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Pathogenic germline mutations in PIGV lead to glycosylphosphatidyli-
nositol biosynthesis deficiency (GPIBD). Individuals with pathogenic
biallelic mutations in genes of the glycosylphosphatidylinositol
(GPI)-anchor pathway exhibit cognitive impairments, motor delay,
and often epilepsy. Thus far, the pathophysiology underlying the
disease remains unclear, and suitable rodent models that mirror all
symptoms observed in human patients have not been available.
Therefore, we used CRISPR-Cas9 to introduce the most preva-
lent hypomorphic missense mutation in European patients,
Pigv:c.1022C > A (p.A341E), at a site that is conserved in mice.
Mirroring the human pathology, mutant Pigv341E mice exhibited
deficits in motor coordination, cognitive impairments, and alter-
ations in sociability and sleep patterns, as well as increased seizure
susceptibility. Furthermore, immunohistochemistry revealed re-
duced synaptophysin immunoreactivity in Pigv341E mice, and elec-
trophysiology recordings showed decreased hippocampal synaptic
transmission that could underlie impaired memory formation. In
single-cell RNA sequencing, Pigv341E-hippocampal cells exhibited
changes in gene expression, most prominently in a subtype of
microglia and subicular neurons. A significant reduction in Abl1
transcript levels in several cell clusters suggested a link to the sig-
naling pathway of GPI-anchored ephrins. We also observed ele-
vated levels of Hdc transcripts, which might affect histamine
metabolism with consequences for circadian rhythm. This mouse
model will not only open the doors to further investigation into
the pathophysiology of GPIBD, but will also deepen our under-
standing of the role of GPI-anchor–related pathways in brain
development.
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The glycosylphosphatidylinositol (GPI) anchor is essential for
connecting a remarkable number of proteins (GPI-linked

proteins) to the cell membrane. GPI-linked proteins are essential
for signal transduction, cell–cell adhesion, axonal outgrowth,
synapse formation, and plasticity, as well as for regulation of the
complement system (1, 2). Paroxysmal nocturnal hemoglobinuria
(PNH) was the first disorder to be characterized as a GPI-anchor
biosynthesis deficiency (GPIBD) (3). However, PNH is excep-
tional in two regards: First, it is the only GPIBD that is acquired
and it is due to somatic mutations that cause complete loss of

function. In inherited GPIBDs, also referred to as inherited GPI-
anchor biosynthesis deficiencies (IGDs), residual GPI-anchor
synthesis and maturation activities persist. Second, the preva-
lence of inherited GPIBDs is at least 10-fold higher than that of
PNH. To date, recessive phenotypes have been reported for 21
genes of the GPI-anchor pathway. Bellai-Dussault et al. dis-
cussed the clinical variability in detail for the first 19 GPIBDs
(4). However, most patients, including recently described cases
due to GPIBD20 and GPIBD21, exhibit intellectual disability,
psychomotor delay, and epilepsy (5, 6). Furthermore, due to the
residual GPI-anchor synthesis and maturation, patient-derived
fibroblasts have a reduced number of GPI-linked proteins on the
cell surface (7).
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agnostic methods are improving, the pathophysiology under-
lying the disease remains unclear. Furthermore, we lack rodent
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ities. To address this issue, we generated a viable mouse model
for an IGD that mirrors the condition in human patients with a
behavioral phenotype and susceptibility to epilepsy. Using this
model, we obtained neurological insights such as deficits in
synaptic transmission that will facilitate understanding of the
pathophysiology of IGDs.
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Prior to the discovery of IGD, mouse models of GPI-anchor
deficiency (8–12), which mainly employed chimeric and condi-
tional knockouts in which GPI-anchor biosynthesis was abolished
in specific tissues, demonstrated that a complete loss of GPI
anchors is embryonic lethal (9). Interestingly, the resultant
phenotypes were often still so severe that the mutant mice died
early, suggesting essential functions of GPI-anchor proteins in
the skin, development of white matter, and dendritic arboriza-
tion of Purkinje cells in the cerebellum (8, 10). In recent years,
mice with constitutional GPIBDs were identified in mutation
screens; these animals were viable probably because the muta-
tions were only hypomorphic or affected isoforms that are lim-
ited to certain tissues, and therefore only explain some aspects of
most inherited GPIBDs (13, 14). Lukacs et al. (13) showed that a
missense mutation in Pgap2, p.(M1V), compromised transcrip-
tion of this gene particularly in neural crest cells, resulting in a
craniofacial phenotype in mutant mice. In contrast to most other
genes involved in GPI-anchor biosynthesis and maturation, Pgap2
has a tissue-specific expression pattern that changes over embry-
onic development, and the existence of multiple isoforms in hu-
mans further complicates phenotypic comparisons between
humans and mice. It is likely that the facial abnormalities de-
scribed in human patients with a similar mutation, p.(M1R), are
due to a similar mechanism; however, the other phenotypic fea-
tures seem to be milder in humans, either because the substituted
amino acid is different or because the isoforms resulting in
p.(M52R) and p.(M58R) do not exist in mice. In addition,
McKean and Niswander observed a holoprosencephaly-like phe-
notype in two mouse models with a frame-shift mutation in Pign
and an in-frame deletion in Pgap1 (14).
Because most of the existing mouse models die at an early

stage due to the severe phenotype, it has not been possible to use
these models to characterize cognitive deficits, which represent
the main challenge in individuals with IGDs. For this purpose,
we used CRISPR-Cas9 to engineer a mouse model with the
missense mutation c.1022C > A, p.A341E in Pigv, one of the
most frequently encountered pathogenic alleles in humans (15).
PIGV encodes mannosyl transferase II, which is essential for the
attachment of the second mannose to the GPI anchor (16). Due
to the residual function of Pigv341E, mutant mice are viable with a
normal life span, making it possible to complete behavioral ex-
periments that test motor, social, and cognitive abilities, and
study the brain tissue, as well as cells of these mice.

Results
Patients with IGDs exhibit a heterogeneous spectrum of symp-
toms, including neurologic findings, movement disorders, and
intellectual disability (7, 17–19). In general, IGDs caused by
pathogenic mutations in genes that catalyze the early steps of
GPI-anchor synthesis, such as PIGA, tend to have more severe
clinical features such as status epilepticus. In patients with mu-
tations in later steps of synthesis, such as PIGV, epilepsies also
occur in a substantial proportion of cases; however, they often
disappear later in life, and intellectual disability becomes the key
clinical feature. In contrast to acquired GPIBDs, such as PNH,
all patients with IGDs have some residual function of GPI-
anchor synthesis, implying that null mutants are not viable and
that at least one hypomorphic allele must be present. When a
novel mutation is encountered in a suspected IGD, flow cytometry
with two or more different markers serves to confirm a GPIBD.
To analyze the effect of Pigv341E on a cellular level, we used fluor-
proaerolysin (FLAER), which can recognize all GPI-anchored
proteins, and CD90, a GPI-linked protein that is highly expressed
in human fibroblasts. The mean fluorescence intensity (MFI) of
FLAER was reduced in hom-Pigv341E mouse embryonic fibro-
blasts (MEFs) (Fig. 1A). Likewise, CRISPR-Cas9–engineered
mouse embryonic stem (mES) cell clones (hom-Pigv341E, hom-
Pgap3107L) exhibited partial reductions in FLAER and GPI-

anchored CD90 (SI Appendix, Fig. S1E). Unlike clones with ho-
mozygous hypomorphic mutations, the null mES clone [Pigv (−/−)]
exhibited almost no cell-surface expression of FLAER and CD90
(SI Appendix, Fig. S1E). Therefore, we concluded that Pigv341E is
hypomorphic in mice, as it is in humans.
The results section is structured as follows: We will start with a

description of the findings from behavioral experiments. Some of
the dysfunctional behavior that we encountered, motivated fur-
ther histopathological and electrophysiological analysis of the
hippocampus that pointed to a synaptopathy. In the end, we
present the results of a single cell transcriptome screen that we
conducted to identify differentially expressed genes that might be
involved in the observed pathophysiology.

Characteristic Features and Alterations of Sleep Patterns in Pigv341E

Mice. The most prominent differences that we observed first
between Pigv341E and wild-type (WT) mice were reduced weight
(Fig. 1B and SI Appendix, Fig. S1F) and hindlimb clasping be-
havior (Fig. 1 C and D). Due to the intellectual disability and
psychomotor delay that are the key clinical features of IGD,
patients are impaired in their everyday lives. Therefore, we
sought to determine which spontaneous behaviors our mouse
model exhibited while living undisturbed in their home cage
(singly or group housed). Using HomeCageScan (HCS), we
monitored singly housed Pigv341E mice for 23 h at two different
time points (8 and 16 wk). Among the 19 behaviors accurately
detected by analysis of the HCS data, three behaviors were
consistently altered in Pigv341E mice at both time points. Pigv341E

mice hung less often to the top of the cage (total occurrences)
and for shorter durations (total duration and duration per hour)
than wild-type mice; groomed more often (total occurrences)
and for longer durations (total duration and duration per hour);
and slept less (total duration and duration per hour) (Fig. 2 A
and B and SI Appendix, Fig. S2A). At the earlier time point,
Pigv341E mice spent more time walking (duration per hour)
during the dark phase of the day than wild-type mice (Fig. 2B,
Top graph). Furthermore, at both time points, hanging behavior
was an important variable for differentiating genotypes along the
dimensions of a principal component analysis (PCA) (SI Ap-
pendix, Figs. S3 A–F and S4 A–F).
We also used the social activity monitor (SAM) to assess

spontaneous home-cage activity in Pigv341E mice while living in a
group setting. For this test, we implanted a radio-frequency
identification (RFID) transponder into the mice and put the
home cage with mixed genotypes on a grid box that could locate
individual animals and their position in the cage at all times
(continuous 24 h/day recording). Because the animals were un-
disturbed in their home cage, SAM analysis could be performed
several times without the animals noticing. For the first two time
points (9 and 17 wk), SAM analysis revealed no difference be-
tween genotypes in total distance traveled over 14 d (SI Ap-
pendix, Fig. S4G), but an unexpected switch in diurnal/nocturnal
activity for both genotypes was observed. The mice were more
active during the light (normal sleeping time) than the dark
phases of their days (SI Appendix, Fig. S5 A and C; confirmed by
Markov chain Monte Carlo generalized linear mixed-effects
models [MCMCglmm], pMCMC = 0.001). This observation
supported the HCS data that Pigv341E mice slept less, which is a
feature of some patients with IGDs who suffer from sleep dis-
turbances (7, 20). We performed a second experiment in which
we evaluated the spontaneous activity of the Pigv341E and wild-
type mice separately (nonmixed vs. mixed-genotype cages).
When Pigv341E and wild-type mice lived together in the same
cage (mixed genotype), we reproduced our previous results:
Mice of different genotypes exhibited no difference in total
distance traveled over 4 d (Fig. 2C, Left graph), per phase
(Fig. 2D, Left graph), per day (SI Appendix, Fig. S2C), and per
hour (SI Appendix, Fig. S2D), but they still exhibited higher
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activity levels (larger variability) during the light vs. dark phase
(SI Appendix, Fig. S2D, confirmed by MCMCglmm, pMCMC =
0.001). However, in nonmixed housing conditions Pigv341E mice
walked greater distances over 4 d (Fig. 2C, Right graph), per
phase (Fig. 2D, Right graph), per day, and per hour (Fig. 2 E and
F) than wild-type mice, and again, Pigv341E mice were more ac-
tive during the light than the dark cycle on days 1 and 2 (Fig. 2E).

Pigv341E Mice Exhibit Motor Dysfunction and Alterations in Sociability.
Extensive testing of various motor functions in Pigv341E mice
revealed a clear and elaborated dysfunctional motor phenotype.
Pigv341E mice had reduced balance and motor coordination,
reflected by a reduced latency of falling off the rotarod (Fig. 3A).
This was confirmed by an elevated latency of traversing an ele-
vated beam (Fig. 3B). In the rope grip test, Pigv341E mice
exhibited an elevated latency of climbing on the rope, and had a
lower hanging score than wild-type mice (Fig. 3C and SI Ap-
pendix, Fig. S6A, Right graph). Furthermore, Pigv341E mice had
reduced grip strength (Fig. 3D). Next, we evaluated the walking
pattern of Pigv341E mice using the footprint test (Fig. 3E).
Pigv341E mice had a larger distance between forepaw and hind-
paw (S) in paw placement of the stride (Fig. 3F); this is re-
markable because walking mice usually place their hind paws in
the same positions as their forepaws (Fig. 3E, see WT).
We evaluated social behavior in Pigv341E mice in the social

proximity and three-chamber tests. In the social proximity test,

Pigv341E mice exhibited a reduced number of “rear up” behaviors
and an elevated number of nose-to-anogenital contacts with the
stranger mouse (Fig. 3G). However, no differences in the num-
ber of nose-tip-to-nose-tip, nose-to-head-contact, “crawl over,”
or “crawl under” behaviors were observed between genotypes (SI
Appendix, Fig. S7A). In the three-chamber test, Pigv341E mice
spent more time with the stranger mouse than in the vicinity of
the empty cage (Fig. 3H). Furthermore, the discrimination ratio
(stranger vs. empty cage) was higher in Pigv341E than in wild-type
mice (SI Appendix, Fig. S7D, Right graph).

Pigv341E Mice Exhibit Cognitive Deficits in Spatial Long-Term Memory
and Species-Specific Hippocampus-Dependent Functions. To char-
acterize the cognitive and affective profile of Pigv341E mice, we
performed a battery of tests to assess aspects of spatial learning
and memory, species-specific functions (Barnes maze, y-maze,
marble burying, and nest building behavior), and spontaneous
response to novel, open, and elevated or bright environments
(open field, elevated plus maze, and dark/light box). In the
Barnes maze test, Pigv341E mice were delayed in spatial learning,
as indicated by an elevated latency to escape during days 1 to 3
(Fig. 4A). Despite this delay in spatial learning during days 1 to 3,
Pigv341E mice had learned the location of the escape box by day 4
and exhibited normal short-term spatial memory at day 5.
However, Pigv341E mice had impaired long-term spatial memory
at day 12, reflected by an elevated latency to escape (Fig. 4A).
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Fig. 1. Features of Pigv341E mice. (A) Flow cytometry analysis of hom-Pigv341E MEFs isolated from embryos (E13.5) revealed a reduced MFI of FLAER. MFI was
normalized against the wild type. (B) Male Pigv341E mice had a reduced weight on postnatal days (P) 1 to 82. (C) Hom-Pigv341E mice exhibited hindlimb
clasping behavior. (D) Representative posture of hindlimb clasping behavior in hom-Pigv341E mice. By contrast, wild-type mice spread their hindlimbs when
picked up by their tail. Hom-Pigv341E = homozygous for Pigv p.Ala341Glu; het-Pigv341E = heterozygous for Pigv p.Ala341Glu. Animals used for the weight
curve: WT(male = 3), hom(male = 4). Animals used for the hindlimb clasping test were 6 wk old: WT(female n = 3, male n = 5), het-Pigv341E(female n = 4, male
n = 4), hom-Pigv341E(female n = 4, male= n = 6). Data from the weight curve were analyzed by two-way ANOVA followed by Bonferroni’s multiple com-
parisons test. The data from flow cytometry and the hindlimb clasping test were analyzed by nonparametric t test (Mann–Whitney). *P < 0.05, ***P < 0.001.
ns, not significant.
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Similar to the results that measured latency to escape, Pigv341E

mice had an elevated path length for days 1 to 4 and 12, but
not day 5 (Fig. 4B). Furthermore, Pigv341E mice spent less time in
the target quadrant than wild-type mice at day 12, confirming
deficits in long-term spatial memory (SI Appendix, Fig. S8B,
Right graph). In the y-maze test, similar spontaneous alternation
behavior between genotypes suggested normal short-term spatial
working memory in Pigv341E mice (SI Appendix, Fig. S8A). In the
species-specific and hippocampus-dependent tests of marble
burying and nest construction (21), Pigv341E mice buried fewer
marbles and had lower-quality nests (Fig. 4 C and D).
Pigv341E mice behaved similarly to wild-type mice in the dark/

light box and elevated plus maze (SI Appendix, Fig. S9 A and B).
In the open field test, Pigv341E mice spent less time in the center
and more time in the periphery than wild-type mice (SI Appen-
dix, Fig. S9C). Moreover, the path length and number of visits to

the center were reduced in Pigv341E mice (SI Appendix, Fig.
S9 D and E).

Pigv341E Mice Exhibit Defects in Synaptic Transmission. Because
Pigv341E mice exhibited cognitive impairments in spatial learning
and memory, we hypothesized a hippocampal defect, and this
idea was supported by the reduced burrowing and nest building
behavior (hippocampus-dependent) in Pigv341E mice. Hence, we
decided to analyze the hippocampus in more detail. Nissl stain-
ing revealed no morphological abnormalities in the hippocampus
of Pigv341E mice (SI Appendix, Fig. S10C). Because many GPI-
linked proteins play crucial roles in synapse formation and
plasticity, causing deficits that can be detected in cell culture
(22), we performed immunostaining to visualize synaptophysin,
a presynaptic marker. We observed a decreased immunoreac-
tivity for synaptophysin in cornu ammonis 1–stratum radiatum
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(CA1–SR) of Pigv341E mice (Fig. 5A). By contrast, we observed
no significant differences between genotypes in cornu ammonis
3–stratum radiatum (CA3–SR) or cornu ammonis 1–molecular
layer of dentate gyrus (CA1–ML) (SI Appendix, Fig. S10 A and
B). To determine whether the behavioral abnormalities were
accompanied by deficits in synaptic transmission, we conducted
electrophysiology recordings in the CA1–SR region, where syn-
aptophysin levels were reduced in Pigv341E mice. We tested
input–output functions and observed lower amplitudes of excit-
atory postsynaptic potential (EPSPs) at different stimulation
intensities in Pigv341E mice (Fig. 5B). In paired pulse facilitation
(PPF), Pigv341E mice exhibited an elevated paired pulse ratio
(PPR) (Fig. 5C). Moreover, posttetanic potentiation (PTP)
exhibited elevated facilitation in Pigv341E mice (Fig. 5D).

Increased Susceptibility of Pigv341E Mice to Chemically Induced Acute
Seizures. Considering the altered electrophysiological properties
in Pigv341E mice, we examined for differences in the seizure
threshold between Pigv341E and corresponding littermate wild-
type mice in an acute epilepsy model, the pentylenetetrazole
(PTZ)-induced kindling model (23). To this end, mice were re-
petitively exposed to PTZ (10 mg/kg, i.p.) every 10 min until the
occurrence of a first focal-to-bilateral tonic–clonic seizure oc-
curred. Intriguingly, Pigv341E mice exhibited a significantly lower
seizure threshold, manifesting as a reduced latency to first sei-
zure than wild-type mice, which exhibited convulsive seizures
after PTZ exposure. Wild-type animals manifested generalized
seizures after 93.3 min, whereas in Pigv341E mice, the first seizure
manifested already after 63.3 min (Fig. 5E, Middle graph). Fur-
thermore, the observation that four wild-type animals did not
exhibit any seizure after 10 injections, whereas all Pigv341E mice
did, underlines the higher susceptibility of Pigv341E mice for
seizure induction via PTZ (χ2 = 105.3, df = 4, P < 0.0001)

(Fig. 5E, Left graph). In addition, Pigv341E mice exhibited more
severe seizures than wild-type mice (χ2 = 74.21, df = 1, P <
0.0001) (Fig. 5E, Right graph).

Shift in Relative Cell Count of Hippocampal Cellular Subgroups in
Pigv341E Mice. The synaptic defect in the CA1–SR region of
Pigv341E mice could have been responsible for the observed im-
pairments in spatial learning and memory. To identify the cell
types most affected by GPIBD, we performed single-cell RNA
sequencing on freshly isolated hippocampal cells after cognitive
behavioral tests. The isolation of hippocampal cells was per-
formed as previously described (24). Based on the gene expres-
sion profiles of 8,800 single cells from Pigv341E mice and 7,100
cells from wild-type animals, we defined 17 cellular subgroups
(Fig. 6A). Cells from both Pigv341E and wild-type mice were
present in all subgroups, but the distributions differed between
genotypes (χ2 = 306.49, df = 16, P < 2.2 × 10−16). While the
fractions of granule cells, oligodendrocytes, and a microglia
subpopulation (microglia 3) were reduced in pooled samples
from Pigv341E mice, the proportions of subicular neurons (neu-
rons subiculum 1), GABAergic (inhibitory) interneurons, and
fibroblast-like cells were higher than in the pooled wild-type
samples (Fig. 6B).

Pigv341E Hippocampal Cells Exhibit a Deregulation in Gene Expression
Related to Synapse Organization and Signaling Transduction. Ex-
pression analysis of single-cell RNA sequencing data revealed
multiple genes that were differentially expressed between Pigv341E

and wild-type cells within each cellular subgroup (Fig. 6C). In the
mutant mice, nonreceptor tyrosine kinase Abl1 was down-regu-
lated, whereas histidine decarboxylase Hdc, cytochrome P450
member Cyp4x1, and predicted lncRNA Gm14216 were up-reg-
ulated, both within and across all cellular subgroups (Fig. 6D and

A Barnes maze-latency to escape

***

ns

Day
 1

Day
 2

Day
 3

Day
 4

Day
 5

Day
 12

0

50

100

150

200

la
te

nc
y 

to
 e

sc
ap

e 
[s

]

learning memory

***
***

ns ***

Wt
Pigv341E

B Barnes maze-path length

**
***

***

ns

***

Burying behavior Nest constructionC

0

5

10

15

20

[#
] o

f  
bu

rie
d 

m
ar

bl
es

***

Wt Pigv341E
0

25

50

75

100

125

C
ot

to
n 

us
ed

 [%
]

****

Wt Pigv341E

D

W
t

Pi
gv

34
1E

Nest 
construction

Burying
behavior

memorylearning

Day
 1

Day
 2

Day
 3

Day
 4

Day
 5

Day
 12

0

300

600

900

pa
th

 le
ng

th
 [c

m
]  ***

Wt
Pigv341E

Fig. 4. Pigv341E mice exhibit cognitive deficits in learning and memory. (A and B) Pigv341E mice exhibited cognitive deficits in learning and long-term memory,
reflected by increases in latency to escape and path length on days 1 to 3 (learning) and day 12 (long-term memory in the Barnes maze). (C) Pigv341E mice
exhibited a decrease in burying and nest construction behavior. (D) Representative image of burrowing behavior (Left) and nest construction behavior (Right)
of wild-type and Pigv341E mice. Pigv341E = homozygous for Pigv p.Ala341Glu. Animals used in the Barnes maze: WT(female n = 8, male n = 11), Pigv341E(female
n = 4, male n = 6). Animals used in the marble-burying test: WT(female n = 9, male n = 11), Pigv341E(female n = 4, male n = 7). Animals used in the nest
construction test were 7 wk old: WT(female n = 8, male n = 4), Pigv341E(female n = 4, male n = 2). The data from the nest construction and marble-burying
tests were analyzed with a nonparametric t test (Mann–Whitney). The data from the Barnes maze (latency to escape, path length) were analyzed by two-way
ANOVA followed by Bonferroni’s multiple comparisons test. *P < 0.05 **P < 0.01, ***P < 0.001. ns, not significant.

6 of 11 | PNAS Rodríguez de los Santos et al.
https://doi.org/10.1073/pnas.2014481118 A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human

phenotypes and exhibits hippocampal synaptic dysfunctions

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014481118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014481118/-/DCSupplemental
https://doi.org/10.1073/pnas.2014481118


SI Appendix, Figs. S16–S18). The most extensive change in gene
expression within a cellular subgroup was observed in the first
subgroup of subicular neurons and the third subgroup of microglia
(Fig. 6C and SI Appendix, Figs. S16 and S17). We also performed
Gene Ontology (GO) analysis of differentially expressed genes
between genotypes, including terms in three categories: biological
process, cellular component, and molecular function (Fig. 6 E–G).
Among the differentially expressed genes in subicular neurons, the
biological process term “regulation of synapse organization” was
enriched in genes up-regulated in Pigv341E cells, whereas the bio-
logical process terms “cell morphogenesis” and “commissural
neuron axon guidance” were enriched in down-regulated genes
(Fig. 6E). Furthermore, the biological process term “cell–cell

adhesion via plasma-membrane adhesion molecules” was enriched
in genes with elevated and reduced expression (Fig. 6E).
Single-cell RNA sequencing revealed three hippocampal

microglia populations in both genotypes (Fig. 6 A and B,
microglia 1 to 3). All three subpopulations expressed the marker
genes Csf1r and C1qa (SI Appendix, Fig. S15). Among the most
significant differentially expressed genes between the three
microglia subgroups and all remaining cells in both genotypes,
“cell activation,” “migration,” “phagocytosis,” and “immune re-
sponses” were among the top 10 GO biological process terms in
microglia 1 and 2 (Dataset S2). By contrast, the top 10 GO bi-
ological process terms in microglia 3 cells were “ribosome,”
“ribonucleoprotein complex biogenesis,” and “cytoplasmic
translation” (Dataset S2). Hence, we considered microglia 1 and
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2 cells as potentially more phagocytic and migratory than
microglia 3 cells. We identified 326 genes that were differentially
expressed between genotypes in microglia 3 cells. Remarkably,
306 of these 326 genes were down-regulated in microglia 3 cells
of Pigv341E mutants (Fig. 6C). GO analysis revealed that the
down-regulated genes were enriched for the biological process
terms “small GTPase-mediated signal transduction” and “regu-
lation of microtubule cytoskeleton polymerization and depoly-
merization” (Fig. 6E). In addition, we identified 20 genes
differentially expressed between genotypes that were up-regu-
lated in Pigv341E microglia 3 cells. Among these were Rpl38,
Rps21, and Rps28, which encode ribosomal proteins.

CA3 pyramidal neurons project their axons to the CA1 region,
where we observed dysfunction in synaptic transmission in
Pigv341E mice. Therefore, we were particularly interested in the
cellular subgroup of CA3 pyramidal neurons, in which we iden-
tified 79 genes that were differentially expressed between gen-
otypes (Fig. 6C). GO analysis revealed that down-regulated
genes were enriched for the terms “adherens junction organi-
zation,” “regulation of cell-substrate junction assembly,” and
“focal adhesion assembly” in Pigv341E CA3 pyramidal neurons
(Fig. 6E). Interestingly, we also observed enrichment of genes
with reduced expression related to “neuron–neuron synaptic
transmission,” “regulation of synaptic vesicle exocytosis,” and
“synaptic vesicle transport” (Dataset S3).

Discussion
Pigv341E is a mouse model for GPI-anchor deficiency with a hy-
pomorphic mutation that is viable after weaning. The mice
exhibited significant alterations in behavior that reflect key as-
pects of patients with IGD.
In these mice, we observed a severe motor phenotype that

included deficits in motor coordination, grip or muscle strength,
climbing, and hanging behavior (in HCS); alterations in walking
pattern; and hindlimb clasping. Behavioral traits such as altered
walking pattern, hindlimb clasping, and motor coordination
deficits are usually observed in mouse models with ataxia-like
behavior and cerebellar dysfunction (25, 26). In agreement with
these findings, ataxia has been reported in some IGD patients,
and an ataxia-like behavior was observed in a conditional Piga
knockout mouse model (10, 19). Lukacs et al. analyzed the mi-
croscopic anatomy of cerebellum sections from their conditional
Piga knockout mouse model and observed mild deficits in Pur-
kinje cell arborization (10). However, in histologic analysis with
various stainings, the cerebellum of our Pigv341E mutants did not
exhibit any abnormalities (SI Appendix, Fig. S11 A–F), and the
overall folial pattern appeared to be unchanged. In particular,
calbindin staining exhibited no differences in Purkinje cell den-
dritic arborization between genotypes (SI Appendix, Fig. S11 E
and F). Therefore, we hypothesize that deficits in dendritic ar-
borization in this neuronal cell type, as reported by Lukacs et al.
(10) require a more severe GPIBD than that induced by the
hypomorphic mutation c.1022C > A in Pigv. This is consistent
with the longer lifespan of our mouse model, which allowed us to
analyze the associated cognitive deficits. In addition to the cer-
ebellum, we focused on the hippocampus, where we performed
histology and electrophysiology to achieve a deeper under-
standing of the memory and species-specific deficits. Although
we did not observe significant morphological changes in the
hippocampus, the input–output curve, PPR, and PTP were sig-
nificantly altered in Pigv341E mice, indicating that electrophysi-
ology is a sensitive functional assay for mouse models with
mild GPIBD.
Because Pigv341E mice exhibited increased self-grooming,

which is a repetitive, highly stereotyped pattern that is associated
with autistic-like behavior in rodents (27), we suspected abnor-
malities in social behavior as well. Autistic features have been
reported in a subgroup of patients with IGD due to pathogenic

mutations in PGAP3 (7). By contrast, patients with PIGV defi-
ciency are keen to interact socially despite their severe speech
impairments. Interestingly, in Pigv341E mice we observed en-
hanced social approach behavior, reflected by an elevated
number of nose-to-anogenital contacts and reduced “rear up”
behavior in the social proximity test. The reduction in “rear up”
behavior in Pigv341E mice suggested reduced social avoidance.
The enhanced social approach behavior was confirmed in the
three-chamber test: relative to wild-type controls, Pigv341E mice
spent more time with the stranger mouse than in the vicinity of
the empty cage. Comparable performance between genotypes in
the buried food test ruled out compromised olfaction, a potential
confounder in social behavior tests (SI Appendix, Fig. S7C).
Taking into account the enhanced social approach behavior in
Pigv341E mice, the positive social abilities of patients with PIGV
deficiency seem to be characteristic of these individuals and
should be considered during diagnosis. However, it remains
unknown to what extent IGD patients who are affected in genes
other than PIGV exhibit positive social abilities. In addition,
because we did not observe social behavior characteristic of
autism (28) in Pigv341E mice, and autistic features are seen only
in a subgroup of patients with IGD, autism should not be con-
sidered as a specific feature of IGD.
Pigv341E mice exhibited a deficit in spatial long-term memory

in the Barnes maze, correct short-term spatial memory, and
short-term working memory (y-maze test). Furthermore, Pigv341E

mice exhibited a delay in spatial learning relative to wild-type
mice in the Barnes maze (days 1 to 3). In the Barnes maze, both
latency to escape and path length were elevated in Pigv341E mice;
therefore, we excluded the motor phenotype as a confounder.
However, even though path length and latency to escape were
elevated in Pigv341E mice, the number of visits to the wrong holes
was not significantly altered on days 2 through 12 (SI Appendix,
Fig. S8C). Analysis of the search strategy revealed that Pigv341E

mice were targeting the correct hole without any errors (number
of wrong holes) less often than wild-type mice (SI Appendix, Fig.
S8D, direct strategy) (WT: 15.8%, Pigv341E: 3.3%). Moreover, we
quantified two further search strategies: random choice of a hole
without any order and a serial strategy that tests holes one after
another in close proximity. Pigv341E mice used more often the
random strategy (WT: 9.7%, Pigv341E: 56.7%), whereas wild-type
mice used more often the serial strategy to find the correct hole
(WT: 25.4%, Pigv341E: 20.0%) (SI Appendix, Fig. S8D). In con-
trast to random guessing, the serial strategy has the advantage
that it minimizes the path length and by that means will result in
a quicker escape. However, the serial strategy results also in a
higher number of errors. This potentially explains why the la-
tency to escape was significantly elevated in Pigv341E mice,
whereas the number of wrong holes did not significantly differ
between genotypes.
Furthermore, we observed no difference between genotypes in

affective-related behavior (dark/light box, elevated plus maze)
except in the open field test, in which Pigv341E mice spent more
time in the periphery than in the center. However, this obser-
vation could also represent a confounder due to the motor
phenotype, as the number of entries to the center and the path
length were also reduced in Pigv341E mice.
Interestingly, electrophysiology recordings revealed reduced

synaptic transmission at CA1–SR in Pigv341E mice, consistent with
the observed impairment in long-term spatial memory and hippo-
campus-dependent species-specific behaviors (marble-burying and
nest construction test). While PTP and PPR were elevated in
Pigv341E mice, the input–output curve was reduced, indicating a
decrease in synaptic release probability. Due to the increase in PTP
and PPR, and the reduced immunoreactivity of synaptophysin, a
presynaptic vesicle protein, we hypothesize that the pool of readily
releasable vesicles in the presynapse is reduced, resulting in a
damped input–output curve in the postsynapse. Notably in this

Rodríguez de los Santos et al. PNAS | 9 of 11
A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human
phenotypes and exhibits hippocampal synaptic dysfunctions

https://doi.org/10.1073/pnas.2014481118

N
EU

RO
SC

IE
N
CE

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014481118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014481118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014481118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014481118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014481118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014481118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014481118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014481118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014481118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014481118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014481118/-/DCSupplemental
https://doi.org/10.1073/pnas.2014481118


regard, GO analysis of single-cell RNA sequencing data revealed
that genes which were significantly down-regulated in Pigv341E-CA3
pyramidal neurons were enriched for GO biological process terms
associated with “synaptic transmission” and “vesicle transport.” The
impaired synaptic transmission in the hippocampi of Pigv341E mice
was reflected in their lower threshold to the excitotoxin-induced
epileptic events and aggravated seizures than wild-type mice.
Single-cell RNA sequencing data revealed the most prominent

differences in gene expression in a subgroup of subicular neurons
and microglia. In subicular neurons 1, up-regulated genes were
associated with biological process terms such as “synapse orga-
nization.” Because we observed a synaptic defect in CA1–SR, as
revealed by immunohistochemistry and as further supported by
electrophysiological recordings, we hypothesized a synaptic de-
fect in the subiculum as well. The subiculum, an area of the
hippocampus that is important for memory retrieval, is linked
through microcircuits with the CA1 (29). Ledergerber and Moser
(29) described two distinct circuits for memory acquisition and
retrieval: memory acquisition involves the CA1 and medial-
entorhinal cortex, whereas memory retrieval involves the CA1,
the medial-entorhinal cortex, and the subiculum. Future studies
should seek to determine whether memory acquisition, memory
retrieval, or even both conditions are affected in Pigv341E mice.
Strikingly, 306 genes were down-regulated in Pigv341E micro-

glia 3 cells. Therefore, microglia might play more important roles
in GPI-anchor deficiency than previously thought. These genes
were enriched in GO biological process terms “protein locali-
zation to cell periphery,” “small GTPase-mediated signal trans-
duction,” and “regulation of microtubule polymerization or
depolymerization.” Small GTPases are important mediators of
the cytoskeleton (30). Hence, we hypothesized that a GPI-an-
chor defect leads to down-regulation of small GTPase-mediated
pathways, which has further consequences for cytoskeleton or-
ganization in this microglia subtype. In this regard, GPI-an-
chored ephrin A proteins could play an important role, as
EphrinA1 regulates small GTPase (Rho)-dependent cytoskele-
ton rearrangement through Src/focal adhesion kinases (31).
Up to 0.5% of the eukaryotic proteins are GPI linked, with a

broad range of functions including cell–cell adhesion, signal
transduction, and antigen presentation (32). Therefore, it is
surprising that the pathophysiology of acquired GPI-anchor de-
ficiency PNH can be explained by the reduced expression of only
two substrates, CD55 and CD59, which reduces the protection of
cells against membrane attack complex (MAC), and can also be
effectively treated by eculizumab, which inhibits complement
activation (33). Likewise, analysis of mouse models of congenital
forms of GPI-anchor deficiencies has aimed at identifying other
lead targets. McKean and Niswander suggested a pivotal role of
Cripto/TGFβ signaling in the development of holoprosencephaly
(14), whereas Lukacs et al. discussed the role of GPI-anchored
Folr1 in neural crest cells and the cranial neuroepithelium, and
argued that compromise of Folr1 could be linked to the facial
gestalt (13).
Interestingly, a considerable number of GPI-linked proteins

are involved specifically in synapse formation and plasticity (1).
Because Pigv341E mice exhibit a hippocampal synaptic defect, this
subset of GPI-linked proteins, including GPI-linked EphrinA,
may play pivotal roles in the development of the disease as well.
Single-cell RNA sequencing analysis revealed that Abl1, which
interacts on the protein level with several EphrinA receptors (SI
Appendix, Fig. S6F) (34), was not only down-regulated in Pigv341E

mice across all cellular subgroups, but also within each cellular
subgroup. Our hypothesis is that the GPI-anchor defect in the
hippocampus is especially critical for EphrinA signaling, and that
defective GPI anchoring of EphrinA in turn reduces hippo-
campal EphrinA receptor and Abl1 activity. Notably in this
regard, axon repulsion is EphrinA dependent and mediated
through the Abl kinase family (35).

Along with Abl1, Hdc and Ptgds were also dysregulated in
Pigv341E mice, with elevated expression across all cellular sub-
groups. Hdc encodes a histidine decarboxylase that catalyzes the
conversion from histidine to histamine, an important neuro-
transmitter regulating circadian rhythm (36). In rodents, hista-
mine levels are elevated during the dark phase to induce
wakefulness and are reduced during the light phase to induce
sleep (37). Furthermore, intracerebroventricular application of
histamine triggers characteristic signs of wakefulness, such as
elevated grooming and exploration behavior, which were also
observed in Pigv341E mice (HCS and SAM) (37). In addition,
during home-cage activity monitoring (group housed) and the
HCS (individually housed), Pigv341E mice were more active
during the light cycle and slept for shorter durations. Conse-
quently, higher expression of Hdc may lead to higher production
of histamine, thereby disturbing circadian rhythm and causing
classical signs of wakefulness in Pigv341E mice during the light
phase. However, it remains unknown how misregulation of Hdc
is associated with GPI-anchor deficiency. Interestingly, in the
conditional Piga knockout mouse model, bulk RNA sequencing
of the cerebellum revealed an enrichment of deregulated genes
associated with the circadian rhythm (10). Moreover, Ptgds en-
codes prostaglandin D2 synthase, which converts prostaglandin
H2 (PGH2) into prostaglandin D2 (PGD2), which in turn in-
duces sleep (38). PGD2 levels fluctuate with the circadian
rhythm and are elevated in the cerebrospinal fluid when rats are
sleep deprived (39). Therefore, up-regulation of Ptgds expression
could be an indicator of sleep deprivation in Pigv341E mice. Be-
cause Pigv341E mice exhibit fewer resting phases during their
classical inactive (light) phase, a careful analysis of sleep pattern
in IGD patients is indicated. To date, sleep disturbances have
mainly been reported in patients with PGAP3 deficiency (19).
In summary, we have performed a deep phenotypic charac-

terization of a mouse model that mirrors the symptoms of human
patients with IGD. In addition, we detected a hippocampal
synaptic defect that may impair spatial long-term memory and
important species-specific behaviors for the survival of the ani-
mal. We hope that our model, as well as our phenotyping ap-
proach, will be useful in future studies aimed at a detailed
elucidation of the pathomechanism of IGD and the response to
therapeutic interventions.

Materials and Methods
For full methods, see SI Appendix, Supplementary Material and Methods.

Animals. Pigv341E mice were generated by diploid or tetraploid aggregation
(40) (SI Appendix, Fig. S1A) and maintained by crossing with C57BL.6/J mice.
Mice were genotyped by PCR using the primers mPigvEx4_fw and mPig-
vEx4_rv. PCR amplicons were digested with BcuI (Thermo Fisher Scientific)
and subjected to agarose gel electrophoresis (SI Appendix, Fig. S1D). All
animals were handled according to government regulations as approved by
local authorities (LaGeSo Berlin and LANUV Recklinghausen). In addition, all
experiments were carried out following the 3R (Replacement, Reduction and
Refinement) guidelines for animal welfare. Mice were housed in groups with
mixed genotypes in single ventilated cages with an enriched environment.
The mice were housed in a pathogen-free animal facility with a 12 h dark/
light cycle and had food and water ad libitum unless otherwise indicated.
Mice used for experiments were 8 wk to 6 mo old unless otherwise indi-
cated. Pigv341E and wild-type mice used in a given experiment were the same
age. To avoid bias effects, littermates were assigned equally to both ex-
perimental groups, according to their genotype and sex. The experimenter
was blinded except during behavioral testing, as Pigv341E mice were physi-
cally smaller. Moreover, experiments were randomized with respect to
mouse genotype.

Statistical Analysis. For all experiments, at least four animals per genotype
were used, except for the weight curve, for which at least three animals per
genotype were used. One animal was defined as one biological replicate and
represented one data point, except for electrophysiology recordings (see SI
Appendix, Schaffer collateral recordings). Means and SDs were calculated for
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each genotype group unless otherwise indicated. Data were statistically
analyzed with GraphPad Prism (version 7) or R (version 3.6.3) (41), and results
are expressed as means ± SDs. Statistical tests were performed for each
experiment as indicated in Dataset S1. Results with P value <0.05 were
considered significant unless otherwise indicated.

Data Availability. The single-cell RNA sequencing data are freely available
from the Gene Expression Omnibus repository under accession number
GSE147722.
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