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Abstract.  

 

Genomes are critical units in microbiology, yet ascertaining quality in prokaryotic 

genomes remains a formidable challenge. We present GUNC (the Genome 

UNClutterer), a tool that accurately detects and quantifies genome chimerism based on 

the lineage homogeneity of individual contigs using a genome’s full complement of 

genes. GUNC complements existing approaches by targeting previously underdetected 

types of contamination: we conservatively estimate that 5.7% of genomes in GenBank, 

5.2% in RefSeq, and 15-30% of pre-filtered ‘high quality’ metagenome-assembled 

genomes in recent studies are undetected chimeras. GUNC provides a fast and robust 

tool to substantially improve prokaryotic genome quality. Source code (GPLv3+): 

https://github.com/grp-bork/gunc 
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Introduction 

Genomes are the genetic blueprint of prokaryotic lineages, a fundamental unit of microbiology 

[1] at the heart of the ongoing census of the microbial world [2,3] and essential to the study of 

microbial ecology and evolution [4]. Twenty-five years after the first release of a complete 

bacterial genome in 1995 [5], more than 700,000 prokaryote genomes have been deposited to 

NCBI GenBank [accessed 30th of July 2020], doubling almost yearly as genome-based 

analyses have become the backbone of many disciplines in microbiology. Historically, the vast 

majority of microbial genomes have been derived from cultured isolates which directly links 

genome sequences to a physical sample, but excludes the significant number of species that 

cannot be easily cultivated [4,6]. 

 

A promising approach to overcome this deficiency is the delineation of genomes from complex 

microbial communities using metagenomic data. As early as 2004, nearly complete 

metagenome-assembled genomes (MAGs) were used to chart the diversity of an acid mine 

drainage microbial biofilm [7]. Since then, algorithmic advances in binning tools such as canopy 

clustering [8], CONCOCT [9], MaxBin [10], ABAWACA [11] or metaBAT [12] have enabled the 

automated recovery of MAGs at large scales, with individual studies now routinely reporting tens 

of thousands of novel genomes [13–15]. MAGs have led to the discovery of novel deep-

branching lineages previously eluding cultivation-based approaches, such as the 

Asgardarchaeota [16] or the bacterial Candidate Phyla Radiation [11,17], thereby substantially 

expanding the microbial tree of life [18,19]. Moreover, MAGs can be taxonomically resolved to 

strain level [20,21] which is particularly beneficial in undersampled environments where 

reference genomic coverage is scarce [22,23]. 
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As analyses in many microbiological disciplines now critically depend on high-quality genomes, 

the sheer amount of accruing genomic data, calls for an automated rapid and accurate quality 

assessment. A substantial fraction of deposited genomes, even those of supposedly high quality 

in dedicated databases (e.g. Refseq, [24]), contain foreign genome fragments [25] that can 

originate both in vitro and in silico (Fig. 1a). Errors in isolate-derived genomes are typically 

introduced during physical sample processing, e.g. due to contamination of reagents or culture 

media [25]. In contrast, the principal error sources in MAGs are expected to be computational 

[22]: misassembly (i.e., genomic fragments from multiple sources are wrongly assembled 

together, resulting in chimeric contigs) and mis-binning (contiguous fragments from different 

sources are erroneously assigned to the same genomic bin, resulting in chimeric genomes). Of 

these two, mis-binning is expected to be the major source of errors, as misassemblies are 

relatively rare [26]. Genome quality is mainly assessed based on fragmentation (i.e., the size 

distribution of assembled contigs, with ‘closed’ genomes as the optimum), completeness (the 

fraction of the source genome captured), and contamination (‘surplus’ genomic fragments 

originating from other sources), frequently estimated based on ubiquitous and single-copy 

marker genes (SCGs), using tools such as BUSCO [27] or CheckM [28]. 

 

Erroneous genomes can affect analyses in different ways: whereas type II errors introduced due 

to missing or truncated genetic elements in fragmented or incomplete genomes can usually be 

mitigated, contaminating fragments are detrimental to biological interpretation, as they may 

cause false inferences about a genome’s functional repertoire or structure [22,25]. 

Operationally, two types of genome contamination can be distinguished (Fig. 1b). Redundant 

contamination involves surplus genomic fragments (e.g., genes from gene families already 

present in the focal genome) from related sources (often within the same or related lineages). In 

contrast, non-redundant contamination involves foreign fragments (e.g., gene families not 

encoded in the focal genome’s lineage) that replace or extend part of the source genome with 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.16.422776doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.16.422776
http://creativecommons.org/licenses/by-nc/4.0/


 

unrelated, non-overlapping material, leading to chimeric genomes. Intuitively, redundant 

contamination can be thought of as an addition of ‘more of the same’ genomic material, 

whereas non-redundant contamination adds ‘something new’. 

 

Genome contamination can be difficult to estimate, particularly for phylogenetically novel 

lineages that are not well represented by existing references. By design, SCG-based estimators 

of genome quality can detect redundant contamination with high sensitivity, but they are less 

sensitive towards non-redundant contamination, since they only consider inventories of 

expected SCGs as a whole, remaining agnostic to conflicting lineage assignments between 

individual genes [28,29]. The widely used CheckM algorithm [28] first places a query genome 

into a reference phylogeny, then defines a clade-specific set of expected SCGs to estimate 

genome completeness and contamination. However, for genomic chimeras of unrelated 

lineages, phylogenetic placement will be more conservative, nearer the root, limiting the range 

of consensus SCGs: in the extreme case of root-level placement, quality estimates are based 

on only 43 near-universal genes [28], corresponding to just 1-2% of an average prokaryotic 

genome. Moreover, lineage-specific SCGs, in particular those with deep phylogenetic roots, are 

often not evenly distributed across the genome, but locally clustered [30,31], additionally limiting 

their representation of the query genome. Such biased quality estimates can have a detrimental 

impact on biological interpretation, as demonstrated in the case of the novel deeply branching 

lineage Rokubacteria [29], and more recently shown anecdotally for manually curated human 

gut-derived MAGs [22]. As a result, the use of SCG inventories as the exclusive estimator of 

genome quality has been questioned, in particular in the context of large-scale automated 

genome binning [22]. 

 

Here we present GUNC (the Genome UNClutterer), a fully integrated workflow to estimate 

genome chimerism based on the full gene complement, using an entropy-based measure of 
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lineage homogeneity across contigs. In various simulation scenarios, we demonstrate that 

GUNC accurately quantifies genome contamination at high sensitivity and can pinpoint 

problematic contigs within genome bins. We further identify a substantial fraction of chimeric 

genomes in GenBank [32], the Genome Taxonomy Database [33] and recently published large-

scale MAG datasets [13–15] for which contig misbinning also leads to inflated estimates of 

phylogenetic diversity and taxonomic novelty. GUNC source code is available under a GPLv3 

license at https://github.com/grp-bork/gunc. 

 

Results 

GUNC estimates genome quality based on contig homogeneity using the full 

complement of genes  

Our rationale in designing GUNC was to estimate genome quality based on the phylogenetic 

homogeneity of contigs with respect to a genome’s entire gene content. Using a filtered and 

curated set of high quality reference genomes derived from proGenomes2.1 [34], GUNC infers 

each gene’s clade membership across a hierarchy of taxonomic levels, using taxonomy as a 

proxy for phylogeny. While ideally a genome would receive a single dominant label, 

corresponding to its true classification, there are two main reasons why this may not happen: it 

may be contaminated or it may lie outside the reference set and thus, due to prediction 

limitations, receive a set of inconsistent inferences.  

 

GUNC attempts to distinguish between these two cases by computing a clade separation score 

(CSS) which builds upon an entropy-based metric [35]. The CSS measures how diverse the 

taxonomic assignments are within each contig, normalized to the diversity across the whole 

genome and to the expected entropy when there is no relationship between taxonomy and 

contig labels, thus returning a value between 0 and 1 (see Methods). Intuitively, if a genome is 
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composed of contigs that are internally homogeneous, but disagree with each other, then the 

metric will return a value closer to 1. On the other hand, a genome that, because it lies outside 

the reference set, is assigned a myriad of labels, but where the labeling does not follow contig 

boundaries, will have a CSS closer to 0. The CSS quantifies the degree to which a genome is a 

chimeric mixture of distinct lineages following non-random distributions across contigs. GUNC 

computes CSS values at all major taxonomic levels and can thus indicate the approximate 

phylogenetic depth at which distinct source genomes diverged. 

 

Importantly, the CSS is a measure of confidence when labelling a genome as chimeric, and is 

sensitive even to small portions of contaminant if these are well circumscribed by contig 

boundaries. GUNC additionally quantifies the fraction of genome contamination in two ways: as 

the fraction of total genes assigned to non-major clade labels (GUNC contamination), and as 

the “effective number of distinct clades” in a genome, based on the Inverse Simpson Index of 

the clade size distribution (see Methods). To assess a genome’s quality based on GUNC, both 

GUNC contamination and CSS should be taken into account. 

 

Finally, GUNC also estimates how closely a query genome is represented by the underlying 

reference set. The reference-representation score (RRS, see Methods) is based on the average 

identity of query genes to the reference and the number of spurious mappings, in order to 

further inform the interpretation of the CSS and genome contamination. Beyond mere statistics, 

GUNC also provides interactive visualisations of a query genome’s taxonomic composition as 

alluvial Sankey diagrams at gene-level resolution (see Methods). A full overview of the GUNC 

workflow is provided in Fig. 1c. 
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GUNC accurately quantifies genome contamination in multiple simulated scenarios 

We benchmarked and validated GUNC in multiple scenarios, simulating various degrees of 

genome chimerism, source genome relatedness and reference representation (see Fig. 2a and 

Methods). All simulated genomes were generated from a curated high-quality set derived from 

proGenomes2.1 [34], which is also the basis for the default reference set used by GUNC (Fig. 

2a ‘type 1 genomes - in reference’). We simulated decreasing reference representation by 

iteratively removing entire clades from the GUNC training set at varying taxonomic levels (‘type 

2 genomes - out of reference’). Type 1 genomes were used as the contamination-free baseline 

in the subsequent benchmarks. 

 

We simulated chimeric genomes by mixing fragments from two (`type 3a`) or multiple (`type 

3b`) sources, varying the taxonomic level at which sources diverged (‘divergence level’), but 

retaining source lineage representatives in the reference training set (see Methods). Non-

redundant contamination was simulated by replacing part of an acceptor genome by a size-

matched contaminant fraction of a donor genome; to simulate redundant contamination, 

surplus donor fragments were added to complete acceptor genomes. We observed that 

CheckM systematically overestimated completeness and underestimated contamination for 

genomes with simulated non-redundant contamination (Fig. 2b), largely independent of the 

taxonomic level of source genome divergence. This bias further increased when two source 

genomes were mixed at more equal shares (Fig. 2b) and followed a similar trend when multiple 

source genomes were mixed (Fig. S1). In contrast, GUNC accurately estimated the 

contamination and the effective number of surplus lineages represented in the query genome. 

 

This difference in quantitative estimates translated into differential accuracy in a binary 

classification of genome quality, assessed using the harmonic mean of precision and recall (F1 
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score) at different levels of contamination (Fig. 2c-e). GUNC scores at default thresholds (CSS 

<0.45, contamination filtered at <2%; see Methods and Figure S2) generally outperformed the 

widely used MIMAG standard parameters [36] for medium (contamination < 10%, 

completeness ≥ 50%) and high (contamination < 5%, completeness > 90%) genome quality 

when based on CheckM estimates. GUNC accurately detected both non-redundant (Fig. 2c) 

and redundant contamination (Fig. 2d) for mixtures of two or more (Fig. 2e) source genomes 

(Fig. 2e), with F1 scores of ≥0.96 even at simulated contaminant fractions of just 5%. As 

expected, GUNC accuracy was consistently high with the only exception of species-level 

chimerism where it performed suboptimally at lower portions of contamination. In contrast, 

CheckM-based classification was less accurate for phylogenetically deep chimeras, dropping 

as low as F1 < 0.5 (F-scores below 0.5 not plotted). Interestingly, including the completeness 

criterion (in MIMAG medium and high thresholds) provided only mild performance 

improvements in our simulations when compared to classification based only on CheckM 

contamination. A strict CheckM contamination threshold of <5% slightly outperformed GUNC 

for species-level chimeras (Fig. S2a-c), while also occasionally showing minute performance 

benefits at much higher degrees of contamination (≥20%) for higher taxonomic levels, as 

GUNC performance generally plateaued at 100% sensitivity with a low fraction of residual false 

positive calls. 

 

The simulation scenarios of types 3a & 3b (Fig. 2c-e) assume that the lineages, but not the 

genomes themselves, of both contaminant and acceptor are represented in the reference 

training set. In practice, however, this is often not the case, in particular for novel lineages and 

MAGs. We therefore simulated scenarios of genome chimerism between source lineages that 

are themselves out of reference (types 4, 5a & 5b in Fig. 2a). Note that by design, such leave-

one-out simulations are not possible with CheckM, as the pre-curated reference phylogeny and 
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marker gene sets included with the software cannot be modified accordingly. Genomes of type 

4 simulated chimerism between deeply branching source lineages with limited reference 

representation at the divergence level and none at subordinate levels. For example, these 

genomes represent chimeras of two novel families or genera within distinct previously 

described phyla or classes. GUNC accurately detected such chimeras, even at low fractions of 

contamination (5-10%; Fig. 2f). We next simulated even more challenging scenarios in which 

one (‘type 5a’) or both (‘type 5b’) source lineages were not represented even at the level of 

divergence, corresponding to chimeras of entirely novel lineages. GUNC accurately detected 

‘type 5a’ at contaminations ≥10% at phylum to family level (Fig. 2g), though performance 

deteriorated towards lower contamination portions and shallower phylogenetic novelty (Fig. 

S2). 

 

As expected, GUNC was not able to accurately detect chimerism in scenario ‘5b’, i.e. if the 

clades of both source lineages were out of reference. Instead, GUNC addresses the 

challenges posed by novel lineages, both as possible contaminants and as units of discovery, 

via reference representation scores (RRS) across taxonomic levels, based on the average 

identity of query genes to their closest reference counterparts (see Methods). High RRS values 

indicate that genomes map confidently into the reference space at a given taxonomic level, 

whereas low RRS indicate phylogenetic novelty. Using simulations, we confirmed that GUNC 

RRS can predict the taxonomic level at which a query genome is novel (Fig. S3), in particular 

for deeply branching novel lineages (F1=0.98 for novel phyla), and regardless of whether the 

query is itself chimeric (type 5b) or not (type 2). We suggest that the CSS and RRS be used in 

conjunction to assess genome quality, depending on the expected phylogenetic novelty in the 

dataset under investigation. 
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Extensive undetected contamination among reference genomes and MAGs 

We calculated GUNC scores for various public datasets of both isolate-derived and 

metagenome-assembled genomes to detect hitherto overlooked genome chimerism (Fig. 3a, 

see Fig. S5 for alternative GUNC parameters). We applied default GUNC thresholds (CSS > 

0.45, see Methods), conservatively ignoring species-level chimerism, i.e. only considering 

chimerism between genomes involving distinct genera and higher taxonomic ranks. The 

resulting GUNC profiles for 1,375,848 genomes are available as Supplementary Data (see 

availability of data and materials section). Using these parameters, 5.7% of 701,698 

prokaryotic genomes in GenBank [accessed 30th of July 2020] [32] and 5.2% in the more 

restrictive RefSeq [24] were flagged as potentially chimeric. Genomes annotated as 

‘environmental’ or ‘metagenome-derived’ (i.e., MAGs) were substantially enriched for chimeras 

in GenBank, accounting for 18.4% of chimeric genomes even though the overall GenBank 

MAG share was only 9.4%. Moreover, by following up genome taxonomic annotations, we 

observed that GenBank contains ‘cryptic’ MAGs that were not annotated as metagenome-

derived by submitters. Indeed, for proGenomes 2.1 [34], a more vetted and curated GenBank 

subset totalling 84,095 genomes, the fraction of flagged genomes was only 3.6%. 

 

Among the flagged isolate genomes in GenBank, RefSeq, proGenomes 2.1 and the Genome 

Taxonomy Database (GTDB, [2]), we frequently observed patterns consistent with biological 

contamination, e.g. of culture media or reagents. For example, Fig. 3b shows an isolate of the 

Firmicute Aerococcus urinae, contaminated by a Afipia broomeae (phylum Proteobacteria) 

scattered across many small contigs. The division between both source genomes clearly 

follows contig boundaries, indicating that the highly fragmented Afipia genome may have been 

partially assembled from a lowly abundant contamination co-sequenced at low coverage (Table 

S1). 
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While contamination in isolate genomes was usually restricted to small contigs due to the low 

abundance of the contaminant species, the sizes of contaminant contigs in chimeric MAGs 

were more evenly distributed, (cf  Fig. 3c for a phylum-level chimera MAG from a marine 

metagenome [41]). 

 

As observed in GenBank, genome chimerism was more common among MAGs than among 

isolate genomes. The GTDB comprises both types, extending a GenBank-derived core set with 

automatically generated MAGs for underrepresented lineages, all filtered based on CheckM 

quality estimates and clustered into species-level units by average nucleotide identity. Among 

the GTDB, MAGs were more prone to being contaminated (8.0%) than single-cell derived 

(6.7%) or isolate genomes (4.6%). Chimeric genomes likely inflate estimates of total 

phylogenetic diversity in the GTDB: 1,009 (3.2%) of species-level clusters in the GTDB 

consisted entirely of contaminated genomes, and a further 1,760 (5.6%) contained at least one. 

 

For the human gut, three recent studies alone generated hundreds of thousands of MAGs by 

assembling and locally binning metagenomic data from several thousand samples [13–15]. All 

three teams relied on methodologically largely equivalent approaches for MAG generation and 

filtering, using variations of the MIMAG ‘medium’ quality standards, based on CheckM 

estimates. GUNC identified 17.2%, 15.1% and 29.9% of the pre-filtered Pasolli, Almeida and 

Nayfach MAG sets as putatively chimeric at genus level or above (Fig 3a), revealing extensive 

levels of previously undetected non-redundant contamination. Among the species-level 

genome bins (SGBs, clustered at 95% average nucleotide identity) described by Pasolli et al 

[13] chimeric genome and 8.5% consisted entirely of chimeras (Fig. 3d), with even higher rates 

among ‘novel’ SGBs (not containing any reference genomes) and small clusters: 18% of ‘novel’ 
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singleton SGBs were formed by chimeric MAGs. Thus, the 17.7% of chimeric genomes in the 

Pasolli set may have strongly impacted both SGB clustering and, as a consequence, biological 

interpretation. 

 

To further quantify the differential effects of CheckM and GUNC filters on MAG datasets, we re-

analysed the 278,629 MAGs derived from the Global Microbial Gene Catalog dataset (Coelho 

et al, in revision). GUNC flagged 23.4%, 14.5% and 9.4% of the raw, MIMAG ‘medium’ and 

MIMAG ‘high’ quality filtered GMGC MAGs as chimeric, respectively, comparable to levels in 

other tested pre-filtered MAG sets (Fig. 3a). The CheckM 5% contamination criterion was 

highly permissive, flagging just 10.3% of all GMGC MAGs. GUNC was more restrictive, 

flagging 23.4% of total genomes and 20.5% of genomes passing the CheckM contamination 

filter (reciprocally, only 7.0% of genomes passing the GUNC CSS filter were flagged at 

CheckM contamination >5%). Overall, CheckM and GUNC contamination filters agreed on 76% 

of genomes, at a Pearson correlation between nominal contamination estimates of 0.2. The 

CheckM completeness criterion, capturing an entirely orthogonal signal, was the overall most 

restrictive filter, flagging 80% of genomes as ≤90% and 50% as ≤50% complete (Fig. 3e and 

S6). Relaxing the completeness criterion further pronounced the differential impact of GUNC 

and CheckM contamination filters (Fig. S6), with GUNC being consistently more sensitive. 

Discussion 

Chimerism and contamination can have considerable impact on the biological interpretation of 

a genome, in particular by causing false inferences about phylogenetic placement and 

functional repertoires [22,25], thus there is a need for fast and accurate methods for automated 

genome quality control. As we have shown, GUNC quantifies even small levels of chimerism in 

prokaryotic genomes, with robust performance even if one or multiple source lineages of a 

composite genome are not well represented in the GUNC reference database. 
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GUNC is designed to complement existing estimators of prokaryote genome quality such as 

the de facto standard in the field, CheckM [28], and addresses error types that elude marker 

gene-based methods. GUNC represents a genome as its full gene complement, not just as an 

inventory of ‘expected’ core genes and is therefore robust to common artefacts resulting from 

erroneously conservative phylogenetic placement. Moreover, the enhanced resolution of a 

gene-centric genome representation has been shown to increase accuracy for related 

problems, such as e.g. taxonomic classification [42,43]. GUNC can provide gene-level 

resolution even for composite genomes of deeply branching source lineages, a type of 

chimeras that are notoriously difficult to detect automatically as sets of shared marker genes 

rapidly shrink with increasing phylogenetic depth. We demonstrated that GUNC scoring was 

highly accurate in incrementally challenging simulation scenarios. Moreover, GUNC quantifies 

the ‘novelty’ of a query genome relative to its reference set, thus further qualifying quality 

estimates, as confidence decreases along with reference representation. Nevertheless, as 

demonstrated in incrementally challenging simulation scenarios, GUNC accurately detects 

chimerism even among novel lineages. 

 

By design, GUNC does not quantify genome completeness, as it does not attempt to infer an 

expected set of a lineage’s core genes. This also means that GUNC does not attempt to 

resolve redundant contamination between very closely related (or even identical) lineages – a 

use case at which marker gene-based methods excel. By the same token, we caution against 

an over-interpretation of GUNC CSS and contamination estimates at species or strain 

resolution: GUNC’s underlying gene-wise taxonomy assignments become less precise 

between closely related lineages that share substantial genetic material at very high sequence 

similarity, potentially causing an overestimation of contamination. Moreover, very closely 
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related lineages are prone to recombination and exchange of genomic material which can 

further confuse gene level classifications. Nevertheless, GUNC reports scores at all taxonomic 

levels and in practice accurately detects species-level chimerism (see Figure S2 and Figure 

S8). 

 

Applying permissive GUNC default thresholds, we demonstrated that a substantial fraction of 

genomes in public repositories show clear contamination signatures that were not picked up 

previously. As expected, metagenome-assembled genomes were much more prone to 

chimerism than those derived from isolates, irrespective of a lineage’s novelty relative to the 

GUNC reference. Among four large-scale datasets of automatically generated MAGs from 

human microbiomes [13–15] and various environments (Coelho et al, in revision), we found 

extensive levels of undetected genome contamination, with a disproportionate impact on 

estimates of phylogenetic novelty. 

 

As GUNC complements existing tools to estimate genome quality, using orthogonal information 

to address types of genome contamination that are currently overlooked, a combination of 

filters based on genome fragmentation, CheckM completeness, CheckM contamination and 

GUNC may greatly refine automatically generated MAG datasets. GUNC offers a dedicated 

workflow to accomplish this, integrating CheckM results with GUNC scores for nuanced 

estimates of genome quality at high throughput. We expect that an automated, rapid and 

accurate quantification of genome contamination will further enable genome-centric 

microbiology at large scale and high resolution. 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.16.422776doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.16.422776
http://creativecommons.org/licenses/by-nc/4.0/


 

Methods 

GUNC workflow and implementation 

The core workflow of GUNC consists of three modules (see Figure 1C). First, for any query 

genome, genes are called using prodigal [44], although per-gene protein sequences can 

alternatively be supplied by the user directly. Protein sequences are then mapped against 

representative genomes in the GUNC database (derived from species-representative genomes 

in proGenomes 2.1 [34]) using diamond [45], retaining best hits (-k 1) without applying an 

evalue filter (-e 1) as alternative filtering is applied downstream. Annotated plasmids and other 

non-chromosomal genomic elements are excluded from the reference to reduce nonspecific 

hits between lineages within plasmid host range. Moreover, the reference set was semi-

manually curated, removing clear cases of genomic chimerism. 

 

For each query gene, taxonomic annotations at 7 levels (kingdom, phylum, class, order, family, 

genus, species) are inherited from the best hit via the manually curated proGenomes 2.1 

taxonomy. To filter against mapping noise, taxonomic clade labels recruiting less than 2% of all 

mapped genes are dropped. GUNC scores (see below) are then calculated based on inferred 

taxonomic labels, query gene contig membership, sequence identity to database hits and the 

fraction of mapped and filtered hits. Finally, GUNC offers a visualization module to 

automatically generate interactive Sankey alluvial diagrams of contig-level taxonomic 

annotations to enable manual curation and exploration of flagged genomes. 

 

GUNC is implemented in Python3, all code is open source and available at 

https://github.com/grp-bork/gunc and through bioconda [46] under a GPLv3+ licence. Based on 

database size and resource requirements, GUNC can be run locally on a personal computer but 

is also highly parallelizable in a cluster environment. 
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Calculation of GUNC scores 

GUNC computes several scores to quantify a query genome’s quality, its representation in the 

GUNC reference database and its levels of putative contamination. The GUNC clade 

separation score (CSS) is an entropy-based clustering measure to assess how homogeneously 

taxonomic clade labels (T) are distributed across a genome’s contigs (C). It is inspired by the 

uncertainty coefficient [35],  
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A simple estimator for this quantity is the plugin estimator where C is a set of contigs, T is a set 

of taxonomic clades, ��� is a number of genes located in contig c and assigned to taxonomic 

clade t, N is the total number of genes in a genome. 
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However, this estimator is known to be biased when the number of samples is small [47] and 

adjusting it for chance leads to more interpretable quantities [48]. In our case, the sums range 

over the genes in each contig, and, in fragmented genomes, many contigs can contain only a 

small number of genes. Therefore, we normalize the estimated conditional entropy by the 

expected value of this estimation under a null model, leading to CSS = 1 - Ĥ(T|C)/Ĥ(T|R), 
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where Ĥ(T|R) is the expected value of Ĥ(T|C) keeping the same contig size distribution and 

assuming no relationship between contig membership and taxonomic assignment (in the 

special case where Ĥ(T|C) > Ĥ(T|R), we set CSS to zero). 

 

The CSS is 0 if the frequency distribution of taxonomic labels in every individual contig exactly 

follows that across the entire genome. It is 1 if all contigs are ‘taxonomically pure’, i.e. if the 

distribution of taxonomic labels follows contig boundaries. GUNC outputs CSS scores for every 

tested taxonomic level, so that users can infer the approximate phylogenetic depth at which 

source lineages diverged. By default, GUNC adjusts CSS to 0 at every level separately when 

the portion of called genes left after removal of minor clades, i.e. genes retained index < 0.4, 

because in that case there are too few remaining genes to calculate scores on at that level. 

Then, GUNC flags a genome as putatively contaminated if the “adjusted” CSS > 0.45 at any 

taxonomic level, a threshold benchmarked in a series of simulation scenarios (Figure S7).  

 

The CSS does not carry information about the scale of contamination (i.e., the fraction of 

contaminant genome), but about the confidence with which a query genome may be 

considered chimeric. In other words, the CSS assesses whether a genome is contaminated or 

not, but not how large the contaminant fraction is. GUNC instead quantifies the scale of 

contamination at each tested taxonomic level using two measures. The total fraction of genes 

with minority clade labels after filtering (‘GUNC contamination’) is an estimate of the total 

fraction of contamination in the query genome. Note that this definition differs from that 

commonly used by tools such as CheckM: designed to quantify non-redundant contamination, 

GUNC scales by the total query genome size, whereas CheckM estimates redundant 

contamination by scaling against a theoretical ‘clean’ source genome with a single set of 

SCGs. In practice, this means that GUNC contamination never exceeds 100%, whereas 
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CheckM contamination estimates the number of (complete) surplus genomes. GUNC further 

provides a combined estimate of redundant and non-redundant contamination as the effective 

number of surplus clades (Teff) in a query genome, calculated as the Inverse Simpson Index 

minus 1 (as 1 genome is expected): 

����  �  �� ��
�

�

��	

�

	

	 1 

where pi is the fraction of genes assigned to clade i. Teff scales in [0, ∞] and can be interpreted 

as the number of surplus clades in the query genome considering the weighted contributions of 

all source lineages. 

 

Finally, GUNC computes a reference representation score (RRS) based on the total fraction of 

genes mapping to the GUNC database (���������� ������), the fraction of genes retained 

after noise filtering (���������� ��������) and their average similarity to the reference 

(������������): 

 

��� �  ���������� ������*���������� ��������*������������ 

 

The RRS captures the expectation that out-of-reference genomes will map to the reference to a 

lower degree (���������� ������) and at lower similarity (������������). Moreover, among 

simulated out-of-reference genomes, we empirically observed a characteristic pattern of noisy, 

low confidence hits scattered unspecifically across multiple clades at very low frequencies; in 

the RRS, this signature is formalised as the term Portiongenes retained. High RRS values indicate 

that a query genome maps well within the GUNC reference space, whereas low RRS indicates 

poor reference representation to qualify the interpretation of CSS and contamination estimates. 
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In general, the lower the RRS, the higher the risk of type 1 errors based on CSS (falsely 

labelling genomes as contaminated): this way, GUNC asserts that genome quality is only 

confidently estimated where sufficient data is available, and that genomes potentially 

representing deeply branching novel lineages beyond the GUNC reference are flagged for 

further (manual) inspection. 

 

Construction of artificial genomes under different scenarios 

Artificial genomes were constructed to simulate different scenarios of genome contamination 

and reference representation (see Fig. 2a). All simulations were performed using genomes in 

the curated and taxonomically annotated proGenomes 2.1 database [34], serving as a baseline 

for clean, in-reference genomes (‘type 1’ in Fig. 2a). Further simulation scenarios are described 

below. Unless otherwise indicated, simulations were conducted separately for each taxonomic 

level and at contamination portions of 5%, 10%, 15%, 20%, 30%, 40% and 50%, with 3,000 

iterations/genomes per each taxonomic level and contamination portion. In each simulated 

genome, source genome contigs were randomly fragmented such that contig size was 

inversely proportional to contig frequency, parameterized based on the empirical frequency-

size distributions of MAGs in the Pasolli, Almeida and Nayfach datasets [13–15]. Simulated 

genomes were then generated from these simulated contigs based on the rules set out below: 

 

Type 1. Clean (non-contaminated) genomes, in reference. Taken from progenomes2.1. 

 

Type 2. Clean (non-contaminated) genomes, out of reference. Simulated by removing a 

genome’s entire source lineage from the reference. 
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Type 3a. Binary chimeric genome from two sources, both in reference. Simulated by randomly 

selecting ‘donor’ and ‘acceptor’ genomes whose lineages diverged at any of the seven tested 

taxonomic levels (divergence levels). A fraction of the acceptor genome was either replaced by 

a matching fraction of donor genome (to simulate non-redundant contamination), or the 

corresponding fraction of donor genome was added to the complete recipient genome (to 

simulate redundant contamination). 

 

Type 3b. Chimera of multiple (3, 4, or 5) source genomes, all in reference. Source genomes 

from different source clades were mixed at equal shares totaling 1 altogether, e.g. ⅓, ¼ or � 

each. 

 

Type 4. Binary chimera, both source lineages out of reference at subordinate levels. Source 

lineage clades removed at subordinate levels (e.g., genus or family) but sister clades retained 

in reference within the same parent clades (e.g., class or phylum), so that both higher-level 

source clades were represented at divergence level. Simulated 10,000 times for each 

taxonomic and contamination level. 

 

Type 5a. Binary chimera, one source lineage in reference, one out of reference at divergence 

level. Recipient genome (in reference) partially replaced by donor genome (out of reference at 

divergence level). 

 

Type 5b. Binary chimera, both source lineages out of reference at divergence level, e.g. no 

genome available from entire clades (at divergence level) containing source genomes. 
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Reanalysis of public datasets 

Pasolli et al. [13]: genome fasta files were accessed from  

http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html on 2020-03-12. SGB annotations of 

genomes were taken from article supplementary files.  

Almeida et.al. [15]: genome fasta files were accessed from 

ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/umgs_analyses/ on 2020-03-12. 

Nayfach et.al. [14]: genome fasta files were accessed from http://bit.ly/HGM_all_60664_fna -O 

HGM_v1.0_all_60664_fna.tar.bz2 on 2020-03-12. 

GenBank genomes were accessed on 30.07.2020. GUNC results for 699,994 GenBank 

genomes were produced. RefSeq genome set was subsetted from GenBank. Genomes 

annotated as “derived from metagenomes” or “derived from environmental source” in the 

“excluded from refseq” column of the GenBank assembly metadata were considered as MAGs. 

GTDB [2] genome metadata was accessed from 

https://data.ace.uq.edu.au/public/gtdb/data/releases/release95/95.0/ on 2020-08-17. Genomes 

were mapped to GenBank via GenBank accession IDs. Genomes annotated as “derived from 

metagenomes” or “derived from environmental sample” in the “ncbi_genome_category” column 

of the metadata table were considered as the GTDB MAGs subset. 

The unfiltered set of 278,629 MAGs of the Global Microbial Gene Catalog dataset (GMGC, 

Coelho et al, in revision) is available at gmgc.embl.de. 
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Figure Captions 

Fig. 1. GUNC quantifies chimerism in prokaryotic genomes. 

a Genome contamination may originate in vitro (e.g., from culture media, laboratory equipment 

or kits, index hopping during multiplexed sequencing) or in silico (contig misassembly, 

erroneous binning). Genomes are represented as circular chromosomes, contigs as sequences 

of genes (dots). b Two types of genome contamination can be distinguished operationally: 

redundant contamination by surplus genomic material (‘more of the same’) and non-redundant 

contamination by non-overlapping fragments from unrelated lineages (‘something new’, e.g. 

novel sets of orthologues). Different single-copy marker genes (SCGs) are shown as solid 

shapes, other genes as dashed circles; colours indicate different source lineages. c GUNC 

workflow. For a given query genome, genes are called using prodigal, then mapped to the 

GUNC reference database (based on proGenomes 2.1) using diamond to compute GUNC 

scores and to generate interactive Sankey diagrams to visualize genome taxonomic 

composition. GUNC quantifies genome chimerism and reference representation across 

taxonomic levels. Clade separation scores (CSS) are high if gene classification to distinct 

lineages (represented by different colours) follows contig boundaries. Reference representation 

scores (RRS) are high if genes map closely and consistently into the GUNC reference space. 

The top example illustrates a chimeric genome with good reference representation; the bottom 

example a non-contaminated genome that is not well represented in the GUNC reference. 
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Fig. 2. GUNC accurately detects chimerism in incrementally challenging simulation 

scenarios. 

a Overview of different types of simulation scenarios. Genomes (filled circles) were simulated 

as mixtures of lineages (horizontal lines) diverging at various taxonomic levels (columns) from 

clades (void circles) contained in the GUNC reference (solid lines) or not (dashed). See 

Methods for details. b Median CheckM completeness and contamination estimates (dashed 

lines) diverged from true values (solid lines) with increasing levels of simulated contamination 

(type 3a in panel a), whereas GUNC estimates of contamination (green; theoretically expected 

values as blue solid line) and effective number of surplus lineages (purple) were highly 

accurate. See Fig S1 for an equivalent plot on type 3b genomes. c-f Detection accuracy across 

simulation scenarios, quantified using F1-scores (y axis) across increasing levels of simulated 

contamination (x axis). Data shown for scenarios 3a (c-d), 3b (e), 4 (f) and 5a (g); full panels for  

types 3a and 3b in Fig S2. MIMAG criteria were defined as  CheckM contamination <10%, 

completeness >50% (medium) and contamination <5%, completeness >90% (high); note that 

MIMAG criteria on rRNA and tRNA presence were not applied; Cont, CheckM contamination; 

GUNC, default GUNC CSS cutoff of >0.45. 

 

Fig. 3. Extensive undetected chimerism in public genome databases and large-scale 

MAG datasets. 

a Cumulative plots summarizing genome quality for various genome reference and MAG 

datasets. The y axis shows the fraction of genomes passing GUNC filtering at increasing 

stringency (x axis), up to the default CSS threshold of 0.45, conservatively ignoring species-

level scores. Note that the Almeida, Pasolli and Nayfach sets were pre-filtered using variations 

of the MIMAG medium criterion based on CheckM estimates. GTDB, Genome Taxonomy 
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Database; GMGC, Global Microbial Gene Catalogue. b Example of detected contamination in 

an isolate-derived reference genome for which around one fifth of genes were assigned to a 

different phylum, scattered across hundreds of small contigs. c Example of detected 

contamination in a MAG for which  genes assigned to two major different phyla were well 

separated into distinct contigs. d Cumulative plots summarizing the quality of species-level 

genome bins (SGBs) defined by Pasolli et al. 2019. Lines indicate the fraction of SGBs (y-axis) 

containing at least one or exclusively chimeric genomes at increasingly stringent GUNC cutoffs 

(x axis) conservatively ignoring species-level scores. For both series, intervals correspond to 

edge scenarios in which genomes with limited reference representation are either 

conservatively ignored (treated as non-chimeric, upper lines) or aggressively removed (lower 

lines); the true fraction of chimeric SGBs likely falls in between. e Differential filtering of MAGs 

in the GMGC set based on CheckM contamination (<5%), CheckM completeness (>90%) and 

GUNC (CSS <0.45, ignoring species-level scores). 

 

Fig. S1.  

Comparison of median scores from GUNC and CheckM of simulations of genomes type 3a and 

3b where source genomes make equal contributions summing 1 in total (e.g. 0.2 from each of 

5 sources or 0.25 from each of 4 sources). This shows that the trend from Fig. 2b persists 

when multiple source genomes are mixed in a simulated chimeric genome. 

 

Fig. S2.  

F-scores of distinction between clean and chimeric genomes across all divergence levels of 

source genomes for different simulation scenarios. MIMAG medium is CheckM contamination < 

10% and CheckM completeness >50%. MIMAG high is CheckM contamination <5% and 

CheckM completeness >90% and due to irrelevance to our simulations we decided that  
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additional criteria of presence of rRNAs and tRNAs can be  ignored here. “Cont” stands for 

CheckM contamination and GUNC means GUNC CSS of <0.45 or GUNC contamination <2%. 

a type 3a non-redundant contamination. b type 3b redundant contamination. c type 3b. 

 

Fig. S3.  

a ROC-curves and AUCs of separation of genomes in-reference (type 1) from genomes out-of-

reference (types 2 and 5b) at different out-of-reference levels (faceting) using GUNC reference 

representation scores (RRS) at matching taxonomic levels. b F1-scores (y-axis) of separation 

of types 2 & 5a from type1 across different RRS cutoffs (x-axis) different out-of-reference 

(OOR) levels (colors) at which these genomes have no reference representation. GUNC 

scores at the taxonomic level identical to OOR level were used. Vertical lines indicate RRS 

scores with highest F1-scores at each OOR level. Cutoff of RRS <0.5 is used  to label 

genomes as “OOR” irrespective of the taxonomic level of max CSS.   

 

Fig. S5.  

a Cumulative plot summarizing genome qualities of various sets of genomes represented by 

lines of different colors. Any point in a plot indicates a portion of genomes retained in a set (y-

axis) after filtering out genomes with GUNC CSS higher than the cutoff (x-axis) & GUNC 

contamination >5% (ignoring species level scores). b Cumulative plot illustrating the number of 

species-level genome bins (SGBs) (from Pasolli et al. 2019). Lines indicate the portion of 

unique SGBs retained (y-axis) after filtering out SGBs where either “all” or “at least one” 

genome has GUNC CSS score higher than the cutoff (x-axis) & GUNC contamination >5%. 
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Fig. S6.  

Alluvial illustration of the fate of genomes in GMGC based on filters by GUNC and CheckM. 

Three filters are: 1) CheckM contamination <10%; 2) CheckM completeness <50%; 3) GUNC 

CSS <0.45 or GUNC contamination <2% (ignoring species level scores). The illustration shows 

the orthogonality and complementarity between GUNC and CheckM filters. 

 

Fig. S7.  

Mean F-score of 10 iterations of 10,000 non-chimeric vs 10,000 chimeric genomes across 

different values of GUNC CSS cutoffs used to separate between chimeric and non-chimeric 

genomes. For “All types” genome types 1 and 2 are used as non-chimeric and types 3, 4 and 

5a are used as chimeric (type 5b excluded since it is not expected to be detected at all). For 

“No OOR” genome type 1 only is used as non-chimeric and types 3 and 4 are used as 

chimeric. The cutoff with high performance at “No OOR” was chosen so that its performance is 

as high as possible in the “All types” setup without any significant loss to “No OOR” setup 

performance. 

 

Fig. S8.  

Alluvial illustration of MAG “SRR1779121_bin.6” from Almeida et.al. 2019 that shows that 

GUNC can detect chimerism of related species when both source species have reference 

representation. The CheckM completeness is 79.31 and contamination is 1.72 for this MAG.  

 

Table S1.  

Contig lengths and coverages linked to gene-level taxonomy data underlying the visualization 

of genome in Fig. 3b. 
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