
Resource
Dynamic 3D proteomes reveal protein functional
alterations at high resolution in situ
Graphical Abstract
Highlights
d Dynamic structural proteomic screens detect functional

changes at high resolution

d Detect enzyme activity, phosphorylation, and molecular

interactions in situ

d Generate newmolecular hypotheses and increase functional

proteomics coverage

d Enabled discovery of a regulatory mechanism of glucose

uptake in E. coli
Cappelletti et al., 2021, Cell 184, 545–559
January 21, 2021 ª 2020 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.cell.2020.12.021
Authors

Valentina Cappelletti, Thomas Hauser,

Ilaria Piazza, ..., Amedeo Caflisch,

Natalie de Souza, Paola Picotti

Correspondence
picotti@imsb.biol.ethz.ch
ll

mailto:picotti@imsb.biol.ethz.ch
https://doi.org/10.1016/j.cell.2020.12.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2020.12.021&domain=pdf


OPEN ACCESS

ll
Resource

Dynamic 3D proteomes reveal protein functional
alterations at high resolution in situ
Valentina Cappelletti,1,7 Thomas Hauser,1,7 Ilaria Piazza,1,7,8 Monika Pepelnjak,1 Liliana Malinovska,1 Tobias Fuhrer,1

Yaozong Li,2 Christian Dörig,1 Paul Boersema,1 Ludovic Gillet,1 Jan Grossbach,3 Aurelien Dugourd,4

Julio Saez-Rodriguez,4 Andreas Beyer,3,5 Nicola Zamboni,1 Amedeo Caflisch,2 Natalie de Souza,1,6 and Paola Picotti1,9,*
1Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
2Department of Biochemistry, University of Zurich, Zurich, Switzerland
3CECAD Research center, University of Cologne, Cologne, Germany
4Institute for Computational Biomedicine, University of Heidelberg, Heidelberg, Germany
5Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
6Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
7These authors contributed equally
8Present address: Max Delbrück Center for Molecular Medicine in the Helmholtz association, Berlin, Germany
9Lead Contact
*Correspondence: picotti@imsb.biol.ethz.ch

https://doi.org/10.1016/j.cell.2020.12.021
SUMMARY
Biological processes are regulated by intermolecular interactions and chemical modifications that do not
affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a
global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many
such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in
yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme
activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of indi-
vidual regulated functional sites such as binding and active sites. Comparison with prior knowledge,
including other ‘omics data, showed that LiP-MS detects many known functional alterations within well-
studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fruc-
tose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout
dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the
way for in situ structural systems biology.
INTRODUCTION

Quantitative mass-spectrometry-based proteomics is used to

profile proteome expression across different conditions (Aeber-

sold and Mann, 2003). This approach has identified pathways

regulated during cellular perturbations and disease development

and has uncovered mechanisms of drug action and resistance

(Boisvert et al., 2010; Costenoble et al., 2011; Ideker et al.,

2001; Kolkman et al., 2006; Mertins et al., 2016; Ressa et al.,

2018). However, many molecular events that result in protein

functional changes do not involve changes in protein abun-

dance. Proteins might undergo functional changes upon post-

translational modification (PTM) (Ardito et al., 2017), binding to

other molecules (Chubukov et al., 2014; Niphakis et al., 2015;

Nussinov et al., 2013; Sahni et al., 2013), cleavage (Russell,

2014), or conformational changes induced by environmental

changes (e.g., pH or temperature) (Damaghi et al., 2013; Robert-

son and Murphy, 1997). The regulation of many cellular pro-

cesses, such as signaling cascades (Kolch, 2005; Shaul and
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Seger, 2007), relies solely on these types of events rather than

on altered protein levels. Variants of the proteomics workflow

such as phosphoproteomics (Batth et al., 2018; Humphrey

et al., 2015), interactomics (Sowa et al., 2009; Wepf et al.,

2009), and activity-based proteomics (Cravatt et al., 2008) can

capture specific molecular events that affect protein function

but typically report on only a single type of mechanism. The

high-throughput, simultaneous analysis of diverse regulatory

events on a proteome-wide scale is not practically feasible.

We speculated that global analysis of protein structures could

serve as a quantitative readout to capture most events that alter

protein functional states. It is dogma that the structure of a pro-

tein is intimately linked to its function (Pauling and Itano, 1949;

White and Anfinsen, 1959). Protein structures integrate different

types of molecular cues that result in functional alterations: bind-

ing of other molecules, protein-protein interactions, post-trans-

lational modifications (PTMs), mutations, aggregation, and

conformational alterations due to changes in the cellular matrix

all result in local or global structural alterations of proteins. We
nuary 21, 2021 ª 2020 The Authors. Published by Elsevier Inc. 545
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Figure 1. Global protein structural and abundance changes during cellular responses in yeast and E. coli

(A) The experimental systems used in this work. We studied E. coli grown on eight different nutrient sources and yeast subjected to acute heat or osmotic shock.

We monitored protein abundance and structural changes with LiP-MS and assessed the functional information content of both readouts.

(B) The number of proteins significantly changed (|log2FC| >1, q-value < 0.05) in abundance (green) or structure (yellow) in yeast subjected to heat shock or

osmotic stress (two-sample t test with Storey method correction for multiple testing).

(C) Heat map of GO biological processes enriched among significantly changed proteins in yeast subjected to heat shock or osmotic stress. p values

for the enrichment (gray scale) were determined with Fisher’s exact tests. Blank cells indicate biological processes that were not enriched significantly (i.e.,

p value > 0.01). Red and blue indicate categories expected to be enriched under heat and osmotic shock, respectively.

See also Figure S1 and Table S1.
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hypothesized that, bymeasuring altered protein structural states

on a proteome-wide scale, we could detect protein functional

changes of various types simultaneously, yielding a more

detailed and nuanced picture than measurement of abundance

changes alone.

We previously developed limited proteolysis-coupled mass

spectrometry (LiP-MS) to monitor protein structural changes

directly within complex biological extracts and on a proteome-

wide scale (Feng et al., 2014). Comparison of structure-specific

proteolytic fingerprints from different conditions identifies

structurally altered proteins and can pinpoint structurally altered

regions. LiP-MS and other structural proteomics approaches

have been used in numerous protein structural studies (Aeber-

sold and Mann, 2016; Huber et al., 2015; Leuenberger et al.,

2017; Liu et al., 2018; Piazza et al., 2018; Savitski et al., 2014).

Here we test the idea that LiP-MS, and a global structural

readout in general, can monitor functional changes, focusing

on bacterial cells undergoing nutrient adaptation and yeast cells

responding to acute stress. This structural approach captured

enzyme activity changes, enzymatic substrate site occupancy,

allosteric regulation, phosphorylation, and protein-protein inter-

actions with a resolution that pinpoints single functional sites,

thereby driving the generation of molecular hypotheses. We

showed that LiP-MS detects a greater number of altered biolog-

ical processes than do protein abundance measurements alone
546 Cell 184, 545–559, January 21, 2021
and captures information overlapping and complementary to

metabolomics, flux analyses, and phosphoproteomics. We

validated the interaction between an E. coli sugar phosphotrans-

ferase and the metabolite fructose-1,6-bisphosphate (FBP),

suggesting a previously uncharacterized regulatory system of

glucose uptake. In sum, this global structural approach reports

on many functional events in situ and constitutes a powerful

readout to detect molecular events underlying physiological

and pathological phenotypes.

RESULTS

Protein structural changes during the yeast response to
acute stress
We used multiple experimental systems to test whether global

protein structural data can detect functional alterations of pro-

teins and protein networks (Figure 1A). First, we studied cellular

responses activated on short timescales in yeast, which are typi-

cally independent of gene expression changes and thus less

amenable to protein abundance screens. We applied a short

osmotic or heat stress to exponentially growing yeast cultures,

extracted the proteomes under native conditions, and applied

the LiP-MS workflow, which monitors in parallel protein abun-

dance and structural changes.We analyzed the resulting peptide

mixtures by data-independent acquisition followed by label-free
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quantification and corrected data from LiP experiments for

protein abundance changes to yield structure-specific proteo-

lytic fingerprints for every detectable protein. We detected

structural fingerprints for more than 2,700 proteins and moni-

tored abundance changes for a similar number of proteins

(Figure S1A; Table S1). Only 1% or less of the detected proteins

varied in abundance upon stimulation (Figure 1B; Table S1),

consistent with previous studies (Jarnuczak et al., 2018; Kanshin

et al., 2015; Mackenzie et al., 2016; Soufi et al., 2009; Storey

et al., 2020; Wallace et al., 2015). In contrast, 23% and 11% of

the detected proteomes underwent structural alterations

upon heat shock and osmotic shock, respectively (Figure 1B;

Table S1; Table S2 for sequence coverage). Peptide intensities

showed excellent correlation across replicates (Figures S2A–

S2D) and replicates clustered by condition (data not shown); in-

dependent quality control (QC) analyses confirmed reproduc-

ibility (Figures S2E and S2F).

Heat shock in yeast results in protein misfolding, activation of

quality control mechanisms, translation inhibition, and formation

of stress granules and protein aggregates (Verghese et al., 2012;

Wallace et al., 2015). Osmotic stress activates the high omolarity

glycerol (HOG) pathway andmitogen-activated protein (MAP) ki-

nases, inducing allosteric events and flux alterations that lead to

fast cytosolic accumulation of the osmoprotectant glycerol (Fig-

ure 2) (Brewster and Gustin, 2014; Hohmann, 2015). To ask

whether the structural readout captured activation of these

known processes, we performed a functional enrichment anal-

ysis of structurally altered proteins. For both perturbations, we

found an enrichment of glucose metabolic pathways and trans-

lation (Figure 1C; Table S1) and of cytoplasmic stress granules

and general cytosolic cellular components (Figure S1D). As ex-

pected, several categories related to regulation of translation

and to protein folding, misfolding, and refolding were enriched

specifically in the heat-stress dataset (Figures 1C and S1D; Ta-

ble S1). Compatible with the known increase of glycerol produc-

tion under osmotic stress, we detected enrichment of the ‘‘glyc-

erol metabolic process’’ and the ‘‘NADPH regeneration’’ and

‘‘NADH metabolism’’ biological processes only after osmotic

stress (Figure 1C); these gene ontology (GO) categories include

glycerol biosynthetic enzymes. ‘‘Response to osmotic stress’’

was unexpectedly enriched in the heat-shock condition, prob-

ably because most altered proteins within this GO term are

heat-shock proteins and proteins altered upon different

stresses. Functional enrichment analysis of protein abundance

data showed enrichment of very few GO terms, likely due
Figure 2. Structural changes capture multiple regulatory events in yea

A schematic of the yeast HOG-MAPK pathway and its links to glycolytic and glycer

upon osmotic shock are indicated with orange labels (|log2FC| >1, q-value < 0.0

barcodes represent the changes in proteolytic fingerprints from N to C terminus. E

to LiP. Peptides that changed in intensity between conditions are indicated by y

between conditions are in gray, and peptides not detected by MS are in black. Th

protein structures of yeast protein-metabolite complexes or evolutionary conse

positioned in allosteric or active sites are indicated in green. For Hog1 and Gpd1, p

regulator Fructose 2, 6-bisphosphate (F2,6bP), is depicted in red. The models sh

Ste20 (PDB: 4zlo), Hog1 (PDB: 5ci6), Tpi1 (PDB: 1nf0), Gpd1 (PDB: 6e9o), Gpp1 (P

1ebh), and Pyk2 (PDB: 1a3x).

See also Figure S3 and Table S1.
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to the low number of proteins that change abundance

(Figure 1C).

Structural changes capture multiple regulatory events
in the response to osmotic stress
We next assessed whether the detected structural changes

relate to events known to occur in the yeast response to osmotic

stress (Brewster and Gustin, 2014; Hohmann, 2015). Indeed, we

detected structural alterations for most proteins of the HOG1

and glycerol production pathways (Figure 2; Table S1). Structur-

ally altered enzymes included kinases Ste20 and Hog1 of the

MAPK-HOG1 signaling pathway, enzymes in the glycerol

biosynthesis branch of the pathway (Gpd1 and Gpp1/2), and en-

zymes of both upper (Pfk1, Fba1, Tpi1, and Tdh1/2/3) and lower

glycolysis (Pgk1, Gpm1, Eno2, Cdc19, and Pyk2).

To illustrate the richness of the structural information provided,

we visualize the data as structural barcodes, representing pro-

teolytic fingerprints along the sequence of a protein (Figure 2).

The barcodes provide a concise visual summary of protein re-

gions that showed structural alterations between conditions,

were detected by MS but not structurally altered, and were not

detected by the MS analysis. On average, only two LiP peptides

were altered per enzyme, suggesting that structural alterations

were confined to specific protein regions.

We mapped altered LiP peptides to structures of the relevant

proteins in complex with substrates or allosteric regulators and

then assessed their proximities to known functional sites with a

threshold value of 6.4 Å as determined in previous work (Piazza

et al., 2018). Strikingly, most altered LiP peptides corresponded

to known functional sites (Figure 2; Table S1). For MAP kinases,

regulated LiP peptides mapped either to the protein region

embedding the known activating phosphorylation site (Hog1)

or to the allosterically regulated catalytic site (Ste20). For the

MAP kinase target Gpd1, one LiP peptide mapped to the active

site, a second was adjacent to the downregulated phosphosites

(Lee et al., 2012), and a third mapped to the C-terminal domain

that undergoes an extensive conformational change upon sub-

strate binding (Mydy et al., 2019). We also detected LiP peptides

at sites bound by small-molecule allosteric regulators; one of the

two altered peptides in the beta subunit of 6-phosphofructoki-

nase Pfk1 mapped exactly to the allosteric binding site of fruc-

tose 2,6-bisphosphate (Banaszak et al., 2011; Dihazi et al.,

2004; Sträter et al., 2011). The increase of Pfk1 activity during os-

motic stress increases the flux of upper glycolysis through the

two downstream enzymes Fba1 and Tpi1, and regulated
st responding to osmotic shock

ol biosynthesis pathways. Proteins undergoing significant structural alterations

5, two-sample t test with Storey method correction for multiple testing). The

ach vertical bar represents a peptide that could be detected in samples subject

ellow (|log2FC| >1, q-value < 0.05), peptides detected by MS but unchanged

e structural models show changed LiP peptides (orange) mapped onto the 3D

rved holo-complex structures obtained by homology modeling; metabolites

hosphorylation sites are indicated in blue on protein sequences. The allosteric

own are based on available structures: Pfk1 (PDB: 3o8o), Fba1 (PDB: 3qm3),

DB: 2qlt), Tdh2 (PDB: 3pym), Pgk1 (PDB: 1qpg), Gpm (PDB: 1qhf), Eno2 (PDB:
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peptides for Fba1 and Tpi1 mapped to their active sites, likely

reporting on increased substrate site occupancy. Indeed, we

previously showed in experiments with exogenously added me-

tabolites that LiP peptides at metabolite binding sites

are increasingly regulated with increasing occupancy of

binding sites (Piazza et al., 2018). Regulated LiP peptides of

Gpp1, which generates glycerol, are also in close proximity to

its active site.

Most (79%) of the LiP peptides mapping to proteins of the

glycolysis pathway were in the active sites of these enzymes,

including all enzymes of lower glycolysis (Pgk1, Gpm1, Cdc19,

Eno2, and Pyk2). An alteration in the occupancy of these sites

is consistent with decreased flux through lower glycolysis upon

acute osmotic stress, possibly as a result of most upper glyco-

lytic flux being diverted to the glycerol biosynthetic branch

during this response. Thus, LiP-MS captures multiple molecular

events, including allostery, altered enzyme activity, site occu-

pancy, and phosphorylation, during the yeast response to acute

osmotic stress, with the resolution of single functional sites.

Structural changes capture phosphorylation events
during the response to osmotic stress
Because several phosphorylation events occur in the MAPK

pathway during the osmotic stress response, we compared the

LiP-MS readout to a parallel phosphoproteomic analysis. Phos-

phoproteomics identified 11,078 phosphopeptides mapping to

2,022 proteins (Table S1). LiP-MS found 605 differentially

phosphorylated proteins (|log2FC| >1, q-value < 0.05; Table S1)

upon osmotic shock. Of the 316 phosphorylated proteins

detected by both methods, 48 were structurally altered (|log2-

FC| >1, q-value < 0.05) upon stimulation (Table S1). Among these

48 proteins, 38% have LiP peptides overlapping or in close prox-

imity (± 10 amino acids) to a phosphopeptide; thus, the structural

readout detects a subset of phosphorylation events reported by

phosphoproteomics.

As expected, differentially phosphorylated proteins included

proteins of the HOG1 pathway, in particular MAPK kinases of

the upstream osmotic response and plasma membrane osmo-

sensors Figure S3B), in line with previous reports (Figure S3C)

(Kanshin et al., 2015). In parallel, LiP-MS identified a set of 20

structurally altered proteins within the HOG1, glycolysis, and

glycerol biosynthesis pathways (Figure S3A; Table S1). Six

proteins showed both structural variations and differentially

regulated phosphopeptides upon osmotic stress: Hog1, Ste20,

Gpd1/2, Tdh3, and Fba1 (Figures S3A and S3B). Structural var-

iations included peptides that were differentially phosphorylated

(Hog1, Fba1), mapped to a sequence adjacent to the phospho-

site (Gpd1) or to a region located in close proximity to the

phosphosite in the protein 3D structure (Tdh3) (Figure S3D). In

summary, the structural analysis detected a subset of proteins

that not only became phosphorylated upon osmotic shock, as

defined by phosphoproteomics, but also detected changes in

additional proteins. The structural and phosphoproteomics

analyses are thus complementary (Figure S3). Finally, based on

our phosphoproteomics data and known kinase/substrate

relationships, we identified 12 kinases or phosphatases with

significantly altered activity upon osmotic stress. We detected

structural changes and altered phosphorylation in 14 known
target proteins of 11 of these enzymes (Figure 3A). Thus, these

structural changes can be explained by altered upstream activity

of specific kinases and phosphatases.

Protein assemblies detected via structural alterations
We probed the ability of LiP-MS to report on protein-protein in-

teractions, focusing on the heat-shock dataset. A previous yeast

study based on centrifugation of cell extracts and MS analysis of

the resulting pellets identified 177 proteins that become insol-

uble upon heat shock, likely as a consequence of aggregation,

misfolding, or formation of protein/RNA complexes (Wallace

et al., 2015). These proteins were referred to as aggregators.

Seventeen of these, termed superaggregators, became insol-

uble withinminutes of heat shock. In our data, structurally altered

proteins upon heat shock of yeast were clearly enriched for

aggregators (Fisher’s exact test, p value < 0.05), with 96 of 177

aggregators showing structural changes (Figure 3B). Among

them, only four (Nug1, Faa4, Nog2, and Ett1) showed an abun-

dance change.

Heat shock is also known to activate molecular chaperones

(Mackenzie et al., 2016; O’Connell et al., 2014), which should

engage in interactions with their clients (Balchin et al., 2016).

We detected a significant enrichment for chaperones among

structurally altered proteins after heat shock (Figure 3B; Fisher’s

exact test, p value < 0.05) but not after osmotic stress (Figures

3B and 3C). Based on literature-curated data on chaperone in-

teractors, 67 of 96 structurally altered aggregators are known

to physically interact with a chaperone in which we also detected

a structural change. These changes might therefore indicate

chaperone-substrate interactions in response to heat-induced

protein misfolding or aggregation.

To confirm that aggregates are insoluble and less accessible

to limited proteolysis than the corresponding monomeric pro-

teins as previously reported (Fontana et al., 2004; Leuenberger

et al., 2017), we spiked into yeast lysates monomeric or fibrillar

alpha-synuclein, which forms well-characterized aggregates

implicated in Parkinson’s disease, and ultracentrifuged the ly-

sates (L1). As expected, the fibrils were predominantly recovered

in the pellet upon ultracentrifugation, whereas the monomer was

depleted in this fraction (Figure S4B). Fibrillar alpha-synuclein in

the bulk lysate was also more protease resistant than in the

monomeric form, and the protease-protected region mainly cor-

responded to its known aggregation core (Figure 3D).

We used the same ultracentrifugation experiment to determine

whether LiP-MS detects aggregation upon heat shock or rather

detects unfolding or other structural changes prior to aggrega-

tion. In lysates of yeast cells, 34 aggregators identified by Wal-

lace et al. (2015) were either enriched in the pellet fraction and/or

were depleted from the supernatant fraction (S2) upon heat

shock (Figure S4C; Table S1). This indicated that these proteins

become insoluble after heat shock. In line with the previous

study, this set included 12 of the 17 superaggregators and 22

other aggregators that likely form insoluble assemblies under

our conditions.

Proteins that became insoluble due to aggregation upon heat

shock should show increased protease protection in the pellet,

whereas proteins that unfold should be highly accessible to pro-

teases. We used LiP-MS to examine the set of superaggregators
Cell 184, 545–559, January 21, 2021 549



Figure 3. Molecular events underlying structural changes in the yeast proteome upon osmotic and heat shock

(A) Network representation of deregulated kinase activities and their target phosphosites on proteins showing structural changes upon osmotic shock of yeast

cells. Structurally altered proteins are indicated by gray circles, kinases by squares, and phosphatases by diamonds; phosphorylation sites are indicated. Kinase

and phosphatase activities are reported as normalized enrichment scores (NES), and phosphosite abundance changes are reported as p value-associated

z-scores.

(B) Venn diagrams of the numbers of proteins of the indicated categories that are significantly structurally altered (|log2FC| >1, q-value < 0.05; two-sample t test

with Storey method correction for multiple testing) after heat stress (inner circle) in relation with all detected proteins in that category (outer circle).

(C) Specific chaperones that show significant structural alterations (|log2FC| >1, q-value < 0.05; two-sample t test with Storey method correction for multiple

testing) in heat or osmotic stress labeled by subcellular location.

(D) Structural barcode indicating differences in proteolytic resistance of alpha-synuclein fibrils versusmonomer. Red/blue vertical bars indicate regions that show

an increase/decrease in proteolytic resistance between fibril and monomer based on peptide intensity (|log2FC| >1, q-value < 0.05; Welch modified two-sample

t test, p values adjusted for multiple testing with the Benjamini-Hochberg method). Detected peptides that do not change between conditions and non-detected

peptides are plotted as grey and black bars, respectively. The aggregation core (NAC) is indicated.

(E) Bar plot showing protease resistance for all superaggregators and aggregators that become insoluble upon heat shock. The clear and hatched regions of the

histograms show peptides indicative of increased/decreased (red/blue) proteolytic resistance for the indicated comparisons. The number of changed LiP

peptides is plotted for each protein; hues indicate average strength of the fold change. Structural barcodes (as in D) are shown for selected proteins with large fold

changes upon heat shock. Red/blue bars in the barcodes represent protein regions that increase/decrease proteolytic resistance in either of the two shown

comparisons.

(F and G) LiP peptides (orange) of Hsp104 in (F) supernatant S2 and (G) whole-cell lysate L1 that change in response to heat shock mapped to the Hsp104

hexameric structure (PDB: 6n8t). ATP molecules binding to the chaperone catalytic site are depicted in cyan.

See also Figure S4 and Table S1.
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and aggregators in the insoluble fraction (P2) upon heat shock.

These proteins were generally more protease resistant than the

same proteins in the soluble (S2) fraction of cells not subjected

to heat shock (Figures 3E and S4A) and in the bulk lysate (L1)

upon heat shock (Figures 3E and S4A). This indicates that the

centrifugation step enriches for insoluble, protease-resistant

species and suggests that the structural changes we observed

in the insoluble fraction of the proteome are due to aggregation.

We note that our experiment cannot distinguish between homo-

meric aggregates and proteins trapped in a densely interacting
550 Cell 184, 545–559, January 21, 2021
insoluble protein network. Further, LiP-MS analyses of aggrega-

tors in the insoluble versus soluble fraction pinpoint putative

aggregation interfaces (Figures 3D, 3E, and S4A), which could

be used to identify mutations that modulate aggregation events.

We next looked more closely at the LiP patterns of the protein

disaggregase ATPase Hsp104, which we detected in the total

(L1), soluble (S2) and insoluble (P2) fractions (Figures 3F, 3G,

and S4D). Interestingly, proteolytic patterns were distinct in

these fractions, suggesting that LiP-MS captures structural

changes in Hsp104 that reflect different molecular events. In



Figure 4. Global protein structural and abundance changes during

nutrient adaptation in E. coli

(A) Number of proteins significantly changed (|log2FC| >2, q-value < 0.05;

p values adjusted for multiple testing with the Benjamini-Hochberg method) in

structure (green) or abundance (yellow) under the indicated nutrient conditions

in relation with glucose.

(B) Schematic of the known regulators for different nutrient sources (upper).

Abundance differences of known nutrient transporters and uptake regulators

under the indicated nutrient conditions in relation with growth in glucose

(log2FC) (lower).

See also Figure S5 and Table S3.
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the soluble fraction, three of the five altered peptides mapped to

the ATP binding site or substrate channel of Hsp104 (Figure 3F).

ATP binding is known to trigger substrate binding in Hsp104

(Gates et al., 2017), suggesting that LiPmight capture the activa-

tion cycle of Hsp104 and its engagement in chaperone-client in-

teractions induced by heat shock (Gates et al., 2017). In the

insoluble fraction, four out of six altered peptides clustered

around a large, solvent-exposed region, possibly indicating an

interaction or aggregation interface (Figure S4D). In the unsepa-
rated lysate L1, altered peptides mapped to several of the above

described regions (Figure 3G), suggesting that this sample con-

tains a mixture of Hsp104 structural states. This example shows

how coupling of LiP-MS with fractionation enabled us to decon-

volve complex structural readouts indicative of the coexistence

of different protein structural states.

In summary, in heat-shocked yeast, the structural readout

captured protein aggregation, chaperone-client interactions, as

well as potential allosteric regulation of chaperones.

Protein structural changes during nutrient adaptation
in E. coli

For our second system, we studied E. coli grown in eight carbon

sources: acetate, galactose, succinate, glycerol, pyruvate, fruc-

tose, glucose, and gluconate. We chose this model to leverage a

recent analysis in which metabolite levels and fluxes through

E. coli central carbon metabolism (CCM) were shown to be con-

dition dependent under these same growth conditions (Gerosa

et al., 2015). We reasoned that flux variations serve as a proxy

for altered functional states of enzymes and used them to assess

the capability of our structural readout to report on functional

changes in the CCM.

We cultured E. coli in a medium containing each of the eight

carbon sources, harvested cells in exponential phase (optical

density [OD] = 0.8 ± 0.1), extracted the proteomes under native

conditions, and analyzed samples by LiP-MS. We derived struc-

tural fingerprints for a minimum of 1,895 proteins (growth in

galactose) to a maximum of 1,917 proteins (growth in gluconate)

and measured abundance changes for a similar number of pro-

teins (minimum 2,085 in glycerol and galactose to a maximum of

2,102 in pyruvate) (Figure S1B; Table S3). Differential analysis of

protein structure and abundance in each growth condition

compared to glucose showed that on average 365 proteins un-

derwent structural alterations (15%–25% of identified proteins),

and 190 proteins changed in abundance (3%–13% of identified

proteins) (Figure 4A). As observed in our yeast experiments, a

higher number of proteins underwent structural alterations than

abundance changes. Replicates clustered together, and correla-

tions of protein abundance changes with previous data were

good (Schmidt et al., 2016, data not shown). Further, each

growth condition resulted in the up-regulation of the expected

nutrient transporters and uptake regulators (Figure 4B).

Global protein structural data are complementary to
protein abundance information
To assess the overlap of information derived from protein abun-

dance and structural measurements, we performed functional

enrichment analyses on proteins with altered structure and/or

abundance in different carbon sources. The structural and pro-

tein abundance readouts captured different sets of biological

processes, although several GO terms overlapped (Figure S5A;

Table S3). There was no enrichment of the glycolytic pathway

in proteins that changed abundance (Figure S5A), consistent

with previous observations that glycolytic fluxes are not primarily

controlled at the transcriptional level (Gerosa et al., 2015). In

contrast, proteins with structural alterations were enriched in

glycolytic enzymes in all growth conditions (Figure S5A). Out of

20 identified glycolytic enzymes, 16 showed a structural
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alteration in multiple conditions, whereas only three changed

abundance in at least one condition (Figure S5B). Similarly,

seven out of nine enzymes from the pentose phosphate pathway

were altered exclusively in their structure in multiple conditions.

Other biological processes only enriched at the structural level

were amino acid biosynthesis and tRNA aminoacylation for pro-

tein translation, particularly under conditions resulting in the

slowest growth, and ATP biosynthesis (Figure S5A; Table S3).

The tricarboxylic acid (TCA) cycle was regulated at both the

abundance and the structural level, as were the glyoxylate cycle,

transmembrane transport, and aerobic respiration (Figures S5A

and S5B). Our data suggest that different regulatory mecha-

nisms control different branches of the CCM in E. coli grown

on different carbon sources. Glycolysis is controlled by regulato-

rymechanisms that affect protein structure and not gene expres-

sion, whereas the TCA and glyoxylate cycles show changes in

expression levels in addition to other regulatory processes that

affect protein structure.

Structural changes reflect functional alterations of
metabolic enzymes
Changes in flux for a reaction catalyzed by a given enzyme could

occur due to changes in enzyme activity (in response to allosteric

interactions or PTM), in reactant concentrations, or in enzyme

levels. We hypothesized that a change in flux due to altered

enzyme activity or altered binding of reactants might affect pro-

tein structure, resulting in a LiP signal. To test this, we asked

whether LiP-MS data, corrected for protein abundance changes,

captured structural changes for enzymes known to catalyze the

reactions that change flux. We calculated flux ratios in relation to

glucose for 25 CCM reactions in E. coli grown under the different

nutrient conditions (Gerosa et al., 2015). Between 18 (for acetate)

and 25 (for gluconate) reactions significantly changed in flux in

the different growth conditions (t test, adjusted p value < 0.05)

(Table S3). LiP-MS detected a structural alteration for enzymes

associated with the majority of flux changes (87%, Figure 5A),

supporting the notion that a structural readout captures alter-

ations in enzyme functional states. Protein abundance data de-

tected changes in enzymes, mostly of the TCA and glyoxylate

cycles, associated with only 39% of flux alterations (Figure 5A),

confirming that only some flux changes are explained by altered

concentrations of the associated enzymes.

Flux associated with an enzyme could be regulated by the

same molecular event across growth conditions. Alternatively,

different molecular events could regulate flux in different condi-

tions. To distinguish between these two scenarios, we used

linear regression to ask for which enzymes structural or abun-

dance changes were quantitatively related to metabolic flux

changes across the eight conditions. Of 11 glycolytic enzymes,

one or multiple LiP peptides from gapA, pgk, and eno were line-

arly correlated with flux measurements over the set of growth

conditions (R2 > 0.7 and adjusted p value < 0.05, Table S3; Fig-

ure 5B), suggesting that for these enzymes structural changes at

specific sites are a quantitative predictor of fluxes. For the re-

maining enzymes in the network, there was no linear correlation

between flux and a specific LiP peptide changing across at least

four conditions, suggesting that fluxes for these enzymes are

likely not regulated by the same molecular events in the different
552 Cell 184, 545–559, January 21, 2021
conditions, as previously suggested (Gerosa et al., 2015). The

abundance of mdh was linearly correlated with flux, suggesting

that mdh fluxes are regulated by enzyme abundance in these

conditions (R2 > 0.7 and adjusted p value < 0.05, Table S3).

Of LiP peptides detected for glycolytic enzymes gapA, pgk,

and eno, only 11% correlated with fluxes (Figure 5C; Table S3;

for all correlation plots see https://doi.org/10.5281/zenodo.

3964994). Wemapped the LiP peptides that correlate with fluxes

to available enzyme structures (Table S3). For the three glycolytic

enzymes, a large fraction of LiP peptides that correlated with flux

(2/2 for pgk, 11/14 for gapA, and 9/26 for eno) mapped to the

enzyme active site or, in the case of gapA, to a known allosteric

site (Table S3).

We speculated that active-site LiP peptides report on sub-

strate occupancy and that they correlate with flux because sub-

strate occupancy integrates events that affect flux. To confirm

this, we performed LiP-MS on purified pgk in the presence of

different amounts of its substrate 3-phosphoglycerate. To mimic

as much as possible the in vivo experiment, we spiked purified

pgk and substrate into an E. coli lysate cleared of endogenous

metabolites. Remarkably, of the 180 peptides detected, the

two LiP peptides that increased with added substrate in vitro

covered exactly the same active-site region we detected for

the endogenous enzyme across the different nutrient conditions

(Figures 5C–5E; Table S3). This suggests that these LiP peptides

report on pgk substrate occupancy in situ and that substrate oc-

cupancy monitored by LiP correlates with flux changes. Taken

together, our data show that the structural readout captures

functionally relevant changes of E. coli CCM enzymes in situ.

The structural readout identifies regulatory events
in CCM
Metabolites can regulate enzyme activity by allosteric interac-

tions (Chubukov et al., 2014). We reasoned that some of the

structural alterations we detected for CCM enzymes could un-

derlie cases of allosteric regulation. In these cases, levels of

metabolite regulators should correlate with structural alterations

at the allosteric site of the target enzyme. We used linear regres-

sion to test for a correlation between structural changes in en-

zymes of the CCM and relevant metabolite levels across the

eight growth conditions. We found a linear correlation between

metabolite concentration and LiP peptide abundance for 32 en-

zymes (Figures 6A and 6B; Table S3; for all correlation plots see

https://doi.org/10.5281/zenodo.3965002). Among these metab-

olite-enzyme pairs, the allosteric interaction between FBP and

pykF and catalytic interactions between FBP and pfkA, NAD

and sucA, and alpha-ketoglutarate and gltA have been well char-

acterized. Interactions between dihydroxyacetone phosphate

and fbaA, NAD and eno, glucose-6-phosphate and gapA, FBP

and pgk, citrulline and pta, FBP and ptsI, and NAD and pfkA

were corroborated by recent physical interaction data (Diether

et al., 2019; Piazza et al., 2018). Importantly, LiP peptides that

correlated with metabolite levels were in close proximity to the

binding sites identified by previous experiments (Piazza et al.,

2018) (Table S3).

We further validated the interaction between ptsI and the

metabolite FBP (Figures S6A–S6C). In order to confirm that

this interaction is not due to indirect effects, we repeated the

https://doi.org/10.5281/zenodo.3964994
https://doi.org/10.5281/zenodo.3964994
https://doi.org/10.5281/zenodo.3965002


Figure 5. Structural changes reflect functional flux alterations of E. coli metabolic enzymes

(A) 13C-basedmetabolic fluxmaps for E. coli grown in indicated nutrient conditions reported in Gerosa et al. (2015). The thickness of the black arrows indicates the

flux fold change in relation to growth in glucose. Proteins with significant changes (|log2FC| >2, q-value < 0.05; p values adjusted for multiple testing with the

Benjamini-Hochberg method) in abundance (green), structure (yellow), or both are indicated.

(B) Schematic of glycolytic enzymes. Red circles indicate enzymes with correlations between LiP peptide levels and metabolic flux.

(C) Linear regression between levels of the indicated LiP peptides derived from pgk and relative flux values through pgk across all nutrient conditions.

(D) Level of the best correlating LiP peptide of recombinant pgk spiked into an E. coli lysate with increasing 3-phosphoglycerate (3PG) concentration. This peptide

is almost identical to the one correlated with flux across growth conditions in vivo (in [C]).

(E) The two LiP peptides that correlate with flux (orange) mapped onto the structure of pgk (PDB: 1zmr). 3PG bound to pgk is indicated in cyan. The barcode

represents the change in proteolytic fingerprint along the sequence of pgk in galactose in relation to glucose (for barcodes corresponding to all growth conditions,

see Figure S5C). Orange indicates peptides that change in intensity (|log2FC| >1, q-value < 0.05) between galactose and glucose, correlate with flux across all

conditions, and correlate with substrate levels in an in vitro LiP experiment; yellow indicates peptides that change in intensity between galactose and glucose but

do not meet the other two conditions; gray indicates peptides detected by MS that do not change between conditions; and black indicates peptides that are not

detected by MS.

See also Table S3.
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LiP-MS analysis on purified ptsI in the presence and absence of

FBP. Addition of FBP to the protein triggered alterations of the

same region that was altered in vivo upon increasing intracel-

lular concentrations of FBP (though not identical peptides),

suggesting that this region corresponds to the ptsI-FBP binding

site (Figures 6C and S6C). This site overlaps with the known

binding site of the ptsI substrate phosphoenolpyruvate (PEP).

In addition, possibly due to the higher coverage for purified

protein, we detected four other altered peptides upon addition

of FBP, two of which were located at the PEP binding site
(Figure 6C). These data suggest that FBP could act as a

competitive inhibitor of ptsI.

To test this, we performed ligand docking and molecular dy-

namics simulations. These computational analyses provided

strong evidence that FBP binds at the PEP binding site in ptsI

(Figure 6D). The two phosphate groups of FBP coordinate the

cofactor Mg2+, forming an octahedron coordination system

together with the negatively charged side chains of Glu431 and

Asp455 of ptsI and surrounding water molecules. These interac-

tions were structurally stable along the simulations (Video S1).
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Figure 6. Structural changes capture allosteric regulators of E. coli metabolic enzymes

(A) Depiction of E. coli CCM showing the 32 enzymes with significant correlations between LiP peptide levels and regulatory metabolite levels (gray dots) across

all growth conditions. Red outlines indicate interactions supported by previous data. Metabolites are denoted by rectangular boxes, and the points of entry of

different nutrient sources are shown.

(B) Correlations between levels of metabolites (rows) and CCM enzyme-derived LiP peptides (columns) in a linear regression analysis across all nutrient con-

ditions. All metabolites with at least one significant correlation are plotted (|log2FC| >1, q-value < 0.05 in at least four conditions and for the regression analysis an

adjusted p value <0.05 with R2 >0.7). The color scale indicates the correlation coefficient.

(C) LiP peptides of purified ptsI with significance level |log2FC| >2, q-value < 0.01 (two-sample t test with Storey methods correction for multiple testing) mapped

onto the 3D structure of ptsI (PDB: 2xz7). Peptides in dark orange are positioned within the active site (< 6.4 Å), light orange peptides are outside the active site. A

close-up of the ptsI active site is shown with PEP in cyan and Mg2+ in red. The structure shown is the only one for which a 3D structure with bound PEP was

available.

(D) Binding mode of FBP (carbon atoms in cyan) to ptsI (gray, with carbon atoms in active-site side chains in green) as predicted by ligand docking andmolecular

dynamics simulations (PDB: 2xz7). A close-up of the ptsI active site is shown with FBP and the cofactor Mg2+ (blue sphere).

(E) ptsI in vitro activity assay. Bar plot of the fitted rate constants of the PEP-labeling reaction, which is ameasure of ptsI activity. Rates are shown asmeans; error

bars indicate the standard deviation (n=4).

See also Figure S6, Video S1, and Table S3.
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Finally, we performed in vitro activity assays and observed a

strong inhibitory effect of FBP on ptsI activity (Figures 6E and

S6D–S6F), thus confirming the hypothesis generated by our

structural analysis.

We next sought to systematically explain structural changes

observed during the shift between pairs of conditions. Some reg-

ulatory metabolite-protein interactions have been proposed to

be active only in the presence of specific nutrients (Gerosa

et al., 2015) and would therefore not be captured by our correla-

tion analysis across eight conditions. We identified, based on

previous metabolomics data (Gerosa et al., 2015), metabolites

that changed their concentration at least 3-fold in each condition
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in relation with glucose (Figure S6G; Table S3). For these altered

metabolites, we examined a dataset of metabolite-protein inter-

actions that we had previously generated (Piazza et al., 2018),

where interactions had been induced by adding specific metab-

olites to cell extracts. That analysis had identified marker pep-

tides at binding sites that showed altered levels upon binding

of the metabolite, but we did not know whether the interactions

identified in vitro would occur also in vivo.

We reasoned that interactions that occur in vivo should show

changes in in vitro-defined marker peptides during metabolic

transitions where the endogenous concentration of the specific

metabolite is substantially altered. We identified 121 such



ll
OPEN ACCESSResource
metabolite-protein interactions (Figure S6G). Reassuringly, nine

of these interactions were previously characterized in the litera-

ture; seven are enzyme-substrate relationships known to be rele-

vant in the associated metabolic transitions (Table S3). This sug-

gests that our approach identifies physiologically relevant

interactions and that the remaining 112 metabolite-protein inter-

actions could also occur in vivo. Moreover, our data suggest the

specific metabolic transitions under which the interactions are

regulated.

In summary, our structural approach suggested both transi-

tion-dependent and more broadly active metabolite-protein

interactions in E. coli, in situ. We have validated a regulatory

interaction between ptsI and FBP, showing that identification

of structurally altered regions supports the generation of testable

molecular hypotheses.

DISCUSSION

We demonstrated that detecting dynamic alterations of protein

structures on a proteome-wide scale provides a powerful global

readout of protein functional alterations in situ. Our approach

captured protein functional alterations due to different molecular

events, including enzyme activity changes, altered enzyme

active-site occupancy, PTMs, metabolite-driven allosteric events,

substrate binding, and protein-protein interactions.

In all systems examined, the structural readout captured more

altered proteins and processes than did a protein abundance

readout, and data from both approaches were often comple-

mentary. This suggests that integrating structural and

abundance-based proteomics will maximize detection of altered

biological processes. Protein abundance information is also

captured in the control step of LiP-MS experiments, allowing

simultaneous probing of most types of functional molecular

events in a single experiment (Figure S7). Although we focused

our analyses on specific well-studied pathways, this rich dataset

should yield biological insight beyond that presented here.

The LiP-MS structural readout provides data complementary

to other ‘omic data. For instance, when conducted in parallel

to phosphoproteomic analysis, the structural readout captured

multiple types of molecular events known to regulate protein

function; however, phosphoproteomics additionally revealed

phosphorylation-associated functional alterations of low-abun-

dance proteins, because the phosphopeptide enrichment step

intrinsic to these analyses increases proteome coverage. For

proteins analyzed by both approaches, LiP-MS detected

structural alterations for 40% of the regions that changed phos-

phorylation state. The phosphoproteomic analysis is restricted

to the phosphorylated fraction of protein molecules, whereas

LiP-MS monitors the average structural state of both phosphor-

ylated and non-phosphorylated protein pools. Thus, LiP-MS

might not detect a structural change for a differentially phosphor-

ylated protein region if the degree of phosphorylation is low.

In bacteria grown under different nutrient conditions, we de-

tected structural alterations for almost all enzymes associated

with flux changes, suggesting that LiP-MS is a good readout

for enzyme functional alterations. In contrast, only about a third

of flux changes were explained by enzyme abundances. The

structural readout reports on different molecular events that
can affect flux, including allosteric and phosphorylation events

and changes in the relative levels of enzyme and/or substrate.

For three enzymes, fluxes across metabolic conditions corre-

lated with levels of LiP peptides at active sites, and we showed

that these peptides likely report on site occupancy. For these en-

zymes, fluxes are likely regulated by relative levels of enzyme

and reactants. For enzymes where we did not detect a correla-

tion with flux across conditions, different types of molecular

events presumably regulate fluxes across these conditions, as

previously suggested (Gerosa et al., 2015).

LiP peptides located at functional sites can be used as

markers to probe specific functional events in situ. For example,

LiP peptides at the active site of pgk and at the metabolite bind-

ing sites of ptsI and eno reported on the occupancy of those sites

both in vitro and in situ. Similarly, the abundance of a LiP peptide

from Hog1 that contains a phosphorylation site changed

concomitantly with phosphorylation. It could be possible to

extract similar markers for many proteins by mapping structural

proteomics data from perturbed proteomes to high-resolution

structures and integrating prior knowledge on protein functional

states. Structural proteomics could also be applied in a clinical

context to identify structural biomarkers for disease.

Our approach does not directly inform on the causes of the de-

tected structural alterations. However, LiP-MS detects structural

changes with peptide-level resolution (i.e., the change can be

pinpointed to stretches of around 10 amino acids), allowing us

to relate effects of perturbations to specific functional sites.

This supports the generation of testable molecular hypotheses,

the design of follow-up biochemical experiments, and the design

of mutations for functional studies, thus linking holistic and

mechanistic approaches. Our method is particularly useful if a

high-resolution structure of a protein is available, but

sequence-based information on locations of functionally rele-

vant sites or domains could be sufficient for hypothesis

generation.

Based on our data we hypothesized that the metabolite FBP

bound to the active site of the enzyme ptsI in E. coli. Computa-

tional analyses indicated that FBP likely acts as a competitive in-

hibitor of ptsI, and in vitro assays confirmed that FBP reduces

ptsI activity. Previous work has shown that ptsI controls hexose

uptake and regulates glycolytic flux (Doucette et al., 2011). Inter-

estingly, FBP has been shown to act as an intracellular glycolytic

flux sensor (Kochanowski et al., 2013). Thus, we hypothesize

that the FBP-ptsI interaction serves as a negative feedback

loop that prevents excessive glucose uptake when glycolytic in-

termediates are already abundant. In support of this, the in vitro

inhibitory effect of FBP was observed only at high FBP concen-

trations (25 mM) (Figure 6E) but was negligible at around four

times lower FBP levels (data not shown). These high FBP con-

centrations are in a physiological range for cells grown in glyco-

lytic carbon sources (15 mM) (Bennett et al., 2009; Gerosa et al.,

2015). Consistently, our in situ data indicate that the FBP-ptsI

interaction becomes relevant when going from gluconeogenic

(pyruvate, acetate, and succinate) to glycolytic (glucose, fruc-

tose, and glycerol) carbon sources. The low affinity of the FBP-

ptsI interaction likely explains why it was not previously detected

and indicates that our strategy does not only detect high-affinity

interactions.
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Structurally altered proteins identified in a global analysis

could be followed up by high-resolution structural studies (e.g.,

by x-ray crystallography or cryo-electron microscopy) and

visualized in cells and tissues (e.g., by cryo-electron tomogra-

phy), thus potentially leading to innovative structural biology

workflows. In principle, LiP-MS could also provide insight into

protein organization more broadly, because it could detect

changes in protein localization if this is accompanied by struc-

tural alterations. We note however that, because the protocol

used here involves cell lysis prior to LiP, intracellular compart-

mentalization will be disrupted, so changes due to a different

internal environment (e.g., pH of an organelle) are unlikely to be

detected. An assessment of the ability of LiP-MS to monitor

larger-scale proteome reorganization will require amore system-

atic study.

LiP-MS is not the only structural proteomics approach that can

be used for the in situ detection of protein functional changes.

Other techniques such as crosslinking mass spectrometry or

surface footprinting (e.g., by fast photochemical oxidation of

proteins) could, in principle, also be applied for this purpose.

Although it is difficult to analyze complex proteomes with these

approaches or to perform comparative analysis of differently

treated samples, recent technical developments suggest that

these techniques might be a promising direction for the dynamic

analysis of structural and functional proteomes (Espino and

Jones, 2019; Liu et al., 2015; Rinas et al., 2016). Thermal prote-

ome profiling has also been used to identify protein-protein inter-

action and small molecule binding in complex samples (Savitski

et al, 2014; Tan et al, 2018).

Pioneering computational biology studies have exploited in-

formation from static protein structures to assess the properties

of specific biological systems, thus illustrating the potential of

global structural data (Chang et al., 2013; Zhang et al., 2009).

We propose that the incorporation of dynamic in situ structural

data obtained for proteomes under different conditions, like

those generated by our LiP-MS approach, will extend the poten-

tial of structural systems biology and link systems and reduc-

tionist approaches. The quantitative measurement of molecular

events such as active-site occupancy should also support the

development of frameworks for the modeling of biological sys-

tems. By linking dynamic and high-resolution structural data to

function, our global structural approach brings us one step

closer to a 3D model of the functioning of a cell.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

TCEP (tris(2-carboxyethyl)phosphine

hydrochloride)

Pierce Cat#20490; CAS#51805-45-9

Iodoacetamide Sigma-Aldrich Cat#I1149; CAS#144-48-9

Ammonium bicarbonate Sigma-Aldrich Cat#09830; CAS#1066-33-7

Formic acid 98-100% AppliChem Cat#A38580500

HEPES (4-(2-hydroxyethyl)piperazine-

1-ethanesulfonic acid, N-(2-Hydroxyethyl)

piperazine-N¿-(2-ethanesulfonic acid)

Sigma-Aldrich Cat#H4034

Sodium deoxycholate Sigma-Aldrich Cat#D6750; CAS #302-95-4

Proteinase K (PK) from Engyodontium album Sigma-Aldrich Cat#P2308

HRM calibration kit Biognosys AG Cat#Ki-3003

Phospho(enol)pyruvic acid monopotassium salt Sigma-Aldrich Cat#860077; CAS#4265-07-0

Sodium pyruvate Sigma-Aldrich Cat#P2256; CAS# 113-24-6

Sodium pyruvate (13C3, 99%) Cambridge Isotope Laboratories Cat# CLM-2440-PK; 142014-11-7

Fructose-bis-phosphate sodium salt Sigma-Aldrich CAT# 47810

Potassium chloride Merck Cat#K41042236-032; CAS#64-18-6

D-Glucose Sigma-Aldrich Cat #G8270;

CAS#50-99-7

D-Fructose Sigma-Aldrich Cat#F3510;

CAS #57-48-7

Sucrose Sigma-Aldrich Cat#84100

CAS #57-50-1

Acetate (potassium acetate) Sigma-Aldrich Cat#60035

CAS #127-08-2

Gluconate (potassium D-gluconate) Sigma-Aldrich Cat#G4500

CAS #299-27-4

Glycerol (anhydrous) PanReac AppliChem Cat#A1123

Cas#56-81-5

Galactose Formedium Cat#GAL03

Sodium pyruvate Sigma-Aldrich Cat#P5280

Cas# 113-24-6

Sodium chloride Merck Cat#1.06404

Cas# 7647-14-5

Magnesium chloride hexahydrate Fluka Cat#63072; CAS#7791-18-6

Alpha-synuclein Purified in-house Feng et al., 2014

Critical Commercial Assays

BCA protein assay Pierce Cat: 23228

His GraviTrap� TALON� GE Healthcare Cat: GE29-0005-94

Deposited Data

Raw and analyzed data This paper Pride: PXD022297

LiP peptide correlations with flux This paper https://doi.org/10.5281/zenodo.3964994

LiP peptide correlations with metabolite levels This paper https://doi.org/10.5281/zenodo.3965002

Heat aggregating proteins Wallace et al., 2015 N/A

13C-based metabolic fluxes Gerosa et al., 2015 N/A

Protein-metabolite interactions (LiP-SMAP) Piazza et al., 2018 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

S. cerevisiae Gene Ontology (GO) annotation Gene Ontology Consortium http://current.geneontology.org/annotations/

sgd.gaf.gz

E. coli Gene Ontology (GO) annotation Gene Ontology Consortium http://current.geneontology.org/annotations/

ecocyc.gaf.gz

Yeast chaperones Gong et al., 2009 N/A

Yeast chaperones physical interactors BioGRID https://thebiogrid.org/

Kinase-substrate network (KSN) BioGRID https://downloads.thebiogrid.org/File/

BioGRID/Release-Archive/BIOGRID-

3.5.186/BIOGRID-PTMS-3.5.186.ptm.zip

Protein-metabolite interactions detected by

ligand-detected NMR

Diether et al., 2019 N/A

Pfk1 protein structure Banaszak et al., 2011 PDB: 3o8o

Fba1 protein structure d https://doi.org/10.2210/pdb3QM3/pdb PDB: 3qm3

Ste20 protein structure Karpov et al., 2015 PDB: 4zlo

Hog1 protein structure Wang et al., 2016 PDB: 5ci6

Tpi1 protein structure Jogl, et al., 2003 PDB: 1nf0

Gpd1 protein structure Leano et al., 2019 PDB: 6e9o

Gpp1 protein structure d https://doi.org/10.2210/pdb2QLT/pdb PDB: 2qlt

Tdh2 protein structure d https://doi.org/10.2210/pdb3PYM/pdb PDB: 3pym

Pgk1 protein structure McPhillips et al., 1996 PDB: 1qpg

Gpm protein structure Crowhurst et al., 1999 PDB: 1qhf

Eno2 protein structure Wedekind et al., 1995 PDB: 1ebh

Pyk2 protein structure Jurica et al., 1998 PDB: 1a3x

Hsp104 protein structure Lee et al., 2019 PDB: 6n8t

pgk protein structure Young et al., 2007 PDB: 1zmr

ptsI protein structure Navdaeva et al., 2011 PDB: 2xz7

Experimental Models: Organisms/Strains

E. coli: Strain background BW25113 Baba et al., 2006 N/A

S. cerevisiae BY4742: S288C isogenic

yeast strain. Genotype: MATa his3D1

leu2D0 lys2D0 ura3D0

Euroscarf http://www.euroscarf.de/plasmid_details.

php?accno=Y10000

E. coli ASKA collection strain: ptsI, b2416 Kitagawa et al., 2005 JW2409-AP

E. coli ASKA collection strain: 6xHis-

tagged Pgk

Kitagawa et al., 2005) EcoCyc: EG10703

Software and Algorithms

Rstudio Rstudio https://www.rstudio.com

R version v. 3.6.1 The R Foundation https://www.r-project.org/

Python version v. 2.7, 3.0 Python Software Foundation https://www.python.org

Pandas library for python, 0.18.1 NumFOCUS https://pandas.pydata.org/

Seaborn library for python v. 0.9.0 Michael Waskom https://seaborn.pydata.org/index.html#

PyMOL 2.4 Schrödinger https://pymol.org/2/

Proteome discoverer v. 2.2 ThermoFisher Scientific https://www.thermofisher.com/us/en/

home.html

Spectronaut v. 13 Biognosys AG https://biognosys.com/

MaxQuant 1.5.2.8 Max-Planck-Institute of Biochemistry https://www.maxquant.org/

Progenesis QI 2.0 Nonlinear Dynamics http://www.nonlinear.com/progenesis/

qi-for-proteomics/

SafeQuant 2.3.1 Erik Ahrne https://github.com/eahrne/SafeQuant

MSstats 3.1 Choi et al., 2014 https://www.bioconductor.org/packages/

release/bioc/html/MSstats.html

(Continued on next page)
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proteusLabelFree Marek Gierlinski https://github.com/bartongroup/

proteusLabelFree

Bioconductor Huber et al., 2015 https://www.bioconductor.org/about/

topGO Adrian Alexa, Jorg Rahnenfuhrer https://bioconductor.org/packages/

release/bioc/html/topGO.html

viper Mariano J Alvarez http://bioconductor.org/packages/

release/bioc/html/viper.html

Network analysis code This paper https://github.com/saezlab/

conformationomic_yeast_picotti_2020.git

MatLab R2020a MathWorks https://www.mathworks.com

MarvinSketch 19.25 ChemAxon http://www.chemaxon.com

Maestro 11.5 Schrödinger https://www.schrodinger.com/freemaestro

AutoDock Vina 1.1.2 Trott and Olson, 2010 http://vina.scripps.edu

NAMD 2.13 University of Illinois at Urbana-

Champaign

https://www.ks.uiuc.edu/Research/namd

CHARMM 42b2 Harvard University https://www.charmm.org

Other

Amicon Desalting Columns 3 kDa MWCO Merck N/A

Freezer Mill, 6870 SPEX SamplePrep N/A

Ni-IMAC column GE Biotech N/A

Sep-Pak Vac, tC18 Cartridges Waters Cat: WAT054960

Orbitrap Q Exactive Plus mass spectrometer ThermoFisher Scientific https://www.thermofisher.com/us/

en/home.html

Orbitrap Fusion Lumos Tribrid mass

spectrometer

ThermoFisher Scientific https://www.thermofisher.com/us/

en/home.html

Orbitrap Q Exactive HF mass spectrometer ThermoFisher Scientific https://www.thermofisher.com/us/

en/home.html
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents may be directed to and will be fulfilled by Paola Picotti (picotti@imsb.

biol.ethz.ch).

Materials Availability
This study did not generate new unique reagents.

Data and Software Availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol

et al., 2019) partner repository with the dataset identifier PXD022297.

The complete data set of LiP peptide correlations with flux are at https://doi.org/10.5281/zenodo.3964994

The complete data set of LiP peptide correlations with metabolite levels are at https://doi.org/10.5281/zenodo.3965002

EXPERIMENTAL MODEL AND SUBJECT DETAILS

E. coli

All experiments were performed with the E. coliBW25113 wild-type in shake-flask cultures (Baba et al., 2006). Frozen glycerol stocks

were used to inoculate Luria-Bertani (LB) complex medium. After 6 hours of incubation at 37�C under constant shaking at 220 rpm,

LB cultures were used to inoculate 25ml of M9minimal medium pre-cultures supplemented with 5 g/L of the indicated carbon source

(glucose, fructose, sucrose, acetate, gluconate, glycerol, galactose and pyruvate) for over-night culture. The next day, final cultures

were inoculated 1:100 (v/v) in 500 ml of M9 minimal medium supplemented with the same carbon source and grown to exponential

phase (OD600 = 0.8 ± 0.1) at 37�C under constant shaking at 220 rpm. Cells were then harvested by centrifugation at 4,200 x g for
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15min at 4 �C and washed twice with 25 ml ice-cold lysis buffer (LB: 20mMHepes, 150 mMKCl, 10MgCl2, pH 7.5). Cell pellets were

resuspended in 500 ml cold LB andmixed with the same volume of acid-washed glass beads (Sigma Aldrich) and disrupted at 4 �C by

4 consecutive rounds of beads-beating at 30 sec with 4 min pause between the runs in a FastPrep-24TM 5G Instrument (MP Bio-

medicals). E. coli lysates were centrifuged at 16,000 x g for 15 min at 4 �C to remove cellular debris, the supernatants were collected

and transferred to a fresh 1.5 ml tube and the protein concentration was determined with the bicinchoninic acid assay (BCA Protein

Assay Kit, Thermo Fisher Scientific). The protein extracts were flash frozen in liquid nitrogen and stored at - 80�C until use.

For the preparation of E. coli extracts used as background proteome in in vitro LiP-MS experiments, E. coli cells were grown in

500 ml M9 minimal medium supplemented with 5 g/L glucose at 37�C under shaking at 220 rpm and harvested in exponential phase

(OD600 = 0.8 ± 0.1). Proteome extracts were prepared as described above for the different carbon sources. Endogenous metabolites

and nucleic acids were removed by size-exclusion chromatography (Amicon Desalting Columns 3 kDa MWCO, Merck), protein con-

centration was determined with the bicinchoninic acid assay (BCA Protein Assay Kit, Thermo Fisher Scientific). The protein extracts

were flash frozen in liquid nitrogen and stored at -80�C until use.

Saccharomyces cerevisiae

Single colonies of the BY4742 Saccharomyces cerevisiae strain picked from a fresh plate were inoculated in synthetic complete (SC,

Cold Spring Harbor Protocols, 2016) medium and grown for 6 hours at 30�C under shaking at 180 rpm. The pre-cultures were inoc-

ulated into fresh SC medium cultures to a final OD600 of 0.0003 and grown overnight at 30�C under constant shaking. When cultures

reached OD600 = 0.8±0.1 the liquid medium was removed by 1 min centrifugation at 1000 x g. For the heat shock experiment, cell

pellets were resuspended in the same volume of 42�C pre-warmed SC medium and incubated at 42�C for 3 min under shaking at

180 rpm. As control, the same procedure was followed but cell pellets were resuspended with 30�C pre-warmed SC medium and

cell cultures were incubated at 30�C. For the osmotic stress perturbation, cell pellets were resuspended in SCmedium supplemented

with 0.4 M NaCl and with an equivalent volume of SC medium in the control samples, and cell cultures were incubated for 10 min at

28�C under constant shaking at 180 rpm. Next, the liquid medium was removed by 1 min centrifugation at 1000 x g and cell pellets

were resuspended in lysis buffer (100 mM HEPES, 1 mMMgCl2, 150 mM KCl, pH 7.5). Liquid-nitrogen frozen beads of cell suspen-

sionswere added to grinding vials and ground in a Freezer Mill (SPEX SamplePrep 6875). To remove cell debris, samples were centri-

fuged at 800 x g for 5 min at 4�C. The supernatant was collected and protein concentration determined with the bicinchoninic acid

assay (Thermo Fisher Scientific).

For the analysis of differentially regulated phosphorylation sites during the acute osmotic perturbation, cells were prepared as

described above using untreated cells as controls, and peptidemixtureswere subjected to the enrichment step (see Phosphopeptide

Enrichment section below). For the analysis of reproducibility of LiP, cells were prepared as described above, but Yeast Extract–

Peptone–Dextrose (YPD) medium was used instead of SC medium. Additionally, cells were washed three times in Phosphate-buff-

ered saline (PBS) buffer before resuspension in lysis buffer.

METHOD DETAILS

Sedimentation analysis
The sedimentation analysis was used to separate high molecular weight protein assemblies, such as aggregates, from soluble pro-

tein assemblies. Yeast lysates were prepared as described above and centrifuged at 100.000 x g for 20 min at 4�C (Beckman Coulter

Optima TLX). The supernatant was removed and protein concentration was determined as described above. The pellet was washed

with 1 volume of lysis buffer and centrifuged again at 100.000 x g for 20 min at 4�C. The pellet was resuspended in lysis buffer by

vortexing for 5min at RT. Subsequently, it was cleared of debris by centrifugation at 800 x g for 5 min at 4�C. Protein concentration

was determined as described above.

To assess the effect of centrifugation on soluble proteins and aggregated proteins, heterologously expressed alpha-synuclein was

spiked into non-treated yeast lysates. Monomeric alpha-synuclein and amyloid-like fibrils of alpha-synuclein were obtained as

described before (Feng et al., 2014) and spiked into non-treated yeast lysates at 5pmol/ug lysate. The samples were further pro-

cessed as described in the ‘‘Limited proteolysis (LiP)’’ section.

Recombinant protein purification
E. coli pgk: All purification steps were performed at 4�C, and protein concentration was determined spectrophotometrically

at 280 nm. The Pgk expression strain was obtained from the ASKA collection (Kitagawa et al., 2005); pgk was expressed as an

N-terminal His6 fusion protein. Briefly, 500 mL LB cultures containing 50 mg/mL chloramphenicol were inoculated with an aliquot

of an LB overnight culture diluted 1:100. Cells were grown to a final OD600 of 0.5 at 37 �C under constant shaking at 220 rpm followed

by induction for 2 h with 0.5 mM isopropyl b-d-thiogalactoside at 37�C. Cells were lysed in 20 mM Tris-HCl, pH 7.5, 50 mM NaCl,

5mM phenylmethylsulfonyl, 0.5 mg/ml Lysozyme for 45 min on ice, followed by ultrasonication. The supernatant obtained after

high-speed centrifugation (20,000 g, 40 min, 4 �C) was applied to an Ni-IMAC column (GE Biotech) equilibrated in 50 mM Tris-

HCl, pH 7.5, 300 mM NaCl, 10 mM imidazole, to capture the His6 fusion protein, followed by washing with 50 mM Tris-HCl pH

7.5, 300 mM NaCl, 25 mM imidazole. The protein was eluted with 50 mM Tris-HCl pH 7.5, 300 mM NaCl, 200 mM imidazole and

the protein containing fractions were dialyzed against 20 mM Tris-HCl, pH 7.5, and 50 mM NaCl over-night at 4�C. Proteins were
Cell 184, 545–559.e1–e11, January 21, 2021 e4
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concentrated with 10 kDa MWCO (Milipore) concentrators, 5% glycerol was added, and fractions were flash frozen in liquid nitrogen

and stored at -80 �C.
E. coli ptsI: 6 x His-tagged PtsI overexpression strain was obtained from the ASKA collection (Kitagawa et al., 2005) and purified

following previously reported procedures (Sévin et al., 2017). Briefly, 1L LB cultures containing 200 mM IPTG and 20 mg/mL chloram-

phenicol were inoculated with an aliquot of an LB overnight culture diluted 1:200 andwere grown at room temperature with stirring for

48 hours. Cells were harvested by centrifugation, washed twice with 0.9% NaCl, 2.5 mMMgCl2 and then lysed by three freeze-thaw

cycles in 30ml of 20mM sodium phosphate pH 7.5, 500mMNaCl, 20mM imidazole, 2 mMMgCl2, 2 mMdithiothreitol, 1 mM phenyl-

methylsulfonyl fluoride, Lysoenzyme and DNAseI. Clear lysates were centrifuged for 30 min. at 4 �C (14000 g), and purified using His

GraviTrap TALON columns (1 mL column volume, GE Healthcare) following manufacturer’s instructions. After elution with 20 mM so-

dium phosphate, 500 mM NaCl, 500 mM imidazole, pH 7.5, pure protein was re-buffered four times with enzyme assay buffer using

ultrafiltration columns with 10 kD cut-off (Millipore) and stored at 4�C. The enzyme assay buffer was 25 mM potassium-phosphate

buffer pH 7.0 with 2.5 mM MgCl2.

Limited proteolysis (LiP)
Each proteome extract was split into a control sample, which was subjected to only tryptic digestion and used to measure protein

abundance changes, and a LiP sample, containing information about protein structural changes, which was subjected to a double-

protease digestion step with a nonspecific protease followed by complete digestion with trypsin. Both samples contained 100 mg of

extracted proteome. Proteinase K from Tritirachium album (Sigma Aldrich) was added to the LiP samples at an enzyme/substrate

(E:S) ratio of 1:100 (w/w) and incubated for 1 min (E.coli experiment) or 3 min (S. cerevisiae experiment) at 25�C. A corresponding

volume of water was added to the control samples. Digestion reactions were stopped by heating LiP samples for 5 min at 98�C in

a thermocycler followed by addition of sodium deoxycholate (Sigma Aldrich) to a final concentration of 5%. The same procedure

was applied to control samples. Both LiP and control samples were then subjected to complete tryptic digestion in denaturing con-

ditions as described below (tryptic digestion). The in vitro LiP experiment was performed by spiking in 10 mg purified E. coli pgk into

100 mg E. coli lysate cleared of endogenous metabolites, as described above (sample preparation). Cell lysates were incubated with

the pgk substrate 3-phosphoglycerate (3PG) to a final concentration of 5mM, 10mM, 15mM, 20mM, and 25mM for 5 min at 25�C. As
control, a cell lysate withoutmetabolite addition was used. Themetabolite solutionswere freshly prepared from ultra-pure powders in

100mM HEPES, pH 7.5. After solubilization, pH was double-checked with pH strips. LiP experiments were carried out on both the

lysate after metabolite addition and on control samples. For the analysis of reproducibility of LiP, samples were treated as described

here, but the incubation with Proteinase K was prolonged to 5 min.

Tryptic digestion
Proteins fragments generated in the previous step were reduced by incubation of samples with tris(2-carboxyethyl)phosphine

(Thermo Fisher Scientific) to a final concentration of 5 mM for 30 min at 37 �C. Next, the alkylation of free cysteine residues was

achieved by adding iodoacetamide (Sigma Aldrich) to a final concentration of 40 mM for 30 min at 25�C in the dark. Samples

were diluted with freshly prepared 0.1 M ammonium bicarbonate to a final concentration of 1% sodium deoxycholate. Samples

were predigested with lysyl endopeptidase LysC (Wako Chemicals) at an enzyme/substrate ratio of 1:100. After 2 hours at 37�C,
sequencing-grade porcine trypsin (Promega) was added to a final enzyme/substrate ratio of 1:100, and samples were incubated

for 16 h at 37�C under shaking at 800 rpm. Protease digestion was quenched by lowering the reaction pH (< 3) The peptide mixtures

were loaded onto Sep-Pak tC18 cartridges or 96 wells elution plates (Waters), desalted, and eluted with 80% acetonitrile, 0.1% for-

mic acid. After elution from the cartridges, peptides were dried in a vacuum centrifuge, resolubilized in 0.1% formic acid, and

analyzed by mass spectrometry. For the analysis of reproducibility of LiP, samples were treated as described here, but LysC and

trypsin were added at the same time and samples incubated for 16 h.

Phosphopeptide enrichment
After the peptide clean-up step, each sample was diluted in 280 ml phtalic acid (PA) solution (86.7 mg/ml PA, 80% acetonitrile, 3.5%

trifluoroacetic acid (Thermo Scientific)) by vortexing and sonicating for 5 min. The peptide solution was centrifuged at 16,000 x g for

5 min to remove solid debris. The peptide solution was transferred to Mobicol spin columns containing titaniumdioxide (TiO2) beads

(GL Science) that had been washed with 280 ml of methanol by vortexing in short pulses and centrifuged at 800 x g, and equilibrated

with 280ml of PA solution by vortexing in short pulses and centrifuged at 800 x g. Transfer of peptide solution to the spin columnswas

achieved as follows: the bottom of theMobicol columns was closed with a small plug and the columns were vortexed to mix the pep-

tide solution with the TiO2 beads and incubated for 30 min at room temperature under end-over-end rotation. After incubation, the

beads were washed twice with 280 ml of PA solution (load, vortex, spin down at 800 g) followed by two washing steps with 280 ml of

80% acetonitrile, 0.1% trifluoroacetic acid, two washing steps with 280 ml of 40% acetonitrile, 0.1% trifluoroacetic acid and two

washing steps with 280 ml of 0.1% trifluoroacetic acid. For the elution, 280 ml of 0.3 M NH4OH were added to the beads, which

were then incubated for 3 min at room temperature and centrifuged at 800 x g. The elution was performed a second time with the

same parameters. The solution was acidified immediately after elution with 40 ml of 25% trifluoroacetic acid. The cleanup of phos-

phopeptides was performed as described in the ‘‘tryptic digestion’’ step using Sep-Pak tC18 cartridges (Waters). Dried phosphopep-

tides were re-solubilized with 30 ml 0.1% formic acid prior to analysis by mass spectrometry.
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LC-MS/MS data acquisition
Peptide digests for LiP, trypsin-only control and phospho-enriched samples were analyzed on an Orbitrap Q Exactive Plus mass

spectrometer (Thermo Fisher) equipped with a nanoelectrospray ion source and a nano-flow LC system (Easy-nLC 1000, Thermo

Fisher). Peptide digests for LiP and trypsin-only control samples of heat stressed yeast cells in the sedimentation analysis, as well

as peptide digests of the in vitro LiP-MS samples, were analyzed on an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo

Fisher) equipped with a nanoelectrospray ion source and an UPLC system (ACQUITY UPLC M-Class, Waters).

For shotgun LC-MS/MS data dependent acquisition (DDA), 1 ml peptide digests from each biological replicate of LiP, trypsin-only

control and phospho-enriched samples were injected independently at a concentration of 1 mg/ml. 1 ml of the same samples were

also measured in data-independent acquisition (DIA) mode. Peptides were separated on a 40 cm x 0.75 mm i.d. column packed in-

house with 1.9 mm C18 beads (Dr. Maisch Reprosil-Pur 120). For LC fractionation, buffer A was 0.1% formic acid and buffer B was

0.1% formic acid in 100% acetonitrile using a linear LC gradient from 5% to 25% or 5% to 35% acetonitrile, respectively, over

120 min and a flowrate of 300 nL/min and the column was heated to 50�C.
For DDA measurement on the Orbitrap Q Exactive Plus, MS1 scans were acquired over a mass range of 350-1500 m/z with a res-

olution of 70,000. The 20most intense precursors that exceeded 1300 ion counts were selected for collision induced dissociation and

the correspondingMS2 spectra were acquired at a resolution of 35000, collected for maximally 55ms. All multiply charged ions were

used to trigger MS-MS scans followed by a dynamic exclusion for 30 s. Singly charged precursor ions and ions of undefinable

charged states were excluded from fragmentation.

For DIA measurements, 20 variable-width DIA isolation windows were recursively acquired. The DIA isolation setup included a

1 m/z overlap between windows, as described in (Piazza et al., 2018). DIA-MS2 spectra were acquired at a resolution of 17500

with a fixed first mass of 150 m/z and an AGC target of 1 x 106. To mimic DDA fragmentation, normalized collision energy was

25, calculated based on the doubly charged center m/z of the DIA window. Maximum injection times were automatically chosen

tomaximize parallelization resulting in a total duty cycle of approximately 3 s. A surveyMS1 scan from 350 to 1500m/z at a resolution

of 70,000, with AGC target of 3 x 106 or 120 ms injection time was acquired in between the acquisitions of the full DIA isolation win-

dow sets.

For DDAmeasurement of the sedimentation analysis on the Orbitrap Fusion Lumos Tribrid, MS1 scans were acquired over a mass

range of 350-1400 m/z with a resolution of 120,000. Survey spectra were scheduled for execution at least every 3 s, with the

embedded control system determining the number of MS/MS acquisitions executed during this period. Precursors were selected

for higher-energy collision dissociation and the corresponding MS2 spectra were acquired at a resolution of 30,000, collected for

maximally 54 ms. All multiply charged ions were used to trigger MS-MS scans followed by a dynamic exclusion for 30 s. Singly

charged precursor ions and ions of undefinable charged states were excluded from fragmentation. DIA measurements consisted

of a survey MS1 scan from 300 to 2000 m/z at a resolution of 120,000, with a normalized AGC target of 200% or 100 ms injection

time, followed by the acquisition of 41 DIA isolation windows spanning 16m/z. The DIA isolation setup included a 1 m/z overlap

between windows.-DIA-MS2 spectra were acquired at a resolution of 30,000 with a fixed first mass of 358 m/z and a normalized

AGC target of 200%. To mimic DDA fragmentation, normalized collision energy was 28, calculated based on the doubly charged

center m/z of the DIA window. Maximum injection times was set at 54 ms.

For DDA measurements of the in vitro samples acquired with an Orbitrap Fusion Tribrid mass spectrometer, MS1 spectra were

acquired from 300 to 1500 m/z at a resolution of 120,000. Survey spectra were scheduled for execution at least every 3 s, with

the embedded control system determining the number of MS/MS acquisitions executed during this period. Precursors were selected

for higher-energy collision dissociation and the corresponding MS2 spectra were acquired at a resolution of 30,000, collected for

maximally 54 ms. All multiply charged ions were used to trigger MS-MS scans followed by a dynamic exclusion for 25 s. Singly

charged precursor ions and ions of undefinable charged states were excluded from fragmentation. The DIA acquisition method

for the in vitro samples acquired on the Orbitrap Fusion consisted of a survey MS1 scan from 300 to 1500 m/z at a resolution of

120,000, with AGC target of 4 x 105 or 50 ms injection time, followed by the acquisition of 20 variable-width DIA isolation windows.

The DIA isolation setup included a 1 m/z overlap between windows.-DIA-MS2 spectra were acquired at a resolution of 30,000 with a

fixed first mass of 150m/z and an AGC target of 5 x 104. Tomimic DDA fragmentation, normalized collision energy was 28, calculated

based on the doubly charged center m/z of the DIA window. Maximum injection times were automatically chosen to maximize par-

allelization resulting in a total duty cycle of approximately 3 s.

The experiments for the analysis of reproducibility of LiP were acquired with a Q Exactive HF mass spectrometer (Thermo Fisher)

equipped with a nanoelectrospray ion source and an UPLC system (ACQUITY UPLC M-Class, Waters). For DDA measurements,

MS1 spectra were acquired from 300 to 1500 m/z at a resolution of 120,000. The 12 most intense precursors were selected for colli-

sion induced dissociation and the correspondingMS2 spectra were acquired at a resolution of 30000, collected for maximally 50ms.

All multiply charged ions were used to trigger MS-MS scans followed by a dynamic exclusion for 30 s.

Peptide and protein identification
The collected DDA spectra were searched against the E. coli (strain K12) Uniprot fasta database (version October 2017) and the

S. cerevisiae (strain S288c) Uniprot fasta database (version November 2016) using the SEQUEST HT� database search engine

(Thermo Fisher Scientific). Up to two missed cleavages were allowed, cleavage of KP and RP peptide bonds were excluded. For

LiP samples, a semi-specific tryptic digestion rule type was applied. Cysteine carbamidomethylation (+57.0214 Da) and methionine
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oxidation (+15.99492) were allowed as fixed and variable modifications, respectively. In case of phosphopeptide search, the phos-

phorylation of serines, threonines and tyrosines (+79.966 Da) was defined as a variable modification. Monoisotopic peptide tolerance

was set to 10 ppm, and fragment mass tolerance was set to 0.02 Da. The identified proteins were filtered using the high peptide con-

fidence setting in Proteome Discoverer (version 2.2, Thermo Fisher Scientific), which correspond to a filter for 1% FDR on peptide

level. For spectral library generation the software Spectronaut (Biognosys AG, version 13) was used with default settings. The spec-

tral libraries contained normalized retention time iRT values for all peptides.

For the analysis of reproducibility of LiP, the collected DDA spectra were searched against a custom fasta database containing all

open reading frames of Saccharomyces cerevisiae which was kindly provided by Rachel Brem. Andromeda and MaxQuant (Version

1.5.2.8) (Cox and Mann, 2008) were used to identify and quantify peptides using default settings, except for the activation of match

between runs and digestion mode which was set to semi-specific.

PtsI activity assays
Approximately 8 mg of purified ptsI was incubated at 37 �C in 200 mL enzyme assay buffer as described previously (Doucette et al.,

2011). Briefly, the enzyme assay was equilibrated for 30 min with 4 mM pyruvate and 1 mM phosphoenolpyruvate in the presence or

absence of 25 mM fructose-bis-phosphate. All stock solutions were prepared in assay buffer and adjusted for pH. After addition of

4 mM U-13C pyruvate, 10 ml samples were sampled over time and mixed with 80 ml of ice-cold methanol to quench the reaction by

enzyme denaturation. Relative reactant abundance was measured by time-of-flight mass spectrometry as described previously

(Fuhrer et al., 2011). Each assay was repeated with four experimental replicates and data analysis was done with Matlab (The Math-

works, Natick) using functions embedded in the Bioinformatics and Statistics toolboxes as previously described (Fuhrer et al., 2011).

Negatively charged ions were tentatively annotated as phosphoenolpyruvate and pyruvate based on accurate mass using 0.001 Da

tolerance assuming simple deprotonation ([M-H]-) for monoisotopic pure mass and the fully labelled isotope mass ([M+3-H]-). Time-

course data of labelled fraction of phosphoenolpyruvate was fitted by weighted non-linear least-squares regression in Matlab to es-

timate the rate constant of fully labelled phosphoenolpyruvate formation as described previously (Doucette et al., 2011).

QUANTIFICATION AND STATISTICAL ANALYSIS

LiP-MS data analysis
Targeted data extraction of DIA-MS acquisitions was performed with Spectronaut (Biognosys AG, version 13) with default settings,

using spectral libraries generated as described above. Briefly, the dynamicmass tolerance strategy was applied to calculate the ideal

mass tolerances for data extraction and no correction factor was applied (correction factor = 1). The local (non-linear) regression

method was used for iRT calibration using the iRT kit peptides. The mutated decoy method was used to generate label-free decoys.

Interference correction was enabled to exclude fragment ions with interferences from quantification across all runs but keeping at

least three fragments for quantification. In the LiP samples only fully- and semi-tryptic peptides that were uniquely present in the

sequence of one protein of the database (proteotypic peptides) were used for quantification, while in control samples only fully-tryptic

proteotypic peptides were used for protein abundance. The false discovery rate (FDR) was estimated with the mProphet approach

(Reiter et al., 2011) and set to 1% on peptide and protein level. Protein inference was performed using the implemented IDPicker

algorithm to define protein groups (Zhang et al., 2007). Comparison analysis of protein (control samples) and peptide (LiP samples)

levels was performedwith theMSstats package (Choi et al., 2014). Spectronaut normalized peak areaswere used as intensity values.

Data were then processed with the ‘‘dataProcess’’ function which includes logarithm transformation with base 2 of intensities, me-

dian normalization, feature selection (all fragment ions in the dataset were selected) and imputation of missing values by AFT (accel-

erated failure time model). The ‘‘groupComparison’’ function using linear mixed-effects model was finally used to compare peptide

and protein abundances between conditions. For each conditional comparison, MS stats provides model-based estimates of fold

changes as well as p-values that are adjusted for multiple testing (q-values) using the Benjamini-Hochberg method (Benjamini

and Hochberg, 1995). Significant protein abundance changes were used to correct LiP-peptide abundance changes (LiP samples)

by dividing peptide-level abundance ratios by the significant abundance ratio of the respective protein. For proteins that did not

significantly change abundance, a normalization factor of 1 was used (i.e., no correction). In the E. coli dataset, generated by

exposing cells to the long-termmetabolic perturbation which largely altered protein and peptide abundance levels, we used stringent

cutoffs (|log2FC| >2, q-value < 0.05) to select for significant changes. In the S. cerevisiae datasets in contrast, where few proteins

changed abundance due to the short perturbation time, the following cutoffs were applied: |log2FC| >1, q-value < 0.05).

The data for LiP reproducibility was analyzed in R (Version 3.6.1). The principle component analysis was based on consistently

identified modified peptide sequences with centered and scaled intensities. The heatmap was generated using the pheatmap pack-

age (version 1.0.12) and was also based on consistently identified modified peptide sequences. Pearson correlation was used as

distance measure for the LiP runs. The differential analysis used the proteusLabelFree package (Version 0.1.6; Gierlinski et al.,

2018) which is based on limma (Smyth, 2004). Before comparing relative abundance, the data was median normalized and filtered

for proteotypic peptides. Resulting p-values were finally adjusted by multiple testing using the Benjamin-Hochberg method

(Benjamini and Hochberg, 1995). The output of this statistical analysis was filtered using the following cutoffs: q-value < 0.05 and

|log2FC|>1.
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Protease digestion accessibility analysis
Targeted data extraction of DIA-MS acquisitions was performed with Spectronaut (Biognosys AG, version 13) as described above.

LiP samples and control samples were processed together and only fully tryptic peptides that were uniquely present in the sequence

of one protein of the database (proteotypic peptides) were used for quantification. Spectronaut normalized peak areas were used as

intensity values. Data were processed using the statistical software R: A language and environment for statistical computing. R Foun-

dation for Statistical Computing, Vienna, Austria. http://www.R-project.org/) and the mean and standard deviation of peptides was

calculated. The digestion accessibility was assessed as the ratio of the mean peptide intensity in LiP samples to the mean peptide

intensity in trypsin-only control samples and was then compared between conditions using aWelch modified two-sample t-test. The

resulting p-values were adjusted for multiple testing (q-values) using the Benjamini-Hochberg method (Benjamini and Hochberg,

1995) For the alpha-synuclein (a-syn) control (Figure 3D), we compared protease accessibility between alpha-synuclein monomer

and fibrils spiked-in to yeast lysates. For aggregators (Figure 3E), we did two comparisons. We compared proteins recovered in

the pellet (P2) after heat shock, relative to the soluble fraction (S2) without heat shock. We also compared proteins recovered in

the pellet (P2) to proteins present in the bulk lysate (L1) prior to ultracentrifugation, both in the heat shocked sample. For all compar-

isons, the resulting p-values were adjusted for multiple testing (q-values) using the Benjamini-Hochberg method (Benjamini and

Hochberg, 1995).

Structural barcodes
To visualize our data as structural barcodes, we represent the change in proteolytic fingerprint along the sequence of a protein (N- to

C-terminus) using the following color code: regions that show an increase/decrease in proteolytic resistance based on changing pep-

tide intensity (|log2FC| >1, q-value < 0.05) in red, blue or yellow (see details below), regionswhere peptides are detected byMSbut are

not structurally altered in grey, and regions where peptides were not detected by MS in black. We show two types of barcodes in the

manuscript. For proteins of the osmotic stress pathway (Figure 2), for pgk (Fig. 5E), for Hsp104 (Figure S5C), and for ptsI (Figure 6C),

we depict peptides that change in intensity between conditions in yellow. For aggregators and the a-synuclein control in the ultra-

centrifugation study (Figures 3D–3E, S4 and S5C) we determined protease accessibility for each protein as described in the section

‘‘Protease digestion accessibility: peptide quantification and statistical analysis’’ using only fully tryptic peptides for this analysis and

also introducing a color code (blue versus red) to pinpoint regions that become more versus less accessible to proteolysis, as this

information is useful to identify aggregation interfaces.

Phosphopeptide data analysis
DDA data relative to phosphopeptide-enriched samples were analysed with Progenesis QI (Nonlinear Dynamics, version 2.0). Raw

LC-MS/MS files were imported into Progenesis for MS1 feature alignment using the automatic alignment algorithm followed by

manual revision and adjustment of the aligned chromatograms. Peak picking was then performed setting the maximum ions charge

to 5. Peptide ion abundances were normalized using an automatically selected run as normalisation reference to allow comparisons

across the different samples. An analysis of variance (ANOVA) was applied to all peptide ions. MS/MS spectra were exported in the

.mgf format and searched against a yeast database using Proteome Discoverer (Thermo Fisher Scientific, version 2.2), as described

above (Peptide and protein identification and spectral library generation). The resulted pepXML files containing peptides identified in

the search were filtered with a false discovery rate (FDR) of 1% and imported into Progenesis. Peptide identifications from MS/MS

spectra weremapped to the corresponding peptide ions detected inMS1 spectra, according to their accuratem/z and retention time

and areas under the extracted ion chromatograms. The list of quantified peptide was exported in the .csv format. The R-framework

based analysis tool SafeQuant (version 2.3.1) was used for statistical validation of differentially expressed phosphopeptides during

osmotic stress. Peptide abundance values were used for statistical testing of differentially abundant phospho-peptides using an

empirical Bayes moderated t-test as implemented in the R/Bioconductor limma package. Resulting p-values were finally adjusted

by multiple testing using the Benjamin-Hochberg method (Benjamini and Hochberg, 1995). The output of this statistical analysis

was filtered using the following cutoffs: q-value < 0.05 and |log2FC|>1. Moreover, phosphopeptides mapping to proteins for which

we detected a significant change in abundance during osmotic stress (q-value < 0.05 and |log2FC|>1) were excluded from the anal-

ysis. Phosphorylation site abundances were calculated by grouping peptides reporting the same phospho modification and calcu-

lating fold change as themean of all the peptide fold changes relative to the samemodification. Phophorylation sites with a coefficient

of variation (standard deviation to themean) higher than 0.2 were filtered out. To statistically assess the combination of the qvalues, a

Fisher’s combined probability test has been applied to combine q-values using the ‘‘combine_pvalues’’ function of the open-source

python-based Scipy library.

Functional Enrichment Analysis
We tested the proteins with significant changes in abundance or structure as defined above (in the ‘‘LiP-MS data analysis: peptide

quantification and statistical analysis’’ section) for functional enrichments using the topGO-package in R (Alexa et al., 2006). We

tested proteins with significant changes in abundance separately from those with structural changes, to be able to identify enrich-

ments specific for each set. For the Escherichia coli but not the yeast data set we also tested for functional enrichments in the set

of proteins that either change abundance or structure, and separately, for enrichments in proteins with at least one significant

LiP-peptide reporting a structural change regardless of whether the trypsin-only control showed abundance changes. Each condition
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was tested separately. As seven conditions were measured for Escherichia coli, 28 enrichment analyses were performed per

ontology for this species. For the Saccharomyces cerevisiae data set, we hadmeasured the effects of two stressors on the proteome

of Saccharomyces cerevisiae and therefore performed four enrichment analyses per ontology. We performed analyses in the ontol-

ogies Biological Process, Molecular Function, and Cellular Component.The enrichment analysis only considered those proteins for

which abundance or structure was measured in the specific condition that was tested. Proteins with changes in abundance were

tested against a background of proteins for which abundance wasmeasured. Proteins with changes in structure were tested against

a background of proteins for which structural signatures were measured.We downloaded current annotation files for S. cerevisiae

(http://current.geneontology.org/annotations/sgd.gaf.gz, accessed May 11, 2020) and E. coli (http://current.geneontology.org/

annotations/ecocyc.gaf.gz, accessed June 2 2020). To focus on the most informative terms, we tested for enrichments with Fisher’s

exact tests using the elim-algorithm in topGO (Alexa et al., 2006). Here, genes that are annotated to a significantly enriched term are

not included in the tests of parental terms. We tested terms with a minimum of 3 annotated genes in Escherichia coli and 5 annotated

genes in Saccharomyces cerevisiae. Terms with more than 500 annotated genes were excluded for both species. The number of

genes annotated to a term was determined separately for each enrichment analysis based on the measured proteins.

To be able to compare functional enrichments of terms across different analyses in an unbiasedway, we removed redundant terms

with the following procedure. First, all significant terms in an analysis were identified. For all figures showing functional enrichments

other than Figure S6 (Biological Processes), all terms with an uncorrected p-value of 0.01 or smaller were considered significant. For

Figure S6 (Biological Processes), we applied a significance cutoff of a corrected p-value of 0.1 or smaller. Then the relative overlap of

these termswas computed based on all annotated proteins of the respective species. Next, we determinedwhich pairs of termswere

strongly overlapping. Terms were considered to strongly overlap if 70% of the genes annotated to the first term were also annotated

to the second term and 70%of the genes annotated to the second termwere also annotated to the first term for Escherichia coli. This

threshold was changed to 50% for Saccharomyces cerevisiae, as more analyses were combined in the case of Escherichia coli. For

these pairs of terms, we removed the term that was contained in the other term of the pair to a larger degree. Table S1 and Table S3

contains all significant terms for each enrichment analysis. The grey scale in the plots show p-values computed with Fisher’s exact

tests using the classic algorithm, i.e. by using all annotated genes that were measured for the term.

We did not correct p-values generated with the elim algorithm from topGO for the following reasons. The elim algorithm conditions

functional terms on significant child terms so that genes from these significant child terms are not considered when testing the

parental terms. This is expected to result in inflated p-values for the parental terms, as the genes of insignificant child terms are still

used. As recommended by the authors of the approach, we do not perform further corrections for multiple testing, as these p-values

are viewed to be conservative [https://bioconductor.org/packages/release/bioc/vignettes/topGO/inst/doc/topGO.pdf]. However, to

illustrate that our conclusions hold also when multiple testing correction is applied, we also show this for the biological processes

ontology in Figure S1D. Here, we corrected p-values for multiple testing with the Benjamini-Hochberg method, as implemented in

the p.adjust-function from the stats package in R (R Core Team (2013). R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/). This correction was performed per enrichment

analysis and ontology.

Enrichment analysis: chaperones & aggregators
We tested if chaperones proteins were over-represented in the S. cerevisiae datasets by performing a Fisher’s exact test using the

‘‘fisher_exact’’ function of the open-source python-based Scipy library, with the alternative parameter set to ‘‘greater’’. The list of 63

yeast chaperones reported in (Gong et al., 2009) was used as reference set. The same analysis was repeated to test for the enrich-

ment of aggregating or misfolded proteins in the heat shock dataset. The reference list of proteins aggregating or misfolding during

heat shock was obtained from (Wallace et al., 2015). As in that paper, we defined as ‘‘aggregator’’ or ‘‘misfolded’’ a protein which was

pelletable after heat shock. We finally assess the presence of chaperone-client relationships between the two groups of enriched

proteins, chaperones and aggregators/misfolded proteins, using the list of yeast chaperone physical interactors retrieved from

the BioGRID database (v3.5, https://thebiogrid.org/). We restricted the analysis to those interactions detected either by ‘‘affinity cap-

ture-MS’’ or by ‘‘affinity capture-western’’ experimental methods and performed the enrichment analysis as described above.

Network analysis of phosphoproteomics data
We linked structural changes upon yeast osmotic stress to the activity of regulated kinases or phosphatases (Figure 3A) in the

following way. We used our yeast phosphoproteomics data and known kinase/substrate relationships to perform a kinase-substrate

enrichment analysis, estimating the activity for the 58 kinases/phosphatases with at least three detected known targets and identi-

fying kinases and phosphatases whose activities are increased or decreased upon osmotic stress. We estimate kinase activities

following a variation of KSEA. The kinase-substrate network (KSN) was obtained from Biogrid (https://downloads.thebiogrid.org/

File/BioGRID/Release-Archive/BIOGRID-3.5.186/BIOGRID-PTMS-3.5.186.ptm.zip) and the viper algorithm (Alvarez et al., 2016)

was used with p value-associated z scores of phosphorylation sites as input. The "eset.filter" parameter of the viper function was

set to false. When a phosphorylation site was present on multiple peptides, the peptide with the highest positive fold change was

kept as a proxy of the phosphorylation site fold change. When building the network, we included kinases and phosphates that

had an absolute normalised enrichment score (NES) over 1.7 standard deviation and at least three detected target phosphosites.

These were connected to their measured phosphorylation site targets (according to Biogrid KSN). From those, phosphorylation
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site that were present on a protein that displayed at least one conformationally changing peptide with a Qvalue <= 0.05 were dis-

played. All code used for this analysis are available https://github.com/saezlab/conformationomic_yeast_picotti_2020.git

The analysis revealed a total of 12 kinases or phosphataseswith significantly altered activity upon osmotic stress (as expected, this

included Hog1 and two otherMAP kinases of the HOG1 signaling pathway, which showed increased activity under these conditions).

We then examined targets of these activated enzymes, identifying specifically those that displayed both altered phosphorylation and

a structural change.

Curve fitting by regression analyses
A linear regression analysis was performed to investigate the relationship between metabolic fluxes and LiP peptide changes for all

enzymes of the CCM for which 13C-based metabolic fluxes had been previous measured (Gerosa et al., 2015). First, we converted

the estimated absolute fluxes to logarithmic fold changes, comparing each of the seven growth conditions to glucose, the carbon

source we used as reference in the proteomics analysis. To identify significantly changing fluxes, absolute fluxes and their standard

deviations were used to perform a t-test comparing each condition to glucose. A cutoff of 0.05 was applied to p-values adjusted for

multiple testing (Benjamini and Hochberg, 1995). LiP-MS data were used for the regression analysis if q-value < 0.05 and |log2FC| > 1

in at least 4 conditions. A least-squares regression analysis was performed with the ‘‘stats.linregress’’ function of the open-source

python-based Scipy library. The Wald test was finally applied to calculate the p-value for a hypothesis test whose null hypothesis is

that the slope is zero. Calculated p-values were then adjusted for multiple test correction using the using the Benjamin-Hochberg

correction method (Benjamini and Hochberg, 1995). Regression models were selected using a cutoff of 0.05 for the adjusted p-value

and 0.7 for R-squared.

The same analysis was repeated to investigate the relationship between protein structural changes (LiP fold-changes) and the con-

centration of 26 metabolites (Table 8) known to regulate the CCM. Measurements of metabolites concentration over the 8 growth

conditions was previously reported in (Gerosa et al., 2015). For the regression analysis, ratios to glucose were used. Peptides

showing a linearity with metabolite concentrations where finally classified as ‘‘known’’ if the metabolite-protein (to which the peptide

map) was reported in the EcoCyc database (https://ecocyc.org/) or in the BRENDA database (http://www.brenda-enzymes.org/).

Moreover, we reported if the same interaction was identified through the LiP-SMap approach (Piazza et al., 2018) and/or ligand-de-

tected NMR (Diether et al., 2019). Concentration-dependent structural effect curves for LiP peptides identified in the in vitro exper-

iment were generated by plotting peptide abundance changes (log2FC) over the substrate concentration range. To investigate if LiP

peptides followed a dose-response curve we selected peptides significantly changing (|log2FC| >2, q-value < 0.01) over at least 4

substrate concentrations. We then fit a higher-order polynomial regression using the ‘‘stats.linregress’’ function of the open-source

python-based Scipy library with the parameter ‘‘order’’ set to 2 and select peptides following a hyperbolic curve. The lower limit of the

peptide abundance change was set to zero to allow proper fitting.

All of the correlation analyses of LiP peptides versus flux and of LiP peptides versus metabolite levels can be accessed at https://

doi.org/10.5281/zenodo.3964994 (for fluxes) and at https://doi.org/10.5281/zenodo.3965002 (for metabolite levels).

Metabolite-protein interaction analysis
To explain structural changes observed across pairs of metabolic conditions, we examined metabolite-protein interactions previ-

ously identified by (Piazza et al., 2018) and metabolomics data acquired under 8 metabolic conditions by (Gerosa et al., 2015).

We asked for which of the interactions previously detected in vitro by exogenously adding metabolites we could see the identical

structural change in vivo when levels of the same metabolites were physiologically regulated (Figure S7G), as follows. Based on

themetabolomics data, we identifiedmetabolites that changed their concentration at least 3-fold in eachmetabolic condition relative

to growth in glucose. For these altered metabolites, we asked which proteins had been found by (Piazza et al., 2018) to interact with

themetabolite. For these proteins we asked whether exactly the samemarker peptides that changed upon addition of themetabolite

to an E. coli lysate based on (Piazza et al., 2018) also changed upon the metabolic transition during which the concentation of the

metabolite was regulated. We only retained peptides from (Piazza et al., 2018) that were regulated in the same direction at the

two metabolite concentrations tested in that study. We further required that the in vivo change occurred in a direction consistent

with both the in vitro observation and with the in vivo metabolite concentration change. For example, if addition of a metabolite to

the E. coli lysate triggered the up-regulation of a given LiP peptide based on (Piazza et al., 2018), we required that the same peptide

is up-regulated when the endogenous metabolite concentration is increased or that it is down-regulated when the endogenous

metabolite concentration is decreased. We considered the interactions that passed these filters as interactions regulated in vivo

across the considered pair of metabolic conditions. Using this approach, we identified 121 metabolite-protein interactions.

3D analysis of protein structural alterations
Selected LiP peptides from the different experiments were mapped to representative protein structures to investigate which regions

of the different proteins (e.g. active site, allosteric site) were affected by the structural alterations. Structures of holocomplexes be-

tween protein and ligands were selected to position allosteric and active sites. For the yeast data dataset when only the apo- version

of a protein was available homology models were built using holocomplexes from homologous proteins that have protein sequence

similarity higher or equal to 30%. For those cases where experimental data was not available, we use the predicted active site

residues as annotated in Uniprot for positioning metabolite binding. Using a custom-made PyMOL-Python script, we measured
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theminimal Euclidean distance in angstroms (Å) between all the atoms of the LiP peptide and those of the substrate or allosteric regu-

lator, if present, or alternatively all the atoms of the peptide or amino acid defining the predicted active site (as reported in the Uniprot

database). A peptide was assigned to a known functional site if the measured minimal distance was less than 6.4 Å, based on a pre-

vious study (Piazza et al., 2018).

Molecular Dynamics simulation
To determine the binding mode of FBP to the phosphoenolpyruvate-binding domain of enzyme I (EI) of the phosphoenolpyruvate-

protein phosphotransferase system (encoded by ptsI and labeled as such hereafter), we first analyzed six ptsI structures from

different bacterial species, namely, 2HWG (Teplyakov et al., 2006), 2BG5 (Oberholzer et al., 2005), 2HRO (Márquez et al., 2006),

2WQD (Oberholzer et al., 2009), 2XZ7 (Navdaeva et al., 2011), and 2XZ9. Our target protein is E. coli ptsI, but its structure 2HWG

does not show a suitable space in the catalytic site for placing FBP because of the interplay between PEP-binding domain and

His-domain. Based on our structural analysis, we chose the structure 2XZ7 as a surrogate for model building as only the PEP-binding

domain is present. Although this structure is the T. tengcongesis ptsI, key residues in the active site are the same as in the ptsI of

E. coli. This structure contains the necessary catalytic components, including PEP, a cofactor magnesium ion and its coordinated

water molecules. Moreover, this structure shows a relatively open active site compared to others, which allows the initial placement

of FBP in the active site.

Before docking FBP to the active site, PEP was removed, and all titratable residues were protonated to their correct states at pH 7.

Because of the high conservation in the binding site between different species, we did not mutate any residue from the structure. The

3D structure of FBP was extracted from the X-ray structure 3D1R (Brown et al., 2009). We determined its protonation state with

MarvinSketch (MarvinSketch 19.25, 2019, ChemAxon (http://www.chemaxon.com)), and added hydrogen atoms with Maestro

(Maestro, Schrödinger, LLC, New York, NY, 2020.). The initial poses were obtained by the docking software AutoDock Vina 1.1.2

(Trott and Olson, 2010). The docking site was defined by a 30330330 Å cubic grid box and centered on the PEP coordinates.

We set the parameter ‘‘exhaustiveness’’ to 100 to enhance the configurational sampling of the binding poses and left the rest of pa-

rameters as the default. Finally, the ten best-ranked poses were saved for further analysis.

Two major binding modes emerged from a clustering of these ten best-ranked poses. Thus, we selected two representative dock-

ing poses formolecular dynamics (MD) based optimization. Each of the ptsI-FBP complex structures was solvated in an 80 Å rhombic

dodecahedron TIP3P water box (Jorgensen et al., 1983), which ensured a 10 Å of buffer distance between protein atoms and the

boundary of the water box. Sodium chloride (0.15 M) was added to the solvated systems to neutralize them and mimic physiological

conditions. The CHARMM36 force field (Huang andMacKerell, 2013) was used for the ptsI protein and FBP was parametrized by the

CGenFF force field (Vanommeslaeghe et al., 2010). Each complex was initially minimized by 10,000 steps of the conjugate gradient

algorithm under a series of restraints and constraints to remove bad contacts and geometry. The minimized structure was heated to

300 K and equilibrated in an NVT condition (constant volume and temperature). Finally, the structure was further equilibrated in an

NPT condition (constant pressure and temperature). The heating-up and equilibration phases lasted for 1 ns using the CHARMMpro-

gram (version 42b2) (Brooks et al., 2009).

ProductionMD simulations were carried out in NPT conditions using NAMD 2.13 (Phillips et al., 2005). The pressure was controlled

by the Nosé–Hoover Langevin piston method with a 200 ps piston period and 100 ps piston decay time (Feller et al., 1995; Martyna

et al., 1994). The temperature was maintained at 300 K using the Langevin thermostat with a 5 ps friction coefficient. The integration

time step was set to 2 fs by fixing all bonds connecting hydrogen atoms by the SHAKE algorithm. van der Waals energies were calcu-

lated using a switching function with a switching distance from 10 to 12 Å and long-range Lennard-Jones interactions was taken into

account (Shirts et al., 2007). Electrostatic interactions were evaluated using the particle mesh Ewald summation (PME) method (Ess-

mann et al., 1995) with a 1 Å of grid spacing. For each of the two starting poses, five independent 30-ns runs were carried out with

different initial velocities. Thus, a cumulative sampling of 150 ns (7,500 snapshots) was collected from each of the two starting poses.

We downsampled the 7,500 snapshots of each system to 750 snapshots with an even spacing and then clustered them based on

Root-Mean-Square Deviation (RMSD) matrix analysis. Specifically, we first mutually superposed the 750 snapshots to each other

based on the ptsI active site atoms (5 Å around the docked FBP). We calculated the RMSD of FBP for each pair of snapshots, leading

to a 7503750 RMSDmatrix. We then applied the clustering algorithm implemented in the routine ‘‘correl’’ of the CHARMM package

to the RMSDmatrix. As a result, 10 and 8 clusters were obtained for the MD sampling of the two starting poses, respectively. Finally,

two representative poses were extracted from their respective largest clusters (one for each starting pose), and used as reference

structure for the calculation of RMSD time series of FBP. One of the two poses was substantially more stable according to the

RMSD time series, and was selected for Figure 6D.

Data visualization and processing
Data visualization, exploratory data analysis and processingwere performed using Python (version 2.7 and 3.0) and the Python library

Pandas (version 0.18.1). Heat-map diagrams, bar plots and regression model plots were created using the python data visualization

library Seaborn (version 0.9.0).
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Supplemental Figures

Figure S1. Proteomic coverage and growth rate of bacteria in this study, and functional analysis of proteins that show structural and

abundance changes during yeast response to acute stress, related to Figure 1

(A) The plot shows the number of yeast proteins detected by LC/MS-MS after digestionwith trypsin only (whichmeasures protein abundance, green bars) or upon

limited proteolysis (which identifies structure-specific peptides, yellow bars), after the indicated stresses. (B) The plot shows the number of E. coli proteins

detected by LC/MS-MS after digestion with trypsin only (which measures protein abundance, green bars) or upon limited proteolysis (which identifies structure-

specific peptides, yellow bars) under the indicated conditions. (C) The plot shows the doubling time of E. coli in the seven different nutrient conditions used in this

study. (D) The heat maps show functional categories (GO Biological Processes, Molecular Functions or Cellular Components) enriched among proteins that

significantly change (|log2FC| >1, q-value < 0.05) in abundance (green) or structure (yellow) under the indicated stress conditions. P values for the enrichment (gray

scale) were determined using Fisher’s exact test. Blank cells indicate molecular functions or cellular components that were not significantly enriched (i.e with p-

value > 0.01) in a given condition. For the heat map showing Biological Processes, p-values were corrected for multiple hypothesis testing with the Benjamini-

Hochberg method; blank cells indicate biological processes that were not significantly enriched (i.e with q-value > 0.05) in a given condition.
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Figure S2. Tests of LiP-MS reproducibility, related to STAR Methods

Correlation of replicate LiP-MS data sets in yeast responding to stress. (A-B) Reproducibility of the data set in yeast responding to osmotic stress. Correlation

matrix of LiP peptide intensities between control conditions (C1-C3) and osmotic stress conditions (OS1-OS3; 10min in 0.4M NaCl) after limited proteolysis (A) or

in the trypsin-only control (B). (C-D) Reproducibility of the heat stress data set. Correlation matrix of LiP peptide intensities between control conditions (C1-C4)

and heat stress conditions (HS1-HS4; 3 min at 42 degrees) after limited proteolysis (C) or in the trypsin-only control (D). The color scale indicates the Pearson

correlation coefficient. (E-F) LiP-MS reproducibility across operators and replicates. LiP-MS experiments were conducted on unperturbed S. cerevisiae lysates

by two different operators and in three replicates each. Shown is a principal component analysis of peptide intensities in all eight replicates, colored by operator

(E). (F) The differential analysis shows the number of changing peptides between the two operators. 5 out of 16924 detected peptides change significantly (|

log2FC| >1, q-value < 0.05).
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Figure S3. LiP-MS detects phosphorylation events in yeast responding to acute osmotic stress, related to Figure 2

(A-C): The schematics depict the yeast HOG1-MAPK pathway, including its links to the glycolysis and glycerol biosynthesis pathways. Proteins with altered

structure (A) and phosphorylation (B-C) upon acute osmotic stress are shown. Depicted are: proteins with significantly altered structure (|log2FC| >1, q-value <

0.05, two-sample t-test with Storey methods correction for multiple testing) as detected by LiP-MS (A, yellow) and proteins with significantly altered phos-

phorylation (|log2FC| >1, q-value < 0.05; empirical Bayes moderated t-test, P values adjusted for multiple testing using the Benjamini-Hochberg method) as

detected by phosphoproteomics in our data (B, blue) and as reported by (Kanshin et al., 2015) (C, blue) during acute osmotic stress. (D) Examples of significant (as

in panel A) structural alterations associated with phosphorylation. For Hog1 and Gpd1, the altered LiP peptide (yellow) is overlapping or near the known

phosphorylation sites (blue) in the linear sequence. For Tdh3, the LiP peptide (orange) is near the phosphorylation site (green) in 3D space.
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(legend on next page)
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Figure S4. LiP-MS detects multiple molecular events after yeast heat shock, related to Figure 3

(A) Structural barcodes for the 9 superaggregators or 6 aggregators detected in the insoluble fractions (P2) upon heat shock. The barcodes represent the change

in proteolytic fingerprints along the sequence of each protein (N- to C-term) between conditions. Each vertical bar represents a potential LiP peptide, colored to

show: peptides that increase/decrease in intensity between conditions (|log2FC| >1, q-value < 0.05) (red/blue), detected peptides that do not change between

conditions (gray), and peptides that are not detected by MS (black). (B) Differential analysis of alpha-synuclein (a-syn) monomer (M) or fibril (F) upon ultracen-

trifugation. a-syn was spiked into yeast lysates either in monomeric or fibrillar form and the samples were ultracentrifuged to separate soluble and insoluble

fractions. The whole lysate before centrifugation is referred to as L1 and the insoluble pellet after centrifugation is referred to as P2. The differential analyses

compare different fractions (L1 or P2) with spiked-in monomer (M) or fibril (F) as indicated. Each dot represents a protein and a-syn is indicated (SNCA). The dotted

lines indicate a log2FC of 2. We interpret the plots in the following way (left-to right): The L1F/L1M comparison shows that monomer and fibril have been spiked

into the same levels in the lysate. The P2F/L1F comparison shows that a-syn fibrils are not substantially lost upon ultracentrifugation. The P2F/P2M comparison

shows that the a-syn fibril is enriched in the insoluble pellet after ultracentrifugation. The P2M/L1M comparison shows that the a-syn monomer is enriched in the

soluble supernatant after ultracentrifugation. (C) Differential analysis of protein abundance in the pelleted fraction of a yeast lysate in heat shocked versus control

samples. Significantly upregulated (red) and downregulated (blue) peptides in heat shocked pellets are indicated (|log2FC| >1, q-value < 0.05). (D) Structural

changes in the fraction of the ATPase chaperone Hsp104 that pellets upon ultracentrifugation after heat stress in yeast. LiP peptides that change during the

response to heat shock (orange) are mapped to the Hsp104 structure (PDB ID: 6n8t). The hexameric structure is shown. ATPmolecules binding to the chaperone

catalytic site are depicted in cyan. The structural barcodes indicate changes in the proteolytic pattern of Hsp104 upon heat shock and are calculated as in

Figure 3D. Each vertical bar represents a potential LiP peptide, colored to show: peptides that change in intensity upon heat shock irrespective of the direction of

the change (|log2FC| >1, q-value < 0.05) (yellow), detected peptides that do not change between conditions (gray), and peptides that are not detected by MS

(black). Structural barcodes are shown for Hsp104 in the P2, L1 and S2 fractions. Additional changes that appear in S2 and P2may be due to increased coverage

of the analysis once soluble and insoluble Hsp104 have been separated by centrifugation.
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(legend on next page)
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Figure S5. Functional analysis of proteins that show structural and abundance changes during nutrient adaptation in E. coli, related to

Figures 4 and 5

(A) The plot shows functional categories (GO biological processes) enriched among proteins significantly changing (|log2FC| >2, q-value < 0.05; P values adjusted

formultiple testing using the Benjamini-Hochbergmethod) in abundance (green) and structure (yellow) under the indicated nutrient conditions, relative to glucose.

P values for the enrichment (gray scale) were determined using Fisher’s exact test. Blank cells indicate biological processes that were not significantly enriched

(i.e with p-value > 0.01) in a given condition. (B) The heat maps show which E. coli CCM proteins significantly change (blue, |log2FC| >2, q-value < 0.05; P values

adjusted for multiple testing using the Benjamini-Hochbergmethod) in either structure (left) or abundance (right) under the indicated nutrient conditions, relative to

glucose. Proteins are arranged according to the CCM pathway to which they belong. (TCA= tricarboxylic acid cycle, GS = glyoxylate shunt, PPP = pentose

phosphate pathway, ED = Entner-Doudoroff pathway). (C) The barcodes represent the change in proteolytic fingerprints along the sequence of Pgk (N- to

C-term), comparing growth in the indicated carbon source relative to growth in glucose. Each vertical bar represents a peptide that could be detected in samples

subject to LiP. The color code indicates: peptides that change in intensity (|log2FC| >1, q-value < 0.05) between galactose and glucose, correlate with flux across

all conditions, and correlate with substrate levels in an in vitro LiP experiment (orange), peptides that change in intensity between galactose and glucose but do

not meet the other two conditions (yellow), peptides detected by MS but that do not change between conditions (gray), and peptides that are not detected by

MS (black).
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(legend on next page)
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Figure S6. Molecular events underlying structural changes in E. coli metabolic enzymes, related to Figure 6

(A-B) The plots show linear regressions between levels of the indicated LiP peptide derived from ptsI and levels of FBP, across all nutrient conditions. (C) LiP

peptides that correlate with levels of fructose-bis-phosphate (FBP) in vivo (shown in A and B) are mapped (orange) onto the 3D structure of ptsI (PDB ID: 2xz7).

Dark orange peptides indicate those positioned within the active site (< 6.4 Å) and light orange peptides indicate those outside the active site. A close-up of the

ptsI active site is shown, with phosphoenolpyruvate (PEP) in cyan and the cofactor Mg2+ in red. The structure shown is the only one for which a 3D structure with

bound PEP was available. (D-F) Controls for the ptsI activity assay. The gel (D) shows the purified protein used for the assay, in the indicated dilutions. The plots

(E-F), show time-course data of the labeled fraction of phosphoenolpyruvate (PEP) in the presence (E) and absence (F) of 25 mM FBP. The colors indicate four

independent assays; the solid line indicates the weighted non-linear least-squares regression using the following equation: L(t) = 0.45*[1-exp(k*t)] + c, where L

denotes the fractional labeling of PEP, k the rate constant, t the time and c the intercept. (G) The table shows protein-metabolite interactions upon growth in each

of six nutrient conditions versus growth in glucose. Proteins are shown in rows and metabolites are shown in columns. Plotted are interactions for which the

metabolite showed an at least 3-fold change in any condition versus glucose (Gerosa et al., 2015) and which overlap with a dataset of interactions previous

detected in vitro (Piazza et al., 2018). Colored cells indicate protein-metabolite interactions where the in vivo protein structural changes detected exactly match a

previously determined in vitro structural change dependent on the samemetabolite (seeMethods). Gray cells indicate protein-metabolite pairs for which changes

are detected in multiple conditions relative to glucose, other colors indicate condition-specific changes according to the following code: G/orange- galactose,

F/green – fructose, S/dark blue – succinate, Y/pink – glycerol, A/peach – acetate, P/light blue – pyruvate. Triangles indicate whether the interaction is higher in

glucose (apex down) or in the compared condition (apex up). Interactions marked in red text have been previously characterized.
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Figure S7. LiP-MS data captures both abundance and structural changes, related to Figure 4

The plot shows functional categories (GO biological processes) enriched among proteins significantly changing (|log2FC| >2, q-value < 0.05; P values adjusted for

multiple testing using the Benjamini-Hochberg method) in E. coli grown in the indicated nutrient conditions, relative to growth in glucose. Proteins showing only

(legend continued on next page)
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abundance changes, only structural changes (measured by normalizing LiP-MS data for proteins that also show abundance changes), both abundance and

structure changes (consisting of the previous two categories added together) and proteins detected as changing based on the raw (i.e. non-normalized) LiP-MS

data, are plotted separately. P values for the enrichment (gray scale) were determined using Fisher’s exact test. Blank cells indicate biological processes that

were not significantly enriched (i.e with p-value > 0.01) in a given condition.
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