

UWS Academic Portal

Entropy based features distribution for anti-DDoS model in SDN

Ujjan, Raja Majid Ali; Pervez, Zeeshan; Dahal, Keshav; Khan, Wajahat Ali; Khattak, Asad
Masood; Hayat, Bashir
Published in:
Sustainability (Switzerland)

DOI:
10.3390/su13031522

Published: 01/02/2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Ujjan, R. M. A., Pervez, Z., Dahal, K., Khan, W. A., Khattak, A. M., & Hayat, B. (2021). Entropy based features
distribution for anti-DDoS model in SDN. Sustainability (Switzerland), 13(3), [1522].
https://doi.org/10.3390/su13031522

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 12 Jul 2022

https://doi.org/10.3390/su13031522
https://uws.pure.elsevier.com/en/publications/8395ed0a-14a2-48d2-b117-1ab43f832207
https://doi.org/10.3390/su13031522

sustainability

Article

Entropy Based Features Distribution for Anti-DDoS Model
in SDN

Raja Majid Ali Ujjan 1 , Zeeshan Pervez 1,* , Keshav Dahal 1 , Wajahat Ali Khan 2 , Asad Masood Khattak 3

and Bashir Hayat 4

����������
�������

Citation: Ujjan, R.M.A.; Pervez, Z.;

Dahal, K.; Khan, W.A.; Khattak, A.M.;

Hayat, B. Entropy Based Features

Distribution for Anti-DDoS Model in

SDN. Sustainability 2021, 13, 1522.

https://doi.org/10.3390/su13031522

Academic Editors: Tae-Eung Sung,

Ki-Il Kim and Eungdo Kim

Received: 11 January 2021

Accepted: 25 January 2021

Published: 1 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computing, Engineering and Physical Sciences, University of the West of Scotland,
Paisley PA1 2BE, UK; raja.vjjan@uws.ac.uk (R.M.A.U.); keshav.dahal@uws.ac.uk (K.D.)

2 College of Engineering and Technology, University of Derby, Derby DE22 3AW, UK; w.khan@derby.ac.uk
3 College of Technological Innovation, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates;

asad.khattak@zu.ac.ae
4 Institute of Management Sciences, Peshawar 54600, Pakistan; bashir.hayat@imsciences.edu.pk
* Correspondence: zeeshan.pervez@uws.ac.uk

Abstract: In modern network infrastructure, Distributed Denial of Service (DDoS) attacks are con-
sidered as severe network security threats. For conventional network security tools it is extremely
difficult to distinguish between the higher traffic volume of a DDoS attack and large number of
legitimate users accessing a targeted network service or a resource. Although these attacks have been
widely studied, there are few works which collect and analyse truly representative characteristics of
DDoS traffic. The current research mostly focuses on DDoS detection and mitigation with predefined
DDoS data-sets which are often hard to generalise for various network services and legitimate users’
traffic patterns. In order to deal with considerably large DDoS traffic flow in a Software Defined
Networking (SDN), in this work we proposed a fast and an effective entropy-based DDoS detection.
We deployed generalised entropy calculation by combining Shannon and Renyi entropy to identify
distributed features of DDoS traffic—it also helped SDN controller to effectively deal with heavy
malicious traffic. To lower down the network traffic overhead, we collected data-plane traffic with
signature-based Snort detection. We then analysed the collected traffic for entropy-based features
to improve the detection accuracy of deep learning models: Stacked Auto Encoder (SAE) and Con-
volutional Neural Network (CNN). This work also investigated the trade-off between SAE and
CNN classifiers by using accuracy and false-positive results. Quantitative results demonstrated SAE
achieved relatively higher detection accuracy of 94% with only 6% of false-positive alerts, whereas
the CNN classifier achieved an average accuracy of 93%.

Keywords: distributed denial of service (DDoS); entropy; software defined network (SDN); intrusion
detection system

1. Introduction

Digital services, such as banking, healthcare, education, entertainment, and na-
tional/local administration services to name a few, drive our modern society in which
access to online services is often taken for granted. These services have become nonexclu-
sive routines for almost everyone. Many of us check our official emails and social services
first thing in the morning. The dependency of our day-to-day activities on these services in-
troduces a large number of attacks on network services. The latest development in software,
network, and system exploits and vulnerability tools has brought up new attack vectors to
compromise access to an entire network or subnetwork. However, network defenders use
up-to-date and the most sophisticated defence systems for their safeguard. Contrary to
conventional host or service based attacks, Distributed Denial of Service (DDoS) attacks
are considered more disruptive in nature. These attacks make targeted services unavailable
by sending a significantly large number of malicious access requests to a service provider.

Sustainability 2021, 13, 1522. https://doi.org/10.3390/su13031522 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-5356-4318
https://orcid.org/0000-0002-3618-779X
https://orcid.org/0000-0003-1789-893X
https://orcid.org/0000-0003-4118-7855
https://orcid.org/0000-0002-0630-1264
https://orcid.org/0000-0003-3448-9804
https://doi.org/10.3390/su13031522
https://doi.org/10.3390/su13031522
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13031522
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/13/3/1522?type=check_update&version=2

Sustainability 2021, 13, 1522 2 of 27

After resources being depleted, the service provider becomes unable to serve its potential
legitimate users. Nowadays, DDoS is a commonly used attacking method which inflicts
heavy financial and reputation losses [1].

With the advancements of virtualization-based computing, Software Defined Net-
working (SDN) has been widely adopted for security solution in various services and
service provisioning models [2–4]. In SDN, most of routing and topological decisions are
carried out by a separate entity called control-plane [5]. This decoupling approach has
brought enormous benefits to network management and provides a feasible and effective
solution to improve network efficiency [6]. Furthermore, the separation of data-plane and
control-plane assists to manage a flexible and scaleable networking infrastructure to meet
the day by day ever-changing modern business needs. Although the logical centralised
architecture and its programability approach enables the SDN controller to detect malicious
activities; however, the controller itself becomes vulnerable to DDoS attackers [7].

Most of the forwarding decisions are managed by the controller. The table in Open-
Flow based switches consistently searches for new packets arrival, with a successful match,
flow action is performed. If packet_in does not match then it is propagated to SDN main
control-plane for detailed analysis. In case of DDoS attack, if the arrival rate of packet_in is
significantly higher, then control-plane resources start to deplete, which results in disconti-
nuity with data-plane and may overwhelm the controller. A single point failure, such as
overwhelming the controller with malicious traffic could defunct the whole networking
infrastructure [8].

Amongst existing security problems in SDN, DDoS attack is considered as one of
the most urgent and hardest security issues [9]. So far, DDoS attack detection in SDN is
well researched with approaches including [10–16]. However, most of these conventional
studies are focused on attack detection and mitigation methods. Majority of work is
based on time-based periodic detection—choosing a right time-period to detect an attack
is very hard. If a large time-period is selected for attack launch then response time for
detecting attack will be increased. This creates extremely large attack overload over
deployed switches and its major SDN controller. In contrast, if the time threshold is set
to a relatively low value, then deployed attack detection module will continuously run,
which unnecessarily consumes controller resources, such as CPU, network up-stream and
down-stream bandwidth. It also affects controller efficiency.

However, congestion at the controller is one of the major issues that could easily lower
down the performance of deployed mechanism and easily left the entire infrastructure
vulnerable especially for DDoS attacks. Currently, most of the research is not focused to
improve the accuracy of the controller in SDN, as most of the detection modules work
from the SDN controller. However, it is mandatory to rectify SDN controller efficiency with
available characteristics of SDN. To solve the aforementioned issues, we propose a new-
fashioned anti-DDoS detection mechanism with entropy-based feature distribution in SDN.
Our detection model comprises of Snort alert based Features, Entropy Calculation, Feature
Distribution and Traffic Processing, and Machine Learning Classifiers. We summarised our
contribution as below:

• An effective anti-DDoS detection mechanism is proposed, to speed up major SDN
controller unit accuracy so that deep learning model easily classifies trade-off between
benign and unknown malicious code.

• We have distributed specific traffic features with generalised entropy estimation of
Shannon and Renyi formulas.

• By utilising a Snort–Ryu implementation with entropy calculation, we acquired non-
redundant traffic features.

• As detection classifiers, we utilise well known deep learning classifiers, such as
Stacked Auto Encoder (SAE) and Convolutional Neural Network (CNN) to compare
the accuracy and False-Positive alerts with 30% and 60% attack rate with normal traffic.

Rest of the paper is organised as follow: Sections 2 and 3 represent the related literature
work and background in details, respectively. Our novel entropy based DDoS detection

Sustainability 2021, 13, 1522 3 of 27

model is provided with details in Section 4. Experimental results evaluations are presented
in Section 5. The paper is concluded along with future directions in Section 6.

2. Related Work

In previous decades, most of the security research is performed mainly with legacy
networks [17–19]. Different approaches have been implemented to detect and mitigate
the DDoS traffic only in traditional network [20–23]. To meet the needs to digital services,
traditional networks found computationally expensive, time-consuming and it requires
more modern innovations for security implementation. OpenFlow enabled SDN infras-
tructure has been proved successful with various security challenges [14]. Although SDN
provides a feasible and modern platform, the control-plane layer of SDN is not extensively
researched from a security point of view. Due to the programmable model and logically
centralised implementation, it brings new vulnerabilities and threats making SDN control-
plane layer as an attractive target for potential intruders. Especially, massive DDoS attacks
at control-plane of SDN based platform, which can result in the unavailability of the entire
network [24].

One of the main challenges of network security and machine learning is to distribute
and select optimal features [25]. The feature subsection aims to pick a feature subset that
performs better within a certain condition of assessment [26]. According to the analysis
of [25,27], feature selection can be classified from the technical viewpoint approaches.
By adaptively validating the system with multiple combinations of features as inputs,
also, existing researchers focused to collect and classify the ideal features for the optimal
performance in proposed models.

To assess regular traffic flow, Mehdi et al. used the maximum entropy calculation
methodology to address security challenges in SDN [11]. Experimental investigations was
carried out by using OpenFlow NOX controller switches, using low-rate data traffic. Their
main goal was to classify attack traffic in a home setting. In another research, investi-
gators used the framework of entropy to predict the transmission of worms and threats
through port scanning [13]. Besides this, Ref [10] suggested an entropy-based anomaly
detection technique. In their proposed research, the identification module operated in
the edge switches to lower down the overhead of the control plane. Kotani et al. sug-
gested a packet filtering strategy to secure the controller [28]. Such a strategy identified
the elements of the packet headers before the packet-in occurrence was forwarded. On
the contrary, the strategy is ineffective unless the attacker produces new streams wherein
the flows. Dong et al. developed a system for detecting the vulnerable applications for
which attackers were connected [29]. Typically, the threshold was set in feature extraction,
and any irregular variance of incoming traffic feature vectors helped to classify threat [30].
Mohammadi et al. suggested a prevention strategy to fight the TCP SYN DDoS attack
targeting SDN. They used SDN’s programmability [31] for identification purposes. The
system, however, was also vulnerable to several other protocol attacks. DDoS attacks, as a
comparison to other attacks, will cause a significant disruption of any sort of networking
infrastructure [32].

Entropy is a common way of producing valuable traffic classification features and
has been extensively seen in recent frameworks for DDoS attack detection [33]. Entropy
is an analysis technique that scales the ambiguity about the content. In network activity,
entropy uses a single value metric to identify the distributional variations in traffic [34].
This has been increasingly recognised that adequate analysis of such improvements can
classify network anomalies [35]. A new study of identification showed that detection
based on entropy has better detection efficiency than many other approaches [36]. The
entropy-based features classification techniques are feasible and is widely used [37], which
possess various significant features like effective and fast calculation, lower false alerts,
and higher detection accuracy. In particular, entropy calculations are extended to input
traffic attributes such as IP addresses of source and destination, the destination port of
source and destination. For example, the high entropy value indicates that a significant

Sustainability 2021, 13, 1522 4 of 27

disparity occurs concerning entropy specified at source address and that the low entropy
value indicates a reduction in the source of traffic packets. This is valuable for the detection
system, as a standard DDoS attack with many attack sources of a single target typically
has a high variation of the source address and a low variation of the destination address
relative to a regular traffic.

Identifying DDoS malicious traffic at the data-plane layer is difficult because Open-
Flow enabled devices have no self-adaptive intelligence to segregate network traffic flows.
Addition to this, attackers use easily available tools and hardware-assets [38]. This section
presents a systematic literature of DDoS detection solutions, which are widely deployed
in SDN control-plane and listed in Table 1. Most of the existing approaches have evalu-
ated DDoS detection techniques by classifying packet traffic either legitimate or malicious
and broadly categorised into entropy-based anomaly detection, signature-based, machine
learning-based and hybrid detection. These approaches are deployed in SDN infrastructure
to detect DDoS traffic.

Table 1. The existing DDoS detection literature survey in SDN.

Author Year Description Methods Detection Mitigation Traffic Analysis

[12] 2010 Proposed work uses six SDN based
traffic features for detecting DDoS.

Neural network
model, SOM. X X

[11] 2011 This work utilises different SDN
approaches to collect DDoS traffic.

Maximum entropy,
TRW-CB,

Rate-limiting .
X X

[14] 2013
Proposed approach lower down the

control-plane and data-plane
overhead.

Interface migration
technique. X X X

[13] 2014
Flow-based traffic utilised to classify

DDoS portscan, and worm
propagation.

Entropy-based
detection. X X X

[39] 2015
Proposed method reduces requests

burden by utilising scheduling
technique in SDN.

Malicious traffic
redirection
approach.

X X

[10] 2015
Model running on edge switch to

detect DDoS with low control-plane
burden.

Entropy-based
Algorithm. X X

[40] 2016
This model utilises Shanon entropy

estimationto detect early-stage
DDoS attacks.

Attack sources
bypass method. X X X

[29] 2016
Method of Sequential Probability
Ratio Test (SPRT) used to classify

high rate DDoS traffic.
SPRT method. X X X

[41] 2016
ML-based approach utilised with

SDN flows to identify and mitigate
the attack.

ML-SOM approach. X X X

[31] 2017 Proposed method is used to mitigate
TCPflooding attack in SDN context.

TCP request
monitoring,

malicious hosts
blocking.

X X

[42] 2017
multi-vector DDoS traffic analysis

and detection system in deep
learning

SAE, deep learning. X X

[43] 2018
Extreme gradient algorithm utilised

to detect DDoS traffic with low
false-alerts.

Machine learning
model. X

Sustainability 2021, 13, 1522 5 of 27

Some authors utilised entropy-based statistical techniques to analyse traffic [10,44,45].
The authors of [42,43] proposed an entropy-based technique to detect DDoS at POX con-
troller during initial attack stage. This proposed work has a limitation, once the number
of hosts increases the proposed model generates false positive alerts. The computational
overhead from the controller is reduced by deploying fast-entropy approach with flow-
based model [44]. The authors in [39] proposed a scheduling based method to detect
DDoS, where a single processing queue is divided with subsets of k logical queues, each of
them belongs to the network switch. During heavy traffic burst, the SDN controller utilises
logical queues to satisfy scheduling request. The authors of [11] utilises maximum entropy
estimation technique for classifying normal traffic distribution to solve home office network
security concerns in SDN. Most of the experiments were deployed with OpenFlow enabled
switches with NOX SDN controller. In [13], authors have used entropy methodologies for
identification of port-scan attacks and worm propagation. Another entropy-based anomaly
detection solution was proposed by the authors of [10], to detect DDoS attacks in SDN.
This work more likely focused to reduce control-plane workload.

Some of other, well-known methodologies have been published to detect DDoS traffic
with SDN based architecture, such as self-Organising Maps (SOM), which is Machine
Learning (ML) based approach to detect malicious traffic [12]. This work uses only six
features to classify the malicious attack traffic, i.e., Average Packet per flow (APf), Average
Duration per flow (ADf), Average Byte per flow (ABf) etc. Similarly, Refs. [41,46], also
utilised different ML-based approaches to classify traffic patterns. The authors in [16],
proposed adaptive flow collection based DDoS detection model in SDN. This methodology
utilises OpenSketch traffic measurement tool to create a hash table for measuring traffic.
This approach uses three stages based pipeline process to gather traffic samples for identi-
fying malicious traffic instead of using traffic flow sampling. In SDN, most of the DDoS
detection solutions are carried out with the collaboration of ML and knowledge-based
techniques to identify malicious attacks. Generally, ML-based techniques classify attack
flows based on specific features. ML-based anomaly detection models are mainly suitable
for small networks. For larger networks with heavy traffic flow overhead, are unmanage-
able for traffic collection and analysis inside controller [13]. Although during the attacking
scenario, response time is more important to improve detection performance; however, ML
performance is also dependant upon trained datasets and its features diversity.

Recently, ML-based detection techniques have been widely applied in SDN to address
the challenges of DDoS detection. Authors in [42] proposed a semi-supervised one class-
based Support Vector Machine (SVM) to classify anomalies, here the small quantity of
malicious traffic is utilised as compared to normal traffic. This model is feasibly capable to
detect outliers from the initial background traffic phase, which helps to easily manipulate
majority of the traffic characteristics. The authors have used the Stacked Auto Encoder
(SAE) to train datasets; however, it consumed a lot of time to process model iterations.
Similarly, the authors of [43] proposed high precision DDoS detection model, which is
based on Xboost classifier SDN. The proposed approach analysed most of the DDoS attacks
to cater feasible and effective solution. In SDN, POX controller’s grab bag connection, most
of TCP, UDP, and ICMP flooding attacks were sent for manipulating connection records
which enabled us to evaluate DDoS classifiers.

According to [47], a packet_in filtering approach can protect control-plane. This
technique helps to list most of contents extracted from packet header field prior to sending
the packet_in message. However, when intruders launch very distinctive flows in which all
packets have different field values rather than specified values of the proposed technique,
then it fails to capture malicious records. Authors in [29] deployed detection model for
locating compromised interfaces, which are used by attackers during attack time. Most of
anomaly detection model uses fixed threshold values, once incoming statistical features
deviate with abnormal conditions it is identified as attack traffic.

From the literature survey, it can be seen that some research has been carried out for
the detection of DDoS attacks by utilising traffic feature distribution with entropy-based

Sustainability 2021, 13, 1522 6 of 27

methodologies. By utilising feature distribution with the help of entropy calculations over
existing detection techniques, primarily we can reduce redundant and unnecessary features
processing overhead and improve the detection requiring relatively less time.

Convolutional or convolutional neural networks (CNN) [48] are known as enhance-
ments of conventional feed forward networks (FFNs). These were initially tested for object
recognition using Convolution 2D layers, 2D layer pooling and a totally interconnected
layer. This was accompanied by the natural language analysis of the Convolution 1D layer,
the pooling of 1D layer and the completely connected layer [48]. Whereas the conventional
CNNs used mostly for image analysis with the help of 2D, 1D, as CNNs can be used
effectively for time series processing, since time series in 1D can effectively derived by
convolutions [49]. In our proposed study, we utilise the 1D CNN as deep learning classifier
to identify security threats in complex multivariate and distributed features based on
entropy estimation.

In CNN, convolution is used as primary building block, where entropy based input
features converted as 1D time series input vector of z = (z1, z2, z3, . . . , zn). All distributed
features based on entropy calculation are fed towards the fully connected layer of CNN,
a fully connected layer comprises on the soft-max function, which actively utilises the
probability distribution with input features vector one by one. CNN layer with fully
interconnected soft-max function is provided as below in Equation (1).

θz(Z) = so f tMax(
ez

∑n
i=1

hl + b0) (1)

where hl utilises the highest feature value connected to each input vector of
z = (z1, z2, z3, . . . , zn), and b0 is used for non linear activation function.

The SAE consisted of several self-encoders—input or visible layer, a hidden layer, and
a output layer also called reconstruction layer. The input data is loaded into the visible layer.
The construction layer is inducing output. The SAE architecture is special in design relative
to CNN, DBN, and RBM deep learning models. In the first place, SAE is made up of a basic
and straightforward structure and is trained in a much shorter time compared to the other
described Deep Neural Network (DNN) algorithms [50]. Second, because of the nature
of the unsupervised learning strategy, SAE is not using labelled datasets. On the other
hand, CNN is based on supervised learning, while DBN and RBM use supervised learning.
Finally, the SAE algorithm employs outputs as inputs, and detailed features components
can be retrieved with a useful training strategy in the SAE. This paper uses comprehensive
features of an SAE method based dataset to increase the rate of identification of DDoS
attacks in SDN. SAE as DNN uses sparse auto-encoders and soft-max classifiers to extract
and label unattended data.

In Equation (2), β values denotes sparsity penalty for the weight coefficient via
Kullback-Leibler divergence. This divergence function enables to input features vector
such as z = (z1, z2, z3, . . . , zn) to process if there is a possibility of lower average activation
function, when ρ = ρ∧J then this function comprises the minimum values of 0. During
training stages of input layer values, ρ∧J is utilised for an average activation with Jth values
and ρ is used for sparsity coefficient at hidden layer.

3. Detection Methodology in SDN

This section presents the proposed DDoS attacks detection methodology and its
implementation details. The detection of the model relies on the specific DDoS feature
distribution approach, which is achieved by generalised entropy (GE) calculation with
Shannon and Renyi formulas, details of entropy distribution is provided in this section. Our
detection methodology comprises: data acquisition with Snort–Ryu, feature distribution
with entropy calculation, data processing and traffic classification with SAE and CNN.
Overall, the general overview of our proposed DDoS detection methodology presented in
Figures 1 and 2 elaborates the implementation detail.

Sustainability 2021, 13, 1522 7 of 27

Jsparse(z) = J(z) + β
q

∑
J=1

dKL(ρ ∈ ρ∧J) (2)

DDoS

Traffic

Normal

Traffic

Southbound-APIs

Infrastructure
Layer

Feature
Distribution

Application
Layer

Control
Layer

ML-
Classifier SAE CNN

ID-Calculation
GE
ID

Flow-Rules

Attack Detection

Ryu-Controller

Data
Forwarding

Northbound-APIs

Entropy-CalculationConfiguration

SDN

Snort SM-1 SM-2

GE-calculation

Figure 1. General overview of proposed system in SDN.

3.1. Snort–Ryu Based Data Acquisition

This section comprises on the huge amount of live datasets acquisition from the
network, due to heavy network traffic human inspection and data analysis is unmanageable.
The Snort [51] is capable of being used as a signature-based detection engine or as a
log_tcpdump module with various output files. Although, log_tcpdump can be utilised for
storing test-bed datasets, which is limited to store only 128 MB of total packets. We extended
storage module of Snort by implementing a Barnyard2 logfile. We have utilised Snort–Ryu
modular implementation to collect the test-bed datasets. The Snort [51] engine consists
of various traffic attributes, such as timestamp, sig_generator, sig_id, sig_rev, msg, proto, src,
srcport, dst, dstport, ethsrc, ethdst, ethlen, tcpflags, tcpseq, tcpack, tcplen, tcpwindow, ttl, tos, id,
dgmlen, iplen, icmptype, icmpcode, icmpid, icmpseq. Our proposed DDoS detection model
based on feature distribution is dependant on the features, such as time window, protocol,
source IP, address, source port address, destination IP address, destination datagram
length, port address, priority, etc. By utilising Snort, our model acquires relevant features in
collaboration of entropy calculation. Snort utilises two different modes to capture distinct
features for malicious and benign network traffic. SM-1 and SM-2 modes depicted in
Table 2 are used to collect malicious traffic and benign traffic features.

Sustainability 2021, 13, 1522 8 of 27

192.168.202.xx/24

Host-4 Host-5 Host-6

VM-1-Data-plane
VM-3-Attack-

server

Collector

OVS-Flows DDoS
CSV

Entropy
Filteration

Normal
CSV

Feature
Distribution

Classifier

Results
Attacks

Non-attacks

Metasploit/Nmap - DDoS attacks

LOIC/Scappy- DDoS attacks

Backtrack- SYN ACK Slowris

192.168.202.xx/24

Host-1 Host-2 Host-3

sr
c
IP

d
st
IP

sr
c
P
o
r

t

d
st
P
o

rt

sr
c
B
y
t

e
s

d
st
B
y
t

e
s

sr
c
T
T
L

D
st
T
T

L

ID-Calculation

GE-calculation

SAE

CNN

VM-2-Ryu & Entropy-
calculation

Hosts with attack-traffic

Hosts with normal- traffic

Figure 2. Proposed system of features distribution in SDN–Ryu-controller.

Table 2. Two modes of Snort.

Description
Snort Two Modes

SM1 (Malicious) SM2 (Benign)

TCP rules 20 signatures 8 signatures
UDP rules 10 signatures 6 signatures
ICMP rules 6 signatures 6 signatures

3.2. Entropy Calculation

The proposed methodology is depicted in Figure 2. The main aim of our model is
to capture various types of DDoS attacks, for this purpose, the proposed model mainly
relies on the finding most common attributes from the flows. One of the most common
attributes is source IP addresses which generate attacks. Once various types of features are
collected with SM-1 and SM-2 modes, the proposed model takes advantage of Shannon
entropy estimation to generalise most relevant types of features that lead to successful
DDoS attacks detection in SDN. This model utilises Hα(Z) Shannon entropy formula to
identify relevant features from Snort model.

Addition to this least values of entropy is estimated in case of small uncertainty. The
event distribution randomness is evaluated with Renyi entropy metric order with α, this
enables Shannon entropy estimation towards more relevant features generalisation. The
Generalised Entropy (GE) of discrete variables Z with possible number of outcomes, such
as, z1, z2, . . . , zn, which can be accumulated, i.e., ∑N

i=1, 0 ≤ Zi ≤ 1, then entropy of Renyi
with order α can be defined as below:

Hα(Z) =
1

1− α
log2

(N

∑
i=1

pi(α)

)
(3)

Here values of α ≥ 0 and Zi ≥ 0. Different entropy calculation is performed in
order to quantify various α orders. With substitute of α = 0, we get maximum generated
information and with substitute of α = 1 we achieve GE values, which is given below:

Sustainability 2021, 13, 1522 9 of 27

H1(Z) =
N

∑
i=1

p(zi) log2
1

p(zi)

= −
N

∑
i=1

p(zi) log2 p(zi)

(4)

Here, p(zi) = probability (Z = zi) is the ith value of Z. The Equation (4) is known as
Shannon Entropy, when we put α = 2, then GE expression is depicted as:

H2(Z) = − log2

N

∑
i=1

pα=2
i=1 (5)

Equation (5) is known as Renyi entropy estimation, the authors of [52] have depicted
relationship between Renyi and Shannon, where GE estimation values relies on α values,
such as α = 1 or α = 2. GE values exponentially increase with various probability
distribution as compared to Shannon entropy probability [53,54]. Following this work, we
classify our traffic as a benign and malicious probability distribution. To get GE values, our
work also manipulates both different probability distribution values with a combination
of attack and benign properties. Once we get higher uncertainty events then probability
results in more GE information as compared to Shannon entropy [55].

By adjusting α values in GE, we can get different values of entropy to meet our
DDoS detection methodology. This paper utilises Information Distance (ID) with the
help of Renyi and Shannon GE estimation values via α = 1 or α = 2. this helps to
estimate event’s similarities—the methodology is depicted with two different probability
distribution such as PID = {p1, p2, . . . , pn} and QID = {q1, q2, . . . , qn} as below:

N

∑
i=1

pi=1 =
N

∑
i=1

qi=1 = [1− 0] (6)

The ID equation can be derived as below:

Dα(PID, QID) =
1

1− α
log2

(N

∑
id=1

pα
idq1−α

id

)
(7)

ID always focuses non negative values, such as α ≥ 0. However, if both probability
distribution are similar then Dα(PID, QID) = 0, GE entropy expression can be achieved by
varying α orders as given below:

D1(PID, QID) = − log2

(N

∑
id=1

pid

)
,⇒ α = 1 (8)

D2(PID, QID) = −
N

∑
id=1

pid log2

(
pid
qid

)
,⇒ α = 2 (9)

The Equation (9) is known as Kullback–Leibler divergence (KL) distance. This equa-
tion is utilised for measuring ID with identical, triangular inequalities and symmetrical
properties of KL divergence. However, GE and ID both use these properties for DDoS de-
tection to rectify DDoS most relevant traffic features with the help of Equations (5) and (7).
In our approach, probability distribution is calculated by Hα(Z) as shown in Equation (3),
where zi depicts packets header variation between source and destination communication
junctions that comprises of Src-IP, Src-Port, Dest-IP, Dest-Port, Source-Bytes, Destination-
Bytes, TTL, Flags, proto, Distinct Datagrams. In Figure 3, a flow diagram is provided for
the distribution of features. This is achieved by combining Shannon entropy and Renyi
entropy formula. Our proposed work utilises probability distribution measuring approach
to generalise relevant features from DDoS and malicious packet header. We manipulated
all incoming packets with GE and ID metric to formulate our SDN based test-bed network
to effectively detect DDoS traffic. Major aim focuses to lower down redundant features
with GE and ID (information distance) entropy estimation such as:

Sustainability 2021, 13, 1522 10 of 27

Packet-in

Normalise

NoYes

Snort-SM Alerts
Normal flows

Barnyard2-logfile

SM1
mode

SM2
mode

Probability distribution
(TW=3)

Calculate GE, ID

ID > = δ2
H(Z) < = δ1

Increment
counter

Clear
buffer

Count ≤ TW

Src-IP, Src-Port, Dest-IP, Dest-Port, Source-Bytes,
Destination-Bytes, TTL, Flags, proto, Distinct

Datagrams

Malicious flows

Entropy
generalisation

Windows size

Figure 3. Flowchart of features distribution in an SDN–Ryu-controller.

3.3. Features Distribution and Traffic Processing

This section presents features selection and processing of datasets for our effective
DDoS detection model. Major focus of selecting features relies on GE and ID entropy
estimation to qualify relevant features as discussed before. However, an effective DDoS
classifier needs many important kinds of traffic features distribution. This kind of traffic
anomalies randomly changes during the distribution of most feasible addresses, ports, data
length etc., in an observed traffic area. The overview of selected traffic features is presented
in Table 3, which is achieved by distributing specific feature from test-bed datasets with
the help of Shannon and Renyi joint entropy.

In DDoS detection event, the packet flowing rate is significantly higher than benign
traffic, subsequently, packet diversity is also changing to generate entropy. In real-time
traffic which is a complex form of different data rate, which remains stable with packet
diversity and it also results irrelevant data pattern flows due to different traffic services.
This is why entropy values are exponentially changed with respect to time. Due to the fact of
such variation, setting a proper threshold to detect DDoS in the network is unmanageable.

We developed dataset to evaluate our proposed method. Our dataset is a combination
of real-time legitimate data and synthesised malicious traffic, which is emulated with DDoS

Sustainability 2021, 13, 1522 11 of 27

attacking tools comprises of Metasploit, Scapy, HPing, and Low Orbit Ionic Cannoin (LOIC).
We run Scapy and HPing DDoS scripts with various attributes of DDoS from the remote
virtual machine as shown in Figure 2. For the validation purpose, we simulate various
DDoS attacks on widely targeted ports. Most important realistic network traces are less
publicly available due to privacy concerns and to label properly which require some manual
entries. With the help of deep domain knowledge and feasible tools and methodology, this
approach enables to create realistic dataset. Our proposed model calculates and classify
benign and malicious traffic using entropy estimation followed by two major components
as window size and two threshold values. For window size, we utilised number of packet
received. For entropy values we estimated the incoming packets occurrences with windows
size, such as, if number of frequencies for each (dstIP) is equably distributed then maximum
value of entropy is established. If there is a sudden deviation, such as rapid decrements in
entropy values for the same network, a malicious traffic flow event may occur.

Table 3. Selected traffic features with GE.

Features Description

Src-IP (srcIP) Source IP address

Src-Port (srcPort) Source Port

Dest-IP (dstIP) Destination IP address

Dest-Port (dstPort) Destination Port

Source-Bytes (dstBytes) Total Bytes from source

Destination-Bytes (dstBytes) Total Bytes to destination

TTL Flow-Duration (TTLFD) Time To Live duration

Flags TCP, UDP, HTTP, ICMP flags

Proto (prot) Types of variosu protocol

Distinct Datagrams (Datagrams∆) Various Datagrams values

Similarly, main function of Algorithm 1 is to calculate the average entropy values for
(GE, ID) for input features, which are presented in Table 3. SDN programability approach
via collaboration of GE and ID also help to rectify specific features with more malicious
attributes. Algorithm 1 helps to compute average entropy values (GE, ID), referred as
AverageEntropy (GE, ID) in Algorithm 1.

In our proposed Algorithm 1, AverageEntropy (GE, ID) is calculated with two thresh-
olds, such as lower δ1 and upper δ2 for every input stream with different time. Our aim is
to classify and distribute specific features from incoming network stream. The distributed
features are processed with the help of two different time slots, which comprise of deviation
beyond normal ranges of δ1 and δ2. Our model uses entropy deviation such as a sudden
rise of values or a drop of values as compared to predefined threshold values between
0 and 1. For example, during the event of DDoS attacks such as port scan on a specific
location will result in dispersion known as entropy. We utilised two threshold values, lower
δ1, which is used for GE entropy values calculation with, and upper δ2 is also used for ID
values calculation. GE and ID are calculated for benign and malicious traffic with the help
of Equations (4) and (7), such as if ID ≥ δ2 or Hα(Z) ≤ δ1.

In Algorithm 1, entropy estimation is presented which works with time-based sliding.
The Algorithm 1 initialises with time windows size setting, which effectively maintains
resources utilisation and network flow deviations. We used only three minutes time slot,
as using larger time needed more resources for processing and storage. The Algorithm 1
produced average output with estimated entropy of feature set S, which used only two
threshold, such as Lower δ1 and upper δ2 for every S feature order. Major aim was to focus
to classify and maintain very specific features from incoming network.

Sustainability 2021, 13, 1522 12 of 27

Algorithm 1 Entropy-based feature distribution
1: Input: Traffic data, Feature set S, δ1 δ2
2: Ensure Output: AverageEntropy GE, ID hash-table Htb (srcIP), (srcPort), (dstIP),

(dstPort), (srcBytes), (dstBytes) , (srcTTL), (dstTTL)
3: TW←− 3 min
4: Htab ←− {S}
5: for all IF ∈ Htb do return True find GE, ID of both flows with Equation (3)
6: if incoming packets ∈ TW do search in S
7: else
8: if ID ≥ δ2 and Zα(IFat) or Zα(IFbe) ≤ δ1 then do;
9: Utilise p(zi)←−

(
∑N

i zi
)
/N Estimating mass function probability

10: Utilise Hi(z)←− H(z)/ log n Entropy normalisation
11: Utilise Htab ←− Htab ∪ Hi(z)
12: end
13: AverageEntropy (GE, ID)←− sum Htab/4
14: end

The rectified features from network connection were processed with the help of two
feasible tasks of time slots, which had AverageEntropy values beyond normal ranges
of δ1, δ2. First of all, each abnormal subset of network traffic time slot was cleared by
adding empty values rows to maintain a stable and unique column and row-based format.
Secondly, cleared subsets were normalised by using MinMax function. The MinMax
function generated feature values between scale ranges of 0 and 1. The MinMax feature
normalisation function is depicted below:

Znor
i =

zi −min(Z)
max(Z)−min(Z)

(10)

where Z represents subsets of malicious traffic features and zi represent current values of Z
to make normalisation. The term Znor

i is called final normalised features within the ranges
of 0 and 1.

4. Experimental Setup

Our research experiment is conducted with three different virtual machines on a
workstation by using Intel Xeon X5560 CPU with 2.88 GHz processor and 16 GB RAM
(DDR3 ECC-Registered Memory PC3-12800MHZ). We run TensorFlow 1.4V and Mininet
on Ubuntu LTS 16.04-64 bit operating system. The proposed functionality is illustrated in
Figure 2. We use VMware player to create virtual machines: VM1 with 192.168.202.x1 IP
address, VM2 with 192.168.202.x2 IP address, and VM3 with 192.168.202.x3 IP address.

In our proposed model, a python script is used to generate attack and benign traffic
with the Scapy tool. We also generated benign traffic with the help of normal web searches
and browsing, and video streaming to validate the benign traffic of Scapy. We limited our
model bandwidth up to 50 MB for 5 min interval to evaluate the performance, where TCP
stood at 9 MB, UDP at 32 MB, and ICMP nearly at 2 MB, TCP, UDP, and ICMP minimum
range were 380 Kbit/s and maximum range stood at 700 Kbit/s during attacks.

In VM1, Mininet as a the network emulator is utilised for creating 6 hosts with
6 OpenFlow switches. Kernel name-space properties of Mininet enables to prototype
overall network environment within a single workstation. In Mininet, each process has its
own network interfaces and routing table, these features enable to virtualise all network
elements in Kernel. We connect these switches with Ryu controller with the help of
OpenFlow (OF) version 1.3.

In VM2, the Ryu controller is implemented with Snort-IDS as Network Intrusion
Detection System (NIDS) and entropy algorithm, which is presented in Section 3. This
VMs play a vital role to collect networks traffic, then apply entropy probabilities property
for feature distribution. The Snort-IDS collects every incoming_packet in Barnayrd2 log
file, then Ryu based GE and ID entropy estimation reduces redundant features from all

Sustainability 2021, 13, 1522 13 of 27

network traces. Our detection model relies on more specific features, which are collected
with GE and ID feature distribution for the deep learning classifiers. SDN controller is
deployed in VM2, which centrally handles all virtual machines of our test-bed. Network
policies are installed via REST APIs. In our system, VM1 considered as data-plane and
VM2 as a control-plane. ovs-ofctl utility is used to insert network policies in the switches
table, addition to this, the ovs-ofctl utility is also utilised for monitoring and administration
purposes between data-plane and control-plane.

In VM2, Ryu uses two network interfaces, one in promiscuous mode on eth0 interface
to collect all OpenFlow traffic traces with Snort from VM1, while another Eth1 is utilised as
a port mirror for entropy calculation on Snort-Barnyard2 packets. Snort as NIDS plays a
very vital role to acquire all raw network traffic from our proposed model. Snort switch
(switch_snort.py) application is implemented on the top layer of Ryu controller, which
helps to support Layer L2 switch code and also redirects feasible traffic by using Open-
Flow enabled promiscuous mode. The Ryu controller receives Snort alerts by utilising
unixsock = f alse, which helps to collect network packets and then store log-file in Barna-
yard2. This helps to manipulate data-plane traffic.

VM3 generates malicious traffic remotely, as illustrated in Figure 2. It utilises Scapy,
LOIC, and Metasploit DDoS penetration testing frameworks such as Network Mapper
(NMap) and Nessus Vulnerability Scanner. Scapy is considered powerful and feasible to
launch real flooding attacks; however, our proposed work uses Scapy and LOIC to launch
various TCP, UDP, and ICMP traffice. To validate our proposed work, we perform an attack
and normal traffic on same VM1 data-plane area which is directly connected on the main
SDN controller with deployed parameters. A python script is used to generate attack traffic
and benign traffic with Scapy, where we select different hosts and source nodes during all
injection. Our work also generates benign traffic by web activities such as web searches
and browsing, and video streaming.

The probability of GE and ID entropy is applied on all test-bed datasets to acquire
more special features set with no redundant features attributes. These features are which
are provided in Table 3. Tshark and Tcpreplay tools are utilised to manipulate and analyse
benign and malicious traffic individually. Once malicious traffic traces are classified with
GE and ID as discussed in Section 4, then we categorise normal and benign CSV files into
training and the testing datasets shown in Table 4. All datasets have values of non-zeros
numbers due to unity based MinMax normalisation. We break our proposed CSV datasets
into 0s and 1s values, normalisation as defined in Equation (10). After normalisation
we utilise SAE and CNN deep neural network models to classify as an attack and non-
attack values.

Table 4. Representation of normal and attack records for training and testing.

CSV 1
30% Attack Rate Traffic

Training Testing

Normal 94,330 22,016

Allattacks 67,794 17,348

CSV 2
60% Attack Rate Traffic

Training Testing

Normal 51,730 16,518

Allattacks 113,350 27,750

Performance Evaluation

In this work Snort IDS is also used for collecting all data-plane traffic from test-
bed. Snort with two different modes: SM1 mode to acquire only malicious traffic, and
SM2 mode for acquiring benign traffic. These two modes are configured with specific
signature rules of Snort detection engine as illustrated in Table 2. We process Snort alerts

Sustainability 2021, 13, 1522 14 of 27

for feature distribution and generalisation by using GE and ID matric to analyse and
calculate Src-IP, Src-Port, Dest-IP, Dest-Port, Source-Bytes, Destination-Bytes, TTL, Flags, proto,
Distinct Datagrams.

In order to validate the effectiveness of detection model with proposed GE and ID
feature distribution on the SDN controller, in proposed work, we are using two different
scenarios. In the first one, we have used different attacking intensity, which is launched
from a single host but remotely connected with Mininet data-plane VM1. We randomly
generate attacks by using Scapy, LOIC, and Metasploit. The first scenario uses 20%,
30% and 40% attack rate. The second scenario uses 60% and 70% malicious traffic. In
both scenarios, we generate benign traffic by using normal web searches and browsing,
and video streaming. These searches are performed within VM1, where test-bed data-
plane is created with Mininet. We maintain the attack intensity by using the following
percentage equation:

Attackintensity =
Zattack
Ztotal

× 100 (11)

In this equation, Zattack represents the attack packets and Ztotal represents total number
of packets flowing in our test-bed. We run our code 10 times in each case for setting
threshold values. We find the False-positive (FP) rate decrements, but the False-negative
(FN) rate is stable. Table 5 represents threshold values during different attacks scenario.

Table 5. Parameters of proposed model with different attack rates and average threshold values.

Parameters 20% Attack Traffic 30% Attack Traffic 60% Attack Traffic 70% Attack Traffic

Mean-value 0.7862 0.7388 0.6475 0.3426
St-deviation 0.0249 0.0289 0.0381 0.0389
Max-confidence 0.7806 0.7438 0.6518 0.3815
Min-confidence 0.7899 0.7318 0.6437 0.3699
AverageEntropy (δ1, δ2) 0.7901 0.7636 0.6478 0.3910

Our model mainly relies on average output with input data (estimated entropy
values)—it uses two thresholds, such as lower δ1 and upper δ2, for every input data
collected based on different time. Our aim is to classify and distribute specific features
from incoming network stream. The distributed features are processed with the help of two
different time slots, which comprise of deviation beyond normal ranges of δ1, δ2. Our model
uses entropy deviation such as a sudden rise of values or a drop of values as compared
to predefined threshold values between 0 and 1. For example, during the event of DDoS
attacks such as port scan on a specific location will result in dispersion known as entropy.
Following steps are carried out to set up threshold values:

• We calculate possible maximum attack traffic values, this is achieved by combining
attack traffic mean entropy values and confidence interval values.

• After taking the difference between these values, we derive δ2 values for mean and
standard deviation.

In Figure 4, we utilise 30% and 40% attack rate, while Figure 5 uses 60% to 70% attack
rate. Each points on horizontal line represent windows size and vertical line represents
entropy values, such as Evalues. In Figure 4, blue curve represents the normal traffic and
orange curve represents malicious traffic. We stabilise network by injecting manipulated
malicious traffic remotely and run Algorithm 1 10 times. However, benign traffic entropy
values is common in all attack rates as shows in Figures 4 and 5.

We have considered different attack scenarios with a single victim and multiple
victims. In single attack victim only single host is under attack. On the other hand multiple
victims attacks, we have launched attacks on 5 hosts. During simulation, the deviation and
sudden drop of entropy values are considered to be used for traffic feature distribution.
The rapid drop into flows represents malicious activity based on this phenomenon.

Sustainability 2021, 13, 1522 15 of 27

Figure 4. Entropy variation with attack rates. (a) 30% Attack Traffic. (b) 40% Attack Traffic.

From Figure 4, it can be seen that entropy values drop is least significant in case 30%,
40% of attack rate. However with 30% attack traffic, the mean entropy values are found as
0.77 on 53 windows interval, 0.72 on 57 windows interval, 0.76 on 63 windows interval,
0.72 on 71 windows interval. After every 25 windows intervals, entropy values dropped
at average values of 0.72 to 0.77. With 40% attack rate, we found mean-values of entropy
drops from 0.82 to 0.74 on windows interval of 55, after every 25 consecutive intervals,
mean values repeatedly fall between 0.73 and 0.71.

Moreover, there is significant entropy values change in the case of 60%, 70% of the
attack rate. In Figure 5a, the mean value of entropy drops to 0.64% after every 25 windows
intervals. Similarly, Figure 5b, the mean value of entropy exponentially drops to 0.35%
on 55 windows interval after 25 consecutive windows intervals mean values constantly
falls to 0.35%. As compared to benign traffic mean values, attack traffic mean values drop
around 0.50%, which is significantly higher with 70% attack rate through all experiments.
This entropy value is far less than the threshold values, which is very feasible to classify
this event as malicious.

Benign traffic is common in all attacks experiments, it is fixed threshold values to
compare entropy values deviations. In Figures 4 and 5, entropy deviation values are less
than the fixed threshold or some times it is higher than the fixed threshold. However, we
have acquired traffic and classified based on mean values, which are significantly less than
a fixed threshold as already illustrated in Figures 4 and 5.

Sustainability 2021, 13, 1522 16 of 27

Figure 5. Entropy variation with attack rates. (a) 60% Attack Traffic. (b) 70% Attack Traffic.

5. Results

The major objective of our proposed work is to improve the accuracy of the deep
learning-based model to detect various DDoS attack traffic, for which we mainly rely on
malicious traffic features distribution and manipulation. For demonstration purposes, we
used Snort as a NIDS, the practical application of this work is independent of any specific
type of NIDS.

We have utilised collaborative approaches of Shannon and Renyi entropy such as
GE and ID with SDN based programmability. This approach is able to lower down
the unnecessary and redundant features from malicious traffic, which enable classifier
to improve detection accuracy rate. Similar work has already been discussed in [40],
the authors utilised Shannon entropy calculation as detection metric in their proposed
work. However, in our contribution, we have utilised combined entropy calculation
with Shannon and Renyi formulas to generalise DDoS traces from test-bed with traffic
distribution approach.

Based on the various parameters such as Table 3, we classify our specific malicious
traffic features comprise of Src-IP, Src-Port, Dest-IP, Dest-Port, Source-Bytes, Destination-Bytes,
TTL, Flags, proto, Distinct Datagrams. We carry out our experiments based on the above
design, and utilise four different attack rates with normal traffic also depicted in Table 5, the
window size is fixed to 180 seconds for attacking and normal hosts used in our network.

Sustainability 2021, 13, 1522 17 of 27

5.1. Selecting DDoS Classifier

In order to get feasible detection results, we selected two SAE and CNN. First, we
acquired input vector based on entropy feature distribution and then compared SAE and
CNN detection accuracy and False Positive (FP) rates based on collected datasets (Table 3).

Our work uses different malicious rate such as 30% and 60% of attacks intensity with
benign traffic, which results in a higher level of unbalanced features. In such cases, SAE
and CNN detection algorithms fail to classify attacks. To overcome this issue, the authors
of [56] have improved higher accuracy of detection model by using weighted loss function
to stabilise the test-bed features. Our proposed SAE and CNN detection model uses well
known metrics such as precision, recall and F1 score on datasets specified in Table 3. These
metrics are very useful for the goodness of the detection rate of the proposed model. With
the help of the confusion matrix we have provided parameters and its entries as below:

• True Positive (TP)—Identifying values which are correctly identified as attacks records.
• True Negative (TN)—Identifying values which are correctly identified as non

attack values.
• False Positive (FP)—Identifying values which are incorrectly predicted as attack records.
• False Negative (FN)—Identifying values which are incorrectly identified as non attacks

1. Precision (P): To identify proportion of predicted real attacks with correct values:

P =
TP

TP + FP
(12)

2. Recall (R): To calculate percentage of predicted attacks with all available attacks.
However, higher value of R is very important:

R =
TP

TP + FN
(13)

3. F-measure (F): To calculate model accuracy by utilising harmonic mean with both of
precision (P) and the recall (R) values, higher F-value is considered feasibly important:

F =
2
1

P+R
(14)

Our work uses two types of CSV files with different malicious and benign traffic. In
the first one, we combined 30% attack rate with normal traffic and the second one utilised
60% of attack rate with normal traffic as shown in Table 4. These CSV files are also divided
by training and testing section followed by 80% and 20% rule of training and testing,
respectively. We adjusted the SAE detection algorithm with only three hidden layers and
these three hidden layers are set as descending order with the following hyper-parameters
which are depicted in Table 6.

Table 6. Proposed model configuration values.

Hyper Parameters Model Values

Total hidden-layers 1, 2, 3
Hidden-layers size 6, 3, 2
Learning-rate 0.1, 0.01, 0.001
Activation-function Sigmoid
Dropout 0.75, 0.50
Batch-size 100, 50, 50

In this paper, we have compared performance metrics by using SAE and CNN detec-
tion classifiers. We compare the SAE and CNN separately with the same traffic consisting
of TCP, UDP, ICMP packets depicted in Figures 6 and 7. The first case uses 30% attack
combined with normal traffic and the second case, utilises only 60% attack traffic with
normal for better evaluation purpose.

Sustainability 2021, 13, 1522 18 of 27

Figure 6. SAE and CNN Confusion matrix with 30% Attack Traffic. (a) Confusion matrix of the SAE
Algorithm. (b) Confusion matrix of the CNN Algorithm.

Figure 6 represents the confusion matrix for SAE and CNN detection model for 30%
attack rate. The Figure 6a confusion matrix of SAE depicts 91.47% of TP detection rate
with less than 9% of FP rate. SAE model achieves more than 12% of FN rate with first case
traffic. Similarly, as shown in Figure 6b, the CNN model is not receiving higher correct
detection as compared to SAE. The CNN detection model with 30% attack traffic can only
classify only 80% and 82% of TP rate and TN rate, respectively, the FP rate is around 17%
of false triggers.

Comparing performance metrics of SAE and CNN with confusion matrix with 30%
attack, SAE achieves 82.4% accuracy; whereas, CNN detection model achieves only 76.52%
accuracy. Although SAE detection model is lightweight with only three weighted hidden
layers, which require time for training and testing as compared to CNN model.

In Figure 7, comparison of SAE and CNN confusion matrix is presented with 60% of
attack rate, where Figure 7a shows 97% and 91.22% of TP rate and TN rate, respectively
for SAE. The FP rate is also acceptable, which is only 6%. Moreover, Figure 7b illustrates
more than 92% and 95% of TP rate and TN rate, respectively for the CNN model. With
60%higher attack intensity, CNN false alerts are also less than 10%.

Sustainability 2021, 13, 1522 19 of 27

Figure 7. SAE and CNN Confusion matrix with 60% Attack Traffic. (a) Confusion matrix of the SAE
Algorithm. (b) Confusion matrix of the CNN Algorithm.

Although SAE achieves an accuracy of 94%, on the other hand, CNN detection model
also achieves nearly 93% detection accuracy. However, in this case, we combined more
attack traffic as compared to benign traffic with 60% of malicious ratio, so both models
perform well by utilising specific feature distributed traffic, which was obtained by entropy-
based GE. In Table 7, we have depicted an average conclusion of a confusion matrix for
SAE and CNN, addition to this, it also provided the accuracy results of both classifiers
without utilising proposed entropy-based feature distribution for validation purpose.

We have validated our test-bed performance, with a comparison of selected classifier
accuracy detection with GE entropy-based feature distribution and without entropy-based
feature distribution, as illustrated in Figure 8. In Figure 8a, we provided SAE and CNN
classifier accuracy results with 30% attack intensity. It can be observed that accuracy of both
SAE and CNN classifiers with normal features is comparatively less than entropy-based
features class. For 30% attack rate without entropy-based feature distribution, the CNN
classifier achieves the average accuracy of around 62%, similarly, SAE classifier receives an
average accuracy of 68%. However, when we performed classifiers test with GE entropy-
based feature distribution with 30% of attack intensity, SAE classifier performed better
with 84% accuracy scores, and CNN classifier was at an average of 77% accuracy score.

With 60% attack rate, both classifiers perform very well due to low false results, as
depicted in Figure 12a, we observed total average rate for FP and FN as 6%, and 11%,
respectively in SAE. However, we did not observe any drastic change in the results of CNN

Sustainability 2021, 13, 1522 20 of 27

evaluation, as CNN classifier also achieved FP alert with 9% and FN alert 7%. Overall, we
observed that higher attack intensity enabled both classifiers to achieve significant results,
but SAE achieved higher accuracy due to its lightweight processing.

Table 7. Performance metrics of confusion matrix for the SAE and CNN model.

SAE model (With feature distribution) 30% attack traffic 60% attack traffic
Avg. Accuracy 84% 94%
Avg. FP rate 8.9% 6.01%
Avg. FN rate 12.11% 10.6%

CNN model (With feature distribution) 30% attack traffic 60% attack traffic

Avg. Accuracy 77% 93%
Avg. FP rate 17% 9%
Avg. FN rate 10% 6%

SAE model (Without feature distribution) 30% attack traffic 60% attack traffic
Avg. Accuracy 68% 86%

CNN model (Without feature distribution) 30% attack traffic 60% attack traffic

Avg. Accuracy 62% 86%

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

%

No of Run

Acc-CNN Acc-SAE Acc-Norm Acc-Normal-SAE

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

%

No of Run

Acc-CNN Acc-SAE Acc-Normal

(a)

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

%

No of Run

Acc-CNN Acc-SAE Acc-Norm Acc-Normal-SAE

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

%

No of Run

Acc-CNN Acc-SAE Acc-Normal

(b)

Figure 8. Accuracy comparison between Normal and Entropy based features. (a) With 30% attack
rate accuracy comparison. (b) With 60% attack rate accuracy comparison.

Although, with the attack intensity of 60% as shown in Figure 8b, SAE and CNN
accuracy was recorded as 94.3% and 93%, respectively, this result was obtained with
entropy-based feature distribution. In contrast, we also run both classifiers before pro-
posed entropy algorithm, the CNN classifier and SAE classifiers achieved an average

Sustainability 2021, 13, 1522 21 of 27

accuracy of 86%, which was nearly 10% accuracy less as compared to GE entropy-based
feature distribution.

5.2. Performance Evaluation with CPU Usage at Controller

As our model is focused to improve Anti-DDoS model accuracy by reducing controller
burden. We used combined entropy to distribute malicious features from data-plane to
control-plane. In order to evaluate model performance we provided the comparison of
CPU usage, after entropy calculation to distribute malicious traffic from test-bed, and
before entropy calculation, which is depicted in Figures 9 and 10, respectively. During the
event of DDoS attacks, control-plane was under heavy traffic as attack incoming-packets to
SDN controller is measured in MB. Moreover, Shannon and Renyi entropy generalisation
was deployed in the main controller, so that every attack incoming-packet was calculated
with GE to distribute more specific features.

Figure 9. CPU utilisation after feature distribution with different attack rates. (a) 30% Attack Traffic
CPU utilisation. (b) 60% Attack Traffic CPU utilisation.

The Figure 9a, represents the CPU utilisation with only 30% attack rate traffic with
corresponding incoming-packets in megabits (mb) and outgoing-packets in kilobytes per
second (kbps). In Figure 9a, the average CPU is utilised between 75% and 81% of the total.

Sustainability 2021, 13, 1522 22 of 27

As shown from the graph, when incoming-packets reached to an average of 4 Mbit/s,
then nearly 80% of total CPU was used. When incoming-packets reduced to average of
2.6 Mbit/s after 5 s fraction then CPU fluctuated between 60% and 75%. At some time
intervals of around every 55 s CPU utilization was as lower as 50%. Following entropy
calculation, when we doubled the attack rate of 60% to our test-bed, then average CPU
utilisation increased up to 85% and 93% as illustrated in Figure 9b. It represented around
93% of CPU usage during the event of around 9 Mbits/s incoming packets. When incoming-
packets reduced to around 5 Mbit/s then CPU utilised was 85%. However, as the graph
shows that we received only 60% of minimum CPU consumption. Outgoing-packets
during both attack rates scenarios stood almost common, in Figure 9a,b, outgoing packets
were changing between 80 and 96 kbps.

Figure 10. CPU utilisation without feature distribution with different attack rates. (a) 30%Attack
Traffic CPU utilisation. (b) 60% Attack Traffic CPU utilisation.

In our work, we also calculated CPU usage before entropy-based feature distribution
with respect to incoming packets and outgoing-packets of 30% and 60% attack rate traffic.
The Figure 10a, shows CPU usage with only 30% attack rate without entropy calculation,
the graph depicts the average CPU of 52% during the event of 3 Mbit/s incoming-packets
towards proposed design. The CPU utilisation was 65% when incoming-packets reached

Sustainability 2021, 13, 1522 23 of 27

to around 5.5 Mbits/s level, minimum CPU usage was calculated 45% in some instances.
Similarly, Figure 10b depicts CPU usage with 60% of attack rate without GE calculation.
It shows nearly 80% of CPU was found busy with 5 Mbit/s then it frequently increased up
to 90% of total CPU with 9.8 Mbit/s incoming-packets flows.

It can be seen from Figure 9a, feature distribution with entropy generalisation used
20% more CPU than the normal traffic, when we used low-intensity attack rate such as
30% attack rate. On the other hand, when we increased attack intensity to 60%, then
average CPU was around 7%, after comparing values from Figures 9b and 10b. Overall,
the distribution of features with entropy generalisation was not consuming more CPU
resources with higher attack intensity in test-bed.

In another experiment, we evaluated results of FP and FN reports with 30% and 60%
of attack rates, we provided a comparison between SAE and CNN classifiers. We run both
algorithms 10 times to acquire different results as depicted in Figures 11 and 12. With
30% of attack rates, the average number of FP alerts and FN alerts were 10% and 12%,
respectively for SAE classifier as illustrated in Figure 11a. Similarly, from Figure 11b, we
can observe that 30% of attack rate in the classifier of CNN, represented the average rate of
FP alerts as 17% and FN alerts as nearly 10%, which was slightly higher than SAE classifier.

Figure 11. SAE and CNN False reports with 30% Attack Traffic. (a) SAE Algorithm False reports.
(b) CNN Algorithm False reports.

Sustainability 2021, 13, 1522 24 of 27

Figure 12. SAE and CNN False reports with 60% Attack Traffic. (a) SAE Algorithm False reports.
(b) CNN Algorithm False reports.

6. Conclusions and Future Directions

In SDN-based environment, control-plane is always under severe threats, due to
heavy flows from the attacker. Control-plane, centrally manages and manipulates packet-in
handling, data collection, classification algorithms and other traffic manipulation tools. In
the event of DDoS attack, it fails to run all these implemented elements which cause low
accuracy and higher false alerts. For the anti-DDoS model, it is very important to identify
attacks as soon as possible otherwise massive flows of packet-in events will start to deplete
the controller resources. To overcome this issue, we have utilised feature distribution
technique by entropy generalisation of Shannon and Renyi combined formula. Although
Shannon entropy is already used in existence work for classification results, our work used
Generalised Entropy (GE) for the purpose of Information Distance (ID). This combined
entropy technique helps to reduce controller overhead as GE removes redundant and
unnecessary traffic feature, which enables the SDN controller to identify attack packets
effectively so that networks regardless of it size, can effectively mitigated DDoS attack.
Entropy calculation utilises around 25% more CPU, when we merge 30% of attack traffic.
Our implemented GE technique to distribute traffic features uses only 5% more CPU when
attack intensity was 60% in test-bed. This is due to the fact that we fixed TW = 3 threshold,
which is higher time windows and is feasible to manipulate and distribute huge attack
traffic. Our work uses two well-known classifiers SAE, and CNN to perform classification
with distributed traffic as provided in Table 3. With 60% attack intensity, SAE and CNN
achieved an average accuracy of 94% and 93%, respectively with only 6% of FP alerts in
SAE traffic classification.

In this work, the deployment of the NIDS was fixed. As future work, we will explore
the impact of NIDS placement within the network on detection rate and accuracy. We will
also explore the practical implications of using various types of network sensors used by
the industry—open-source and proprietary.

Sustainability 2021, 13, 1522 25 of 27

Author Contributions: Conceptualization, R.M.A.U. and Z.P.; methodology, R.M.A.U. and K.D.;
software, R.M.A.U.; validation, R.M.A.U., W.A.K. and A.M.K.; formal analysis, Z.P. and K.D.; investi-
gation, R.M.A.U.; resources, Z.P.; data curation, R.M.A.U. and Z.P.; writing–original draft preparation,
R.M.A.U. and W.A.K.; writing–review and editing, Z.P., A.M.K. and B.H.; visualization, R.M.A.U.;
supervision, Z.P. and W.A.K.; project administration, K.D.; funding acquisition, W.A.K. and A.M.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Zayed University Cluster Research Fund grant number
R#18038. and The APC was funded by R#18038.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sachdeva, M.; Kumar, K.; Singh, G.; Singh, K. Performance analysis of web service under DDoS attacks. In Proceedings of the

2009 IEEE International Advance Computing Conference, Patiala, India, 6–7 March 2009; pp. 1002–1007.
2. Alsmadi, I.; Xu, D. Security of software defined networks: A survey. Comput. Secur. 2015, 53, 79–108. [CrossRef]
3. Dargahi, T.; Caponi, A.; Ambrosin, M.; Bianchi, G.; Conti, M. A survey on the security of stateful sdn data planes. IEEE Commun.

Surv. Tutor. 2017, 19, 1701–1725. [CrossRef]
4. Hu, F.; Hao, Q.; Bao, K. A survey on software-defined network and openflow: From concept to implementation. IEEE Commun.

Surv. Tutor. 2014, 16, 2181–2206. [CrossRef]
5. Sahoo, K.S.; Deepak, P.; Mohammad, S.; Obaidat, A.S.; Sambit, K.M.; Bibhudatta, S. On the placement of controllers in software-

defined-WAN using meta-heuristic approach. J. Syst. Softw. 2018, 145, 180–194. [CrossRef]
6. Farhady, H.; Lee, H.; Nakao, A. Software-defined networking: A survey. Comput. Netw. 2015, 81, 9–95. [CrossRef]
7. Akhunzada, A.; Ahmed, E.; Gani, A.; Khan, M.K.; Imran, M.; Guizani, S. Securing software defined networks: Taxonomy,

requirements, and open issues. IEEE Commun. Mag. 2015, 53, 6–44. [CrossRef]
8. Vissers, T.; Somasundaram, T.S.; Pieters, L.; Govindarajan, K.; Hellinckx, P. DDoS defense system for web services in a cloud

environment. Future Gener. Comput. Syst. 2014, 37, 37–45. [CrossRef]
9. Mirkovic, J.; Reiher, P. A taxonomy of DDoS attack and DDoS defense mechanisms. ACM SIGCOMM Comput. Commun. Rev.

2004, 34, 39–53. [CrossRef]
10. Wang, R.; Zhiping, J.; Lei, J. An entropy-based distributed DDoS detection mechanism in software-defined networking. In Pro-

ceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA, Washington, DC, USA, 20–22 August 2015; Volume 1, pp. 310–317.
11. Mehdi, S.A.; Khalid, J.; Khayam, S.A. Revisiting traffic anomaly detection using software defined networking. In International

Workshop on Recent Advances in Intrusion Detection; Springer: Berlin/Heidelberg, Germany, 2011; pp. 161–180.
12. Braga, R.; Mota, E.; Passito, A. Lightweight DDoS flooding attack detection using NOX/OpenFlow. In Proceedings of the IEEE

Local Computer Network Conference, Denver, CO, USA, 10–14 October 2010; pp. 408–415.
13. Giotis, K.; Argyropoulos, C.; Androulidakis, G.; Kalogeras, D.; Maglaris, V. Combining OpenFlow and sFlow for an effective and

scalable anomaly detection and mitigation mechanism on SDN environments. Comput. Netw. 2014, 62, 122–136. [CrossRef]
14. Shin, S.; Porras, P.A.; Yegneswaran, V.; Fong, M.W.; Gu, G.; Tyson, M. Fresco: Modular composable security services for software-

defined networks. In Proceedings of the 20th Annual Network & Distributed System Security Symposium, San Diego, CA, USA,
24–27 February 2013.

15. Xiao, P.; Qu, W.; Qi, H.; Li, Z. Detecting DDoS attacks against data center with correlation analysis. Comput. Commun. 2015,
67, 66–74. [CrossRef]

16. Yu, M.; Jose, L.; Miao, R. Software Defined Traffic Measurement with OpenSketch. In Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13), Lombard, IL, USA, 2–5 April 2013; pp. 29–42.

17. Zhou, L.; Liao, M.; Yuan, C.; Zhang, H. Low-rate DDoS attack detection using expectation of packet size. Secur. Commun. Netw.
2017, 2017, 3691629:1–3691629:14 [CrossRef]

18. Kompella, R.R.; Singh, S.; Varghese, G. On scalable attack detection in the network. In Proceedings of the 4th ACM SIGCOMM
Conference on Internet Measurement, Sicily, Italy, 25–27 October 2004; pp. 187–200.

19. Swain, B.R.; Sahoo, B. Mitigating DDoS attack and Saving Computational Time using a Probabilistic approach and HCF method.
In Proceedings of the 2009 IEEE International Advance Computing Conference, Patiala, India, 6–7 March 2009; pp. 1170–1172.

20. Alanazi, S.; Al-Muhtadi, J.; Derhab, A.; Saleem, K.; AlRomi, A.N.; Alholaibah, H.S.; Rodrigues, J.J.P.C. On resilience of Wireless
Mesh routing protocol against DoS attacks in IoT-based ambient assisted living applications. In Proceedings of the 2015 17th
International Conference on E-health Networking, Application & Services (HealthCom), Boston, MA, USA, 14–17 October 2015;
pp. 205–210.

http://doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1109/COMST.2017.2689819
http://dx.doi.org/10.1109/COMST.2014.2326417
http://dx.doi.org/10.1016/j.jss.2018.05.032
http://dx.doi.org/10.1016/j.comnet.2015.02.014
http://dx.doi.org/10.1109/MCOM.2015.7081073
http://dx.doi.org/10.1016/j.future.2014.03.003
http://dx.doi.org/10.1145/997150.997156
http://dx.doi.org/10.1016/j.bjp.2013.10.014
http://dx.doi.org/10.1016/j.comcom.2015.06.012
http://dx.doi.org/10.1155/2017/3691629

Sustainability 2021, 13, 1522 26 of 27

21. Chen, Y.L.; Hwang, K. Collaborative detection and filtering of shrew DDoS attacks using spectral analysis. J. Parallel Distrib.
Comput. 2006, 66, 1137–1151. [CrossRef]

22. Somani, G.; Gaur, M.S.; Sanghi, D.; Conti, M. DDoS attacks in cloud computing: Collateral damage to non-targets. Comput. Netw.
2016, 109, 157–171. [CrossRef]

23. Wang, H.; Jin, C.; Shin, K.G. Defense against spoofed IP traffic using hop-count filtering. IEEE/ACM Trans. Netw. 2007, 15, 40–53.
[CrossRef]

24. Yan, Q.; Yu, F.R.; Gong, Q.; Li, J. Software-defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud
computing environments: A survey, some research issues, and challenges. IEEE Commun. Surv. Tutor. 2015, 18, 602–622.
[CrossRef]

25. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv.
(CSUR) 2017, 50, 1–45. [CrossRef]

26. Romero, E.; Sopena, J.M. Performing feature selection with multilayer perceptrons. IEEE Trans. Neural Netw. 2008, 19, 431–441.
[CrossRef]

27. Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. A review of feature selection methods on synthetic data. Knowl. Inf.
Syst. 2013, 34, 483–519. [CrossRef]

28. Kotani, D.; Okabe, Y. A packet-in message filtering mechanism for protection of control plane in OpenFlow switches. IEICE Trans.
Inf. Syst. 2016, 99, 695–707. [CrossRef]

29. Dong, P.; Du, X.; Zhang, H.; Xu, T. A detection method for a novel DDoS attack against SDN controllers by vast new low-traffic
flows. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27 May
2016; pp. 1–6.

30. Prokhorenko, V.; Choo, K.-K.R.; Ashman, H. Web application protection techniques: A taxonomy. J. Netw. Comput. Appl.
2016, 60, 95–112. [CrossRef]

31. Mohammadi, R.; Reza, J.; Mauro, C. Slicots: An sdn-based lightweight countermeasure for tcp syn flooding attacks. IEEE Trans.
Netw. Manag. 2017, 14, 487–497. [CrossRef]

32. Osanaiye, O.; Cai, H.; Raymond Choo, K.; Ali, D.; Zheng, X.; Mqhele, D. Ensemble-based multi-filter feature selection method for
DDoS detection in cloud computing. EURASIP J. Wirel. Commun. Netw. 2016. [CrossRef]

33. Ma, X.; Chen, Y. DDoS detection method based on chaos analysis of network traffic entropy. IEEE Commun. Lett. 2013, 18, 114–117.
[CrossRef]

34. François, J.; Issam, A.; Raouf, B. FireCol: A collaborative protection network for the detection of flooding DDoS attacks. IEEE/ACM
Trans. Netw. 2012, 20, 1828–1841. [CrossRef]

35. Yuan, T.; Yu, S. DDoS attack detection at local area networks using information theoretical metrics. In Proceedings of the 2013
12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Melbourne, Australia,
16–18 July 2013; pp. 233–240.

36. Özçelik, İ.; Richard, R.B. Deceiving entropy based DoS detection. Comput. Secur. 2015, 48, 234–245. [CrossRef]
37. Cambiaso, E.; Gianluca, P.; Giovanni, C.; Maurizio, A. Slow DoS attacks: Definition and categorisation. Int. J. Trust Manag.

Comput. Commun. 2013, 1, 300–319. [CrossRef]
38. Kandoi, R.; Antikainen, M. Denial-of-service attacks in OpenFlow SDN networks. In Proceedings of the 2015 IFIP/IEEE

International Symposium on Integrated Network Management (IM), Ottawa, ON, Canada, 11–15 May 2015; pp. 1322–1326.
39. Lim, S.; Yang, S.; Kim, Y.; Yang, S.; Kim, H. Controller scheduling for continued SDN operation under DDoS attacks. Electron. Lett.

2015, 51, 1259–1261. [CrossRef]
40. Mousavi, S.M.; St-Hilaire, M. Early detection of DDoS attacks against SDN controllers. In Proceedings of the 2015 International

Conference on Computing, Networking and Communications (ICNC), Garden Grove, CA, USA, 16–19 February 2015; pp. 77–81.
41. Xu, Y.; Choi, J.; Dass, S.; Maiti, T. Introduction: Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks;

Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–9.
42. Niyaz, Q.; Sun, W.; Javaid, A.Y. A deep learning based DDoS detection system in software-defined networking (SDN). arXiv 2016,

arXiv:1611.07400.
43. Chen, Z.; Jiang, F.; Cheng, Y.; Gu, X.; Liu, W.; Peng, J. Xgboost classifier for ddos attack detection and analysis in sdn-based cloud.

In Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Shanghai, China, 15–17
January 2018; pp. 251–256. [CrossRef]

44. David, J.; Thomas, C. Ddos attack detection using fast entropy approach on flow- based network traffic. Procedia Comput. Sci.
2015, 50, 30–36. [CrossRef]

45. Sahoo, K.S.; Tiwary, M.; Sahoo, B. Detection of high rate ddos attack from flash events using information metrics in software de-
fined networks. In Proceedings of the 2018 10th International Conference on Communication Systems & Networks (COMSNETS),
Bangalore, India, 3–7 January 2018; pp. 421–424.

46. Nanda, S.; Zafari, F.; DeCusatis, C.; Wedaa, E.; Yang, B. Predicting network attack patterns in SDN using machine learning
approach. In Proceedings of the 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN), Palo Alto, CA, USA, 7–10 November 2016; pp. 167–172.

http://dx.doi.org/10.1016/j.jpdc.2006.04.007
http://dx.doi.org/10.1016/j.comnet.2016.03.022
http://dx.doi.org/10.1109/TNET.2006.890133
http://dx.doi.org/10.1109/COMST.2015.2487361
http://dx.doi.org/10.1145/3136625
http://dx.doi.org/10.1109/TNN.2007.909535
http://dx.doi.org/10.1007/s10115-012-0487-8
http://dx.doi.org/10.1587/transinf.2015EDP7256
http://dx.doi.org/10.1016/j.jnca.2015.11.017
http://dx.doi.org/10.1109/TNSM.2017.2701549
http://dx.doi.org/10.1186/s13638-016-0623-3
http://dx.doi.org/10.1109/LCOMM.2013.112613.132275
http://dx.doi.org/10.1109/TNET.2012.2194508
http://dx.doi.org/10.1016/j.cose.2014.10.013
http://dx.doi.org/10.1504/IJTMCC.2013.056440
http://dx.doi.org/10.1049/el.2015.0334
http://dx.doi.org/10.1109/BigComp.2018.00044
http://dx.doi.org/10.1016/j.procs.2015.04.007

Sustainability 2021, 13, 1522 27 of 27

47. Kotani, D.; Okabe, Y. A packet-in message filtering mechanism for protection of control plane in openflow networks.
In Proceedings of the 2014 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS),
Marina del Rey, CA, USA, 20–21 October 2014; pp. 29–40.

48. Liu, Y.; Ji, L.; Zhang, J.; Gao, C.; Qu, J. A Sensitivity Analysis of Attention-Gated Convolutional Neural Networks for Sentence
Classification. arXiv 2019, arXiv:1908.06263.

49. Wu, H.; Wang, C.; Tyshetskiy, Y.; Docherty, A.; Lu, K.; Zhu, L. The Vulnerabilities of Graph Convolutional Networks: Stronger
Attacks and Defensive Techniques. arXiv 2019, arXiv:1903.01610.

50. Lee, T.; Chang, L.; Syu, C. Deep Learning Enabled Intrusion Detection and Prevention System over SDN Networks. In Proceedings
of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 7–11 June
2020; pp. 1–6.

51. Rehman, R.U. Intrusion Detection Systems with Snort: Advanced IDS Techniques Using Snort, Apache, MySQL, PHP, and ACID; Prentice
Hall Professional: Upper Saddle River, NJ, USA, 2003.

52. Zyczkowski, K. Rényi extrapolation of Shannon entropy. Open Syst. Inform. Dynam. 2003, 10, 297–310. [CrossRef]
53. Kumar, K.; Joshi, R.C.; Singh, K. A distributed approach using entropy to detect DDoS attacks in ISP domain. In Proceedings of

the 2007 International Conference on Signal Processing, Communications and Networking, Chennai, India, 22–24 February 2007;
pp. 331–337.

54. Behal, S.; Kumar, K. Detection of DDoS attacks and flash events using novel information theory metrics. Comput. Netw.
2017, 116, 96–110. [CrossRef]

55. Barron, A.R.; Gyorfi, L.; van der Meulen, E.C. Distribution estimation consistent in total variation and in two types of information
divergence. IEEE Trans. Inform. Theory 1992, 38, 1437–1454. [CrossRef]

56. Kotsiantis, S.; Kanellopoulos, D.; Pintelas, P. Handling imbalanced datasets: A review. GESTS Int. Trans. Comput. Sci. Eng. 2006,
30, 25–36.

http://dx.doi.org/10.1023/A:1025128024427
http://dx.doi.org/10.1016/j.comnet.2017.02.015
http://dx.doi.org/10.1109/18.149496

	Introduction
	Related Work
	Detection Methodology in SDN
	Snort–Ryu Based Data Acquisition
	Entropy Calculation
	Features Distribution and Traffic Processing

	Experimental Setup
	Results
	Selecting DDoS Classifier
	Performance Evaluation with CPU Usage at Controller

	Conclusions and Future Directions
	References

