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Abstract: In this paper, we consider the nonparametric estimation of the
hazard rate function for independent identically distributed (iid) data using
kernel estimation techniques. Since survival times are positive with
potentially a high concentration at zero, one has to take into account the bias
problem when the hazard rate function is estimated in the boundary region.
To overcome the boundary bias problem, we use the Inverse Gaussian (1G)
kernel, since it has a positive support.

The asymptotic mean squared error (AMSE) and the asymptotic normality of
the proposed estimator are investigated. Also, the selection of an optimal
bandwidth is discussed since it plays an important role in the kernel
estimation.
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1. Introduction
In medical trails, reliability, survival analysis and many other fields, the
occurrence of the event of interest called lifetime (or time to failure) forms
the modeling basis, although often these times are not completely observed.
Hazard rate estimation for the lifetime event is a basic tool for processing
survival analysis.
Many methods for hazard estimation have been considered in the literature,
and in particular nonparametric ones have known an important recent
development. Estimation of the hazard rate by nonparametric methods has
the advantage of flexibility because no formal assumptions are made about
the mechanism that generates the sample order than the randomness.
Estimators of hazard function based on kernel smooth estimation have been
studied extensively in literature. For example, see Watson and Leadbetter
(1964), Rice and Rosenblatt (1976), Singpurwalla and Wong (1983) and
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Salha (2009). However, when the support of the curve under estimation is
bounded, many nonparametric estimators appear to be biased more than the
usual in regions near the endpoints. To solve this problem, boundary kernels
are used only within the boundary region. This is an efficient way to correct
boundary bias but it requires complicated adjustment to the estimator.
For positive data, a natural way to overcome the boundary bias problem
when estimating a density nonparametric aly is to consider kernels with
positive support. Recently, Chen (2000) has proposed a nice way to
circumvent the well known boundary bias or edge effect that appears in
standard kernel density estimation. Boundary bias is due to weight
allocation by the fixed symmetric kernel outside the density support when
smoothing is carried out near the boundary. The remedy consists in
replacing symmetric kernels by asymmetric Gamma kernel which never
assigns weight outside the support, in addition to nice asymptotic features.
Scaillet (2004) has used this idea and proposed two new classes of density
estimators, rely on the use of inverse Gaussian (IG) and reciprocal inverse
Gaussian (RIG) probability density function as kernels in place of the
Gamma density function.
In this paper, we consider the nonparametric estimation of the hazard rate
function for iid data using the Inverse Gaussian (IG) kernel estimation. As
gamma kernel estimators, the |G kernel estimator is free of boundary bias,
always non-negative, and achieves the optimal rate of convergence for the
mean integrated squared error (MISE) within the class of nonnegative
kernel density estimators. Furthermore its variance reduces s the position
where the smoothing is made moves away from the boundary. In contrast
with the gamma kernel estimators, the 1G kernel estimator avoids the
presence of the first derivatives of the probability density function in its
bias, see Scaillet (2004). The asymptotic mean squared error (AMSE) and
the asymptotic normality of the proposed estimator are investigated. Also,
the selection of an optimal bandwidth is discussed in the last section, since it
plays an important role.
2. Preliminaries
In this section, we state the conditions under which the results of the paper
will be proved. Also, two important propositions from Scaillet (2004) are
stated in Lemma 1.
Conditions

1. Let X,,X,,...,X,, be arandom sample from a distribution with an

unknown probability density function f defined on [0,¥), such that
f istwice continuougly differentiable, and 5 (xF @) dx <¥.
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5

2. hisasmoothing parameter satisfying h+%® 0, and nh2® 0
asn® ¥.

Scaillet (2004) considered the following Inverse Gaussian kernel

1 1
Koo (X, D)) =—
o (. )0) = ——exp

If arandom variableY has a probability density functions K (x,%)

thenE(Y )=x, andVar (Y ) =x°h.

Scaillet (2004) has proposed the following estimator of the probability
density function f (3, theInverse Gaussian estimator,

f00=28 Ko (X)) @

Definition of the proposed estimator
The hazard rate function is defined as the instantaneous probability that

duration X will end in the next time instant. More precisely, the hazard rate

function is defined as

f(x) = lim P(X £x +Dx | X >x)’ « >
Dx®0 Dx

It can be shown that the hazard rate function can be written as the ratio of

the density function f (¥ and the survivor function S(¥ =1- F (3 of X ,i.e.

r(x) =)

S(x)

The kernel estimator for the survivor function S(¥ is constructed using the

kernel dengity estimator in Equation (2)

S(x)=1- F(x),

0.

Jd X

F0=¢f Wi =18 §Ke DX, )du.

i=1

Now, the proposed estimator for the hazard rate function is given by

75



Raid B. Salha

F(x) =)
S(x)
Lemma 1.
Under the conditions (1) and (2), the following hold

() Bias(ﬂx)):%x?’f @x)h +o(h).

(i) Var (fA(x)) = anp_hX-Zf (x)+o(n"*h 2),

Proof. See Proposition 1 and 2 in Scaillet (2004).

3. Main Results

In this section, the two main results, Theorem 1 and Theorem 2 of this paper
are stated and proved.

The first main result in this paper is stated in Theorem 1 which gives the
asymptotic normality of the Inverse Gaussian kernel estimator of the
probability density function.

Theorem 1.

Under the conditions (1) and (2), the following holds

FR e 1 3 o)
nh2 (f (x)- f (X)) %%® N c0, —=x 2f (X)=
g 2Jp @

Proof

Let V. =K|G(x,%)(xi), i =1,2,...,n, then fXx):%év where

i=1

ni?

V., i =12,..,n aeindependent identically distributed random variables.

Now, we show that Liapounov condition is satisfied, that is for some d >0,

_ 2+d
jim EMe EVE
n® ¥ nfs 2+d(\/n)

Leth bean
. 2+d, . .. .
Inverse Gaussian, |G(X,T), distributed random variable.

3
Hence m =E(,)=x andT, :Var(hx):2X+:I :
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2+d

2+d — 9 33 (2+d)0a%_/_ 2+ 103
BV, | §/2py_ 8 2hX  pex yauu
¥ sl )e ae (2+d) veey
=—1+gqy - 2+_—Uf (y)dy
(20h)""2 8 2hx 58
= Y@n hgé‘y'?‘“‘”Kle( 2001 ()
Vv2+d(2ph) 2
J2ph 3

= EQ ", )_

J2+d(2ph)” B

By using the Taylor’s seriesto expand f (h,) aboutm) , we obtain

)

h 2"t (,) = ru f(m)+(m

3 5
“f &m)- >
3

3 s
) 0 s
E 2" (,)2=x 2
e

(%]

1
+E (”1

3 -Sax)

R §(1+d)

=X 2

3X-§(1+d)

R §(1+d)

=X 2
Thisimplies that

1 -3(1+a)
E|V, [ = x 2

1+d

J2+d (2ph) 2

fozrr;)-isrriE
“t qm)-

f(x)+5(x 2

f(x)+

15 -2
f §x)+—x 2
‘()4

2(1+d)

fF(m)Hb, - m)

Ut qm)+ 2 rri

S+ 3_-2ax)

f(I(x)-Ex f €x)

! (1+d)

f ) +2x 2 GO, +o(h)

x ; g(1+d) 3 S

f &x)- Ex 2

2(2+d)

9t (x))x°h +o(h)

f (x)+o(h).

(1) A
f(x)+ogh <
e

2
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Now, substituting d =0, the following holds

1 3

Va(\/n):%h'zx'zf (x)+o(hé).

1 -3(14q)
wq X 2 f(x)

EIV,-EV,)F" EV, y2+d (2ph) 2
d £ 2+d ®

2+d

2¢ 24 d 13 H2 d RE A2
ns "V, nz(?eih 2y 2f (X)B nzgeih 2y 2f (X)B
é2p ) é2/p )
R BER
LX) — o x 7
\/2+d (2p) 2 _ y2+d (2p) 2
2+d = 2+d ® 0’
d 102% 1 .3 0 2
nzh 2f (x)_ h - X 2f (x)_
e2\/_ g o &2p

The last term vanishesasn ® ¥ , since Condition (2) impliesthat h ® 0

1

and nh® ¥, then h? goes to zero slower than h and this implies that
1

nh2z ® ¥. On the other hand, the remaining components of the last term
are bounded by Condition (1).

This completes the proof of the theorem.

Now, Lemma 2 is stated and proved. Lemma 2 is important to derive the
second main result in this paper. In this lemma it will be shown that the
error in estimating the cumulative density function vanishes with
probability.

Lemma 2.

Under the conditions (1) and (2), the following holds

1
nh2 |F(x)- F(x)]|%% 0.
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Proof.

Firstly, from the definition of lf(x) , the following two facts in Relations (3)
and (4) hold.

B0 = § K UVIUT () =5 GKieUDW)T ()0 =GEE ()

—Q(f (u)+ L ) h)du +o(h) = F(x)+— eQu3f 4(u)dug+o(h):|:(x)+o(h).
Elf(x)-F(x)—o(h) .

Thisimplies that,
nh% | EF (x)- F(x)|:o((nhg)%)® 0. 3

Now, F(x) can bewritten in the following form

F(x)—ié@Kle(u Lyoxyau =L 4w, (), wherew, (x) = KX, )du

i=1

Let e >0,d >0 begiven.

A 11 ) 1 n
Fé(nhi)E |F(x)- EF(x)|>e3£e'2'2d(nh5)“dE |1é Wi () - BW, ()] P

1+d
2 Zdh n 1dE Ia[\N (X) E\N (X)] |2+d£21+d -2- Zd(n 1h2)1+da E I\N (X)|2+2d

=1

+21+d e-z- 2d (n-1h§)1+d é | E\Ni (X) |2+2d .

i=1

2+2d

(n th)“da E W, () P = (n th)“dnqqg .U, )(y)kI duf (y)dy

=n qu )(y)H f (y)dydu
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1+d X 1 -§(1+2d) _1+2d 1+d  I+2d
=n’h 2 (‘9 T U 2 f udu+o(h 2)ECn®h2h 2
J2+2d (2ph) 2
=Cnh 2 —C(nhz) ® 0.
Thisimplies that,
A
nh2 |F(x)- EF(x)| %% 0. 4

Secondly, using Relations (3), (4) and the following fact
IF(x)- F(x)|£ |F(x)- EF(x)|+|EF(x)- F(x)],

we obtain that

RN RN - 1 ~
nh2 |F(x)- F(X)|£ VYnh? |F(x)- EF(x)|+Vnh? |EF(x)- F(x)|%%® 0.

This completes the proof of the lemma

The second main result in this paper is stated in Theorem 2 which gives the
asymptotic normality of the Inverse Gaussian kernel estimator of the hazard
rate function.

Theorem 2.

Under the conditions (1) and (2), the following holds

1 -3r(x)6

2 Sy

2]

h? (F(x)- r(x)) %% N go
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Proof.

L o (x) f0_ [ 1a(x) f(x) t(), fE)0
o - 160 ng(x) S0 5 ﬁEsm 3x) S0 3

Yot 2 R IACOIPNNG
f (X) WH (X);

s

\/7 \/7f(x)

SK) O SE)S(x)

E00)- Sl (5)

The proof of the theorem is completed by a combination of Theorem 1,
Lemma 2 and Equation (5). Since by Theorem 1, the first term in Equation
(5) is asymptoticaly normally distributed and the second term vanishes by
Lemma 2.

From Theorem 1 and 2, we get that

) E(fA(X)) f(x)+;x3f @x)h ;X“"f @x)h
E(r(x))ze(é(x)): sy IOy e,
Ly @&x)h
Bias(f(x)):st+o(h)
and
R 1 2 r(x) PR
Var(r(x))—Zn\/p_hx S(x)+0(n h 2).

3. Bandwidth selection

The selection of the bandwidth in kernel estimation plays an important role.
It depends on choosing a value of the bandwidth that minimizing the
asymptotic mean squared error. Using the same techniques of Scaillet
(2004), we obtain the following:

The asymptotic mean square error (AMSE) is given by
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2l &

AMSE g2 TR 1 vk 6
= = + .
‘é S(x) - 2n\/p_hX S(x) ©)
e (%]

Note that the AMSE of the proposed estimator for points near zero is
smaller than that of the Gaussian kernel estimator.

ael &
2
. Lot O gy
AMSE(for Gaussian Kernel) =¢ 500 ++2h\/_x S()’
g 5 P

Now, f (x) and not on x. Note that the AMSE depends only on

then equating it to zero and solving h differentiate the AMSE with respect to

, weobtan hfor
2

el f(x) & 5%
S Fax) g 0

Substitute Equation (7) in Equation (6), we get
2

Bhge fx) &, 20
AMSE =¢ = x7°n'sT
¢ 2500 §2Vp (1 @) 5

N

.3 P2 2
xr(x) ¢ f(x) © 4 2

+ -
2n/pS(x) g%zdﬁ(f %x))* g

Q- - O,

2
10
[

8

r(x)(f (x))‘én'
(2vp ) S200) (F @x))

(f 0)): (1 %))
2(JE)g S(x)

4
5+

n

Q-
alln

@mED O O
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_5ad ()& (f @x):
4824p 5 S*(x)

Regarding global properties, the optimal bandwidth h™ and AMISE are

& L & (x)dx

h =c2Vp. Q
é (5(x * @fx))%dx

.
[GINN]

Q- Qe
>

51

Q(xsf @x))? dx)
‘ /2
AMISE= g \/*Q f(x)dx

2 S*(x)

.
als

n

In practice, the bandwidth selection can be done by using the rule in
Equation (8) which was proposed by Scalliet (2004)

(?@_65 ® exp( % (7s - 20m)) O

2
h™ =¢ = ns, 8
g 12 +68s 2 + 225 * ®

SIS

where the unknown parametersmand s > are estimated by the arithmetic

mean X ——ax and the sample variance Sz—nia(x - x)°
n iz -

respectively.

4. Conclusion

This paper makes use of the Inverse Gaussian kernel to edtimate
nonparametrically the marginal density and the hazard rate function. The
estimator use adaptive weights depending on the point in which we estimate
the functions. Also, the new proposed estimator can be modified but
considering a variable bandwidth depending on the point in which we
estimate the function. We derive the asymptotic mean square error, the
asymptotic normality and the strong consistency of the proposed estimator.
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The AMSE of the proposed estimator is smaller than that of the Gaussian
kernel estimator for points near zero.

References

[1] Chen, S. X. (2000). Probability density function estimation using gamma
kernels. Ann. Inst. Stat. Math., 52, 471- 480.

[2] J Rice and M. Rosenblatt (1976). Estimation of the log survivor
function and hazard function. Sankhya Series A 38, 60-78.

[3] N. D. Singpurwallaand M. Y. Wong (1983). Kernel estimation of the
faillure rate function and density estimation: an analogy. J. Amer.
Statist. Assoc. 78(3), 478-481.

[4] O. Scaillet (2004). Density estimation using inverse and reciprocal
inverse Gaussian kernels. Nonparametric Statistics, 16, 217-226.

[5] Salha, R (2009). Adaptive kernel estimation of the hazard rate function.
The Idlamic university — Gaza Journal, 17(1), 71-81.

[6] Silverman, B. W. (1986). Density estimation for statistics and data
analysis. Chapman and Hall, London.

[7] Wand, M. P. and Jones, M. C. (1995). Kernel smoothing, Chapman and
Hall.

[8] Watson, G. and Leadbetter, M. (1964). Hazard analysis I, Biometrika,
51, 175-184.



