradation of the aquatic 

system (see; Wright and Burgin 2009; Belmer et al. 2014; NSW OEH 2015; Wright et al. 2017; Xingli 

et al. 2018). The NSW Environmental Protection Agency (NSW EPA) is the primary body that 

regulates the discharge of wastewater from underground coalmines in NSW, legislated by the 

Protection of the Environment Operations Act 1997 (POEO Act). 

Underground coalmining frequently results in a variety of environmental impacts, including; aquatic 

ecosystem degradation, noise pollution, air pollution, subsidence, land clearing, increased bushfire 

risk and a reduction in aesthetic qualities. Of all these aspects, this literature focusses on the 

problem of aquatic ecosystem degradation caused by the discharge of wastewater generated by 

the coalmine. Wastewater is often generated by the colliery through; the dewatering of 

underground workings and the washing of coal. Surface runoff, stormwater and the discharge of 

effluent are from the colliery are usually of minor consequence when compared to the overall 

discharge. The pollutants that are present in the discharge reflect the local geology where the 

mining is occurring (Younger 1997). As surface water and groundwater infiltrate the underground 

mine workings it contacts exposed coal seams and other geological layers that which undergo 

dissolution, transferring minerals into the water. To avoid flooding, the water is then discharged 

from the mine (Younger 2004; Wright et al. 2018).   

The discharge of wastewater from underground coal mining often results in the degradation of the 

receiving waterway. This degradation is often characterised by reduced water quality, altered 

sediment geochemistry and a loss of instream biodiversity. Changes in aquatic biodiversity are 

often measured through the assessment of the instream macroinvertebrate community (Wright et 

al. 1997). Some studies have also explored the uptake of metals by plants that inhabit the riparian 

zone downstream of coal mine wastewater discharge (Belmer et al. 2018). It is emerging that some 

of the pollutants present in the mine wastewater discharge are bioaccumulating and or 

biomagnifying in the plant tissue. This represents an avenue of ecosystem pollution of which is less 

frequently studied and represents a significant knowledge gap. It is important to understand how 

pollutants present in coal mine wastewater discharge persist and impact the environment; in the 

water column, in sediment and in riparian vegetation. Increased understanding will enable 

scientists, regulatory authorities and the miner to better protect waterways now and into the 

future. This research will address the following questions to determine how pollutants present in 

coal mine wastewater persist and impact the environment: 

1. What are the key water quality changes (particularly changes to ionic and metal load) to the 

waterway downstream of the mine discharge? 

2. What metals accumulate in the benthic sediment downstream of coal mine wastewater 

discharge? 

3. How do stream macroinvertebrates respond to coal mine wastewater discharge? 
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4. Do plants exposed to coal mine wastewater accumulate metals in their biological tissue? 

To answer these questions, the Georges River was examined. The Georges River flows from its head 

waters near the NSW township of Appin before discharging into Botany Bay. The catchment covers 

an area of approximately 96000 hectares. Approximately 45% of this area is natural bushland with 

urban, agriculture and industrial use accounting for the majority of remaining catchment area 

(Tippler et al. 2012). The Georges River is of ecological significance as it serves as a natural refuge, 

housing numerous endangered species of flora and fauna (Wales & Cavanagh 2018). The river also 

holds great cultural significance for the Indigenous Australians both past and present and to other 

inhabitants of the region for which the Georges River is regarded as iconic. The Georges River is 

exposed to wastewater pollution from an underground coal mine (Green et al. 2018). The Georges 

River is significant as it serves as a natural refuge, housing numerous endangered species of flora 

and fauna including the critically endangered Shale Sandstone Transition Forest ecological 

community (Wales & Cavanagh 2018).  

 

Water quality 
 

A waterway that is exposed to coal mine wastewater discharge commonly experiences a variety of 

issues that stem from; the influx of polluted water, an increase in flow volume and geological 

subsidence. These changes to water quality and hydrology often lead to a loss in ecosystem 

function and a corresponding reduction in ecosystem services. The discharge of wastewater from 

underground coal mining operations has long been associated with the pollution and hydrological 

alterations of aquatic ecosystems (see Banks et al. 1997; Brake et al. 2001; Younger 2004). The 

wastewater from coal mining operations is often characterised by an increase in electrical 

conductivity, modified stream ionic composition, an alteration of pH and increased concentrations 

of metals and metalloids (see Younger 1997; Johnson 2003; Capcott et al. 2015; Green et al. 2018). 

Metals are transported into the mine wastewater through a process known as ‘acid mine drainage’ 

(AMD). AMD occurs when pyrite (FeS2) is exposed to water and oxygen which then dissolves, 

forming sulphuric acid (Grey 1996). The formation of sulphuric acid results in a reduction in pH of 

the water within the mine. This acidic environment causes metals to change from solid state to a 

soluble state, a mobilisation process that moves metals from the geology into the water column. 

Heavy metals such as: iron, cobalt, nickel, copper, zinc, arsenic, selenium, tin are often associated 

these various forms of pollution from coal mine wastewater discharge. The discharge of polluted 

water from a coal mine commonly results in a corresponding degradation of the sediment (see 

Cohen 2002). When acid mine wastewater is discharged, many of the metals are still in an ionic, 

dissolved state. Downstream, as the waterway gradually returns to a more neutral pH, metal ions 

that were in solution begin to precipitate out. Over time, metals accumulate in the sediment often 

at greater concentrations than are present in the water column. This amplification of pollutant 

concentrations within the sediment can result in significant ‘legacy’ pollution that can impact 

aquatic systems for decades (see Ali et al. 2018; Belmer and Wright 2019b.   

In NSW, the NSW Environmental Protection Agency (NSW EPA) is the primary body that regulates 

the discharge of wastewater from underground coal mines, legislated in the Protection of the 
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Environment Operations Act 1997 (POEO Act). The POEO Act requires West Cliff Colliery to obtain 

an Environmental Protection Licence (EPL) from the NSW EPA for the scheduled activities; Coal 

Works, Mining for Coal and Waste Disposal that it conducts. In relation to the discharge of 

wastewater, the EPL governs the pollutants and the concentration of the pollutants that are 

permitted to be discharged. If a pollutant is not listed in the EPL it is not permitted to be 

discharged. Extract from EPL 2504, paragraph L2.3: 

“To avoid any doubt, this condition does not authorise the pollution of waters by any pollutant other 

than those specified” 

The West Cliff colliery discharges wastewater to the environment under specified conditions 

contained in the EPL issued to Endeavour Coal (EPL 2504; Table 1). Of particular concern is the 

wastewater discharge from the coal mine (of about two to three ML/day) to Brennans Creek, a 

small tributary of the Georges River (South32, 2018; Figure 1). The flow in dry weather in Brennans 

Creek is attributed to the colliery waste discharge. It has been estimated that the wastewater flows 

from the mine generally contribute about 90% of the flow of the upper Georges River (Price & 

Wright 2016).    

The wastewater discharged by West Cliff Colliery has previously been shown to impact the Georges 

River in the following three ways:  

1. Reduced water quality (Wright 2012; Price and Wright 2016; Green et al. 2018; Belmer and 

Wright 2019a). 

2. Increased metal load in the sediment (Ali et al. 2018; Belmer and Wright 2019b). 

3. Reduced aquatic biodiversity within the macroinvertebrate community (Belmer and Wright 

2019c). 

Previous studies (Wright 2012; Price and Wright 2016; Green et al. 2018; Belmer and Wright 2019a) 

that have examined the impact of the West Cliff Colliery’s wastewater discharge on the Georges 

River have found that the parameters listed on the EPL are generally below the concentration limits 

imposed. However, the concentration limits dictated in the EPL have been shown to be at such 

elevated levels that ecological damage is occurring (Belmer and Wright 2019c). The studies 

recommended that the EPL conditions of pollutants be revised to reflect background conditions and 

the ANZECC 2000 water quality guidelines. These studies have also shown that the West Cliff 

Colliery is discharging other pollutants that are not listed in the EPL. The extent of this pollution as 

found by both the author and others is discussed below.  

The journal article published in Water, Air and Soil Pollution titled; Water Quality Impact from the 

Discharge of Coal Mine Wastes to Receiving Streams: Comparison of Impacts from an Active Mine 

with a Closed Mine by Price and Wright (2016) found that the discharge of wastewater had 

modified the water chemistry of the Georges River. The study monitored three sites on three 

occasions in 2014. These sites were; the discharge from West Cliff Colliery, upstream of the 

discharge and downstream of the discharge. These sites correspond to, and are hereafter referred 

to as BC, GR1 and GR2. The study found that the following physio-chemical parameters; pH, 

electrical conductivity and temperature were elevated and statically dissimilar downstream at GR2 

compared to GR1. The study found that the following anions and cations; carbonate, bicarbonate, 

chloride, sulphate, calcium, magnesium and sodium were all elevated and statically dissimilar at 
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GR2 compared to GR1. The study also identified the following metals; aluminium, arsenic, barium, 

cadmium, copper, lead, nickel, strontium and zinc were all elevated and statically dissimilar at GR2 

compared to GR1.   

The paper by the author (Green et al. 2018) and others; presented and published as part of the 

proceedings of the 9th Australian Stream Management Conference acted as a ‘pilot study’ for this 

thesis. The paper by Green et al. (2016) compared the water quality of the upper Georges River and 

of the Brennans Creek discharge with data collected in 2012 with data collected in 2018. The Green 

et al. (2018) paper had similar findings to Price and Wright (2016).  The paper by Green et al. (2018) 

found that the magnitude of the pollution had changed from 2012 to 2018. The introduction of a 

revised EPL in 2013 did slightly reduce the concentration of some pollutants present within the 

discharge. However, the drought conditions experienced in 2018 resulted in diminished flow 

volumes from the Georges River above the West Cliff wastewater discharge. As the volume of the 

discharge from Brennans Creek remained similar in 2018 compared to 2012 the upstream dilution 

factor was greatly reduced. The lack of dilution caused an increase in the downstream plume of the 

pollution with pollutants remaining elevated at GR3, approximately 22km downstream of the 

discharge. Green et al. (2018) concluded that the Georges River was still degraded in. To address 

this degradation the authors recommended that the EPL should reflect the local reference 

conditions and the ANZECC 2000 water quality guidelines. The authors also recommended that the 

EPL needs to account for low flow conditions where the upper Georges River is not able to 

sufficiently dilute the wastewater discharged from West Cliff Colliery via Brennans Creek.  

The article published in the Water and Environment Journal titled; The regulation and impact of 

eight Australian coal mine waste water discharges on downstream river water quality: a regional 

comparison of active versus closed mines by Belmer and Wright (2019a) found that the discharge of 

wastewater continued to modify the water chemistry of the Georges River. The study monitored 

three sites on four occasions between 2015 and 2017. These sites were the same as the Price and 

Wright (2016) study which sampled; the discharge from West Cliff Colliery, upstream of the 

discharge and downstream of the discharge. The study found that the following physio-chemical 

parameters; pH and electrical conductivity were elevated downstream at GR2 compared to GR1. 

Comparing the results at GR2 from Belmer and Wright (2019a) to the results from Price and Wright 

(2016) pH was elevated in the 2017 period while electrical conductivity was reduced. The study 

found that the following anions and cations; carbonate, bicarbonate, chloride and sulphate were all 

elevated and statically dissimilar at GR2 compared to GR1. Comparing the results at GR2 from 

Belmer and Wright (2019a) to the results from Price and Wright (2016) carbonate was elevated in 

the 2017 period while chloride, sulphate and bicarbonate were reduced. The study also identified 

the following metals; aluminium, copper, lead, nickel, uranium and zinc were all elevated at GR2 

compared to GR1. Comparing the results at GR2 from Belmer and Wright (2019a) to the results 

from Price and Wright (2016) aluminium was elevated in the 2017 period while copper, lead, nickel 

and zinc were reduced.   
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Table 1: South 32 EPL 2504 issued by the NSW EPA. Water quality parameters are presented for the Brennans Creek wastewater 
discharge from West Cliff Colliery along with the ANZECC 2000 water quality guidelines. 

Pollutant Current discharge limits 

(EPL 2504) 

ANZECC (2000) water quality 

guidelines (95% species 

protection) 
Chemical oxygen demand (mg/L) 50 - 

Electrical conductivity (µS/cm) 3570 (Low water) 2500 (High water) 350 

Oil & Grease (mg/L) 10 - 

pH (pH units) 6.5 - 9.3 6.5 - 7.5 

Total dissolved solids (mg/L) 2500 - 

Total suspended solids (mg/L) 50 - 

Turbidity (NTU) - 2 – 25 

Aluminium (µg/L) 1000 55 

Arsenic (µg/L) 19 Arsenic (As III): 24 Arsenic (AsV):13 

Barium (µg/L) - - 

Cadmium (µg/L) - 0.2 

Chromium (µg/L) - Chromium (CrVI): 1.0 

Cobalt (µg/L) - - 

Copper (µg/L) 8 1.4 

Iron (µg/L) - - 

Lead (µg/L) 6 3.4 

Lithium (µg/L) - - 

Manganese (µg/L) 102 1900 

Molybdenum (µg/L) - - 

Nickel (µg/L) 200 11 

Strontium (µg/L) - - 

Titanium (µg/L) - - 

Uranium (µg/L) - - 

Zinc (µg/L) 84 8 
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Sediment metal composition 
 

Benthic sediment downstream of coal mine wastewater discharge is often enriched with similar 

pollutants present in the wastewater (Mishra et al. 2008). Metals present in the wastewater 

accumulate in the sediment primarily through the process of precipitation then sedimentation 

(Sheoran and Sheoran 2006). Due to the constant discharge of wastewater and corresponding 

precipitation, metal concentrations in the sediment can persist at elevated concentrations that 

those present in the water column. This accumulation of metals in the sediment can pose a 

significant threat to biodiversity as the concentration of contaminants can build up to ecologically 

hazardous levels. Sediment contamination also presents a long-term threat to the ecosystem where 

the metals can leach out into the water column, acting as source of pollution that may persist for 

decades (Neff 1984; Wang and Rainbow 2008). Evidence of this legacy pollution can be found all 

around the globe (Mishra et al. 2008, Bazrafshan et al 2016, Ali et al. 2017).  

The article published in the journal American Journal of Science of the Total Environment titled; 

River sediment quality assessment using sediment quality indices for the Sydney basin, Australia 

affected by coal and coal seam gas mining by Ali et al. (2017) found that elevated concentrations of 

metals are present within the Georges River. Sediment samples were collected upstream of the 

Brennans Creek discharge point on the Georges River and downstream of the discharge point and 

at the discharge point. Three replicate samples were collected on a single occasion during in the 

2014 – 2015 period. The study found elevated levels of the metals; aluminium, barium, chromium, 

cobalt, lead, manganese, nickel, titanium, uranium and zinc at the Brennans Creek discharge point. 

Below the discharge point on the Georges River the following metals remained elevated compared 

to upstream; aluminium, iron, lead, manganese, titanium and zinc. 

The article published in the journal American Journal of Water Science and Engineering titled; 

Regional Comparison of Impacts from Seven Australian Coal Mine Wastewater Discharges on 

Downstream River Sediment Chemistry, Sydney Basin, New South Wales Australia by Belmer and 

Wright (2019b) also found that elevated concentrations of metals are present within the Georges 

River sediment. Sediment samples were collected upstream of the Brennans Creek discharge point 

on the Georges River and downstream of the discharge point. Three replicate samples were 

collected on a single occasion during the same time period as the related study; Belmer and Wright 

(2019a). The study found that elevated concentrations of the metals; barium, copper, lithium, 

manganese, strontium and zinc were elevated both upstream (GR1) and downstream (GR2) of the 

discharge. The elevated metal concentrations present in the sediment at GR1 as indicate 

substantial legacy pollution within the sediment. With this result and the knowledge that Appin 

East Colliery (South 32 EPL monitoring data) has previously discharged wastewater and continues to 

discharge small volumes above GR1 a more suitable reference site was needed. To remedy this, 

another site (GRU), above Appin East Colliery on the Georges River was identified a more 

appropriate site that would determine the natural background.   
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Macroinvertebrate community 
 

The presence of pollutants within the water column and the sediment typically result in a 

degradation of river health. River health is commonly assessed by examining the macroinvertebrate 

community. Waterways that experience coal mine wastewater discharge often show a reduction in 

pollution sensitive taxa both in total abundance and taxonomic richness. This loss of pollution 

sensitive macroinvertebrates is contrasted to increases in pollution tolerant animals in both total 

abundance and taxonomic richness. The most common measures used to compare the 

macroinvertebrate community between waterways that experience coal mine wastewater 

discharge and the reference site are; community richness and abundance and the Ephemeroptera, 

Plecoptera and Trichoptera (EPT) community structure. 

The article published in the journal American Journal of Water Science and Engineering titled; 

Regional Comparison of Impacts to Stream Macroinvertebrates from Active and Inactive Coal Mine 

Wastewater Discharges by Belmer and Wright (2019c) found that the macroinvertebrate 

community structure differed downstream of the discharge compared to upstream. The study 

sampled the macroinvertebrate community at sites equivalent to GR1 and GR2. The 

macroinvertebrate community was sampled on one occasion during the same time period as the 

related studies; Belmer and Wright (2019a) and Belmer and Wright (2019b) with five replicate 

samples collected at each site. The traditional ‘Kick sampling technique’ where a 30cm by 30cm 

quadrat is disturbed immediately upstream of a macroinvertebrate net was used by Belmer and 

Wright (2019c) to collect samples. The study found that abundance was elevated at statically 

significant levels below the mine wastewater discharge at GR2. The study also found that while 

family richness was greater below the mine wastewater discharge, the percentage of pollution 

sensitive species (EPT%) was reduced. With the knowledge that water quality and sediment quality 

is impaired above the mine wastewater discharge at GR1 (Price and Wright 2016; Belmer and 

Wright 2019a; Belmer and Wright 2019b). This impairment is likely a result of previous wastewater 

discharge from Appin East Colliery. To remedy this, another site (GRU), above Appin East Colliery on 

the Georges River was identified a more appropriate site that would determine the natural 

macroinvertebrate community structure.   

 

Bioaccumulation of metals in plant tissue  
 

The study of bioaccumulation of metals in riparian plants exposed to coal mine wastewater is an 

emerging area of study, both internationally and in Australia. Numerous observational studies 

conducted in the field have explored this issue (see Karathanasis and Johnson 2003, Sheoran and 

Sheoran 2006, Belmer and Wright 2018). Fewer laboratory studies have been conducted with the 

aim of measuring heavy metal uptake by plants grown in coal mine wastewater. One such study has 

identified the uptake of heavy metals from coal mine wastewater discharge by macrophytes (see 

Mishra et al. 2008). The study by Karathanasis and Johnson 2003 examined the uptake of metals; 

aluminium, iron and manganese in wetland plant tissue exposed to coal mine wastewater. The 

study found that all three metals accumulated in the plant tissue. The greatest uptake of metals 
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aluminium and iron was found in the root tissue, while manganese concentration was similar in 

root and leaf tissue. 

An Australian study by Belmer and Wright (2018) examined the uptake of metals by the riparian 

plant Acacia rubida growing in coal mine generated wastewater. Ten metals; Aluminium, Arsenic, 

Beryllium, Cadmium, Cobalt, Molybdenum, Nickel, Strontium, Thallium and Zinc were identified as 

being above background concentrations downstream of the wastewater discharge. All metals with 

the exception of arsenic were found to be elevated in Acacia rubida growing downstream of the 

wastewater discharge point compared to the same species growing upstream of the wastewater 

discharge.  

 

Figure 1: Photo of O'Hares Creek, one of two reference sites used in the study. (Benjamin Green 2019). 
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2. Research aims, objectives, questions and hypothesis  

 

Aims 
 

This research is aimed to determine the downstream implications of coal mine wastewater 

discharge on the receiving waterways ecosystem. To assess change, the water and sediment quality 

are monitored along with the aquatic macroinvertebrate community. This research also aims to 

determine if metals which are traditionally associated with coal mine wastewater discharge have 

the potential to accumulate in plant tissue.    

Key objectives 
 

1. To investigate the impact of the discharge of coal mine wastewater on the receiving 

waterway in terms of; water quality, sediment composition and the aquatic 

macroinvertebrate community. 

2. To investigate the potential for metal accumulation within plants exposed to coal mine 

wastewater.  

Research question 
 

1. What are the key water quality changes (particularly changes to ionic and metal load) to the 

waterway downstream of the mine discharge? 

2. What metals accumulate in the benthic sediment downstream of coal mine wastewater 

discharge? 

3. How do stream macroinvertebrates respond to coal mine wastewater discharge? 

4. Do plants exposed to coal mine wastewater accumulate metals in their biological tissue? 

Hypotheses  
 

1. The inflow of coal mine wastewater will modify the ionic and metal composition of the 

waterway. 

2. The benthic sediment downstream of the coal mine wastewater discharge will have a 

different metal composition to sediment collected at reference sites.  

3. The aquatic macroinvertebrate community structure will be different downstream of the 

inflow of coal mine wastewater.  

4. Metal composition in plant tissue will differ between plants exposed to mine wastewater 

compared to plants exposed to water collected from reference sites.  
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3. Methods 
 

Coal mine wastewater discharge location 
 

The West Cliff Colliery is an underground coal mine that has operated since 1976. It is located 

south-west of Sydney in south-eastern Australia on the outskirts of the small township of Appin, 

about 15 km inland from the coast (Price and Wright, 2016). The mine operation has surface 

workings that include buildings and a coal washery and it generates wastewater (comprising both 

mine drainage and washery wastes) that is treated and then disposed into the upper reaches of the 

Georges River via a small tributary (Brennans Creek) at an elevation of 240 m above sea level. It has 

been estimated that the wastewater flows from the mine generally contribute about 90% of the 

flow of the upper Georges River (Price & Wright, 2016). There is a second, smaller wastewater 

discharge point on the Georges River above the Brennans Creek discharge point (Figure 3). This 

discharge infrequently discharges wastewater from Appin East Colliery into the Georges River at 

low volumes. This discharge from this point did occur on multiple occasions during the study period 

(South 32 EPL monitoring report, personal observation and personal communication with South 

32). The NSW Environment Protection Authority (NSW EPA) regulates the colliery wastewater 

discharge using an environmental protection licence (EPL 2504; Table 1) that enforces discharge 

limits for pollutants in the wastewater.  

 

Study sites 
 

The study area includes the Georges River and two tributaries (Brennans Creek and O’Hares Creek) 

in the upper Georges River sub-catchment (Figure 4). Brennans Creek is a very small tributary that 

contains the West Cliff colliery wastewater. In normal weather, the flow in Brennans Creek is 

attributed to the colliery waste discharge. Two reference sites were used in the study. One was 

placed on the upper Georges River (GRU) about 1.3km upstream of Brennans Creek. The second 

reference site was O’Hares Creek (Figure 1). O’Hares Creek flows into the Georges River about 22 

km downstream (Figure 2) from the Brennans Creek inflow and its catchment is mostly undisturbed 

and naturally vegetated. Both reference sites represent background water quality in the most 

undisturbed waterway reaches available in the area. The next site below GRU; GR1 is not 

considered as pristine as it has previously received small volumes of wastewater discharge from a 

second colliery, Appin East Colliery, and urban runoff from the Appin township. However, it acts as 

an upstream comparison to determine the impact that the Brennans creek discharge has on the 

Georges River (Figure 4).  
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Figure 2: Photo of the confluence of O'Hares Creek and the Georges River (Benjamin Green 2018). 

Uses of the upper Georges River waterways include heritage protection, conservation and public 

recreation. A large percentage of the upper Georges River catchment is protected and valued for 

conservation purposes (flora and fauna, endangered species and cultural heritage) as National Park 

reserves (Tippler et al. 2012) and Commonwealth Defence land. The Georges River is also a known 

habitat for an isolated population of Platypus (Patricia Durman 2017). The lower reaches of the 

Georges River are part of south western Sydney and it is one of the most urbanised catchments in 

Australia and it is reported to house approximately 1.2 million people (Tippler et al. 2012). Water 

quality of the urbanised sections of the Georges River catchment is degraded in proportion with the 

intensity of urban development (Tippler et al. 2014). This makes the relatively undisturbed upper 

Georges catchment, in the environs of the study area, of additional value. 

 

 

 

 



13 
 

Table 2: Site details; code, type, distance from wastewater discharges and location. 

Site 
Name 

Waterway 
name 

Site Type Distance (Km) downstream 
from mine wastewater 

discharges (West Cliff), Appin 
East} 

Latitude and 
longitude 
(degrees) 

Elevation 
above sea 
level (m) 

GRU Georges 
River 

Reference; natural 
background 

(NA), {NA} -34.215837, 
150.79784 

240 

GR1 Georges 
River 

Reference upstream of 
West Cliff Colliery 

discharge at Brennans 
Creek 

(NA), {0.75} -34.205514, 
150.799177 

230 

GR2 Georges 
River 

0.3km Below wastewater 
discharge 

(0.3), {1.0} -34.204259, 
150.798474 

220 

GR3 Georges 
River 

22km Below wastewater 
discharge 

(23), {24} -34.094426, 
150.833785 

60 

BC Brennans 
Creek 

West Cliff Colliery 
wastewater discharge 

(0.2), {NA} -34.204305, 
150.799845 

225 

OH O’Hares 
Creek 

Reference; natural 
background 

(NA), {NA} -34.095581, 
150.836778 

65 
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Figure 3: Photos from all six sample sites. From left to right; GRU, GR1, BC, GR2, GR3, OH (Benjamin Green 2018) 
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Figure 4: Map of the upper Georges River Catchment showing all waterways and sample sites. 
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Water quality sampling  
 

Water was collected from five sites GR1, BC, GR2, GR3 and OH (Figure 3 and Figure 4) over a 

seventeen-month period from April 2018 to September 2019. During this period there were six 

sampling events with two sample containers collected at each site. An additional site; GRU was 

sampled twice July 2019 and September 2019 to provide a greater understanding of the reference 

conditions experienced above the impact zone of the mine (Figure 3 and Figure 4). The water 

samples were collected from a flowing section of the waterway at a depth of approximately 0.1m 

where the water was deemed to be thoroughly mixed. The sample containers that were tested for 

total metals were clean, sterile and contained a small amount of nitric acid to act as a preservative. 

The sample containers that were tested for major anions and cations were clean, sterile and did not 

contain any preservatives. After collection, samples were appropriately labelled and placed in a 

cooled container. The samples were then refrigerated and transferred to the laboratory within the 

required holding time.   

 

Water samples were later tested by the Envirolab laboratory and total metals were determined 

using ICP-MS.  The laboratory is a National Association of Testing Authorities (NATA) endorsed 

commercial laboratory for analysis of water chemistry samples. The laboratory has NATA 

accreditation based on using appropriate sample analysis methods within a quality assured 

analytical chemistry environment. The samples were tested for a suite of 23 metals/metalloids 

(Aluminium, antimony, arsenic, boron, barium, beryllium, cadmium, chromium, cobalt, copper, 

iron, mercury, lithium, manganese, molybdenum, nickel, selenium, tin, strontium, titanium, 

uranium and zinc). Major anion and cation testing was also conducted by the two laboratories using 

methods approved by NATA.   

At each sampling site, field meter results were obtained for stream pH, electrical conductivity, 

dissolved oxygen and turbidity. pH and EC were measured using a TPS Aqua-CP/A meter and 

turbidity was measured using a HACH 2100P portable turbidity meter. At each site the meter was 

allowed to equilibrate before recording five replicate measurements. Weather conditions were 

Figure 5: Benjamin Green recording water physio-chemical data at sites GR2 (left) and OH (right) in 2019 (Ian Wright 2019). 
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assessed prior to collecting water samples to avoid periods of heavy rain, which could have caused 

confounded results. 

At each site, on each sampling occasion a field meter was used to assess physiochemical water 

quality attributes. These attributes were; electrical conductivity, dissolved oxygen, pH, turbidity and 

water temperature. Once the reading on the field meter had stabilised, five replicate readings were 

taken (Figure 5). The field meter used was the TPS WP-82Y data logger with the appropriate sensor 

(Figure 6). On the day of sampling, the field meters were calibrated following standard methods. 

Electrical conductivity was calibrated in the air when dry to obtain a zero reading then in standards 

of 150 μS/cm,1413 μS/cm and 2760 μS/cm. pH was calibrated in standards of 4.01 pH units and 

7.00 pH units and turbidity was calibrated using standards of 0.20 NTU and 20.00 NTU. Calibration 

for dissolved oxygen was performed in air to determine maximum saturation. At each site on each 

occasion, the field meters were checked against the standard solutions to confirm calibration.   

 

 

Sediment sampling  
 

Sediment samples were collected on two occasions (Table 2 and Table 3) at all six sampling sites 

(Figure 4). Two replicate samples per site were collected in June 2019 and four replicates per site 

were collected in September 2019. Samples were collected by extracting sediment in-stream from 

the benthic layer. Samples were then placed in clean sterile glass jars and stored in the same 

manner as the water quality samples.  The laboratory; Envirolab is a National Association of Testing 

Authorities (NATA) endorsed commercial laboratory for analysis of sediment samples. It has an 

NATA accreditation based on using appropriate sample analysis methods within a quality assured 

analytical chemistry environment. The samples were tested for a suite of 23 metals/metalloids 

(Aluminium, antimony, arsenic, boron, barium, beryllium, cadmium, chromium, cobalt, copper, 

iron, mercury, lithium, manganese, molybdenum, nickel, selenium, tin, strontium, titanium, 

uranium and zinc). 

Figure 6: Photos showing part of the calibration process for field meters (Benjamin Green 2019). 
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Macroinvertebrate Sampling 
 

Macroinvertebrate sampling was conducted on two occasions, once in September 2018 and again 

in September 2019 (Figure 3 and Figure 4). Macroinvertebrate sampling was conducted at the 

reference site GRU and below the mine wastewater discharge point at GR2 (Figure 3 and Figure 4). 

These two sites were selected to determine the impact of coalmine wastewater discharge on the 

macroinvertebrate community by comparing the community upstream of the mine discharge with 

the community below the discharge. Sample conditions were similar as both sampling events; 

however there did appear to be slightly elevated flow at GRU in 2019 compared with 2018. While 

the two sites are in close geographically proximity and share many common physical features the 

flow volume and velocity are greater in GR2 than in GRU (Personal observation; Figure 3). This 

increase in flow is attributed to the mine wastewater discharge. As different macroinvertebrate 

taxa have different flow velocity tolerances it is expected that some of the differences in 

community structure may be due to the altered flow regime at GR2.  

Figure 7: Typical photo of sediment collected (left) with water and sediment containers pictured (right) 
(Benjamin Green 2018). 

Figure 8: Sorting and macroinvertebrate identification using microscopes. Photos of macroinvertebrates were taken using the 
righthand microscope (Benjamin Green 2019). 
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The samples were collected from similar habitats which featured; riffle zones, bedrock and aquatic 

vegetation. The type of habitat sampled was located in flowing sections of the streams where depth 

was no greater than 0.2m. At both sites, the benthos was comprised of small to medium sandstone 

rocks (cobbles), sand and small amounts of detritus located on sandstone bedrock.  The samples 

were obtained by disturbing a 900cm2 area of the stream immediately upstream of a 250μm mesh 

net using the ‘kick sampling’ technique (Rosenberg & Resh 1993). The disturbance of the substrate 

lasted for a period of 30 seconds with the same effort applied at both sites. The disruption of the 

benthic layer caused debris and any macroinvertebrates to become dislodged and washed into the 

net. The contents of the net, including sediment and detritus were emptied into labelled sample 

containers and preserved in methylated spirits. Five replicate samples were taken at both sites in 

2018 while three replicates were collected at each site in 2019. The identification and count of the 

macroinvertebrates was undertaken at the Western Sydney University laboratory (Figure 8 and 

Figure 9). The content of each sample was sorted under a dissecting microscope (X10 to X60) where 

the macroinvertebrates were separated from the mix of sediment, rocks and detritus (Figure 8). 

The macroinvertebrates were identified to the family taxonomic level primarily using the guide by 

Hawking (2000). In the event where identification was uncertain, the macroinvertebrates were 

subject to confirmation identification by expert freshwater ecologists, namely; Dr Ian Wright and 

Nakia Belmer.   

 

 

 

 

 

 

 

Figure 9: Photo of selected macroinvertebrates taken with the microscope (Benjamin Green 2018). 
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Willow laboratory experiment  
 

A laboratory experiment was designed to determine the bioavailability of metals present in the 

mine wastewater. The experiment would determine if metals present in the mine wastewater 

would accumulate in the tissue of willow (Salix nigra) leaves and roots. Groups of willow cuttings 

were exposed to six treatments in two categories; reference water and mine wastewater.  

 

Willow cutting collection  
 

Willow cuttings were collected on the 12th of June 2019 from a mature Salix nigra specimen. 

Approximately 140 cuttings were made in live wood. The cuttings were approximately 0.2m long 

and between 5mm and 10mm in diameter. At the laboratory at Western Sydney University, the 

cuttings were trimmed to approximately equal lengths of 0.2m with any cuttings that were 

deformed or deemed unsuitable were discarded. The base of the willow stalk was then cut in a 

diagonal direction to enhance root development. The cuttings were then washed using distilled 

water to remove any foreign material.  

 

Water collection  
 

Water for the experiment was collected one day before the experiment commenced on the 

11/06/2019. Water was collected at five sites to act as five treatments; OH, GRU, GR1, BC and GR2 

immediately after water quality and in-situ sampling was conducted. The water was collected in 

clean 10L drums which were rinsed with water from the site prior to collection (Figure 10).  

 

Experiment configuration  
 

At the Western Sydney University laboratory 125, 500mL beakers were washed and cleaned prior 

to the experiment. 300mL of water from the respective treatment (location) was poured into each 

of twenty-five, 500mL beakers. Plastic wrap was then used to cover the mouth of the beaker to 

lessen the evaporation rate. Twenty-five willow cuttings were then randomly selected and placed 

into the beakers. This procedure was carried out for the four other treatments. The laboratory was 

kept at consistent conditions through-out the experiment. Light was maintained by four fluorescent 

lights and a stable temperature range (21°C to 23°C) and relative humidity (23% to 39%) was 

achieved by an automated air conditioning system (Figure 10).  
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Experiment maintenance and monitoring   
 

The experiment was conducted over a period of 61 days from the 12th of June 2019 to the 12th of 

August 2019. Every three days the experiment was inspected. At these times, de-ionised water was 

added to the beakers to compensate for transpiration and evaporation loss. Every three weeks 

electrical conductivity and pH was measured to ensure that the treatments remained within 10% of 

the recorded value when the samples were collected (Figure 11 and Figure 12).  

 

 

 

 

Figure 10: Collection of water (left) and 1st day of the willow experiment (right) (Benjamin Green 2019) 
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Figure 11: Willow growth throughout the experiment. Photos placed in chronological order from the start of the experiment to the end 
of the experiment (Benjamin Green 2019) 
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Harvesting  
 

The willow cuttings were harvested after 61 days of growth (Figure 11 and Figure 12) on the 12th of 

August 2019. The willow cuttings were removed from the beakers and thoroughly washed using 

distilled water to remove any residue or sedimentation. Each individual willow cutting had its leaves 

and roots separated and placed into an individually labelled paper envelope that was then sealed. 

The envelopes and willow tissue were then placed in a fan forced drying oven that maintained a 

temperature between 59°C and 62°C for a seven-day period to extract moisture from the tissue 

samples. The samples were then weighed and ground into a fine powder using a mortar and pestle 

that was cleaned after the grinding of each sample. To further eliminate the chance of sample 

cross-contamination, the plant tissue from the reference treatments (GRU, GR1 and OH) was 

ground before the mine wastewater treatments (GR2 and BC). For analysis the laboratory needed a 

minimum sample mass of 0.2g and a recommended mass of <0.5g. To achieve this requirement 

composite samples were created. To form the composite samples, each individual willow foliage 

sample was randomly selected. A total of 82 willow leaf samples were collected from the five 

treatments; 15 from GRU, 18 from GR1, 20 from OH, 15 from GR2 and 14 from BC. A total of 21 

willow root samples were collected from the five treatments; four from GRU, five from GR1, five 

from OH, four from GR2 and three from BC. 

 

 

Willow sample analysis 
 

The laboratory; Envirolab is a National Association of Testing Authorities (NATA) endorsed 

commercial laboratory for analysis of vegetation tissue samples. It has a NATA accreditation based 

on using appropriate sample analysis methods within a quality assured analytical chemistry 

environment. The samples were tested for a suite of 23 metals/metalloids (Aluminium, antimony, 

arsenic, boron, barium, beryllium, cadmium, chromium, cobalt, copper, iron, mercury, lithium, 

manganese, molybdenum, nickel, selenium, tin, strontium, titanium, uranium and zinc). 

Figure 12: Photo of willow root growth during the experiment (Benjamin Green 2019). 
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Data analysis 
 

To determine whether a mine impacted site or treatment exhibited a different result to the 

reference conditions a statistical test was performed. The statistical test used was a one-way 

analysis of variance (one-way ANOVA). To perform the test, data from the two reference sites was 

grouped to better approximate the true background conditions. This block of reference data was 

compared using the one-way ANOVA to each individual site or treatment for each parameter. The 

limit of statistical significance was where the p-value was greater than 0.05. p-values were reported 

as; <0.05, <0.01 and <0.001. This method was used to analyse water quality data, sediment data, 

willow tissue data and the macroinvertebrate community structure. The macroinvertebrate 

community structure was also examined by grouping sensitive macroinvertebrate taxa belonging to 

the families Ephemeroptera, Plecoptera and Trichoptera (EPT). The Shannon-Wiener biodiversity 

index was also used to examine differences in macroinvertebrate community structure. The 

Shannon-Wiener biodiversity index is a common biodiversity measure that reflects taxon richness 

and evenness of the abundances of taxa (Krebs 1289).  
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Table 3: Dates of sampling events and willow experiment. NT indicates not tested.  

 Reference Upstream Discharge Downstream 

Site Name O’Hares GRU GR1 BC GR2 GR3 

Water Quality (in-situ) 06/04/2018 
20/04/2018 
11/05/2018 
19/09/2018 
11/06/2019 
06/09/2019 

NT 
NT 
NT 

19/09/2018 
11/06/2019 
06/09/2019 

06/04/2018 
20/04/2018 
11/05/2018 
19/09/2018 
11/06/2019 
06/09/2019 

06/04/2018 
20/04/2018 
11/05/2018 
19/09/2018 
11/06/2019 
06/09/2019 

06/04/2018 
20/04/2018 
11/05/2018 
19/09/2018 
11/06/2019 
06/09/2019 

06/04/2018 
20/04/2018 
11/05/2018 
19/09/2018 
11/06/2019 
06/09/2019 

Water Quality (samples) 06/04/2018 
20/04/2018 
11/05/2018 
11/06/2019 
06/09/2019 

NT 
NT 
NT 

11/06/2019 
06/09/2019 

06/04/2018 
20/04/2018 
11/05/2018 
11/06/2019 
06/09/2019 

06/04/2018 
20/04/2018 
11/05/2018 
11/06/2019 
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20/04/2018 
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11/05/2018 
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06/09/2019 

Sediment 11/06/2019 
06/09/2019 

11/06/2019 
06/09/2019 

11/06/2019 
06/09/2019 

11/06/2019 
06/09/2019 

11/06/2019 
06/09/2019 
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06/09/2019 

Macroinvertebrate NT 19/09/2018 
06/09/2019 

NT NT 19/09/2018 
06/09/2019 

NT 

Willow Experiment (start 
date – end date) 

12/06/2019 - 
12/08/2019 

12/06/2019 - 
12/08/2019 

12/06/2019 - 
12/08/2019 

12/06/2019 - 
12/08/2019 

12/06/2019 - 
12/08/2019 

NT 
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4. Results 
 

Water physiochemical properties 
 

The wastewater discharge from the West Cliff Colliery into Brennans Creek (BC) has caused 

extensive changes to the chemistry of the Georges River. This alteration of water chemistry in the 

Georges River was still evident at the furthest downstream sample site (GR3), 22km below the 

inflow of Brennans Creek. 

The physiochemical properties of water differed significantly between sites that were located 

downstream of mine wastewater discharge and the reference sites. Mean Electrical conductivity, 

pH and turbidity was elevated at the sites downstream of mine wastewater discharges compared to 

the dilute conditions present at the reference sites (Table 4).  

Electrical conductivity at the two ‘pristine’ reference sites was dilute (Table 4, Figure 14). Mean 

electrical conductivity at OH was 181 μS/cm, with a median value of 178 μS/cm and a range of 11.4 

μS/cm from a minimum value of 176.7 μS/cm to a maximum value of 188.1 μS/cm. Mean electrical 

conductivity at the most upstream site on the Georges River (GRU) was 186 μS/cm, with a median 

value of 186 μS/cm and a range of 30.2 μS/cm from a minimum value of 170.6 μS/cm to a maximum 

value of 200.8 μS/cm.  

Above West cliff Colliery’s discharge point but below the decommissioned discharge point at Appin East 

Colliery the Georges River at GR1 experienced elevated electrical conductivity compared to the two 

reference sites (Table 4, Figure 14). Mean elevated electrical conductivity at GR1 was 456 μS/cm a 

statistically significant difference compared to the reference sites (p<0.001). Median electrical 

conductivity was 426 μS/cm and a range of 503 μS/cm from a minimum value of 245 μS/cm to a 

maximum value of 748 μS/cm. 

The discharge of wastewater from Brennans Creek was very saline (Table 4, Figure 14). Mean 

electrical conductivity at BC was 1787 μS/cm, a statistically significant difference compared to the 

reference sites (p<0.001). The median value of 1784 μS/cm and a range of 855 μS/cm from a minimum 

Figure 13: In-stream rocks with suspected salt deposits at GR2 (Benjamin Green 2018). 
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value of 1366 μS/cm to a maximum value of 2221 μS/cm showed elevated electrical conductivity levels 

over the entire sampling period.  

Brennans Creek is the main contributor to flow in the upper Georges River (personal observation) 

and the electrical conductivity concentration at GR2 supports this observation (Table 4, Figure 14). 

Mean electrical conductivity at GR2 was 1677μS/cm, a statistically significant difference compared to 

the reference sites (p<0.001). The median value of 1728 μS/cm and a range of 869 μS/cm from a 

minimum value of 1173 μS/cm to a maximum value of 2042 μS/cm showed elevated electrical 

conductivity levels over the entire sampling period. At both BC and GR2 there was suspected salt 

deposits on in-stream rocks (Figure 13). 

The Georges River remained saline at the furthest downstream site at GR3; a highly statistically 

significant difference (p<0.001) compared to the two reference sites. Mean electrical conductivity at 

GR3 was 1102 μS/cm, with a median value of 1314 μS/cm and a range of 1233 μS/cm from a minimum 

value of 394 μS/cm to a maximum value of 1627 μS/cm (Table 4, Figure 14). 

 

Figure 14: Graph of mean electrical conductivity with standard error bars at the six sample sites. Green fill indicates mean 
concentration below the ANZECC 2000 water quality guideline limit indicated by the green dashed line. The EPL limit is indicated by 
black and grey dashed lines. 

pH levels followed a similar trend to electrical conductivity. At the two reference sites, pH was in 

the acidic to neutral range (Table 4, Figure 15). Mean pH at OH was 6.78 pH units, with a median 

value of 6.97 pH units and a range of 1.12 pH units from a minimum value of 6.23 pH units to a 

maximum value of 7.35 pH units. Mean pH at the most upstream site on the Georges River (GRU) was 

5.83 pH units, with a median value of 5.78 pH units and a range of 0.38 pH units from a minimum value 
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of 5.64 pH units to a maximum value of 6.02 pH units. Downstream from GRU at GR1, pH was elevated 

and statistically dissimilar to the reference sites (p<0.001). Mean pH at GR1 was 6.94 pH units, with a 

median value of 6.92 pH units and a range of 0.72 pH units from a minimum value of 6.57 pH units to a 

maximum value of 7.29 pH units (Table 4, Figure 15).   

The Westcliff Colliery discharge at Brennans Creek was highly alkaline and statistically dissimilar to the 

reference sites (p<0.001). Mean pH at BC was 8.82 pH units, with a median value of 8.82 pH units and a 

range of 1.01 pH units from a minimum value of 8.27 pH units to a maximum value of 9.28 pH units 

(Table 4, Figure 15).    

Downstream of the Brennans Creek discharge point at GR2, pH was highly alkaline and statistically 

dissimilar to the reference sites (p<0.001). Mean pH was also 2.06 pH units higher than immediately 

upstream of the discharge at GR1. Mean pH at GR2 was 9.00 pH units, with a median value of 8.91 pH 

units and a range of 0.75 pH units from a minimum value of 8.75 pH units to a maximum value of 9.5 pH 

units (Table 4, Figure 15).  

22km downstream at GR3, pH was alkaline and statistically dissimilar to the reference sites (p<0.001). 

Mean pH at GR3 was 8.50 pH units, with a median value of 8.48 pH units and a range of 0.71 pH units 

from a minimum value of 8.12 pH units to a maximum value of 8.83 pH units (Table 4, Figure 15).    

 

Figure 15: Graph of mean pH with standard error bars at the six sample sites. Green fill indicates mean concentration below the 
ANZECC 2000 water quality guideline limit indicated by the green dashed line. The EPL limits are indicated by black and grey dashed 
lines. 

Turbidity at the reference sites and at GR1 was low compared to the wastewater discharge at Brennans 
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1.4 NTU, with a median of 1.1 NTU and a range of 1.2 NTU from a minimum of 0.7 NTU to a maximum 

of 2.4 NTU. At GRU, mean turbidity was 3.2 NTU, with a median of 2.4 NTU and a range of 3.4 NTU from 

a minimum of 2.3 NTU to a maximum of 5.7 NTU (Table 4, Figure 16). 

Turbidity at GR1 was statistically similar to the reference sites. Mean turbidity was 2.3 NTU, with a 

median of 1.8 NTU and a range of 2.4 from a minimum value of 1.5 to a maximum value of 4.0 (Table 4, 

Figure 16). 

The West Cliff Colliery discharge had a ‘cloudy’ appearance (personal observation), which was reflected 

in elevated turbidity levels. Turbidity was elevated and statistically dissimilar (p<0.001) to the reference 

sites. Mean turbidity was 7.8 NTU, with a median of 7.3 NTU and a range of 7.4 from a minimum value 

of 4.4 to a maximum value of 11.8 (Table 4, Figure 16). 

Downstream of the Brennans Creek discharge point at GR2 the water also appeared ‘cloudy’ (personal 

observation). Turbidity was elevated and statistically dissimilar (p<0.001) to the reference sites. Mean 

turbidity was 8.5 NTU, with a median of 8.0 NTU and a range of 12.1 from a minimum value of 3.84 to a 

maximum value of 15.9. 22km downstream at GR3, turbidity was statistically similar to the reference 

sites. Mean turbidity at GR3 was 4.8 NTU, with a median of 3.0 NTU and a range of 9.7 NTU from a 

minimum of 2.5 NTU to a maximum of 12.2 NTU (Table 4, Figure 16).  

 

Figure 16:Graph of mean turbidity with standard error bars at the six sample sites. Green fill indicates mean concentration below the 
ANZECC 2000 water quality guideline limit indicated by the green dashed line. 
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Table 4: Summary table of in~situ water quality data at all sites. Mean, median and p-values are shown. NS indicates not statically significant.  

 

 

 

 

 

 

 Reference Upstream Discharge Downstream 

Site Name O’Hares GRU GR1 BC GR2 GR3 

Variables (units) Mean Med. Mean Med. Mean Med. p -value Mean Med. p -value Mean Med. p -value Mean Med. p -value 

Electrical conductivity 
(µS/cm) 

181 178 186 186 456 426 <0.001 1787 1784 <0.001 1677 1728 <0.001 1102 1314 <0.001 

pH (pH units) 6.78 6.97 5.83 5.78 6.94 6.92 <0.001 8.82 8.82 <0.001 9.00 8.91 <0.001 8.50 8.48 <0.001 

Turbidity (NTU) 1.4 1.1 3.2 2.4 2.3 1.8 NS 7.8 7.3 <0.001 8.5 8.0 <0.001 4.8 3.0 NS 

Dissolved Oxygen (%) 89.6 93.3 72.8 69.8 72.3 72.5 <0.001 72.5 74.1 <0.001 85.3 81.6 NS 91.8 92.9 <0.001 
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Water ionic composition 
 

The ionic composition of the waterways downstream of mine wastewater discharge was altered 

compared to the reference sites (Table 5). The reference sites; OH and GRU recorded the lowest 

mean concentrations of dissolved anions and cations with the exception of hydroxide alkalinity 

which was below detection limits at all locations. While no mine wastewater was released at GR1 

during the study period, it is expected that the altered ionic composition of the water at the site is 

due to a combination of mine legacy pollution and small amounts of urban run-off.  

Dissolved calcium concentrations were lowest at the two reference sites, while the concentrations 

at the mine affected sites were all statistically significantly different (p<0.001). O’Hares Creek had a 

mean concentration of 2.8 mg/L and GRU had a mean concentration of 1.2 mg/L. GR1 had the 

highest mean dissolved calcium concentration of 21.4 mg/L. The West Cliff Colliery discharge at BC 

had an elevated mean dissolved calcium concentration of 8.3 mg/L while GR2 and GR3 recorded 

means of 8.8 mg/L and 7.5 mg/L respectively (Table 5).   

Mean dissolved potassium was elevated and statistically significantly different (p<0.001) at sites 

GR1, BC, GR2 and GR3 to the two reference sites. O’Hares Creek had a mean concentration of 1.2 

mg/L and GRU had a mean concentration of 1.0 mg/L. GR1 mean dissolved potassium 

concentration of 3.1 mg/L. The West Cliff Colliery discharge at BC had a mean dissolved potassium 

concentration of 3.8 mg/L while GR2 and GR3 recorded means of 3.6 mg/L and 3.0 mg/L 

respectively (Table 5). 

Mean dissolved sodium was elevated and statistically significantly different (p<0.001) at sites GR1, 

BC, GR2 and GR3 to the two reference sites. O’Hares Creek had a mean concentration of 22.2 mg/L 

and GRU had a mean concentration of 23.3 mg/L. GR1 mean dissolved sodium concentration of 

51.9 mg/L. The West Cliff Colliery discharge at BC had a mean dissolved sodium concentration of 

491.0 mg/L which is more than twenty times greater than the mean reference conditions. GR2 and 

GR3 recorded means of 442.0 mg/L and 316.6 mg/L respectively (Table 5). 

Mean dissolved magnesium concentration was highest at GR1 (8.1 mg/l), a statistically dissimilar 

result (p<0.05) to the reference sites. O’Hares Creek had a mean dissolved magnesium 

concentration of 4.0 mg/L. GR3 had the next highest mean concentration of 4.3 mg/L, a result 

statistically similar to the reference site. Both BC and GR2 had mean concentrations of 3.4 mg/L and 

3.3 mg/L respectively which were statistically dissimilar (p<0.05) to the reference site. All results for 

hydroxide alkalinity were below detection limits (Table 5). 

Dissolved bicarbonate alkalinity was statistically dissimilar (p<0.001) to the reference sites at all 

other sites. Mean dissolved bicarbonate alkalinity was lowest at the two reference sites O’Hares 

(10.2 mg/L) and GRU (5.3 mg/L). GR1 had an increased mean of 39.6 mg/L which was approximately 

fifteen times less than the mean at GR2; 607.0 mg/L. This increase is due to the inflow of 

wastewater from Brennans Creek which had a mean concentration of 686.0 mg/L. Dissolved 

bicarbonate alkalinity remained elevated at GR3 which had a mean of 449 mg/L (Table 5, Figure 17).  
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Figure 17: Graph showing mean bicarbonate alkalinity in mg/L with standard error bars at all six sample sites. 

Dissolved carbonate alkalinity was statistically dissimilar (p<0.001) to the reference sites BC, GR2 

and GR3. Mean dissolved carbonate alkalinity was below detection limits at the two reference sites 

O’Hares Creek, GRU and at GR1. GR2 has a mean concentration of 89.0 mg/L due to the influx of 

wastewater from Brennans Creek which had a mean concentration of 86.6 mg/L. Dissolved 

carbonate alkalinity remained elevated at GR3 which had a mean of 19.5 mg/L (Table 5, Figure 18).  
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Figure 18: Graph showing mean carbonate alkalinity in mg/L with standard error bars at all six sample sites. 

Total alkalinity was statistically dissimilar (p<0.001) to the reference sites at all other sites. Mean 

dissolved bicarbonate alkalinity was lowest at the two reference sites O’Hares (10.2 mg/L) and GRU 

(5.3 mg/L). GR1 had an increased mean of 39.6 mg/L which was approximately twenty times less 

than the mean at GR2; 772.0 mg/L. This increase is due to the inflow of wastewater from Brennans 

Creek which had a mean concentration of 697.0 mg/L. Dissolved bicarbonate alkalinity remained 

elevated at GR3 which had a mean of 467 mg/L (Table 5, Figure 19).  
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Figure 19:Graph showing mean total alkalinity in mg/L with standard error bars at all six sample sites. 

Sulphate concentration was statistically dissimilar (p<0.001) to the reference sites at all other sites. 

Mean sulphate concentration was lowest at the two reference sites O’Hares (9.5 mg/L) and GRU 

(7.5 mg/L). GR1 had an increased mean of 13.6 mg/L which was less than the mean at GR2; 22.2 

mg/L. This increase is due to the inflow of wastewater from Brennans Creek which had a mean 

concentration of 24.4 mg/L. Sulphate concentrations remained elevated at GR3 which had a mean 

of 14.9 mg/L (Table 5).  

Chloride concentration was statistically dissimilar (p<0.001) to the reference sites at all other sites. 

Mean Chloride concentration was lowest at the two reference sites O’Hares (37.5 mg/L) and GRU 

(39.8 mg/L). GR1 had an increased mean of 91.9 mg/L which was less than the mean at GR2; 120.7 

mg/L. This increase is due to the inflow of wastewater from Brennans Creek which had a mean 

concentration of 124.1 mg/L. Chloride concentrations remained elevated at GR3 which had a mean 

of 102.8 mg/L (Table 5).  
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Table 5: Summary table of quality data (anions and cations) at all sites. Mean, median and p-values are shown. 

 

 

 

 

 

 Reference Upstream Discharge Downstream 

Site Name O’Hares GRU GR1 BC GR2 GR3 

Variables 
mg/L 

Mean Med. Mean Med. Mean Med. p -
value 

Mean Med. p -
value 

Mean Med. p -
value 

Mean Med. p -
value 

Calcium  2.8 2.8 1.2 1.2 21.4 22.0 <0.001 8.3 7.3 <0.001 8.8 7.0 <0.001 7.5 7.1 <0.001 

Potassium  1.2 1.2 1.0 1.0 3.1 3.0 <0.001 3.8 3.7 <0.001 3.6 3.6 <0.001 3.0 3.3 <0.001 

Sodium 22.2 23.5 23.3 23.5 51.9 49.5 <0.001 491.0 505.0 <0.001 442.0 495.0 <0.001 316.6 360.0 <0.001 

Magnesium 4.0 4.0 3.9 4.0 8.1 8.6 <0.001 3.4 2.9 <0.05 3.3 2.8 <0.05 4.3 4.6 NS 

Hydroxide 
Alkalinity 

2.5 2.5 2.5 2.5 2.5 2.5 NS 2.5 2.5 NS 2.5 2.5 NS 2.5 2.5 NS 

Bicarbonate 
Alkalinity  

10.2 10.0 5.3 5.0 39.6 36.0 <0.001 686.0 620.0 <0.001 607.0 625.0 <0.001 449.0 480.0 <0.001 

Carbonate 
Alkalinity 

2.5 2.5 2.5 2.5 2.5 2.5 NS 86.6 99.5 <0.001 89.0 98.0 <0.001 19.5 21.5 <0.001 

Total 
Alkalinity  

10.2 10.0 5.3 5.0 39.6 36.0 <0.001 772.0 730.0 <0.001 697.0 740.0 <0.001 467.0 500.0 <0.001 

Sulphate 9.5 10.0 7.5 7.5 13.6 12.0 <0.001 24.4 24.5 <0.001 22.2 25.0 <0.001 14.9 15.0 <0.01 

Chloride 37.5 36.0 39.8 39.0 91.9 91.0 <0.001 124.1 120.0 <0.001 120.7 120.0 <0.001 102.8 110.0 <0.001 

Calcium  2.8 2.8 1.2 1.2 21.4 22.0 <0.001 8.3 7.3 <0.001 8.8 7.0 <0.001 7.5 7.1 <0.001 

Potassium  1.2 1.2 1.0 1.0 3.1 3.0 <0.001 3.8 3.7 <0.001 3.6 3.6 <0.001 3.0 3.3 <0.001 



36 
 

Metals concentration in water  
 

The wastewater discharge into Brennans Creek had elevated concentrations of a suite of metals; 

antimony, aluminium, arsenic, barium, boron, cobalt, lithium, molybdenum, nickel, strontium and 

uranium, titanium and zinc that were statistically different compared to the reference sites (Table 

6). The inflow of wastewater from Brennans Creek into the Georges River caused elevated 

concentrations of metals; antimony, aluminium, arsenic, barium, boron, cobalt, copper lithium, 

molybdenum, nickel, strontium, uranium, titanium and zinc that were statistically different at GR2 

compared with to the reference sites. 22 km downstream from the West Cliff Colliery’s discharge, 

concentrations of metals remained elevated at statistically significantly levels on the Georges River 

at GR3. The metals at elevated concentrations were; aluminium, arsenic, barium, boron, lithium, 

molybdenum, nickel, strontium, titanium and uranium. The reference sites; O’Hares and GRU metal 

load were dominated iron and characterised be low concentrations of other metals. GR1 had a 

suite of metals (aluminium, barium, boron, copper, lithium, nickel, strontium, titanium and zinc) 

that were present at elevated concentrations that were statistically dissimilar to the reference site. 

Metals beryllium, cadmium, chromium, mercury, selenium and tin were below laboratory detection 

limits at all sites on all occasions. The metals present in GR1 are likely due to legacy pollution and 

small volumes of discharge from the Appin East Colliery and potentially from the small amounts of 

urban runoff that GR1 receives.  

Total antimony concentrations were below detection limits (<1 µg/L) at O’Hares Creek, GRU and 

GR1. While sites BC and GR2 had increased concentrations of antimony that were statistically 

dissimilar to the reference sites with p-values that were <0.001 and <0.05 respectively. 22 km 

downstream at GR3 antimony was below detection limits. Mean antimony concentration at the 

West Cliff Colliery discharge into Brennans Creek was 1.5 µg/L. The wastewater discharge caused an 

increase in mean antimony concentration in the Georges River at GR2 to 1.3 µg/L.   

Total aluminium concentrations at the reference sites were 21 µg/L at O’Hares and 30 µg/L at GRU 

(Table 6, Figure 20). All other sites recorded aluminium concentrations that were elevated and 

statistically dissimilar (p<0.001) to the two reference sites. Mean aluminium concentration at GR1 

was 76 µg/L. Mean aluminium concentration at the West Cliff Colliery discharge into Brennans 

Creek was 595 µg/L. The wastewater discharge caused an increase in mean aluminium 

concentration in the Georges River at GR2 to 609 µg/L. 22 km downstream at GR3 the mean 

aluminium concentration was 170 µg/L. 
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Figure 20: Graph of total aluminium (µg/L) with error bars at all six sample sites. EPL limit is shown by the grey dotted line and the 
ANZECC 2000 guideline is indicated by the green dashed line. 

Total arsenic concentrations were below detection limits (<1 µg/L) at O’Hares Creek, GRU and GR1 

(Table 6, Figure 21). While sites BC, GR2 and GR3 had increased concentrations of arsenic that were 

statistically dissimilar to the reference sites with p-values that were <0.001. Mean arsenic 

concentration at the West Cliff Colliery discharge into Brennans Creek was 8.2 µg/L. The 

wastewater discharge caused an increase in mean arsenic concentration in the Georges River at 

GR2 to 7.9 µg/L. 22 km downstream at GR3 the mean arsenic concentration was 1.3 µg/L. 
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Figure 21: Graph of total arsenic (µg/L) with error bars at all six sample sites. EPL limit is shown by the grey dotted line. 

Total barium concentrations at the reference sites were 21 µg/L at O’Hares and 9.0 µg/L at GRU 

(Table 6, Figure 22). All other sites recorded barium concentrations that were elevated and 

statistically dissimilar (p<0.001) to the two reference sites. Mean barium concentration at GR1 was 

117. Mean barium concentration at the West Cliff Colliery discharge into Brennans Creek was 304 

µg/L. The wastewater discharge caused an increase in mean barium concentration in the Georges 

River at GR2 to 255 µg/L. 22 km downstream at GR3 the mean barium concentration was 74 µg/L. 
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Figure 22: Graph of total barium (µg/L) with error bars at all six sample sites. 

Total boron concentrations at the reference sites; O’Hares and GRU were below detection limit of 

20 µg/L (Table 6). All other sites recorded boron concentrations that were elevated and statistically 

dissimilar (p<0.001) to the two reference sites. Mean boron concentration at GR1 was 23 µg/L. 

Mean boron concentration at the West Cliff Colliery discharge into Brennans Creek was 48 µg/L. 

The wastewater discharge caused an increase in mean boron concentration in the Georges River at 

GR2 to 40 µg/L. 22 km downstream at GR3 the mean boron concentration was 25 µg/L. 

Total cobalt concentrations were below detection limits (<1 µg/L) at O’Hares Creek, GRU and GR1 

(Table 6). While sites BC and GR2 had increased concentrations of cobalt that were statistically 

dissimilar to the reference sites with p-values of <0.001. 22 km downstream at GR3 cobalt was 

below detection limits. Mean cobalt concentration at the West Cliff Colliery discharge into 

Brennans Creek was 1.5 µg/L. The wastewater discharge caused an increase in mean cobalt 

concentration in the Georges River at GR2 to 1.4 µg/L.   

Total copper concentrations were lowest at the two reference sites (Table 6). O’Hares Creek had a 

mean copper concentration of 1.0 and copper concentrations were below detection limits at GRU. 

GR1 had the highest mean copper concentration of 2.2 µg/L and were statistically significantly 

different (p-value <0.01) to the reference sites. BC had a mean concentration of 1.2 µg/L and was 

not statistically significantly different to the reference sites. GR2 had a mean concentration of 1.4 

µg/L and was statistically significantly different (p-value <0.01) to the reference sites. 22 km 

downstream at GR3 the mean concentration of copper was 1.1 µg/L and was not statistically 

significantly different to the reference sites. 
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Mean total iron concentrations were highest at the West Cliff Colliery discharge into Brennans 

Creek; BC with a mean of 560 µg/L followed by GRU (488 µg/L), GR3 (297 µg/L), GR2 (247 µg/L), 

O’Hares (201 µg/L) with the lowest mean concentration observed at GR1 (83 µg/L). GR1 was the 

only site that was statistically significantly different (p-value <0.01) to the reference sites (Table 6). 

Total lead concentrations at O’Hares and GRU were below detection limits on all occasions. Lead 

concentrations were not statistically significantly different at GR1, BC, GR2 and GR3 although 

elevated mean concentrations were observed. GR1 had a mean concentration of 0.7 µg/L, BC, GR2 

and GR3 had mean lead concentrations of 0.6 µg/L. Manganese concentrations were not 

statistically significantly different at sites BC, GR1, GR2 and GR3 compared to the reference sites 

(Table 6).    

Total lithium concentrations were lowest at O’Hares and GRU while all other sites had elevated 

concentrations that were statistically significantly different (p-value <0.001) to the reference sites. 

The wastewater discharge from West Cliff Colliery at BC was the highest, recording a mean 

concentration of 317 µg/L. The inflow of the discharge caused the lithium concentration in the 

Georges River to rise from 15.6 µg/L at GR1 to 280.5 µg/L at GR2. 22 km downstream at GR3 the 

concentration of lithium remained elevated with a mean of 155.3 µg/L (Table 6, Figure 23).  

 

Figure 23: Graph of total lithium (µg/L) with error bars at all six sample sites. 

Total molybdenum concentrations were below detection limit of 1 µg/L at O’Hares and at GRU 

(Table 6, Figure 24). On two occasions molybdenum concentration at GR1 was above the detection 

limit of 1 µg/L, at 1 µg/L. These two events gave GR1 a mean concentration of 0.6 µg/L. The inflow 

of wastewater from West Cliff Colliery into Brennans Creek with a mean molybdenum 
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concentration of 29.2 µg/L caused mean molybdenum to rise to 27.5 µg/L.  22 km downstream at 

GR3 the concentration of molybdenum remained elevated with a mean of 15.7 µg/L. 

Concentrations at BC, GR2 and GR3 were statistically significantly different (p-value <0.001) 

compared to the reference sites.  

 

Figure 24: Graph of total molybdenum (µg/L) with error bars at all six sample sites. 

Total nickel concentrations were elevated and statistically significantly different (p-value <0.001) 

compared to the reference sites (Table 6, Figure 25). Nickel was below detection limits (1 µg/L) at 

O’Hares and GRU. The wastewater discharge from West Cliff Colliery at BC had the highest 

concentration, recording a mean of 83.8 µg/L. The inflow of the discharge caused the nickel 

concentration in the Georges River to rise from 3.8 µg/L at GR1 to 76.6 µg/L at GR2. 22 km 

downstream at GR3 the concentration of nickel remained elevated with a mean of 54.6 µg/L. 
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Figure 25: Graph of total nickel (µg/L) with error bars at all six sample sites. EPL limit is shown by the grey dotted line and the ANZECC 
2000 guideline is indicated by the green dashed line. 

Total strontium concentrations were elevated and statistically significantly different (p-value 

<0.001) compared to the reference sites (Table 6, Figure 26). Mean strontium was 21 µg/L at 

O’Hares and 10 µg/L at GRU. The wastewater discharge from West Cliff Colliery at BC had the 

highest concentration, recording a mean of 188 µg/L. The inflow of the discharge caused the 

strontium concentration in the Georges River to rise from 129 µg/L at GR1 to 168 µg/L at GR2. 22 

km downstream at GR3 the concentration of strontium remained elevated with a mean of 91 µg/L. 
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Figure 26: Graph of total strontium (µg/L) with error bars at all six sample sites. 

Total titanium concentrations were elevated and statistically significantly different (p-value <0.01) 

compared to the reference sites (Table 6, Figure 27). Mean titanium was 0.9 µg/L at O’Hares and 

0.7 µg/L at GRU. The wastewater discharge from West Cliff Colliery at BC had mean of 4.4 µg/L. The 

inflow of the discharge caused the titanium concentration in the Georges River to rise from 1.9 µg/L 

at GR1 to 5.9 µg/L at GR2. 22 km downstream at GR3 the concentration of titanium remained 

elevated with a mean of 3.1 µg/L. 
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Figure 27: Graph of total titanium (µg/L) with error bars at all six sample sites. 

Total uranium concentrations were elevated and statistically significantly different (p-value <0.001) 

compared to the reference sites (Table 6, Figure 28). Uranium concentration was below the 

laboratory detection limit of 0.5 µg/L on all occasions at sites O’Hares, GRU and at GR1. The 

wastewater discharge from West Cliff Colliery at BC had mean of 7.8 µg/L. The inflow of the 

discharge caused the uranium concentration in the Georges River to 7.0 µg/L at GR2. 22 km 

downstream at GR3 the concentration of uranium remained elevated with a mean of 3.0 µg/L. 
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Figure 28: Graph of total uranium (µg/L) with error bars at all six sample sites. ANZECC 2000 guideline is indicated by the green 
dashed line. 

Total zinc concentration was lowest at site GR3 which had a mean of 3.7 µg/L (Table 6, Figure 29). 

This result was statistically similar to the reference site O’Hares and GRU which had means of 5.1 

µg/L and 5.0 µg/L respectively. Sites GR1, BC and GR2 experienced elevated concentrations of zinc 

at statistically significantly different (p-value <0.001) levels. The wastewater discharge from West 

Cliff Colliery at BC had mean of 10.3 µg/L with GR1 and GR2 recording means of 16.5 µg/L and 10.9 

µg/L respectively.  
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Figure 29: Graph of total zinc (µg/L) with error bars at all six sample sites. EPL limit is shown by the red dotted line and the ANZECC 
2000 guideline is indicated by the green dashed line. 
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Table 6: Summary table of metals in water samples at all sites. Mean, median and p-values are shown, NS indicates that no statically significance difference was observed.  

 Reference Upstream Discharge Downstream 

Site Name O’Hares GRU GR1 BC GR2 GR3 

Variables 
µg/L 

Mean Med. Mean Med. Mean Med. p -
value 

Mean Med. p -
value 

Mean Med. p -
value 

Mean Med. p -
value 

Antimony  0.5 0.5 0.5 0.5 0.5 0.5 NS 1.5 1.5 <0.001 1.3 1.3 <0.05 0.5 0.5 NS 

Aluminium 21 20 30 30 76 90 <0.001 595 490 <0.001 609 530 <0.001 170 85 <0.001 

Arsenic 0.5 0.5 0.5 0.5 0.5 0.5 NS 8.2 9.0 <0.001 7.9 9.0 <0.001 1.3 1.0 <0.001 

Barium 12 12 9 9 117 115 <0.001 304 320 <0.001 255 230 <0.001 74 82 <0.001 

Beryllium 0.3 0.3 0.3 0.3 0.3 0.3 NS 0.3 0.3 NS 0.3 0.3 NS 0.3 0.3 NS 

Boron 10 10 10 10 23 20 <0.001 48 45 <0.001 40 40 <0.001 25 25 <0.001 

Cadmium 0.1 0.1 0.1 0.1 0.1 0.1 NS 0.1 0.1 NS 0.1 0.1 NS 0.1 0.1 NS 

Chromium 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.6 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 

Cobalt 0.5 0.5 0.5 0.5 0.5 0.5 NS 1.5 2.0 <0.001 1.4 1.5 <0.001 0.5 0.5 NS 

Copper 1.0 0.5 0.5 0.5 2.2 2.0 <0.01 1.2 1.0 NS 1.4 1.5 <0.01 1.1 1.0 NS 

Iron 201 225 488 460 83 79 <0.01 560 145 NS 247 140 NS 297 300 NS 

Lead 0.5 0.5 0.5 0.5 0.7 0.5 NS 0.6 0.5 NS 0.6 0.5 NS 0.6 0.5 NS 

Lithium 0.5 0.5 0.6 0.5 15.6 15.5 <0.001 317.0 320.0 <0.001 280.5 265.0 <0.001 155.3 180.0 <0.001 

Manganese 8 8 35 35 14 10 NS 33 11 NS 9 8 NS 22 23 NS 

Mercury 0.0 0.0 0.0 0.0 0.0 0.0 NS 0.0 0.0 NS 0.0 0.0 NS 0.0 0.0 NS 

Molybdenum 0.5 0.5 0.5 0.5 0.6 0.5 NS 29.2 32.5 <0.001 27.5 31.5 <0.001 15.7 18.0 <0.001 

Nickel 0.5 0.5 0.5 0.5 3.8 3.0 <0.001 83.8 87.5 <0.001 76.6 85.5 <0.001 54.6 64.5 <0.001 

Selenium 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 

Stomium 21 21 10 11 129 145 <0.001 188 200 <0.001 168 150 <0.001 91 100 <0.001 

Tin 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 

Titanium 0.9 0.5 0.7 0.5 1.9 1.8 <0.01 4.4 3.2 <0.01 5.9 2.8 <0.01 3.1 1.9 <0.01 

Uranium 0.3 0.3 0.3 0.3 0.3 0.3 NS 7.8 7.4 <0.001 7.0 7.4 <0.001 3.0 3.5 <0.001 

Zinc 5.1 3.5 5.0 5.0 16.5 17.0 <0.001 10.3 10.0 <0.01 10.9 11.0 <0.001 3.7 3.0 NS 
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Macroinvertebrate community structure   
 

Thirty-one different macroinvertebrate taxa were identified in the study at the two sites; GRU and 

GR2, with 7003 individual macroinvertebrates counted (Table 7). Thirty of these taxa were 

identified to the family taxonomic level while some members from the taxonomic order Cladocera 

were unable to be identified to family level. Twenty-six different macroinvertebrate taxa were 

found at GRU in total while 18 different macroinvertebrate taxa were found at GR2. Thirteen 

taxonomic families were found only at GRU while five taxonomic families were exclusively found at 

GR2. This presence verses absence comparison indicates what species are unable to survive the 

polluted nature of the Georges River downstream of the West Cliff Colliery discharge (Table 8). The 

macroinvertebrate community was severely impacted in the Georges River downstream of the 

West Cliff Colliery wastewater discharge point. The reference site at GRU was characterised by a 

diverse macroinvertebrate community which include the presence of animals that are highly 

sensitive to water pollution. At GR2 the macroinvertebrate community was less diverse, with a 

higher number of taxa that are recognised to be pollution tolerant. The parameters; abundance, 

taxa richness, Shannon-Wiener index EPT count, EPT richness and EPT % were all statistically 

dissimilar between GRU and GR2. 

Mean abundance at the reference site GRU was 88 macroinvertebrates, with a median of 77 and a 

range of 91 from a minimum of 61 to a maximum of 152. Abundance at GR2 was statistically 

significantly different (p<0.05) with a mean of 788 macroinvertebrates. The median number of 

macroinvertebrates at GR2 was 383, with a range of 1744 from a minimum of 301 to a maximum of 

2045 (Table 7, Figure 30).  

Figure 30:(Left) Mean total abundance of macroinvertebrates with standard error at GRU and GR2. (Left) Mean total taxa richness 
with standard error at GRU and GR2. 
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Mean richness at the reference site GRU was 11 taxa, with a median of 12 and a range of 5 from a 

minimum of 8 to a maximum of 13. Richness at GR2 was statistically significantly different (p<0.05) 

with a mean of 7 taxa. The median number of macroinvertebrate taxa at GR2 was 7, with a range of 7 

from a minimum of 5 to a maximum of 12 (Table 7, Figure 30).   

Mean EPT abundance at the reference site GRU was 53 macroinvertebrates, with a median of 38 

and a range of 89 from a minimum of 29 to a maximum of 118. EPT abundance at GR2 was 

statistically significantly different (p<0.05) with a mean of 21 macroinvertebrates. The median number 

of EPT macroinvertebrates at GR2 was 19, with a range of 54 from a minimum of zero to a maximum of 

54 (Table 7).   

Mean EPT richness at the reference site GRU was 6 taxa, with a median of 6 and a range of 3 from a 

minimum of 4 to a maximum of 7. Richness at GR2 was statistically significantly different (p<0.001) 

with a mean of 2 taxa. The median number of macroinvertebrate taxa at GR2 was 2, with a range of 4 

from a minimum of zero to a maximum of 4 (Table 7, Figure 31).  

EPT percentage of abundance was statistically different between the two sites (p<0.001). The reference 

site GRU had a mean EPT % of 58%, a median of 59%, a range of 40% from a minimum value of 38% to a 

maximum value of 78%. Downstream of the wastewater discharge at GR2 EPT% was reduced. Mean 

EPT% was 6% with a median of 5%, a range of 17% from a minimum of zero percent to a maximum of 

17% (Table 7, Figure 31).   

Figure 31:(Left) Mean EPT abundance of macroinvertebrates with standard error at GRU and GR2. (Left) Mean EPT taxa richness with 
standard error at GRU and GR2. 
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The difference in the macroinvertebrate community structure was further demonstrated by through the 

use of the Shannon-Weiner Index. Shannon-Weiner Index scores were statistically significantly different 

(p<0.001) between GRU and GR2. The mean Shannon-Weiner Index score at GRU was 1.8, with a 

median of 1.7, a range of 0.6 from a minimum value of 1.5 to a maximum value of 2.2. The mean 

Shannon-Weiner Index score at GR2 was 0.8, with a median of 0.7, a range of 0.4 from a minimum value 

of 0.6 to a maximum value of 1.0. 

Table 7:Macroinvertebrate summary data with mean, median and p-value shown. 

 

The presence and absence of macroinvertebrate taxa is shown by Table 8. A total of 31 taxonomic 

families were recorded in the study. There were 13 taxonomic families that were only found at the 

reference site (GRU) while five taxonomic families were unique to the site downstream of the 

wastewater discharge (GR2). Four of the families found exclusively at GRU belonged to the Tricoptera 

taxonomic order; Philopotamidae, Philorheithridae, Hydroptlidae and Helicopsychidae. The single 

Plecoptera family; Eustheniidae was found at exclusively at GRU along with the families; Arrenuridae, 

Branchipodidae, Daphniidae, Elmidae, Atyidae, Baetidae, Notonectidae, and Corduliidae. The following 

five families were found exclusively downstream of the wastewater discharge at GR2; Ceratopogonidae, 

Psychodidae, Corixidae, Veliidae and Leptoceridae. 

 

 

 

 

Macroinvertebrate Reference Downstream 

Site Name GRU GR2 

Variables Mean Med. Mean Med. p - value 

Abundance 88 77 788 383 <0.05 

Richness 11 12 7 7 <0.05 

EPT count 53 38 21 19 <0.05 

EPT richness 6 6 2 2 <0.001 

EPT % abundance 58 59 6 5 <0.001 

Shannon-Wiener index 1.8 1.7 0.8 0.7 <0.001 
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Table 8: Total presence (marked by 'X') and absence (marked by '-') of macroinvertebrate taxa over the study period at the reference 
site (GRU) and the site (GR2) receiving coal mine wastewater. 

Order  Family GRU GR2 
Acarina Arrenuridae X - 

Anostraca Branchipodidae X - 

Cladocera Daphniidae X - 

Cladocera Cladocera X X 

Coleoptera Dytiscidae X X 

Coleoptera Elmidae X - 

Coleoptera Hydrophilidae X X 

Decapoda Atyidae X - 

Diptera Ceratopogonidae - X 

Diptera Chironomidae X X 

Diptera Tabanidae X X 

Diptera Psychodidae - X 

Diptera Simuliidae X X 

Ephemeroptera Baetidae X - 

Ephemeroptera Caenidae X X 

Ephemeroptera Leptophlebiidae X X 

Hemiptera Corixidae - X 

Hemiptera Veliidae - X 

Hemiptera Notonectidae X - 

Megaloptera Corydalidae X X 

Odonata Aeshnidae X X 

Odonata Corduliidae X - 

Plecoptera Eustheniidae X - 

Trichoptera Ecnomidae X X 

Trichoptera Helicopsychidae X - 

Trichoptera Hydropsychidae X X 

Trichoptera Leptoceridae - X 

Trichoptera Odontoceridae X X 

Trichoptera Philopotamidae X - 

Trichoptera Philorheithridae X - 

Trichoptera Hydroptilidae  X - 
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Metal concentration in the sediment  
 

The results from sediment testing show substantial metal pollution of benthic sediment (Table 9). 

The West Cliff Colliery discharge site at Brennans Creek (BC) had increased levels of thirteen metals 

at statistically significantly levels. These metals at elevated concentrations were; aluminium, 

barium, chromium, cobalt, copper, iron, lead, lithium, manganese, nickel, strontium, uranium and 

zinc. GR1 experienced elevated concentrations of the same metals at statistically significantly levels 

as BC, with the omission of chromium and the addition of titanium. GR2 experienced elevated 

levels of the same suite of metals with the addition of titanium at statistically significantly levels. 

22km downstream on the Georges River, GR3 recorded six metals (barium, copper, lithium, 

strontium, titanium and zinc) in the sediment that were present at statistically significantly levels. 

The metals; antimony, beryllium, cadmium, mercury and selenium were below laboratory detection 

limits at all sites on all occasions. Additionally, tin, molybdenum, boron and arsenic were at 

concentrations below detection limits or approaching this limit, with no statistically significant 

difference between sites.  

Aluminium concentration in the sediment were elevated at statistically dissimilar concentrations at 

GR1 (p-value <0.001), BC (p-value <0.01), GR2 (p-value <0.05) with no significant difference at GR3. 

Mean aluminium concentration at the two reference sites; O’Hares was 633 mg/kg and 1330 mg/kg 

at GRU. Mean aluminium concentration at GR1 was 4433 mg/kg. At BC where the West Cliff Colliery 

discharge wastewater mean aluminium concentration was 2350 mg/kg. Below the BC discharge at 

GR2 mean aluminium concentration in the sediment was 2200 mg/kg. 22 km downstream at GR3 

the mean concentration of aluminium was 773 mg/kg (Table 9). 

Barium concentration in the sediment were elevated at statistically dissimilar concentrations at 

GR1 (p-value <0.001), BC (p-value <0.001), GR2 (p-value <0.01) and at GR3 (p-value <0.05). Mean 

barium concentration at the two reference sites; O’Hares was 3.7 mg/kg and 6.8 mg/kg at GRU. 

Above the West Cliff Colliery discharge point mean barium concentration was 48.3 mg/kg. At BC 

where the West Cliff Colliery discharge wastewater mean barium concentration was 206.7 mg/kg. 

Below the BC discharge at GR2 mean barium concentration in the sediment increased from GR1 to 

2200 mg/kg. 22 km downstream at GR3 the mean concentration of barium was 11.7 mg/kg (Table 

9, Figure 32). 
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Figure 32: Mean barium concentration (mg/L) and standard error at all sites. 

Chromium concentration in the sediment were elevated at statistically dissimilar concentrations at 

BC (p-value <0.05) and GR2 (p-value <0.01) while there was no statistically difference at GR1 and 

GR3 compared to the reference sites. Mean chromium concentration at the two reference sites; 

O’Hares was 1.7 mg/kg and 1.4 mg/kg at GRU. Above the West Cliff Colliery discharge point mean 

at GR1 cobalt concentration was 3.3 mg/kg. At BC where the West Cliff Colliery discharge 

wastewater mean cobalt concentration was 3.2 mg/kg. Below the BC discharge at GR2 mean cobalt 

concentration in the sediment increased from GR1 to 5.8 mg/kg. 22 km downstream at GR3 the 

mean concentration of cobalt was 2.1 mg/kg. 

Cobalt concentration in the sediment were elevated at statistically dissimilar concentrations at GR1 

(p-value <0.001), BC (p-value <0.001) and GR2 (p-value <0.05) there was no statistically difference 

at GR3 compared to the reference sites. Mean cobalt concentration at O’Hares was below the limit 

of detection (1.0 mg/kg) while at GRU one sample recorded a concentration of 2 mg/kg with all 

other samples were below the limit of detection, giving GRU a mean concentration of 0.8 mg/kg. 

Above the West Cliff Colliery discharge point mean at GR1 cobalt concentration was 2.0 mg/kg. At 

BC where the West Cliff Colliery discharge wastewater mean cobalt concentration was 1.8 mg/kg. 

Below the BC discharge mean cobalt concentration in the sediment increased from GR1 to 2.2 

mg/kg at GR2. 22 km downstream at GR3 the mean concentration of cobalt was 0.7 mg/kg (Table 

9). 
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Copper concentration in the sediment were elevated at statistically dissimilar concentrations at 

GR1 (p-value <0.001), BC (p-value <0.001), GR2 (p-value <0.001) and at GR3 (p-value <0.01). Mean 

copper concentration at O’Hares was below the limit of detection (1.0 mg/kg) while at GRU one 

sample recorded a concentration of 1 mg/kg with all other samples were below the limit of 

detection, giving GRU a mean concentration of 0.6 mg/kg. Above the West Cliff Colliery discharge 

point at GR1 mean copper concentration was 3.2 mg/kg. At BC where the West Cliff Colliery 

discharge wastewater mean copper concentration was 2.8 mg/kg. Below the BC discharge at GR2 

mean copper concentration in the sediment increased from GR1 to 5.5 mg/kg. 22 km downstream 

at GR3 the mean concentration of copper was 1.3 mg/kg (Table 9). 

 

Figure 33: Mean copper concentration (mg/L) and standard error at all sites. 

Iron concentration in the sediment were elevated at statistically dissimilar concentrations at GR1 

(p-value <0.05), BC (p-value <0.05), GR2 (p-value <0.01) with no significant difference at GR3. Mean 

iron concentration at the two reference sites; O’Hares was 3317 mg/kg and 2572 mg/kg at GRU. 

Mean iron concentration at GR1 was 7317 mg/kg. At BC where the West Cliff Colliery discharge 

wastewater mean iron concentration was 6283 mg/kg. Below the BC discharge at GR2 mean iron 

concentration in the sediment was 8700 mg/kg. 22 km downstream at GR3 the mean concentration 

of iron was 3600 mg/kg (Table 9). 

Lead concentration in the sediment were elevated at statistically dissimilar concentrations at GR1 

(p-value <0.05), BC (p-value <0.001), GR2 (p-value <0.01) with no significant difference at GR3. 

Mean lead concentration at the two reference sites; O’Hares was 1.3 mg/kg and 2.7 mg/kg at GRU. 
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Mean lead concentration at GR1 was 4.8 mg/kg. At BC where the West Cliff Colliery discharge 

wastewater mean lead concentration was 6.5 mg/kg. Below the BC discharge at GR2 mean lead 

concentration in the sediment was 7.3 mg/kg, an increase compared to GR1. 22 km downstream at 

GR3 the mean concentration of lead was 2.7 mg/kg (Table 9, Figure 34). 

 

Figure 34: Mean lead concentration (mg/L) and standard error at all sites. 

Lithium concentration in the sediment were elevated at statistically dissimilar concentrations at 

GR1 (p-value <0.001), BC (p-value <0.001), GR2 (p-value <0.001) and at GR3 (p-value <0.001) 

compared to the reference sites. Lithium concentration at O’Hares and GRU was below the limit of 

detection (1.0 mg/kg). Above the West Cliff Colliery discharge point at GR1 mean lithium 

concentration was 6.2 mg/kg. At BC where the West Cliff Colliery discharge wastewater mean 

lithium concentration was 12.3 mg/kg. Below the BC discharge at GR2 mean lithium concentration 

in the sediment increased from GR1 to 11.3 mg/kg. 22 km downstream at GR3 the mean 

concentration of lithium was 3.0 mg/kg (Table 9; Figure 35). 
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Figure 35: Mean lithium concentration (mg/L) and standard error at all sites. 

Manganese concentration in the sediment were elevated at statistically dissimilar concentrations at 

GR1 (p-value <0.001), BC (p-value <0.001), GR2 (p-value <0.001). Manganese concentrations were 

statistically similar to the reference site at GR3. Mean manganese concentration at the two 

reference sites; O’Hares was 7.7 mg/kg and 27.5 mg/kg at GRU. Above the West Cliff Colliery 

discharge point at GR1 mean manganese concentration was 236.7 mg/kg. At BC where the West 

Cliff Colliery discharge wastewater mean manganese concentration was 66.8 mg/kg. Below the BC 

discharge at GR2 mean manganese concentration in the sediment increased from GR1 to 131.7 

mg/kg. 22 km downstream at GR3 the mean concentration of manganese was 25.0 mg/kg (Table 9; 

Figure 36). 
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Figure 36: Mean manganese concentration (mg/L) and standard error at all sites. 

Nickel concentration in the sediment were elevated at statistically dissimilar concentrations at GR1 

(p-value <0.001), BC (p-value <0.001) and GR2 (p-value <0.01) there was no statistically difference 

at GR3 compared to the reference sites. Mean nickel concentration at O’Hares was below the limit 

of detection (1.0 mg/kg) while at GRU one sample recorded a concentration of 2 mg/kg with all 

other samples were below the limit of detection, giving GRU a mean concentration of 0.8 mg/kg. 

Above the West Cliff Colliery discharge point mean at GR1 nickel concentration was 3.0 mg/kg. At 

BC where the West Cliff Colliery discharge wastewater mean nickel concentration was 1.8 mg/kg. 

Below the BC discharge mean nickel concentration in the sediment was 3.0 mg/kg at GR2. 22 km 

downstream at GR3 the mean concentration of nickel was 0.7 mg/kg (Table 9; Figure 37). 
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Figure 37: Mean nickel concentration (mg/L) and standard error at all sites. 

Strontium concentration in the sediment were elevated at statistically dissimilar concentrations at 

GR1 (p-value <0.001), BC (p-value <0.001), GR2 (p-value <0.01) and at GR3 (p-value <0.001) 

compared to the reference sites. Mean strontium concentration at the two reference sites; O’Hares 

was 0.8 mg/kg and 1.6 mg/kg at GRU. Above the West Cliff Colliery discharge point at GR1 mean 

strontium concentration was 15.0 mg/kg. At BC where the West Cliff Colliery discharge wastewater 

mean strontium concentration was 70.2 mg/kg. Below the BC discharge at GR2 mean strontium 

concentration in the sediment increased from GR1 to 64.5 mg/kg. 22 km downstream at GR3 the 

mean concentration of strontium was 3.8 mg/kg (Table 9; Figure 38). 
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Figure 38: Mean strontium concentration (mg/L) and standard error at all sites. 

Titanium concentration in the sediment were elevated at statistically dissimilar concentrations at 

GR1 (p-value <0.001), GR2 (p-value <0.001) and at GR3 (p-value <0.001) compared to the reference 

sites. There was no statistically similar difference in concentration at BC where titanium was above 

the limit of detection (<1.0 mg/kg) on one occasion at 1.0 mg/kg. Titanium concentration at 

O’Hares and GRU was below the limit of detection. Above the West Cliff Colliery discharge point at 

GR1 mean titanium concentration was 56.8 mg/kg. Below the BC discharge at GR2 mean titanium 

concentration in the sediment decreased from GR1 to 5.7 mg/kg. 22 km downstream at GR3 the 

mean concentration of titanium was 1.1 mg/kg (Table 9). 

Uranium concentration in the sediment were elevated at statistically dissimilar concentrations at 

GR1 (p-value <0.001), BC (p-value <0.001) and GR2 (p-value <0.05) there was no statistically 

difference at GR3 compared to the reference sites. Mean uranium concentration at O’Hares Creek 

and GRU was below the limit of detection (<0.1 mg/kg). Above the West Cliff Colliery discharge 

point mean at GR1 uranium concentration was 0.55 mg/kg. At BC where the West Cliff Colliery 

discharge wastewater mean uranium concentration was 0.4 mg/kg. Below the BC discharge mean 

uranium concentration in the was 0.35 mg/kg at GR2. 22 km downstream at GR3 the mean 

concentration of uranium was 0.1 mg/kg (Table 9; Figure 39). 
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Figure 39: Mean uranium concentration (mg/L) and standard error at all sites. 

Zinc concentration in the sediment were elevated at statistically dissimilar concentrations at GR1 

(p-value <0.001), BC (p-value <0.001), GR2 (p-value <0.01) and at GR3 (p-value <0.05). Mean zinc 

concentration at the two reference sites; O’Hares was 4.0 mg/kg and 5.3 mg/kg at GRU. Above the 

West Cliff Colliery discharge point mean zinc concentration was 38.3 mg/kg. At BC where the West 

Cliff Colliery discharge wastewater mean zinc concentration was 12.5 mg/kg. Below the BC 

discharge at GR2 mean zinc concentration in the sediment was 18.3 mg/kg. 22 km downstream at 

GR3 the mean concentration of zinc was 15.8 mg/kg (Table 9; Figure 40). 
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Figure 40: Mean zinc concentration (mg/L) and standard error at all sites. 
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Table 9: Summary table of metals in sediment samples at all sites. Mean, median and p-values are shown. NS indicates that no statically significance difference was observed.

 Reference Upstream Discharge Downstream 

Site Name O’Hares GRU GR1 BC GR2 GR3 

Metals 
(mg/kg) 

Mean Med. Mean Med. Mean Med. p -
value 

Mean Med. p -
value 

Mean Med. p -
value 

Mean Med. p -
value 

Antimony 3.5 3.5 3.5 3.5 3.5 3.5 NS 3.5 3.5 NS 3.5 3.5 NS 3.5 3.5 NS 

Aluminium 633 430 1330 890 4433 4100 <0.001 2350 2450 <0.01 2200 2000 <0.05 773 755 NS 

Arsenic 2.0 2.0 2.0 2.0 2.3 2.0 NS 2.0 2.0 NS 3.0 2.0 NS 2.0 2.0 NS 

Barium 3.7 3.0 6.8 5.0 48.3 44.5 <0.001 206.7 210.0 <0.001 198.3 120.0 <0.01 11.7 12.5 <0.05 

Beryllium 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 

Boron 1.5 1.5 1.5 1.5 1.5 1.5 NS 1.5 1.5 NS 2.3 1.5 NS 1.5 1.5 NS 

Cadmium 0.2 0.2 0.2 0.2 0.2 0.2 NS 0.2 0.2 NS 0.2 0.2 NS 0.2 0.2 NS 

Chromium 1.7 0.5 1.4 1.3 3.3 3.0 NS 3.2 3.5 <0.05 5.8 5.0 <0.01 2.1 1.5 NS 

Cobalt 0.5 0.5 0.8 0.5 2.0 2.0 <0.001 1.8 2.0 <0.001 2.2 1.0 <0.05 0.7 0.5 NS 

Copper 0.5 0.5 0.6 0.5 3.2 3.0 <0.001 2.8 3.0 <0.001 5.5 4.0 <0.001 1.3 1.5 <0.01 

Iron 3317 1850 2572 2150 7317 6550 <0.05 6283 6450 <0.05 8700 8400 <0.01 3600 3050 NS 

Lead 1.3 1.0 2.7 1.5 4.8 5.0 <0.05 6.5 7.0 <0.001 7.3 6.0 <0.01 2.7 2.5 NS 

Lithium 0.5 0.5 0.5 0.5 6.2 6.0 <0.001 12.3 13.5 <0.001 11.3 8.0 <0.001 3.0 3.0 <0.001 

Manganese 7.7 6.0 27.5 24.0 236.7 215.0 <0.001 66.8 68.5 <0.001 131.7 124.0 <0.001 25.0 27.5 NS 

Mercury 0.1 0.1 0.1 0.1 0.1 0.1 NS 0.1 0.1 NS 0.1 0.1 NS 0.1 0.1 NS 

Molybdenum 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.8 0.5 NS 0.9 0.5 NS 

Nickel 0.5 0.5 0.8 0.5 3.0 3.5 <0.001 1.8 2.0 <0.001 3.0 2.0 <0.01 0.7 0.5 NS 

Selenium 1.0 1.0 1.0 1.0 1.0 1.0 NS 1.0 1.0 NS 1.0 1.0 NS 1.0 1.0 NS 

Strontium 0.8 0.5 1.6 1.3 15.0 14.0 <0.001 70.2 69.5 <0.001 64.5 42.5 <0.01 3.8 4.0 <0.001 

Tin 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 1.3 0.5 NS 0.6 0.5 NS 

Titanium 0.5 0.5 0.5 0.5 56.8 59.0 <0.001 0.6 0.5 NS 5.7 5.5 <0.001 1.1 0.8 <0.05 

Uranium 0.1 0.1 0.1 0.1 0.6 0.5 <0.001 0.4 0.4 <0.001 0.6 0.4 <0.05 0.2 0.1 NS 

Zinc 4.0 4.0 5.3 4.5 38.3 41.0 <0.001 12.5 14.0 <0.001 18.3 12.5 <0.01 15.8 11.0 <0.05 
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Metal concentration in willow leaf tissue  
 

The accumulation of metals in the willow tissue differed between the leaves and roots of the 

plants. Within the leaf tissue there were five metals for which concentration was elevated at 

statistically significant levels in willows grown in water from BC, GR1 and GR2 compared to the 

reference sites. Strontium was elevated in willow leaves grown in water from BC, GR1 and GR2. 

Boron and lithium were elevated at BC and GRU while barium and manganese were elevated at 

statistically significant levels in willow leaves grown in water from GR1 and BC respectively. 

Manganese in willow leaf tissue was elevated at statically significant concentrations at BC. The 

following metals were below detection limits in willow leaves grown in water from sites; arsenic, 

beryllium, cadmium, chromium, cobalt, mercury, nickel, lead, antimony, selenium, titanium and 

uranium. There was also no at statistically significant difference between sites; BC, GR1 and GR2 

compared to the reference sites for the following metals; aluminium, iron, molybdenum and zinc 

(Table 10). 

 

Figure 41: Mean barium concentration (mg/L) and standard error in willow leaf tissue at all treatments. 

Barium concentration in the willow leaf tissue was elevated at statistically significantly levels at 

treatment GR1 (p-value <0.01) compared to the two reference sites. Mean concentration of barium 

in the willow leaf tissue with water from the two reference sites; O’Hares and GRU was 23.5 mg/kg 

and 23.0 mg/kg respectively. Mean barium concentration at the willows grown in water from GR1 

was 26.8 mg/kg. Mean barium concentration in willow leaf tissue grown in water from BC was 24.9 

mg/kg and 24.9 mg/kg in willow tissue grown in water from GR2 (Table 10; Figure 41).        
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Manganese concentration in the willow leaf tissue was elevated at statistically significantly levels at 

BC (p-value <0.05) compared to the two reference sites. Mean concentration of manganese in the 

willow leaf tissue with water from the two reference sites; O’Hares and GRU was 108 mg/kg and 

109 mg/kg respectively. Mean manganese concentration at the willows grown in water from GR1 

was 111 mg/kg. Mean manganese concentration in willow leaf tissue grown in water from BC was 

118 mg/kg and 115 mg/kg in willow tissue grown in water from GR2 (Table 10; Figure 42).        

 

Figure 42: Mean manganese concentration (mg/L) and standard error in willow leaf tissue at all treatments. 

Boron concentration in the willow leaf tissue was elevated at statistically significantly levels at BC 

(p-value <0.001) and at GR2 (p-value <0.001) compared to the two reference sites. Mean 

concentration of boron in the willow leaf tissue with water from the two reference sites; O’Hares 

and GRU was 31.5 mg/kg and 28.5 mg/kg respectively. Mean boron concentration at the willows 

grown in water from GR1 was 27.3 mg/kg. Mean boron concentration was elevated in willow leaf 

tissue grown in water from BC (41.7 mg/kg) and from GR2 (41.5 mg/kg) (Table 10; Figure 43).     
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Figure 43: Mean boron concentration (mg/L) and standard error in willow leaf tissue at all treatments. 

Lithium concentration in the willow leaf tissue was elevated at statistically significantly levels at BC 

(p-value <0.001) and at GR2 (p-value <0.001) compared to the two reference sites. Concentration of 

lithium in the willow leaf tissue with water from the two reference sites; O’Hares and GRU was 

below the laboratory detection limit of 1.0 mg/kg. Lithium concentration at the willows grown in 

water from GR1 was also below the detection limit. Mean lithium concentration was elevated in 

willow leaf tissue grown in water from BC (mean of 15.2 mg/kg) and from GR2 (mean of 18.3 

mg/kg) (Table 10; Figure 44).        
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Figure 44: Mean lithium concentration (mg/L) and standard error in willow leaf tissue at all treatments. 

Strontium concentration in the willow leaf tissue was elevated at statistically significantly levels at 

BC (p-value <0.01), GR2 (p-value <0.05) and GR1 (p-value <0.01) compared to the two reference 

sites. Mean concentration of strontium in the willow leaf tissue with water from the two reference 

sites; O’Hares and GRU was 34.0 mg/kg and 33.9 mg/kg respectively. Strontium concentration at 

the willows grown in water from GR1 was 38.5 mg/kg. Mean strontium concentration was elevated 

in willow leaf tissue grown in water from BC (mean of 37.6 mg/kg) and from GR2 (mean of 37.9 

mg/kg) compared with the reference sites (Table 10; Figure 45).        
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Figure 45: Mean strontium concentration (mg/L) and standard error in willow leaf tissue at all treatments. 
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Table 10: Summary table of metals in willow leaf tissue at all treatments. Mean, median and p-values are shown. NS indicates that no statically significance difference was observed. 

Willow Leaf Reference Upstream Discharge Downstream 

Site Name O’Hares GRU GR1 BC GR2 

Variables   
Metals (mg/kg) 

Mean Med. Mean Med. Mean Med. p -value Mean Med. p -value Mean Med. p -value 

Aluminium 2.6 2.5 2 2 2 2 NS 2.1 2 NS 2 2 NS 

Arsenic 2 2 2 2 2 2 NS 2 2 NS 2 2 NS 

Boron 31.5 30 28.5 30 27.3 30 NS 41.7 42 <0.001 41.5 43 <0.001 

Barium 23.5 23 23 23 26.8 27 <0.01 24.9 25 NS 24.9 25 NS 

Beryllium 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 

Cadmium 0.2 0.2 0.2 0.2 0.2 0.2 NS 0.2 0.2 NS 0.2 0.2 NS 

Chromium 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 

Cobalt 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 

Copper 9.6 9.5 8.5 10 8.8 9 NS 6.2 6 <0.01 7.3 7.5 NS 

Iron 49.9 47.5 44.4 45 38.1 37 NS 43.1 43 NS 40.5 41 NS 

Mercury 0.1 0.1 0.1 0.1 0.1 0.1 NS 0.1 0.1 NS 0.1 0.1 NS 

Lithium 0.5 0.5 0.5 0.5 0.5 0.5 NS 15.2 15 <0.001 18.3 17 <0.001 

Manganese 108 105 109 110 111 110 NS 118 120 <0.05 115 110 NS 

Molybdenum 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.6 0.5 NS 

Nickel 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 

Lead 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 

Antimony 3.5 3.5 3.5 3.5 3.5 3.5 NS 3.5 3.5 NS 3.5 3.5 NS 

Selenium 1 1 1 1 1 1 NS 1 1 NS 1 1 NS 

Tin 0.5 0.5 0.6 0.5 0.5 0.5 NS 0.6 0.5 NS 0.5 0.5 NS 

Strontium 34 34 33.9 33 38.5 38 <0.01 37.6 38 <0.05 37.9 37.5 <0.01 

Titanium 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 

Uranium 0.1 0.1 0.1 0.1 0.1 0.1 NS 0.1 0.1 NS 0.1 0.1 NS 

Zinc 67.9 68 56.1 53 53.6 51 NS 63.4 62 NS 66.6 65 NS 
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Metal concentration in willow root tissue 

  
There was greater uptake of metals within the willow roots. The metals; barium and strontium 

were elevated at statistically significant levels in treatments GR1, BC and GR2. The metals; 

aluminium, boron, lithium, manganese, molybdenum, nickel and uranium were elevated at 

statistically significant levels in treatments BC and GR2. The metals copper and iron were elevated 

at statistically significant levels in treatment GR2. The following metals were below detection limits 

in all treatments; arsenic, beryllium, chromium, mercury, antimony, selenium, tin and titanium. 

Additionally, there was no statistically significant difference between the following treatments for 

the metals; cadmium, lead and zinc from the reference sites and GR1, GR2, GR3 and BC (Table 11).    

Aluminium concentration in the willow root tissue was elevated at statistically significantly levels at 

BC (p-value <0.001) and at GR2 (p-value <0.001) compared to the two reference sites. Mean 

concentration of aluminium in the willow root tissue with water from the two reference sites; 

O’Hares and GRU was 14.5 mg/kg and 13.4 mg/kg respectively. Mean aluminium concentration at 

the willows grown in water from GR1 was 15.0 mg/kg. Mean aluminium concentration was 

elevated in willow root tissue grown in water from BC (186.7 mg/kg) and from GR2 (207.5 mg/kg) 

(Table 11; Figure 46).   

 

Figure 46: Mean aluminium concentration (mg/L) and standard error in willow root tissue at all treatments. 
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Boron concentration in the willow root tissue was elevated at statistically significantly levels at BC 

(p-value <0.001) and at GR2 (p-value <0.001) compared to the two reference sites. Mean 

concentration of boron in the willow root tissue with water from the two reference sites; O’Hares 

and GRU was 12.5 mg/kg and 10.0 mg/kg respectively. Mean boron concentration at the willows 

grown in water from GR1 was 10.0 mg/kg. Mean boron concentration was elevated in willow root 

tissue grown in water from BC (26.7 mg/kg) and from GR2 (20.0 mg/kg) (Table 11; Figure 47).        

 

Figure 47: Mean boron concentration (mg/L) and standard error in willow root tissue at all treatments. 

Barium concentration in the willow root tissue was elevated at statistically significantly levels at 

treatments GR1, BC and GR2 (p-value <0.01) compared to the two reference sites. Mean 

concentration of barium in the willow root tissue with water from the two reference sites; O’Hares 

and GRU was 11.3 mg/kg and 10.6 mg/kg respectively. Mean barium concentration at the willows 

grown in water from GR1 was 20.4 mg/kg. Mean barium concentration in willow root tissue grown 

in water from BC was 193.3 mg/kg and 155.0 mg/kg in willow tissue grown in water from GR2 

(Table 11; Figure 48).       
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Figure 48: Mean barium concentration (mg/L) and standard error in willow root tissue at all treatments. 

Copper concentration in the willow root tissue was elevated at statistically significantly levels at 

treatment GR2 (p-value <0.01) compared to the two reference sites. Mean concentration of copper 

in the willow root tissue with water from the two reference sites; O’Hares and GRU was 25.5 mg/kg 

and 24.8 mg/kg respectively. Mean copper concentration at the willows grown in water from GR1 

was 28.2 mg/kg and 34.0 mg/kg in treatment BC. Copper concentration was elevated at treatment 

GR2 with a mean of 44.5 mg/kg (Table 11; Figure 49).  
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Figure 49: Mean copper concentration (mg/L) and standard error in willow root tissue at all treatments. 

Iron concentration in the willow root tissue was elevated at statistically significantly levels at 

treatment GR2 (p-value <0.01) and statistically significantly lower at GR1 compared to the two 

reference sites. Mean concentration of iron in the willow root tissue with water from the two 

reference sites; O’Hares and GRU was 157.5 mg/kg and 101.6 mg/kg respectively. Mean iron 

concentration at the willows grown in water from GR1 was lower at 66.2 mg/kg. Mean iron 

concentration at the willows grown in treatment BC was 150.0 mg/kg. Iron concentration was 

elevated at treatment GR2 with a mean of 262.5 mg/kg (Table 11).  

Lithium concentration in the willow root tissue was elevated at statistically significantly levels at BC 

(p-value <0.001) and at GR2 (p-value <0.001) compared to the two reference sites. Concentration of 

lithium in the willow root tissue with water from the two reference sites; O’Hares and GRU were 

below the laboratory detection limit of 1 mg/kg. Lithium concentrations in the root tissue of 

treatment GR1 was also below the laboratory detection limit Mean lithium concentration was 

elevated in willow root tissue grown in water from BC (8.7 mg/kg) and from GR2 (9.5 mg/kg) (Table 

11; Figure 50).       
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Figure 50: Mean lithium concentration (mg/L) and standard error in willow root tissue at all treatments. 

Manganese concentration in the willow root tissue was elevated at statistically significantly levels 

at BC (p-value <0.001) and at GR2 (p-value <0.001) compared to the two reference sites. Mean 

concentration of manganese in the willow root tissue with water from the two reference sites; 

O’Hares and GRU was 17.8 mg/kg and 12.6 mg/kg respectively. Mean manganese concentration at 

the willows grown in water from GR1 was 13.8 mg/kg. Mean manganese concentration was 

elevated in willow root tissue grown in water from BC (25.3 mg/kg) and from GR2 (30.8 mg/kg) 

(Table 11; Figure 51).        
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Figure 51: Mean manganese concentration (mg/L) and standard error in willow root tissue at all treatments. 

Molybdenum concentration in the willow root tissue was elevated at statistically significantly levels 

at BC (p-value <0.001) and at GR2 (p-value <0.001) compared to the two reference sites. 

Concentration of molybdenum in the willow root tissue with water from the two reference sites; 

O’Hares and GRU were below the laboratory detection limit of 1 mg/kg. Molybdenum 

concentrations in the root tissue of treatment GR1 was also below the laboratory detection limit. 

Mean molybdenum concentration was elevated in willow root tissue grown in water from BC (13.7 

mg/kg) and from GR2 (13.8 mg/kg) (Table 11; Figure 52).        
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Figure 52: Mean molybdenum concentration (mg/L) and standard error in willow root tissue at all treatments. 

Nickel concentration in the willow root tissue was elevated at statistically significantly levels at BC 

(p-value <0.001) and at GR2 (p-value <0.001) compared to the two reference sites. Mean 

concentration of nickel in the willow root tissue with water from the two reference sites; O’Hares 

and GRU was 0.8 mg/kg and 0.7 mg/kg respectively. Two replicates from each treatment; O’Hares 

and GRU were at the laboratory detection limit of 1 mg/kg. Mean nickel concentration at the 

willows grown in water from GR1 was 1.1 mg/kg. Mean nickel concentration was elevated in willow 

root tissue grown in water from BC (2.7 mg/kg) and from GR2 (3.0 mg/kg) (Table 11; Figure 53).        
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Figure 53: Mean nickel concentration (mg/L) and standard error in willow root tissue at all treatments. 

Strontium concentration in the willow root tissue was elevated at statistically significantly levels at 

treatments GR1, BC and GR2 (p-value <0.01) compared to the two reference sites. Mean 

concentration of strontium in the willow root tissue with water from the two reference sites; 

O’Hares and GRU was 13.0 mg/kg and 11.8 mg/kg respectively. Mean strontium concentration at 

the willows grown in water from GR1 was 17.8 mg/kg. Mean strontium concentration in willow root 

tissue grown in water from BC was 90.7 mg/kg and 89.0 mg/kg in willow tissue grown in water from 

GR2 (Table 11; Figure 54).        
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Figure 54: Mean strontium concentration (mg/L) and standard error in willow root tissue at all treatments. 

Uranium concentration in the willow root tissue was elevated at statistically significantly levels at 

BC (p-value <0.001) and at GR2 (p-value <0.001) compared to the two reference sites. 

Concentration of uranium in the willow root tissue with water from the two reference sites; 

O’Hares and GRU were below the laboratory detection limit of 0.1 mg/kg. Uranium concentrations 

in the root tissue of treatment GR1 was also below the laboratory detection limit. Mean uranium 

concentration was elevated in willow root tissue grown in water from BC (3.6 mg/kg) and from GR2 

(3.0 mg/kg) (Table 11; Figure 55).        
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Figure 55: Mean uranium concentration (mg/L) and standard error in willow root tissue at all treatments. 
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Table 11: Summary table of metals in willow root tissue at all treatments. Mean, median and p-values are shown. NS indicates that no statically significance difference was observed. 

 

 
Willow Root Reference Upstream Discharge Downstream 

Site Name O’Hares GRU GR1 BC GR2 

Metals (mg/kg) Mean Med. Mean Med. Mean Med. p -value Mean Med. p -value Mean Med. p -value 

Aluminium 14.5 14.5 13.4 13.0 15.0 15.0 NS 186.7 200.0 <0.001 207.5 205.0 <0.001 

Arsenic 2.0 2.0 2.0 2.0 2.0 2.0 NS 2.0 2.0 NS 2.0 2.0 NS 

Boron 12.5 10.0 10.0 10.0 10.0 10.0 NS 26.7 30.0 <0.001 20.0 20.0 <0.001 

Barium 11.3 11.5 10.6 11.0 20.4 20.0 <0.001 193.3 200.0 <0.001 155.0 155.0 <0.001 

Beryllium 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 

Cadmium 1.5 1.5 1.3 0.4 1.3 0.8 NS 1.0 0.7 NS 2.0 2.0 NS 

Chromium 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 

Cobalt 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.9 1.0 <0.001 

Copper 25.5 27.5 24.8 24.0 28.2 26.0 NS 34.0 31.0 NS 44.5 43.5 <0.001 

Iron 157.5 160.0 101.6 88.0 66.2 66.0 <0.01 150.0 160.0 NS 262.5 260.0 <0.001 

Mercury 0.1 0.1 0.1 0.1 0.1 0.1 NS 0.1 0.1 NS 0.1 0.1 NS 

Lithium 0.5 0.5 0.5 0.5 0.5 0.5 NS 8.7 9.0 <0.001 9.5 9.0 <0.001 

Manganese 17.8 17.5 12.6 13.0 13.8 13.0 NS 25.3 24.0 <0.001 30.8 31.0 <0.001 

Molybdenum 0.5 0.5 0.5 0.5 0.5 0.5 NS 13.7 15.0 <0.001 13.8 13.0 <0.001 

Nickel 0.8 0.8 0.7 0.5 1.1 1.0 NS 2.7 3.0 <0.001 3.0 3.0 <0.001 

Lead 2.0 1.5 2.4 2.0 3.0 3.0 NS 1.0 1.0 NS 1.6 2.0 NS 

Antimony 3.5 3.5 3.5 3.5 3.5 3.5 NS 3.5 3.5 NS 3.5 3.5 NS 

Selenium 1.0 1.0 1.0 1.0 1.0 1.0 NS 1.0 1.0 NS 1.0 1.0 NS 

Tin 0.5 0.5 0.5 0.5 0.7 0.5 <0.05 0.5 0.5 NS 0.6 0.5 NS 

Strontium 13.0 13.0 11.8 12.0 17.8 18.0 <0.001 90.7 98.0 <0.001 89.0 91.5 <0.001 

Titanium 0.5 0.5 0.5 0.5 0.5 0.5 NS 0.5 0.5 NS 0.5 0.5 NS 

Uranium 0.1 0.1 0.1 0.1 0.1 0.1 NS 3.6 3.3 <0.001 3.0 3.1 <0.001 

Zinc 100.5 100.0 86.2 84.0 75.2 74.0 NS 85.3 86.0 NS 88.0 90.0 NS 
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Magnification of metals 
 

Biomagnification of metals was most apparent with metals; barium, boron, copper, lithium, 

molybdenum, strontium and uranium which were found to be occurring at multiple levels in the 

ecosystem. Typically, the highest concentrations of metals were found in plant tissue, followed by 

the sediment then the water column. Typically, the root tissue had increased metal concentration 

concentrations than those observed in the leaf tissue with the exceptions of boron, lithium and 

manganese. All values have been converted into parts per million (ppm) for easier comparison. 

Barium bioaccumulated from the water column to the sediment and from the water column to 

plant tissue. Mean barium concentration was highest at the two sites and corresponding 

treatments; BC and GR2 exposed to wastewater from West Cliff Colliery. The concentration of 

barium at BC increased from water (0.304 ppm) by approximately 680 times to sediment (206 

ppm). This magnification was also present in willow tissue. The barium concentration in treatment 

BC increased by a factor of 82 times from water to leaf tissue (25 ppm) and a by a factor of 636 

times from water to root tissue (193 ppm). A similar result was observed at GR2. The concentration 

of barium at GR2 increased from water (0.255 ppm) by approximately 778 times to sediment (198 

ppm). This magnification was also present in willow tissue. The barium concentration in treatment 

GR2 increased by a factor of 98 times from water to leaf tissue (25 ppm) and a by a factor of 608 

times from water to root tissue (155 ppm) (Figure 56). 

 

Figure 56: Mean barium concentration (ppm) at all sites and respective treatments. 

0

50

100

150

200

250

W
at

e
r

Se
d

im
en

t

Le
af

R
o

o
t

W
at

e
r

Se
d

im
en

t

Le
af

R
o

o
t

W
at

e
r

Se
d

im
en

t

Le
af

R
o

o
t

W
at

e
r

Se
d

im
en

t

Le
af

R
o

o
t

W
at

e
r

Se
d

im
en

t

Le
af

R
o

o
t

OH GRU GR1 BC GR2

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Sample Parameter and Site 

Barium



81 
 

Boron bioaccumulated from the water column to plant tissue. Mean Boron concentration was 

highest at the two sites and corresponding treatments; BC and GR2 exposed to wastewater from 

West Cliff Colliery. The Boron concentration in treatment BC increased by a factor of 877 times 

from water (0.048 ppm) to leaf tissue (42 ppm) and a by a factor of 561 times from water to root 

tissue (27 ppm). A similar result was observed at GR2. The Boron concentration in treatment GR2 

increased by a factor of 1038 times from water (0.04 ppm) to leaf tissue (42 ppm) and a by a factor 

of 500 times from water to root tissue (20 ppm) (Figure 57). 

 

Figure 57: Mean boron concentration (ppm) at all sites and respective treatments. 

Copper bioaccumulated from the water column to the sediment and from the water column to 

plant tissue. Mean copper concentration was in the willow root tissue was highest at the two 

treatments; BC and GR2 exposed to wastewater from West Cliff Colliery. The concentration of 

copper at BC increased from water (0.0012 ppm) by approximately 2361 times to sediment (2.8 

ppm). This magnification was also present in willow tissue. The copper concentration in treatment 

BC increased by a factor of 5185 times from water to leaf tissue (6.2 ppm) and a by a factor of 

28333 times from water to root tissue (34 ppm). A similar result was observed at GR2. The 

concentration of copper at GR2 increased from water (0.0014 ppm) by approximately 3929 times to 

sediment (5.5 ppm). This magnification was also present in willow tissue. The copper concentration 

in treatment GR2 increased by a factor of 5179 times from water to leaf tissue (7.25 ppm) and a by 

a factor of 31786 times from water to root tissue (44.5 ppm) (Figure 58). 
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Figure 58: Mean copper concentration (ppm) at all sites and respective treatments. 

Lithium bioaccumulated from the water column to the sediment and from the water column to 

plant tissue. Mean lithium concentration was highest at the two sites and corresponding 

treatments; BC and GR2 exposed to wastewater from West Cliff Colliery. The concentration of 

lithium at BC increased from water (0.317 ppm) by approximately 39 times to sediment (12 ppm). 

This magnification was also present in willow tissue. The lithium concentration in treatment BC 

increased by a factor of 48 times from water to leaf tissue (15 ppm) and a by a factor of 27 times 

from water to root tissue (8.6 ppm). A similar result was observed at GR2. The concentration of 

lithium at GR2 increased from water (0.28 ppm) by approximately 40 times to sediment (11 ppm). 

This magnification was also present in willow tissue. The lithium concentration in treatment GR2 

increased by a factor of 65 times from water to leaf tissue (18 ppm) and a by a factor of 34 times 

from water to root tissue (9.5 ppm) (Figure 59). 
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Figure 59: Mean lithium concentration (ppm) at all sites and respective treatments. 

Molybdenum bioaccumulated from the water column to plant tissue. Mean molybdenum 

concentration in willow root tissue was highest at the two treatments; BC and GR2 exposed to 

wastewater from West Cliff Colliery. The concentration of molybdenum at BC increased from water 

(0.0292 ppm) by approximately 468 times root tissue (13.7 ppm). A similar result was observed at 

GR2. The concentration of molybdenum at GR2 increased from water (0.0275 ppm) by 

approximately 500 times from water to root tissue (13.8 ppm) (Figure 60). 
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Figure 60: Mean molybdenum concentration (ppm) at all sites and respective treatments. 

Strontium bioaccumulated from the water column to the sediment and from the water column to 

plant tissue. Mean strontium concentration in the sediment and willow root tissue was highest at 

the two sites and corresponding treatments; BC and GR2 exposed to wastewater from West Cliff 

Colliery. The concentration of strontium at BC increased from water (0.188 ppm) by approximately 

373 times to sediment (70 ppm). This magnification was also present in willow tissue. The 

strontium concentration in treatment BC increased by a factor of 200 times from water to leaf 

tissue (38 ppm) and a by a factor of 482 times from water to root tissue (91 ppm). A similar result 

was observed at GR2. The concentration of strontium at GR2 increased from water (0.168 ppm) by 

approximately 384 times to sediment (64.5 ppm). This magnification was also present in willow 

tissue. The strontium concentration in treatment GR2 increased by a factor of 225 times from water 

to leaf tissue (38 ppm) and a by a factor of 530 times from water to root tissue (89 ppm) (Figure 

61). 
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Figure 61: Mean strontium concentration (ppm) at all sites and respective treatments. 

Uranium bioaccumulated from the water column to the sediment and from the water column to 

plant tissue. Mean uranium concentration was highest at the two sites and corresponding 

treatments; BC and GR2 exposed to wastewater from West Cliff Colliery. The concentration of 

uranium at BC increased from water (0.008 ppm) by approximately 51 times to sediment (0.4 ppm). 

This magnification was much greater in willow tissue. The uranium concentration in treatment BC 

increased by a factor of 455 times from water to root tissue (3.6 ppm). A similar result was 

observed at GR2. The concentration of uranium at GR2 increased from water (0.007 ppm) by 

approximately 89 times to sediment (0.6 ppm). This magnification was also present in willow tissue. 

The uranium concentration in treatment GR2 increased by a factor of 433 times from water to root 

tissue (3.0 ppm) (Figure 62). 
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Figure 62: Mean uranium concentration (ppm) at all sites and respective treatments. 
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Discussion 
 

The discharge of highly polluted wastewater from the West Cliff Colliery into Brennans Creek has 

caused ecological degradation of the Georges River. The wastewater was characterised by high 

concentrations of anions, cations and metals at levels that often exceed the recommended 

guidelines for the protection of 95% of species in upland waterways (ANZECC 2000). The inflow of 

wastewater into the Georges River has resulted in statically significant increases in; electrical 

conductivity, pH levels and a suite of metals including; antimony, aluminium, arsenic, barium, 

boron, cobalt, lithium, molybdenum, nickel, strontium, titanium, uranium and zinc. This study has 

identified several pollutants in both the sediment and in the water column that continue to persist 

22km downstream of the discharge point, at concentrations that are significantly different to the 

reference sites. The extent of the pollution plume is an important factor when determining the 

effect of coal mine wastewater discharge on a receiving waterway. This is especially important 

when the pollution source is located at the headwaters of the catchment, as is the case with the 

Georges River. Legacy pollution was observed above the inflow of wastewater from West Cliff 

Colliery at GR1. GR1 received small volumes of wastewater discharge on a sporadic basis from 

Appin East Colliery prior to and during the study period. This legacy pollution is most apparent 

when the sediment composition is examined, which reveals the presence of metals at elevated 

concentrations compared with other sites (GRU and OH) that lack any major forms of catchment 

disturbance. It was concluded that GR1 would act as a comparison of the impact of the West Cliff 

Colliery discharge on the Georges River and not the total impact to the Georges River from 

underground coal mining.    

The sediment downstream of the mine wastewater discharge had elevated concentrations of most 

metals that were present in the wastewater discharge compared to reference conditions. The 

metals that were present in the sediment at statically significantly elevated concentrations were; 

aluminium, barium, chromium, cobalt, copper, iron, lead, lithium, manganese, nickel, strontium, 

titanium, uranium and zinc. There was significant degree of accumulation of metals in the sediment 

where the concentration of metals in the sediment was far greater than concentrations found in 

the water column. This accumulation of metals in the sediment presents an environmental 

pollution issue that has the potential to last for decades (see Mays and Edwards 2001; Mishra et al. 

2007; Ali et al. 2018; Belmer and Wright 2019b).  

The altered water chemistry downstream of the wastewater discharge point is expected to be the 

salient factor in the significant loss of biodiversity within the waterway. The aquatic 

macroinvertebrate community downstream of the wastewater discharge is characterised by a loss 

of pollution sensitive taxa and an increase in pollution tolerant taxa. This change in community 

composition is most apparent when the parameters; taxonomic richness, EPT % and presence / 

absence data is examined.  

A laboratory experiment has identified that a suite of metals including; aluminium, boron, barium, 

cobalt, copper, iron, lithium, manganese, molybdenum, nickel, strontium and uranium present in 
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the coal mine wastewater discharge and in the Georges River downstream of the discharge are able 

to bioaccumulate within plants that are exposed to the wastewater. The metals listed above were 

found in plant tissue at concentrations that were greater by orders of magnitude than the 

concentrations observed in the water column. The following metals; boron, copper, lithium, 

molybdenum, strontium and uranium were recorded at concentrations greater than was observed 

in both the water column and within the sediment. Findings from this research has identified that 

metals tend to accumulate at different concentrations in different parts of the plant. This study 

found that most metals in the mine wastewater treatments (BC and GR2) accumulated at greater 

concentrations in the root tissue rather than leaf tissue. Exceptions to this were the metals; boron 

and lithium which accumulated at greater concentrations in the leaf tissue.    

This research has demonstrated that the current implementation of environmental protection 

legislation has failed to protect one of Sydney’s major waterways from the effects of coal mining. 

This study, along with other research has determined that the Georges River is not alone in 

experiencing degradation as a result of coal mine wastewater discharge at a local and global 

context (Brake et al. 2001; Younger et al. 2004; Belmer et al. 2019a). Currently, the EPL that 

imposes limits of the pollutants and concentration of the pollutants that may be discharged is 

inadequate in preventing the degradation of the river. The concentrations of pollutants permitted 

to be discharge as per the EPL are not reflective of the local natural background conditions or 

reflect the recommended trigger values listed in the ANZECC (2000) water quality guidelines.    

 

Water quality 
 

The generation of contaminated wastewater from underground coal mining is an inherent 

consequence of the activity (Grey 1997; Cohen 2002; Younger; 2004; Clapcott et al. 2015; Wright 

and Belmer 2018). The corresponding discharge of this contaminated water into a river system is 

well known to affect the waterways geochemical composition (see Banks et al. 1997; Johnson 2003; 

Price and Wright 2016; Green et al. 2018). This study found conclusive evidence that supports 

hypotheses number one, that; The inflow of coal mine wastewater will modify the ionic and metal 

composition of the waterway.  

The inflow of coal mine wastewater modified the electrical conductivity of the Georges River. This 

modification was evident immediately after the inflow of wastewater from Brennans Creek and 

with electrical conductivity remaining elevated at the furthers downstream site; 22km below the 

Brennans Creek junction. Mean electrical conductivity of water released from West Cliff Colliery at 

BC was 1787 μS/cm. This result is well within the EPL limit of 2500 – 3570 μS/cm imposed by the 

NSW EPA. However, the EPL limit does not reflect the recommended ANZECC (2000) trigger value 

guideline for slightly disturbed ecosystems (NSW upland rivers) which is 350 μS/cm. Nor does the 

EPL reflect the background electrical conductivity range identified by this study. The failure of the 

EPL to reflect the dilute nature of the upper Georges River in the limit imposed have resulted in an 

increase in electrical conductivity downstream of the discharge. The magnitude of the increase in 

electrical conductivity was by a factor of nine downstream of the discharge point at GR2 compared 
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with the mean of the two reference sites; GRU and OH. Mean electrical conductivity at GR2 was 

1677μS/cm (Table 4, Figure 14) compared to mean electrical conductivity at the two reference 

sites; OH and GRU of 181 μS/cm and 186 μS/cm. 22km downstream at GR3 Mean electrical 

conductivity was still elevated at 1102 μS/cm. This sustained elevation of electrical conductivity 

demonstrates how the plume of pollution from coal mine wastewater discharge can extend along 

way downstream, likely presenting numerous ecological impacts. The salinity of the West Cliff 

Colliery is elevated compared to other collieries in the southern coal fields. Approximately 20km 

south west of the study area is the township of Tahmoor and the Tahmoor Colliery which also 

mines the Bulli seam. The wastewater discharge from this colliery was found to result in the mean 

electrical conductivity rising from 206 μS/cm above the discharge point to 1011 μS/cm below the 

discharge point (Belmer and Wright 2019a). Another study by Wright et al. (2018) examined the 

closed Medway Colliery, also in the southern coal fields and 60km south west of Appin. The 

continued wastewater discharge from this mine was lower than the West Cliff Colliery. The mine 

wastewater discharge had a mean electrical conductivity of 1000 μS/cm.  

The pH of the wastewater discharge had a mean of 8.82 pH units. Again, this result is well within 

the current EPL discharge limits of between 6.5 and 9.3 pH units. However, the EPL limit does not 

reflect the recommended ANZECC (2000) trigger value guideline for slightly disturbed ecosystems 

(NSW upland rivers) which is 6.0 – 7.5 pH units. Nor does the EPL reflect the background electrical 

conductivity range identified by this study. The failure of the EPL to reflect the mildly acidic nature 

of the upper Georges River in the limit imposed have resulted in a mean increase of 2.7 pH units 

downstream of the discharge compared to the mean of the reference sites. Mean pH at GR2 was 

9.00 pH units (Table 4, Figure 15) compared to mean pH at the two reference sites; OH and GRU of 

6.78 and 5.83 pH units. 22km downstream at GR3 Mean pH was still elevated at 8.50 pH units. This 

sustained elevation of pH demonstrates how the plume of pollution from coal mine wastewater 

discharge can extend along way downstream, likely presenting numerous ecological impacts. pH 

was observed in the West Cliff Colliery discharge in Brennans Creek was similar to the Tahmoor 

Colliery discharge which had a mean pH of 8.60 pH units.   

The ionic composition of the reference waterways was typical of upland, east flowing rivers that are 

minimally disturbed (ANZECC 2000; Tippler et al. 2012; Green et al. 2018). These rivers are broadly 

characterised as being dilute with pH in the acidic to neutral range, dominated by the ions sodium 

and chloride. The geochemical ionic structure within the water column changed in the Georges 

River as a result of the inflow of mine wastewater. At the reference sites GRU and OH, the cation 

dominance from lowest concentration to highest concentration was; potassium < calcium < 

magnesium < sodium. A similar study by Price and Wright (2016) also found that that sodium was 

the dominant cation below the West Cliff Colliery discharge. However, the remaining sequence has 

changed since then with the next most dominant cation being calcium, followed by potassium then 

magnesium. Downstream of the Brennans Creek discharge at GR2 this order of dominance changed 

to magnesium < potassium < calcium < sodium. The mean sodium concentration increased by a 

factor of approximately nineteen between the reference sites and immediately downstream on the 

Georges River at GR2 (table 5). A similar trend was observed with total alkalinity where total 
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alkalinity increased by a factor of approximately 10 at GR2 compared to the reference sites (Table 

5, Figure 19). The anionic composition was altered downstream of the discharge at Brennans Creek 

compared to the reference sites. The anionic dominance from smallest concentration to lowest 

concentration at OH was sulphate < total alkalinity as CaCO3 < chloride and at GRU; total alkalinity 

as CaCO3 < sulphate < chloride. At GR2 this relationship changed to sulphate < chloride < total 

alkalinity as CaCO3. The study by Price and Wright (2016) and Green et al. (2018) recorded the same 

order of anionic dominance as this study. South West of Appin at the Tahmoor Colliery, bicarbonate 

was the dominant anion in the Bargo River downstream of the Tahmoor Colliery wastewater 

discharge. The next highest concentration of anionic species was chloride, followed by carbonate 

and sulphate (Wright et al. 2015). The difference in results within the same coal field is likely due to 

local variations in geology and or different wastewater treatment methods. The EPL does not list 

any anions or cations as pollutants that are permitted to be discharged. Therefore, there is a need 

to determine whether the West Cliff Colliery wastewater discharge in in breach of its EPL and the 

POEO Act (1997). The ANZECC (2000) water quality guidelines do not state any recommendations 

or trigger values for the ionic composition of waterways. However, the ANZECC (2000) water 

quality guidelines emphasis the importance of deriving locally applicable guidelines which is 

especially important where no default guideline exists. 

The discharge of coal mine generated wastewater has servery altered the presence and 

concentration of metals within the receiving waterway; the Georges River (Table 6). The 

wastewater discharge into Brennans Creek had elevated concentrations of a suite of metals; 

antimony, aluminium, arsenic, barium, boron, cobalt, lithium, molybdenum, nickel, strontium and 

uranium, titanium and zinc that were statistically different compared to the reference sites. Of the 

metals listed in the EPL (Table 1); aluminium, arsenic, copper, lead, manganese, nickel and zinc 

mean concentrations were below the prescribed limits in the West Cliff Colliery wastewater 

discharge (Table 1 and Table 6). The metals listed in the EPL reflect the metals listed in the ANZECC 

(2000) water quality guidelines. However, the concentration limits in the EPL bear little 

resemblance to the ANZECC (2000) water quality guidelines (Table 1). For example, the EPL limit for 

aluminium is 1000 µg/L while the ANZECC (2000) guideline is 55 µg/L. This represents a disparity 

where the EPL limit is eighteen times greater than the ANZECC guideline. The EPL limit for; copper is 

approximately 5 times greater, nickel which is also eighteen times greater and the EPL limit for zinc 

which is approximately 10 times greater than the ANZECC (2000) guideline. The combination of the 

elevated metal concentrations present in the wastewater discharge and the lack of significant flow 

from upstream has caused elevated levels of a suite of metals in the Georges River. The metals at 

elevated, statically significantly different concentrations to the reference sites were: antimony, 

aluminium, arsenic, barium, boron, cobalt, copper lithium, molybdenum, nickel, strontium, 

uranium, titanium and zinc (Table 6). Of particular concern is the high mean aluminium 

concentration at GR2 (609 µg/L). A literature review by Gensemer and Playle (1999) found a range 

of biological impacts can occur at similar aluminium concentrations to those present at GR2. Their 

research uncovered a literature that documented loss of biomass and or death of aquatic 

macrophytes, toxicity to fish and impairment of the macroinvertebrate community.  However, in 

the case of mine wastewater, where there is a wide variety of pollutants the exact toxicity of a 

particular element is difficult to identify. This is shown by Havas (1985) which found that the 
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macroinvertebrate family Daphnia experienced increased mortality at 200 µg/L, but when calcium 

ions were added mortality reduced. This study found concentrations of uranium, arsenic, lithium in 

the Georges River below the wastewater discharge that were above other mines in the Sydney 

basin (Ali et al. 2017; Belmer and Wright 2019a). There appears to be limited research on 

underground coal mines that are discharging wastewater containing uranium and lithium. Whether 

this is due to the metals being undetected in the waterways or a lack of testing for the metals is 

unknown. 22 km downstream from the West Cliff Colliery’s discharge, concentrations of metals 

remained elevated at statistically significantly levels on the Georges River at GR3. The metals at 

elevated concentrations were; aluminium, arsenic, barium, boron, lithium, molybdenum, nickel, 

strontium, titanium and uranium (Table 6). The reference sites; OH and GRU metal load was 

dominated iron and characterised be low concentrations of other metals. GR1 had a suite of metals 

(aluminium, barium, boron, copper, lithium, nickel, strontium, titanium and zinc) that were present 

at elevated concentrations that were statistically dissimilar to the reference site. Metals beryllium, 

cadmium, chromium, mercury, selenium and tin were below laboratory detection limits at all sites 

on all occasions (Table 6). The metals present in GR1 are likely due to legacy pollution and small 

volumes of discharge from the Appin East Colliery and potentially from the small amounts of urban 

runoff that GR1 receives.  

 

Macroinvertebrate community 
 

As discussed above, the individual contaminants present in coal mine wastewater and their impact 

of aquatic systems are difficult to separate. Even if this was possible, the sum of the contaminants 

will give a better understanding of the impact to the waste receiving waterway. To determine the 

total impact that the coal mine wastewater discharge was having on the Georges River the 

following question was asked; How do stream macroinvertebrates respond to coal mine wastewater 

discharge? To which the hypothesis; The aquatic macroinvertebrate community structure will be 

different downstream of the inflow of coal mine wastewater was tested.    

The macroinvertebrate community was assessed to quantify the ecological impacts of the 

wastewater discharge on the Georges River. Above the wastewater discharge at GRU, mean 

abundance was 88 animals compared to a mean abundance of 788 animals downstream of the 

wastewater discharge (Table 7). This increase in abundance below the coal mine is not consistent 

with other observations of coal mining effects at nearby locations (see Wright at al. 2015 and 

Wright et al. 2018. However, it is consistent with another macroinvertebrate study conducted on 

the Georges River by Belmer and Wright (2019c). It is likely that this increase in abundance is being 

driven by an increase in nutrient concentrations (see Wright and Burgin 2009) present in the 

wastewater discharge that other studies have previously identified (Georges Riverkeeper 2018). 

This increase in abundance was largely driven by an increase in the Chironomidae and Simuliidae 

populations, both of which are known indicators of nutrient pollution (Wright and Burgin 2009). 

Taxonomic family richness was reduced downstream of the wastewater discharge point compared 

with the upstream GRU site (Table 7; Table 8). Mean richness at GR2 was 7 taxa compared to 11 
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taxa at GRU. This result is similar to other studies that document the wastewater impacts on the 

aquatic macroinvertebrate community. Studies both local to the Sydney basin and internationally 

found reduced taxonomic richness and a corresponding reduction in EPT invertebrates in coal mine 

impacted waterways (Greenfield and Ireland 1978; Wright and Burgin 2009; Bott et al. 2012; Wright 

et al 2015; Capcott et al. 2015; Xingli et al 2015). 

The impaired water quality in the Georges River resulted in a decrease of sensitive ‘EPT’ organisms 

(Table 7; Table 8). This change was measured as EPT % of total abundance which decreased by a 

factor of approximately 10 after the inflow of wastewater. The downstream site was also 

characterised by the complete absence of several pollution sensitive taxa (Chessman 1995) from 

the families; Elmidae, Baetidae, Notonectidae, Corduliidae, Eustheniidae, Helicopsychidae, 

Philopotamidae, Philorheithridae and Hydroptlidae (Table 7; Table 8). Other local studies that 

examined the effect of coal mine wastewater discharge on the macroinvertebrate community 

recorded a similar drop in EPT%. A study by Wright et al. (2018) observed a percentage EPT 

reduction of 90% in the Wingecarribee River after the inflow of coal mine wastewater. At another 

location (Tahmoor, NSW) in close proximity to the study area an EPT reduction of 32% was 

observed after the influx of coal mine wastewater (Wright et al. 2015). A study by Wright et al. 

(2017) also reported an EPT reduction of 72% below the inflow of Clarence Colliery’s wastewater 

discharge, a coal mine that is located approximately 80km NW of the upper Georges River in the 

Western Coalfields of NSW.  

 

Sediment  
 

The results from sediment testing show substantial metal pollution of benthic sediment (Table 9).  

Confirming the hypotheses: The benthic sediment downstream of the coal mine wastewater 

discharge will have a different metal composition to sediment collected at reference sites. The West 

Cliff Colliery discharge site at Brennans Creek (BC) had increased levels of thirteen metals at 

statistically significantly levels. These metals at elevated concentrations were; aluminium, barium, 

chromium, cobalt, copper, iron, lead, lithium, manganese, nickel, strontium, uranium and zinc. The 

biggest increase in metal concentration at the wastewater discharge point relative to the mean of 

the two reference sites was strontium, which was 59 times greater. Strontium was followed by 

barium which was 39 times greater, lithium (25 times greater), copper (5 times greater), uranium (4 

times greater) manganese (4 times greater), nickel, lead and zinc which were three times greater. 

Downstream on the Georges River at GR2 the same suite of metals was elevated in the sediment 

with the addition of titanium. The biggest increase in metal concentration at the downstream of the 

wastewater discharge point at GR2 relative to the mean of the two reference sites was strontium, 

which was 54 times greater. Strontium was followed by barium which was 38 times greater, lithium 

(23 times greater), titanium (11 times greater), copper (10 times greater), manganese (7 times 

greater), uranium (6 times greater), chromium, lead, zinc which were four times greater. 22km 

downstream on the Georges River, GR3 recorded six metals (barium, copper, lithium, strontium, 
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titanium and zinc) in the sediment that were present at statistically significantly levels. Lithium 

recorded the biggest increase in metal concentration at GR3, being six times greater than the mean 

of the reference sites. Strontium and zinc were present at three times greater concentration while 

barium, copper and titanium were approximately twice the concentration of the reference sites. 

The metals; antimony, beryllium, cadmium, mercury and selenium were below laboratory detection 

limits at all sites on all occasions. Additionally, tin, molybdenum, boron and arsenic were at 

concentrations below detection limits or approaching this limit, with no statistically significant 

difference between sites. 

The ANZECC (2000) guidelines stipulate ‘default guideline values’ (DGV) for ten metals and 

metalloids (antimony, cadmium, chromium, copper, lead, mercury, nickel, silver, zinc and arsenic). 

No metals found in the sediment at any of the sites in this study were above the DGV. 

A similar study by Belmer and Wright (2019b) that examined the metal concentrations in the 

sediment above and below the West Cliff Colliery. This study used an upstream reference which 

corresponds to site GR1 in this study. At this site the Belmer and Wright (2019b) study found metal 

concentrations were typically greater immediately above the West Cliff Colliery wastewater 

discharge point than below. As already discussed, this is likely to be legacy pollution from when 

Appin East Colliery was discharging wastewater. This study also reported typically lower metal 

concentrations downstream of the discharge point than data presented in this report. Another 

study that examined the metal concentrations in the sediment above and below the West Cliff 

Colliery by Ali et al. (2018) found elevated concentrations of metals than the Belmer and Wright 

(2019b) study, recording similar concentrations to data presented here. While all three studies 

reported slightly different concentrations, the overall conclusion was that metal enrichment was 

present in the study area. Enrichment of metals in the sediment occurred at immediately above the 

discharge (GR1) representing legacy pollution from Appin East Colliery and within and downstream 

of the wastewater discharge from West Cliff Colliery.  

 

Bioaccumulation  
 

The links between waterway pollution and the impact on the surrounding riparian vegetation are 

not fully understood. In a recent study by Belmer and Wright (2018) the uptake of heavy metals by 

riparian vegetation was studied at a location that receives coal mine wastewater. Their study found 

that downstream of the coal mine wastewater discharge a suite of metals; aluminum, beryllium, 

cadmium, cobalt, molybdenum, strontium, thallium, zinc and nickel had bioaccumulated in riparian 

plant tissue. Similarities in the Belmer and Wright (2018) study to the data presented here show 

accumulation of aluminum, nickel, molybdenum and strontium occurred in both studies. 

Differences in relative increase can be attributed to several factors; most notably the study 

conducted by the author was a laboratory experiment and thus not exposed to other 
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environmental factors. Also, the plants sampled by Belmer and Wright (2018) are expected to have 

had a longer growth period and exposed to chemically different mine wastewater.     

The accumulation of metals in the willow tissue differed between the leaves and roots of the 

plants. This relationship with between the uptake of metals associated with coal mining by different 

parts of plants has been documented by Mays and Edwards (2001) and Deo et al. (2011). The study 

by Deo et al. (2011) found that in plants grown on coal mine spoils, copper accumulated at greater 

concentrations in the stem and leaves of plants. Mays and Edwards (2001) found metal 

accumulation in wetland plants exposed to acid mine drainage. Plants in this study exhibited a 

similar trend to this study where metals accumulated in greater concentration in plant root tissue. 

The study by Mays and Edwards (2001) identified one metal; boron that accumulated in greater 

concentration in the plant leaf tissue than the plant root, reflecting the result found in this study. 

A laboratory experiment has identified that a suite of metals including; aluminium, boron, barium, 

cobalt, copper, iron, lithium, manganese, molybdenum, nickel, strontium and uranium present in 

the coal mine wastewater discharge and in the Georges River downstream of the discharge are able 

to bioaccumulate within plants that are exposed to the wastewater. These findings confirmed the 

hypotheses: Metal composition in plant tissue will differ between plants exposed to mine 

wastewater compared to plants exposed to water collected from reference sites. The metals listed 

above were found in plant tissue at concentrations that were greater by orders of magnitude than 

the concentrations observed in the water column. The following metals; boron, copper, lithium, 

molybdenum, strontium and uranium were recorded at concentrations greater than was observed 

in both the water column and within the sediment. Findings from this research has identified that 

metals tend to accumulate at different concentrations in different parts of the plant. This study 

found that most metals in the mine wastewater treatments (BC and GR2) accumulated at greater 

concentrations in the root tissue rather than leaf tissue. Exceptions to this were the metals; boron 

and lithium which accumulated at greater concentrations in the leaf tissue. 

Within the leaf tissue there were six metals for which concentration was elevated at statistically 

significant levels in willows grown in water from BC, GR1 and GR2 compared to the reference sites. 

Strontium was elevated in willow leaves grown in water from BC, GR1 and GR2. Boron and lithium 

were elevated at BC and GRU while barium and manganese were elevated at statistically significant 

levels in willow leaves grown in water from GR1 and BC respectively. Manganese in willow leaf 

tissue was elevated at statically significant concentrations at BC. Both sites BC and GR2 had similar 

increases in metal accumulation within the leaves. Mean lithium concentration was 30 times higher 

at BC and 37 times higher at GR2 compared with the mean of the reference sites. Boron had the 

next highest accumulation factor of 1.4 times greater at BC and GR2 than mean of the reference 

sites, a result substantially lower than the accumulation of lithium. Barium, manganese and 

strontium accumulated by a factor of 1.1 times greater at BC and GR2 than mean of the reference 

sites. The following metals were below detection limits in willow leaves grown in water from sites; 

arsenic, beryllium, cadmium, chromium, cobalt, mercury, nickel, lead, antimony, selenium, titanium 

and uranium. There was also no at statistically significant difference between sites; BC, GR1 and 

GR2 compared to the reference sites for the following metals; aluminium, iron, molybdenum and 
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zinc (Table 10). The concentration of these metals in the willow leaf tissue were many times higher 

than the concentration observed in the water column.  

There was greater uptake of metals within the willow roots. The metals; barium and strontium 

were elevated at statistically significant levels in treatments GR1, BC and GR2. The metals; 

aluminium, boron, lithium, manganese, molybdenum and nickel were elevated at statistically 

significant levels in treatments BC and GR2. The metals copper and iron were elevated at 

statistically significant levels in treatment GR2. Uranium showed the biggest increase in 

concentration at BC and GR2 by a factor of 33 and 30 times respectively compared to the mean of 

the reference sites. Molybdenum increased by a factor of 30 times at BC and 28 times at GR2. 

Lithium concentrations in root tissue experienced the next biggest increase in relative 

concentration by a factor of 18 and 19 at BC and GR2. Barium had a similar increase in relative 

concentration to lithium where barium was 18 and 14 times higher in root tissue in treatments BC 

and GR2. Aluminium concentrations in root tissue increased by a factor of 14 at BC and 15 at GR2, 

followed by strontium (increased by factors of 8 and 7 in BC and GR2). Nickel increased by a factor 

of four in BC and GR2 while boron, manganese, copper and iron increased by factors of between 

2.7 times and 1.2 times in root tissue in treatments BC and GR2. The following metals were below 

detection limits in all treatments; arsenic, beryllium, chromium, mercury, antimony, selenium, tin 

and titanium. Additionally, there was no statistically significant difference between the following 

treatments for the metals; cadmium, lead and zinc from the reference sites and GR1, GR2, GR3 and 

BC (Table 11). The concentration of these metals in the willow root tissue were many times higher 

than the concentration observed in the water column. 
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Conclusion 
 

Through the analysis of water quality on the Georges River, this study has determined that the 

release of coal mine wastewater has degraded the ecological condition of the river. This impact was 

observed in reduced water quality, metal enrichment in the sediment and a loss of sensitive 

macroinvertebrate taxa downstream of the wastewater discharge point. This research has also 

shown that a suite of the metals that are present in, and downstream of the coal mine wastewater 

discharge have the potential to bioaccumulate in plant tissue. A magnification effect where the 

metals; aluminium, boron, lithium, manganese, molybdenum, nickel and strontium were found in 

greater concentration in the plant tissue that in the water column.    

Though the administration of the POEO Act (1997) by the issuing of an EPL by the NSW EPA it is 

expected that the natural environment will not suffer significant ecological impacts from controlled 

activities. This has not been the case with the Georges River which has suffered degradation due to 

the inflow of coal mine wastewater. Many other regulated coal mine wastewater discharges within 

the Sydney Basin have caused degradation of the receiving waterway. The broad nature of river 

degradation points to a systemic failure of stakeholders to prevent pollutants associated with coal 

mining from entering the environment at levels which impair river ecology.  

To attempt to rectify this issue it is essential that the concentrations of pollutants that are 

permitted to be discharged reflect the natural background conditions and the ANZECC (2000) water 

quality guidelines. A long-term management plan should be adopted to ensure that when 

underground coal mining ceases, continued degradation does not occur. This unfortunate 

consequence of continued degradation after closure has been shown to occur locally within the 

Sydney basin and internationally (see Younger 1777; Johnson 2003, Price and Wright 2016; Belmer 

and Wright 2019a,b,c). Consequently, it is essential that we better manage our aquatic ecosystems 

in the context of underground coal mining to avoid further instances of degradation and to 

preserve ecosystem functions and services.   
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