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Data Preparation Protocol for Low Signal-to-Noise Ratio
Fluorine-19 MRI

Ludger Starke, Thoralf Niendorf, and Sonia Waiczies

Abstract

Fluorine-19 MRI shows great promise for a wide range of applications including renal imaging, yet the
typically low signal-to-noise ratios and sparse signal distribution necessitate a thorough data preparation.

This chapter describes a general data preparation workflow for fluorine MRI experiments. The main
processing steps are: (1) estimation of noise level, (2) correction of noise-induced bias and (3) background
subtraction. The protocol is supplemented by an example script and toolbox available online.

This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network
funded by the European Cooperation in Science and Technology (COST) program of the European
Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This
analysis protocol chapter is complemented by two separate chapters describing the basic concept and
experimental procedure.

Key words Magnetic resonance imaging (MRI), Fluorine, Data preparation, Mice, Rats

1 Introduction

Fluorine-19 (*F) MR methods have found their application in a
wide range of biomedical research areas including renal imaging [ 1-
8]. The sensitivity constraints, low signal-to-noise ratio (SNR) and
sparse signal distribution typical of fluorine-19 MRI necessitate a
thorough data preparation. The main processing steps are: (1) esti-
mation of noise level, (2) correction of noise-induced bias and
(3) background subtraction. While variations on this theme are
common in fluorine MRI studies, a standardized method of data
preparation and analysis with well-documented implementation
will improve accuracy and reproducibility of reported results.
Estimating the noise level is a prerequisite for all subsequent
processing steps. Assuming data from a single channel RF coil, the
signal in MR magnitude images follows a Rician distribution
[9, 10] (see Note 1 for information on multichannel RF coils). At
SNR > 10, this distribution closely resembles a Gaussian
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distribution. Yet, when analyzing low SNR fluorine MRI data, its
diverging properties need to be taken into account. The MRI
magnitude signal is computed from complex data, which contain
signal with positive and negative values, and is corrupted by zero
mean Gaussian noise. Mapping positive and negative signals to the
positive magnitude results in a pronounced upward bias at low
SNRs. Additionally, the standard deviation of the measured signal
is reduced (Fig. la). To ensure accurate measurement of signal
intensities, the noise-induced bias must be corrected. It is also
essential to consider the signal level-dependence of the measured
standard deviation for correct noise level estimation.

Background subtraction is the process of classifying image
voxels as either signal or noise. Most fluorine MRI studies are
dealing with signals that are close to the detection threshold; in
this case the background subtraction method strongly influences
the sensitivity of the measurement and most importantly the reli-
ability and reproducibility of the obtained results. Ideally, reporting
of the used background subtraction method should include the
expected false positive rate (FPR).

In this chapter we present a data preparation protocol for low
SNR fluorine MRI data (Fig. 2). An open source toolbox is used for
bias correction (Fig. 2b) of the magnitude data (Fig. 2a). We
expand upon the common method of SNR-based thresholding
[2, 4, 11] (Fig. 2¢) by proposing an additional outlier removal
processing step (Fig. 2d). The shown example is based on a dataset
with fluorine nanoparticle labeled immune cells showing the sites of
inflammation in a mouse model of multiple sclerosis (see Setup 4 in
Starke et al. [12] for details). The data preparation protocol is
equally applicable to low SNR 'F MRI of the kidney.

A self-contained script reproducing Fig. 2 and illustrating the
data preparation step-by-step, from noise level estimation to gener-
ation of a proton/fluorine-19 overlay is provided online together
with the example data.

This analysis protocol chapter is complemented by separate
chapters describing the basic concept and experimental procedure,
which are part of this book.

2 Materials

2.1 Software
Requirements

The processing steps outlined in this protocol require:

1. A software development environment. The provided code
examples follow the syntax of MATLAB® (The MathWorks,
Natick, Massachusetts, USA; mathworks.com) and Octave
(gnu.org/software /octave). The code could also be adapted
for other scientific software development environments like

Python (python.org/) or Julia (julialang.org/).



http://mathworks.com
http://www.gnu.org/software/octave
https://www.python.org/
https://julialang.org/
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Fig. 1 (a) Mean measured signal and mean measured standard deviation (std.) of MR magnitude data. ¢
denotes the signal level independent standard deviation of the Gaussian noise in the underlying complex data.
(b) The size of the used background region determines the uncertainty of the standard deviation estimate. The
relative standard error (SE) shown here is defined as the standard deviation of the standard deviation estimate
divided by o itself. Note the logarithmic scale of the x-axis. (c) Histogram of simulated Rician data for true
signal = 3¢ (blue). The corrected data was computed using the tool described in Subheading 3.3 (red). The
circles and bars indicate the mean and standard deviations of the two distributions. (d) Expected false positive
rate (FPR) for different SNR thresholds with and without outlier detection. The FPR is defined as number of
false positive voxels divided by number of true negative voxels. Without outlier detection background
subtraction is performed by simple thresholding. The expected FPR can be computed by the steps in Note
5. Outlier detection is performed by removing all groups of less than three connected signal voxels after SNR
based thresholding. In 2D 8-connectivity is used and in 3D 18-connectivity. Here simulated data is shown

2. AMATLAB / Octave tool for noise bias correction download-
able from github.com/LudgerS/MRInoiseBiasCorrection.
This tool includes detailed documentation to facilitate adapta-
tion for other software development environments or use with
multichannel RF coil data.

3. A collection of data preparation specific MATLAB / Octave
subfunctions found under github.com/LudgerS
19tMRIdataPreparation. It is provided together with a script



https://github.com/LudgerS/MRInoiseBiasCorrection
https://github.com/LudgerS/19fMRIdataPreparation
https://github.com/LudgerS/19fMRIdataPreparation
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Fig. 2 Example analysis for fluorine-19 MRI data acquired in a mouse model of multiple sclerosis. Immune
cells were labeled in situ with fluorine-19 nanoparticles such that fluorine signal shows sites of inflammation.
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collecting all processing steps of this protocol as well as an
example dataset allowing the reproduction of Fig. 2.

4. The MATLAB Image Processing toolbox is needed to run the
function fluorineOverlay.m which creates proton/fluorine
overlays and is part of the aforementioned 19fMRIdataPre-
paration repository.

5. A tool for data import. This tool will depend on the data
format:

DICOM data—MATLAB contains a built-in function to
import dicom data: dicomread. For Octave, Python and Julia,
dicom support is offered by supplemental packages (octave.
sourceforge.io/dicom/, pydicom.github.io/, github.com/
JulialO /DICOM.jl).

Bruker data—Bruker also offers a toolbox to import data
into MATLAB directly. To obtain Bruker's pvtools, contact
Bruker software support (mri-software-support@bruker.com).

3 Methods

3.1 Data Import
and Scaling

3.1.1 DICOM Data

3.1.2 Bruker Data

A

These steps should be executed for both the fluorine MRI data and
the noise scan data. In the following sections it is assumed that the
fluorine data was stored in variable imageData and the noise scan
in variable noiseData.

1. To import dicom data execute the command

data = dicomread(‘filePath’);

where ‘filePath’ is a string containing the relative or
absolute path of the .dem file.

For a Linux or MacOS system, substitute the file separator \ by /.
1. Ensure that pvtools is on the search path:
addpath (genpath('...\pvtools’ ))

where .. \pvtools’specifies the path of the pvtools
folder.

Fig. 2 (continued) Acquisition parameters: 2D-RARE, ETL = 32, [20 x 20] mm? FOV, 128 x 128 matrix,
3.2 mm slice thickness. The noise level was determined from a corresponding noise scan. Details regarding
the animal model and acquisition can be found in Starke et al. [12] under Setup 4. (a) Fluorine-19 MRI
magnitude data. (b) Data after application of the Rician noise bias correction. (¢) Thresholding was performed
at SNR = 3.5. (d) Removal of groups of <3 connected pixels. (e) Overlay of the fluorine data on an anatomical

image
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3.2 Correct Data
Scaling

3.3 Noise Level
Estimation

2. Store the path to the scan you want to load in variable
scanFolder.

3. Read the visu_pars parameter file:
visuPars = readBrukerParamFile([scanFolder, ‘\visu_pars’]);
4. Load the Paravision reconstruction:

[data, ~] = readBruker2dseq([scanFolder, ’\pdata\l\2dseq’],

visuPars) ;

There are vendor-specific conventions regarding the averaging of
multiple image acquisitions. In some cases, for example in Bruker
data, the individual acquisitions are simply added instead of com-
puting the mean. To ensure comparability between different scan
times, determine the employed convention (se¢ Note 2) and if
necessary divide the data by the number of averages. This proces-
sing step will be required if a pure noise scan has been employed to
determine the noise level.

1. Assuming nAverages is the number of averages acquired for
the fluorine data and the noise scan was acquired with a single
average, simply execute

imageData = imageData/nAverages;

The amount of random variation in MR magnitude images, as
measured by the standard deviation, is signal level dependent
(Fig. 1a). By convention, the noise level is reported as the asymp-
totic standard deviation at high SNR, which we denote by o
[13, 14]. This value is equal to the standard deviation of the
Gaussian noise in the underlying complex data. While a larger
number of noise level estimation methods has been proposed
[13], two are of practical relevance for fluorine MRI: estimation
based on a background region, which is known to be without
signal, or estimation based on a dedicated pure noise scan.
Although the former yields adequate results for most applications,
we strongly recommend the use of a noise scan due to its indepen-
dence of user input and improved accuracy. The uncertainty of the
standard deviation estimate depends on the number of samples 7.
For » > 10, we can approximate the standard error as SE, ~ \/L—

2n
(Fig. 1b) [15].
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Fig. 3 (a) Point spread function artifacts can corrupt background regions without being visually obvious. In this
water phantom example, the RARE image with echo train length 8 (ETL = 8, top left) does not show artifacts.
However rescaling (bottom left) shows that a noise level estimate based on a background region would lead to
erroneous values if the region is not chosen just in the corners of the image. The example on the right
(ETL = 32) shows an exaggerated case where the effect is obvious in the image itself. (b) The red regions
show a background mask that would yield reliable values for the example shown in Fig. 2

3.3.1 Estimation Based The largest possible background region free of major signal artifacts

on a Background Region should be used to improve accuracy (also see Note 3). However,
point spread function artifacts can corrupt image regions even distal
from signal features without being necessarily visible (Fig. 3a). We
recommend using quadratic regions in all four corners of the
image.

1. Create a mask of the background region for logical indexing

backgroundMask = createBackgroundMask(size (imageData),

cornerSize) ;

The argument size (imageData) determines the dimen-
sions of the mask and cornersize sets the size of the four
corners (Fig. 3b).

2. The noise level can then be computed as

sigma = std(imageData (backgroundMask))/0.6551;

where the factor 0.6551 accounts for the ratio between the
background standard deviation and o (Fig. 1a) [13]. It needs to
be adjusted for data from multichannel RF coils (see Note 4).

3.3.2 Estimation Based In this case the complete noise image constitutes the background
on a Noise Scan region. It is not necessary to acquire the noise scan with multiple
averages, as the dependence of the noise level on the number of
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3.4 Bias Correction

3.5 Background
Subtraction

averages is well understood mathematically (see Note 5 for further
comments on noise scan acquisition).

1. If the noise scan was acquired with a single average and the
number of averages of the image data is given by nAverages,
the noise level can be computed as

sigma = std(noiseData(:))/(0.6551*sgrt (nAverages)) ;

Rician noise leads to a systematic upward bias in MR magnitude
images at low SNR. Signal intensities need to be multiplied with a
correction factor <1 to achieve correct signal estimation on average
(Fig. la, ¢). While the expected measured signal E[ M] for a given
true signal level A and noise level o is known, there is no established
inverse function A(E[ M], ) [9, 10, 14]. The provided toolbox thus
uses a lookup table to compute the correction factor [9]. Signal
intensities below the mean background level are set to zero
(Fig. 1c). Alternatively, the correction scheme of Koay and Basser
could be used [14]. See Note 6 for a comment on averaging over
regions of interest (ROIs).

1. After determining the noise level, the corrected image (Fig. 2b)
can simply be computed as

correctedImage = correctNoiseBias (imageData, sigma, 1);

where the last argument specifies the number of receive
elements in the RF coil (se¢ Note 1).

In fluorine MRI, background subtraction commonly involves
thresholding by removing all voxels below a certain SNR
(Fig. 2¢). However, the threshold necessary to prevent the occur-
rence of false positives could compromise sensitivity, especially for
larger datasets such as those from 3D MR data (Fig. 1d, see Note 7
for an analytical formula). Based on the assumption that all relevant
fluorine features should at least comprise a minimum of three
connected voxels, we recommend an additional outlier correction
that excludes isolated voxels (Fig. 2d). To determine features with a
minimum of three connected voxels, we recommend to use
8-connected neighborhoods (connection via edges or corners) for
2D images and 18-connected neighborhoods (connection via faces
or edges but not corners) for 3D images. This additional processing
step drastically reduces the expected FPR. In the 2D case, for
example, thresholding at SNR = 2.74 with outlier detection
reduces the FPR to the same level as thresholding at SNR = 4
without outlier detection (Fig. 1d).



3.6 Proton/
Fluorine-19 Overlays
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1. Copy the bias corrected image to a new variable

thresholdedImage = correctedImage;

2. Set all voxels below the chosen threshold snrThreshold to
Zero

thresholdedImage (thresholdedImage < snrThreshold*sigma) = 0;

3. Then apply the provided function for outlier removal on the
thresholded image:

cleanedImage = removelsolatedVoxels (thresholdedImage, 3);

The second argument specifies the minimum size of pre-
served features.

In order to locate the source of fluorine signal within an in vivo
context, it will need to be coregistered with an anatomical image.
While it might be appealing to overlay transparent fluorine images
to avoid concealing of anatomical detail, we advise against this
practice for quantification purposes, as manipulation of the data
will result in ambiguous readings. If no external standard is used to
determine fluorine concentrations, it is best practice to show the
fluorine signal in terms of the SNR as this also conveys a standard
means of information. For the provided function the anatomical
image should be acquired with the same field of view as the fluorine
MR image.

1. An overlay of fluorine on proton MR images (Fig. 2¢) can be
achieved simply by calling

fluorineOverlay (anatomyData, cleanedImage, colorMap, resi-

zeF, fileName)

anatomyData is the anatomical image, colorMap speci-
fies the fluorine color map in the conventional MATLAB for-
mat, resizeF is a factor by which the image size is increased to
ensure faithful display and £ i 1eName the file name of the saved
image.
2. To complement the fluorine image with a corresponding color
bar (Fig. 2¢) execute

plotFluorineColorBar (colorMap, fileNameCB, max (cleanedImage

(:))/sigma, ’'Fluorine-19 SNR')

fileNameCB states the path and file name of the saved
color bar image. The third argument specifies the range of the
color map. Dividing the maximum of the fluorine image by o
establishes the SNR scaling. The fourth argument determines
the label of the color bar.



720 Ludger Starke et al.

4 Notes

. In the case of multichannel RF coil data and sum-of-squares

reconstruction, the MR signal follows a noncentral chi distri-
bution instead of a Rician distribution. This case is described
thoroughly in Constantinides et al. [16]. The bias correction
toolbox used in this protocol also handles the more general
case. It should be noted that the bias effects become more
pronounced with increasing number of receive elements.

. To determine the employed convention of averaging, acquire

high SNR phantom data with varying numbers of averages
while keeping all other parameters fixed. Import the data as
described in Subheading 3.1. If all scans show the same signal
magnitude, the scaling step described in Subheading 3.1
should be omitted. However, if, for example, doubling the
number of averages also doubles the signal amplitude, rescaling
should be performed.

. Be aware that some vendors include heavy filtering and/or

background masking into the automated reconstruction pipe-
line. This has a major impact on the background noise or sets
background values to zero and hence renders estimation based
on a background region not suitable for noise assessment.

. Assuming a sum-of-squares reconstruction, the factor 0.6551

should be replaced by 0.6824, 0.6953, 0.7014 or 0.7043 for
2,4, 8 or 16 receive element RF coil data [16].

. A pure noise scan is acquired by setting the excitation flip angle

and reference power to zero so that no excitation occurs and
pure noise is acquired. The receiver gain needs to be set identi-
cal to all other scans for which the noise level should be
determined. The number of averages can be reduced to one,
as the resulting change in noise level is easily compensated.
Instead of setting the reference power to zero in preparation
of the noise scan, the output of the RF power supply can be
disconnected following the system adjustments.

. In a background region without true signal, the Rice distribu-

tion reduces to the Rayleigh distribution [10], which is equiv-
alent to a chi-squared distribution. Thus the expected FPR can
be computed via the cumulative distribution function of the
chi-squared distribution. First calculate the expected signal
[17] for the chosen SNR cutoft snrThreshold

thresholdExpectation = sigma x sqrt(pi/2) x laguerrel.
(1/2,0,-snrThreshold.”2. /(2 x sigma”2)).

Then calculate the expected FPR as

FPR = 1 — gammainc((thresholdExpectation/sigma)"2 /
2,1, ‘ower’ ).

This formula is valid for simple thresholding without out-
lier removal and data from single receive element RF coils.
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7. Often fluorine-MRI studies involve calculating signal-to-noise
ratios for specific regions of interest (ROIs). Averaging over all
pixels in the region should be performed before applying the
noise bias correction. This is particularly relevant for phantom
studies where the number of voxels in the assumed to be
homogeneous ROI is large enough to obtain accurate values
even for regions with SNR < 2. See Note 8 for a comment on
the uncertainty of SNR estimates.

8. SNR is conventionally reported as the bias corrected signal
level divided by the asymptotic standard deviation o
[14]. The uncertainty of the SNR estimate is determined by
the signal level, the size of the ROI and the uncertainty of the
noise level. A convenient formula for the standard error is

SSENS\I‘{R I /m + 2%‘ , where m denotes the number of voxels
in the ROI and » the number of voxels in the background

region used to estimate the noise level. At high SNRs the
uncertainty of the SNR estimate is dominated by the uncer-
tainty of the noise level estimate.

Derivation: The standard errors of the mean ROI signal §
and noise level o are SEg = = and SE, ~ \/% [15]. Assuming
independence of § and o, the variance formula [18] for the
standard error of 2 yields

stswe =/ (1)
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