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THE PATH TO TENASCIN-R

It has taken nearly 30 years. But finally, studies on cohorts of patients seem to be shedding some
light on a protein that has been surfaced from time to time in the neurobiological literature.
Tenascin-R, as it is now known, has proven a slippery quarry. That almost works as a pun, given the
fact that in certain contexts, the molecule interferes with cell adhesion.

The protein was first identified in chicken and rodents in the late 1980s among a large number of
molecules associated with axons. Significant efforts were being made to untangle the mysteries of axon
growth, fasciculation and pathfinding (1). Monoclonal antibody approaches turned up a number of
immunoglobulin (Ig)-like cell adhesion proteins (2) which, introduced into cell cultures, influenced the
development of neurites (3). One of these was an IgCAM that interacted with the plasma membrane via
covalently linked glycosylphosphatidylinositol; it was variously termed F11 protein, F3 or contactin—
nowadays contactin1 (4–9). Immunoaffinity isolates of contactin1 yielded a complex of at least two
polypeptides. The major component was contactin1, at 130 kDa, and along with it a minor partner at
about 170 kDa. Further biochemical and immunological experiments showed that the minor
component was unrelated to the 130 kDa contactin1, suggesting they had copurified (5, 10).

Antibodies to the 170 kDa protein revealed that it was expressed in the developing nervous system,
in a pattern partly overlapping with that of contactin1 but spatially muchmore restricted. In the spinal
cord, for example, it was found on the ventral side around motor neurons during embryonic
development. This position suggested a name: restrictin (11). Independently, the same protein was
discovered in the Schachner laboratory through different means: using the L2 monoclonal antibody
directed to the L2/HNK-1 carbohydrate moiety (12), which captured several glycosylated proteins
from neural tissues. These included, IgCAMs, tenascin-C (initially named J1-200/220) and tenascin–R
(christened J1-160/180 or janusin by Schachner and her colleagues) (13).
STRUCTURAL FEATURES AND THE TENASCIN FAMILY

The experiments in chick and rodents had turned up homologs, as became clear through molecular
cloning and sequencing of the chick and rat cDNAs. This showed that the components of restrictin and
J1-160/180 represented the products of a common gene, and proteins were based on a set of structural
motifs found in tenascin-C (14–18). These include an N-terminal cysteine-rich segment with three
heptad repeats, followed by 4.5 EGF-like domains, nine fibronectin type III domains, and a C-terminal
knob. The latter consists of a globular domain similar to the carboxyl terminal portion of the b- and
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g-chains of fibrinogen (19, 20). The N-terminal cysteine-rich region
serves as an oligomerization domain. Three heptad repeats of
hydrophobic amino acids fold in an a helix and generate a triple-
stranded coiled coil to form a trimer which is stabilized by the
surrounding cysteines. The related tenascin-C forms hexamers,
which may also be the case for tenascin-R (21–23). So far,
however, it has only been found as trimers, dimers and
monomers in isolates of brain tissues (Figure 1) (13, 19). The N-
terminal oligomerization domain of the pre-mRNA also contains
one alternative splicing site; the 6th fibronectin type III domain is
also alternatively spliced. Based on these overall similarities, James
Bristow and colleagues suggested renaming restrictin and J1-160/
180 to tenascin-R; the proposal was promptly supported in a review
article by Harold Erickson (24, 26). Subsequently the nomenclature
has been universally adopted. Tenascin-R is the smallest member of
the family, and the relationship of its sequence and those to TN-C,
TN-X, TN-Y, and TN-W suggests that they arose from a primordial
gene that most closely resembled TN-R (26, 27).
TEASING OUT THE FIRST INTERACTION
PARTNERS

The complex, modular structure of tenascin-R clearly indicated a
potential for diverse molecular interactions, most likely with
other proteins on the cell surface. An early goal was to identify
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receptors that might interact with it and to map regions that
could be essential for binding (28). In addition to contactin1, the
partner responsible for its discovery, tenascin-R was found in
complexes with the IgCAMmembers neurofascin and contactin2
(previously called axonin-1 or TAG1) (29). An additional cell
surface receptor was found in a molecular interaction screen: the
transmembrane protein CSPG5 (previously termed CALEB, or
neuroglycan C). CSPG5 contains an EGF domain, an acidic
stretch and chondroitin-sulfate chains, and it binds to the
fibrinogen-like globular domain of tenascin-R (30–34).

More support for a physiological interaction between
tenascin-R and contactin1 has come from molecular mapping
studies. Immunoglobulin domains 2–4 of the latter molecule are
sufficient for the interaction (35), and binding occurs to the
second and third fibronectin type III domain of tenascin-R. This
region is also important for interactions with neurofascin and
contactin2 (29, 36). Tenascin-R interacts with other ECM
proteins including fibronectin, b1-integrins (37) and it binds
with high affinity to phosphacan and a class of extracellular
chondroitin sulfate proteoglycans collectively called lecticans
(aggrecan, versican, brevican, and neurocan) (38–43). Later work
demonstrated that tenascin-R also contains chondroitinsulfate
chains of its own (25, 44).

Most of the interaction partners of tenascin-R have been
defined primarily in vitro and through cell adhesion assays. Light
microscopy work supports the colocalization of tenascin-R with
A

B

FIGURE 1 | (A) Rotary shadowing electron micrograph of tenascin-R purified from brains revealing a trimeric structure. Dimeric and monomeric but no hexameric
forms were seen in these electron micrographs (13, 19). The TN-R polypeptide contains a single cysteine amino-terminal to the trimer-forming segment. This cysteine
might connect two trimers into hexamers, the hexabrachion structure. It is therefore likely that TN-R might also form hexabrachions in tissues as found for tenascin-C
(24). However, alternative splicing or proteolytical cleavage in the N-terminal segment might affect multimer formation of tenascin-R (19, 25). The arrow points to the
N-terminal knob formed by a triple-stranded coiled coil. (B) Scheme of tenascin-R polypeptide. Lines above the scheme indicate putative N-glycosylation sites of the
chicken protein. Human disease mutations are marked by dots above the scheme and regions that bind to cell surface receptors, extracellular matrix proteins or
indicate cellular activities are marked by bars below the scheme (please see text). Alternative splice sites of the pre-mRNA encoding TN-R are colored in grey. “b2-
subunit” refers to the b2-subunit of sodium channels.
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these proteins in some contexts, but for the most part, there is a
lack of in vivo evidence of direct binding.
THE SEARCH FOR BIOLOGICAL
FUNCTIONS OF TENASCIN-R

Cell culture experiments in the early days of tenascin-R research
hinted at a number of putative functions through adhesion or
neurite outgrowth assays. While many extracellular matrix
glycoproteins are known to promote the attachment and
spreading of cells, tenascin-R promotes only weak cell adhesion
and does not affect cell spreading. For example, the 8th to 9th FNIII
domains of tenascin-R serve as a weak cell attachment site for
neural cells, which can be specifically blocked by mAb 23-14 (19).
In some culture systems, tenascin-R even repels axons or inhibits
their regeneration (45–47). A number of in vitro studies have also
shown that tenascin-R modulates homophilic and heterophilic
interactions between IgCAMs and extracellular matrix
glycoproteins on neural cells (6, 29, 36, 39, 46, 48–54).

Obviously, the results of such in vitro studies have to be taken
with a grain of salt, given that they may not accurately reflect the
situation in the intact organism or provide true insights into the
functions of tenascin-R in vivo. Here, further insights can come
through studies of expression patterns. TN-R is apparently
restricted to the central nervous system, but is absent from the
peripheral—with the exception of transient expression onSchwann
cells (11, 20, 55–58). Around 2000 came a breakthrough with
observations that tenascin-R is localized at perineuronal nets (59,
60). These structures were long known, having been described by
several authors at the turn of the 20th century. They surround
groups of neurons and synapses on cell bodies primarily in the
mature brain, comprising a specialized form of the extracellular
matrix; constituents include hyaluronan, lecticans, and several
other kinds of CSPGs (61, 62). Perineuronal nets attracted
particular interest as brain structures that appear to be implicated
in terminating the critical period for neuronal plasticity (63).Here a
crucial function for tenascin-R began to emerge; it appears to be
essential for the normal development of perineuronal nets.
Tenascin-R-deficient mice exhibit an abnormal aggregation of
perineuronal CSPGs (59, 64, 65). In electron microscopy images,
purified tenascin-R appears to crosslinks aggrecan complexes,
which suggests that within the nets, tenascin-R might provide a
molecular scaffolding for lecticans (40).

Knockouts of tenascin-R produced a number of phenotypes
that might be traceable to this scaffolding function. At the cellular
and functional levels, deficiencies lead to mild abnormalities in
synaptic transmission and architecture (66, 67). These might arise
through disruptions of structures involving lecticans or IgCAMs
and CSPG5 (32, 33, 68, 69). Ultimately, the effects on the mature
brain involve both structural and functional abnormalities.
Consequently, tenascin-R deficient mice exhibit behavioral
deficits such as severe impairments in locomotion and
hippocampal-associated learning impairments (70).

Another interesting feature of tenascin-R emerged: in situ
hybridization experiments revealed a dominant colocalization
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with oligodendrocytes during the period of active myelination
(20, 71, 72). In tenascin-R knockout mice, the nodes of Ranvier
appear normal, but an analysis of compound action potential
recordings from optic nerves revealed a decrease in the
conduction velocity. A potential reason for this might be the
lack of expression of tenascin-R on oligodendrocytes, which
appears to be essential for their differentiation (48, 72); another
could be that under normal conditions, the protein might
associate with sodium channels to modulate their function (65,
73, 74).

Very recently, a few studies on mouse knockouts combined
with cell culture experiments have also shown that tenascin-R
modulates the differentiation of neural stem cells during
developmental and adult stages. In the olfactory bulb—a
structure with a continuous flow of newborn neurons from the
subventricular zone of the lateral ventricles—tenascin-R acts as a
molecular cue that initiates a radial migration of neuroblasts
toward the outer cell layers of the olfactory bulb. Consequently,
an absence of tenascin-R affects the recruitment of neuroblasts in
the olfactory bulb (37, 75, 76). In the dentate gyrus of the
hippocampus, tenascin-R is required for the fate determination
of neural stem or progenitor cells. Its absence leads to an increase
in the number of GABAergic neurons was increased (77, 78).
In summary, these findings point to a role of tenascin-R
on neurogenesis.
DISCUSSION

Insights From Human Disease Mutations
Recently, an extensive exome sequencing study by a consortium
identified 13 patients from eight unrelated families with biallelic
variants in the human tenascin-R gene. Combined with two case
studies already in the literature, this represents an important
chance to investigate functions of the human form of the gene. So
far, all of the patients affected have shared some common traits,
particularly delays in motor development. The severity varies,
ranging from spastic para- or tetraparesis, axial muscular
hypotonia, to dyspraxia and transient opisthotonus (79–81).
For example, compared to healthy counterparts, patients with
the mutation take longer to develop unsupported sitting or
standing. In line with these observations are data on mouse
knockouts of tenascin-R or its cellular receptor CSPG5, which
also exhibit motor deficits (33, 70). These problems in motor
development in human patients can most likely be traced to the
brain, given current evidence suggesting that tenascin-R
expression is primarily restricted to the central nervous system
(11, 19, 20, 55–58). And roughly half of the 13 patients revealed
mild or moderately impaired cognitive development, including
delayed language progression. Once again, there were differences
in the degree to which patients were affected.

Overall, tenascin-R associated mutations led to health issues
generally considered to be nonprogressive—which is in line with
a pattern of expression in which tenascin-R predominantly
appears during early brain development (79). MRI of patients’
brains showed delayed myelination consistent with observations
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on tenascin-R mouse knockouts (48, 72) and, in a few cases,
abnormalities in the structure of the corpus callosum. Both
observations might be explained if humans follow the pattern
observed in the mouse, where tenascin-R is expressed in
developing oligodendrocytes (20, 71). The precise effects of the
human missense mutations have yet to be determined: whether
they affect the overall expression of tenascin-R or interactions
with some of the interaction partners mentioned above. Some of
these issues may be resolved with further binding assays and the
generation of mouse models that replicate mutations specific to
the in human patients. It would be particularly interesting to
introduce mutations that interfere with molecular interactions of
tenascin-R during the formation of perineuronal nets. If this
impaired synaptic plasticity or disrupted the normal maturation
and maintenance of neuronal circuits during critical periods of
brain development, we would stand to learn much about the
function of these complex intercellular structures.

As has been the case with many other diseases, the study of
mutations in the human tenascin-R gene will likely prove to be a
game changer, stimulating research into tenascin-R and
clarifying aspects of its functions that go beyond the molecule
itself. Insights into its functions could redirect studies performed
on the current mouse models. For example, tenascin-R might
give scientists a handle on particular brain regions and their
complex interactions at highly specific moments in development.
The fact that human patients exhibit delays in motor
development mean that this approach might serve as a wedge
into this highly complex system within the central nervous
system. It is interesting that in MRI examinations of the
patients, the cerebellum appears normal (79). What would be
the result of specifically inactivating tenascin-R in the mouse
cerebellum? This might reveal whether the cerebellum plays a
Frontiers in Immunology | www.frontiersin.org 4
role in the axial hypotonia or spasticity observed in patients with
mutations in the tenascin-R gene—or whether these deficits are
related to changes in perineuronal inhibition at the level of the
spinal cord or basal ganglia. At the very least, this might offer a
new perspective on how cells and structures in the developing
nervous system intertwine at various levels to produce, on the
one hand, a marvelously functioning organism—or on the other,
a patient burdened by the symptoms of motor diseases.
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