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Abstract: In this paper, we consider the nonparametric estimation of the 
hazard rate function for independent identically distributed (iid) data using 
kernel estimation techniques. Since survival times are positive with 
potentially a high concentration at zero, one has to take into account the bias 
problem when the hazard rate function is estimated in the boundary region. 
To overcome the boundary bias problem, we use the Inverse Gaussian (IG) 
kernel, since it has a positive support. 
The asymptotic mean squared error (AMSE) and the asymptotic normality of 
the proposed estimator are investigated. Also, the selection of an optimal 
bandwidth is discussed since it plays an important role in the kernel 
estimation.  
Keywords: Inverse Gaussian kernel, hazard rate function, kernel 
estimation, asymptotic mean square error, boundary bias. 

  تقدير دالة معدل المخاطرة باستخدام نواة دالة جاوس العكسية
. في هذا البحث ندرس التقدير اللامعلمي لدالة المخاطرة باستخدام طرق تقـدير النـواة      :ملخص

ركزة بالقرب من الصفر فيجـب أن يؤخـذ بعـين    تولأن تحليل البقاء يعتمد على بيانات ايجابية م    
وللتغلـب  .  مشكلة التحيز عند تقدير دالة المخاطرة في منطقة الحدود بالقرب من الصفر            الاعتبار

كما تـم  .  يمتلك دعم ايجابيابأنه يتميز والذيعلى هذه المشكلة فإننا نستخدم تقدير معكوس جاوس         
 بالإضـافة .   لتوزيع طبيعيهتقارب للتقدير المقترح و البحث دراسة تقارب الخطأ التربيعيفي هذا  

  . تلعب دورا مهما في تقدير النواة إنهالذلك تم مناقشة كيفية اختيار اتساع النافذ حيث 
1.  Introduction 
In medical trails, reliability, survival analysis and many other fields, the 
occurrence of the event of interest called lifetime (or time to failure) forms 
the modeling basis, although often these times are not completely observed. 
Hazard rate estimation for the lifetime event is a basic tool for processing 
survival analysis. 
Many methods for hazard estimation have been considered in the literature, 
and in particular nonparametric ones have known an important recent 
development. Estimation of the hazard rate by nonparametric methods has 
the advantage of flexibility because no formal assumptions are made about 
the mechanism that generates the sample order than the randomness. 
Estimators of hazard function based on kernel smooth estimation have been 
studied extensively in literature. For example, see Watson and Leadbetter 
(1964), Rice and Rosenblatt (1976), Singpurwalla and Wong (1983) and 
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Salha (2009). However, when the support of the curve under estimation is 
bounded, many nonparametric estimators appear to be biased more than the 
usual in regions near the endpoints. To solve this problem, boundary kernels 
are used only within the boundary region. This is an efficient way to correct 
boundary bias but it requires complicated adjustment to the estimator. 
For positive data, a natural way to overcome the boundary bias problem 
when estimating a density nonparametric ally is to consider kernels with 
positive support. Recently, Chen (2000) has proposed a nice way to 
circumvent the well known boundary bias or edge effect that appears in 
standard kernel density estimation. Boundary bias is due to weight 
allocation by the fixed symmetric kernel outside the density support when 
smoothing is carried out near the boundary. The remedy consists in 
replacing symmetric kernels by asymmetric Gamma kernel which never 
assigns weight outside the support, in addition to nice asymptotic features. 
Scaillet (2004) has used this idea and proposed two new classes of density 
estimators, rely on the use of inverse Gaussian (IG) and reciprocal inverse 
Gaussian (RIG) probability density function as kernels in place of the 
Gamma density function. 
In this paper, we consider the nonparametric estimation of the hazard rate 
function for iid data using the Inverse Gaussian (IG) kernel estimation. As 
gamma kernel estimators, the IG kernel estimator is free of boundary bias, 
always non-negative, and achieves the optimal rate of convergence for the 
mean integrated squared error (MISE) within the class of nonnegative 
kernel density estimators. Furthermore its variance reduces s the position 
where the smoothing is made moves away from the boundary.  In contrast 
with the gamma kernel estimators, the IG kernel estimator avoids the 
presence of the first derivatives of the probability density function in its 
bias, see Scaillet (2004).  The asymptotic mean squared error (AMSE) and 
the asymptotic normality of the proposed estimator are investigated. Also, 
the selection of an optimal bandwidth is discussed in the last section, since it 
plays an important role. 
2. Preliminaries    
In this section, we state the conditions under which the results of the paper 
will be proved. Also, two important propositions from Scaillet (2004) are 
stated in Lemma 1.  
 Conditions 

1. Let 1 2, ,..., nX X X be a random sample from a distribution with an 
unknown probability density function f defined on [0, )∞ , such that 

f is twice continuously differentiable, and ( )23

0
( ) .x f x dx

∞
′′ < ∞∫   
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2. h is a smoothing parameter satisfying 1 0,  h
nh

+ → and 
5
2 0nh →  

as n → ∞ . 
 

Scaillet (2004) considered the following Inverse Gaussian kernel  
 

3

1 1 1( , )( ) exp ( 2 ) ,
22

IG
u xK x u

h hx x uhuπ

 = − − + 
 

                                   (1)         

 

If a random variable Y has a probability density functions  1( , )IGK x
h

 

then 3( ) ,  and ( )E Y x Var Y x h= = . 
 

Scaillet (2004) has proposed the following estimator of the probability 
density function  ( ),f ⋅   the Inverse Gaussian estimator, 

1

1 1ˆ( ) ( , )( ).
n

IG i
i

f x K x X
n h=

= ∑                                                                        (2)  

Definition of the proposed estimator 
The hazard rate function is defined as the instantaneous probability that 
duration X will end in the next time instant. More precisely, the hazard rate 
function is defined as  

0

( | )( ) lim , 0.
x

P X x x X xr x x
x∆ →

≤ + ∆ >
= >

∆  
It can be shown that the hazard rate function can be written as the ratio of 

 
the density function ( )f ⋅

 
and the survivor function ( ) 1 ( )S F⋅ = − ⋅

 
of ,X i.e.  

( )( )
( )

f xr x
S x

= . 

The kernel estimator for the survivor function ( )S ⋅
 
is constructed using the 

kernel density estimator in Equation (2)  

0 0
1

ˆ ˆ( ) 1 ( ),
1 1ˆˆ ( ) ( ) ( , )( ) .

nx x

IG i
i

S x F x

F x f u du K u X du
n h=

= −

= = ∑∫ ∫  

 
Now, the proposed estimator for the hazard rate function is given by 
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ˆ( )ˆ( ) .ˆ( )
f xr x
S x

=  

Lemma 1. 
Under the conditions (1) and (2), the following hold 

(i) ( ) 31ˆ( ) ( ) ( ).
2

Bias f x x f x h o h′′= +  

(ii) ( )
3 1

12 21ˆ( ) ( ) ( ).
2

Var f x x f x o n h
n hπ

− −−= +
 

 
Proof. See Proposition 1 and 2 in Scaillet (2004).  
3.  Main Results 
In this section, the two main results, Theorem 1 and Theorem 2 of this paper 
are stated and proved. 
The first main result in this paper is stated in Theorem 1 which gives the 
asymptotic normality of the Inverse Gaussian kernel estimator of the 
probability density function.  
Theorem 1. 
Under the conditions (1) and (2), the following holds 

1 3
2 21ˆ( ( ) ( )) 0, ( ) .

2
dnh f x f x N x f x

π

− 
− →  

 
 

Proof 

1

1 1ˆLet ( , )( ), 1, 2,..., ,  then  ( ) , where 

, 1, 2,...,  are independent identically distributed random variables. 

n

ni IG i ni
i

ni

V K x X i n f x V
h n

V i n
=

= = =

=

∑

 
 
Now, we show that Liapounov condition is satisfied, that is for some 0,δ >  
 

 
 
Let xη be an 

Inverse Gaussian, 2( , ),IG x
h

δ+  distributed random variable.  

Hence ( )x xE xµ η= = and
3

( )
2x x
x hT Var η

δ
= =

+
. 

 

2

2

2

| ( ) |lim 0.
( )

n n

n
n

E V E V
n V

δ

δ

δσ

+

+→∞

−
=
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2

2

3

3(1 )
2

01
2

1 (2 )| | exp 2
22

1 (2 )exp 2 ( )
2(2 )

n
y xE V E

hx x yhy

y xy f y dy
hx x yh

δ

δ

δ

δ

δ

π

δ

π

+

+

∞ − +

+

    +   = − − +        
  + = − − +   

   
∫

 

3(1 )
2

01
2

3(1 )
2

1
2

2 2( , )( ) ( )
2 (2 )

2 ( ) .
2 (2 )

IG

x x

h y K x y f y dy
h

h

h E f
h

δ

δ

δ

δ

π δ

δ π

π
η η

δ π

∞ − +

+

− +

+

+
=

+

 
=  

 +

∫

 

By using the Taylor’s series to expand  ( )xf η  about xµ , we obtain 
 

3 3 3 5(1 ) (1 ) (1 ) (1 )
2 2 2 2

3 5 5 7(1 ) (1 ) (1 ) (1 ) 22 2 2 2

3( ) ( ) ( ( ) ( ))( )
2

1 3 3 15( ( ) ( ) ( ) ( ))( ) ( ).
2 2 2 4

x x x x x x x x x x

x x x x x x x x x x

f f f f

f f f f o h

δ δ δ δ

δ δ δ δ

η η µ µ µ µ µ µ η µ

µ µ µ µ µ µ µ µ η µ

− + − + − + − +

− + − + − + − +

′= + − −

′′ ′ ′+ − − + − +

3 3 3 5(1 ) (1 ) (1 ) (1 )
2 2 2 21 3( ) ( ) ( ( ) ( )

2 2x xE f x f x x f x x f x
δ δ δ δ

η η
− + − + − + − + 

′′ ′= + − 
 

 

5 7(1 ) (1 )
2 2

3 3 5(1 ) (1 ) (1 )
2 2 2

3 15( ) ( )) ( )
2 4

1 3( ) ( ( ) ( )
2(2 ) 2

xx f x x f x T o h

x f x x f x x f x

δ δ

δ δ δ

δ

− + − +

− + − + − +

′− + +

′′ ′= + −
+

 

5 7(1 ) (1 ) 32 2

3(1 )
2

3 15( ) ( )) ( )
2 4

( ) ( ).

x f x x f x x h o h

x f x o h

δ δ

δ

− + − +

− +

′− + +

= +

 

This implies that 
 

3 (1 )(1 )2+ 2 2
n 1+

2

1E|V | =  ( ) .
2+ (2 h)

x f x o h
δ

δδ
δ

δ π

+
− + − 

+  
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Now, substituting 0,δ =  the following holds 
 

1 3 1
2 2 21( ) ( ) ( ).

2nVar V h x f x o h
π

− − −
= +

3(1 )
2

1+
2 2 2

2 2
1 3 1 322 2 2

2 2 2 2 2 2

1  ( )
2+ (2 h)| ( ) | | |

( ) 1 1( ) ( )
2 2

n n n

n

x f x
E V E V E V

n V n h x f x n h x f x

δ

δ
δ δ

δ δ δ
δ δδ

δ π

σ
π π

− +

+ +

+ +
+ − − − −

−
≤ →

   
   
   

 

 

3 3(1 ) (1 )
2 2

1+ 1+
2 2

2 2
3 1 32 2 2

2 4 2 2 2

1 1 ( )  ( )
2+ (2 ) 2+ (2 )

0, 
1 1( ) ( )

2 2

x f x x f x

n h x f x nh x f x

δ δ

δ δ

δ δ δ
δ δ

δ π δ π

π π

− + − +

+ +

− −

= = →
     
     
       

 
 

 The last term vanishes as n → ∞ , since Condition (2) implies that 0h →  

and ,nh → ∞  then  
1
2h  goes to zero slower than h

 
and this implies that 

1
2 .nh → ∞   On the other hand, the remaining components of the last term 

are bounded by Condition (1).  
 
This completes the proof of the theorem.    
Now, Lemma 2 is stated and proved. Lemma 2 is important to derive the 
second main result in this paper. In this lemma it will be shown that the 
error in estimating the cumulative density function vanishes with 
probability. 
Lemma 2. 
Under the conditions (1) and (2), the following holds 
 

1
2 ˆ| ( ) ( ) | 0pnh F x F x− → . 
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Proof.  
Firstly, from the definition of ˆ ( )F x , the following two facts in Relations (3) 
and (4) hold. 
 

0 0 0 0 0

3 3

0 0

1 1ˆ( ) ( , )( ) ( ) ( , )( ) ( ) ( ( ))

1( ( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ).
2 2

x x x

IG IG u

x x

EF x K u y du f y dy K u y f y dydu E f du
h h

hf u u f u h du o h F x u f u du o h F x o h

ξ
∞ ∞

= = =

 ′′ ′′= + + = + + = +  

∫ ∫ ∫ ∫ ∫

∫ ∫
ˆ ( )EF x - ( )F x = ( )o h . 

 
This implies that, 
 

1 5 1
2 2 2ˆ| ( ) ( ) | (( ) ) 0.nh EF x F x o nh− = →                                                     (3)    

 
Now,  ˆ ( )F x  can be written in the following form 
 

0 0
1 1

1 1 1 1ˆ( ) ( , )( ) ( ), where ( ) ( , )( ) .
n nx x

IG i i i IG i
i i

F x K u X du W x W x K u X du
n h n h= =

= = =∑ ∑∫ ∫
 
Let  0, 0 be given.ε δ> >  
 

[ ]

[ ]

1 1 1
2 2 1 22 2 2

1

1 1
2 2 1 2 1 2 2 1 1 2 22 2

1 1
1

1 2 2 1 1 2 22

1

1ˆ( ) | ( ) ( ) | ( ) | ( ) ( ) |

| ( ) ( ) | 2 ( ) | ( ) |

2 ( ) | ( ) | .

n

i i
i

n n

i i i
i i

n

i
i

P nh F x EF x nh E W x EW x
n

h n E W x EW x n h E W x

n h EW x

δ δ δ

δ
δ δ δ δ δ δ δ

δ δ δ δ

ε ε

ε ε

ε

− − + +

=

+
− − − − + + − − − + +

= =

+ − − − + +

=

 
− > ≤ − 

 

= − ≤

+

∑

∑ ∑

∑
 

2 21 1
1 1 2 2 1 12 2

0 0
1

2 21
2

0 0

1( ) | ( ) | ( ) ( , )( ) ( )

1( , )( ) ( )

n x

i IG
i

x

IG

n h E W x n h n K u y du f y dy
h

n h K u y f y dydu
h

δ
δ δ δ

δδ
δ

+
∞− + + − +

=

++
∞−

 =   

 =   

∑ ∫ ∫

∫ ∫
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1 3 1 2 1 1 2(1 2 )
2 2 2 2 2

1 20
2

1 ( ) ( )
2 2 (2 )

x
n h u f u du o h C n h h

h

δ δ δ δδδ δ
δ

δ π

+ + + +− + − −− −
+= + ≤

+
∫  

1
2 2( ) 0.C n h C nh
δ

δ δ−− −= = →  
 
This implies that, 
 

1
2 ˆ| ( ) ( ) | 0.pnh F x EF x− →                                                                   (4) 

 
Secondly, using Relations (3), (4) and the following fact  
 
 ˆ ˆ ˆ ˆ| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |F x F x F x EF x EF x F x− ≤ − + − ,  
 
we obtain that 
 

1 1 1
2 2 2ˆ ˆ ˆ ˆ| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | 0.pnh F x F x nh F x EF x nh EF x F x− ≤ − + − →

 
 
This completes the proof of the lemma    
The second main result in this paper is stated in Theorem 2 which gives the 
asymptotic normality of the Inverse Gaussian kernel estimator of the hazard 
rate function.  
Theorem 2. 
Under the conditions (1) and (2), the following holds 
 

( )
1 3
2 21 ( )ˆ( ) ( ) 0, .

( )2
d r xnh r x r x N x

S xπ

− 
− →  
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Proof. 
 

( )
1 1 1
2 2 2

1
2

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )ˆ( ) ( ) ˆ ˆ ˆ ˆ( ) ( )( ) ( ) ( ) ( )

ˆ( ) ( )ˆ( ) ( ) ( )ˆ ( )( )

f x f x f x f x f x f xnh r x r x nh nh
S x S xS x S x S x S x

nh f x f xf x f x f x
S xS x

   
− = − = − − +      

   

 
= − − +  

 

 

                               

1 1
2 2 ( )ˆ ˆ( ) ( ) ( ) ( ) .ˆ ˆ( ) ( ) ( )

nh nh f xf x f x S x S x
S x S x S x

   = − + −  
                

(5)   

 
The proof of the theorem is completed by a combination of Theorem 1, 
Lemma 2 and Equation (5). Since by Theorem 1, the first term in Equation 
(5) is asymptotically normally distributed and the second term vanishes by 
Lemma 2.   
From Theorem 1 and 2, we get that 
 

( )
( )
( )

3 31 1ˆ ( ) ( ) ( )( ) 2 2ˆ( ) ( ) ( ) ( ),
ˆ ( ) ( )( )

f x x f x h x f x hE f x
E r x o h r x o h

S x S xE S x

′′ ′′+
= = + = + +

 

( )
31 ( )

2ˆ( ) ( )
( )

x f x h
Bias r x o h

S x

′′
= +  

and

 ( )
3 1

12 21 ( )ˆ( ) ( ).
( )2

r xVar r x x o n h
S xn hπ

− −−= +

 
 
3. Bandwidth selection  
The selection of the bandwidth in kernel estimation plays an important role. 
It depends on choosing a value of the bandwidth that minimizing the 
asymptotic mean squared error. Using the same techniques of Scaillet 
(2004), we obtain the following:   
The asymptotic mean square error (AMSE) is given by  
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2
3

3
2

1 ( ) 1 ( )2AMSE .
( ) ( )2

x f x h r xx
S x S xn hπ

−

 ′′ 
= + 

 
 

                                          (6) 

 
Note that the AMSE of the proposed estimator for points near zero is 
smaller than that of the Gaussian kernel estimator.  
    

2
2

3
2

1 ( ) 1 ( )2AMSE(for Gaussian Kernel) .
( ) ( )2

f x h r xx
S x S xnh π

−

 ′′ 
= + 

 
   

 
Note that the AMSE depends only on ( ) and not on .f x x Now, 

differentiate the AMSE with respect tohthen equating it to zero and solving 
forh, we obtain      

2
25

3 5
2

1 ( ) .
( ( ))2

f xh x n
f xπ

−− 
=  ′′ 

                                                                    (7)    

 
 
Substitute Equation (7) in Equation (6), we get                                            

22
23 5

3 5
2

( ) ( )AMSE
2 ( ) 2 ( ( ))

x f x f x x n
S x f xπ

−−

 
 ′′ =   ′′  

   
 

1
23 2

252
3 5

2

( ) ( )
2 ( ) 2 ( ( ))

x r x f x x n
n S x f xπ π

−
−

−−

 
  +   ′′  

   

 

( ) ( )

( )
( )

( ) ( )

2
42 1 1

4 55 5 5
5

2 4 2
25 5 5

( ) ( ) ( ) ( )

2 ( ) 2 ( ) ( )

f x f x r x f x n
n

S x S x f xπ π

−−
−

−

 
 ′′

= + 
  ′′    
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( )
24

455
5

2

( )5 ( ) .
4 ( )2

f xf x n
S xπ

−′′ =  
 

  
Regarding global properties, the optimal bandwidth h ∗  and AMISE are 
 
 

2
53

2
20
5

3 2

0

1 ( )
2 ,

( ( ))

x f x dx
h n

x f x dx
π

∞ −

−∗
∞

 
 

=  
 ′′ 
 

∫

∫
 

AMISE=
( )

2
54 3 2

453 0 52
20

( ( ))5 1 ( ) .
4 ( )2

x f x dx
x f x dx n

S xπ

∞

−∞ −
′′ 

 
 

∫
∫

 
 
In practice, the bandwidth selection can be done by using the rule in 
Equation (8) which was proposed by Scalliet (2004) 
 

2
5 2 5 2

5
2 4

116 exp( (7 20 ))8 , (8)
12 68 225

h n
σ σ µ

σ σ

−∗∗
 −
 =

+ + 
                                                     

 
where the unknown parameters 2and µ σ  are estimated by the arithmetic 

mean 
1

1 n

i
i

x x
n =

= ∑  and the sample variance ( )22

1

1
1

n

i
i

S x x
n =

= −
− ∑  

respectively. 
4. Conclusion 
This paper makes use of the Inverse Gaussian kernel to estimate 
nonparametrically the marginal density and the hazard rate function. The 
estimator use adaptive weights depending on the point in which we estimate 
the functions. Also, the new proposed estimator can be modified but 
considering a variable bandwidth depending on the point in which we 
estimate the function. We derive the asymptotic mean square error, the 
asymptotic normality and the strong consistency of the proposed estimator. 
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The AMSE of the proposed estimator is smaller than that of the Gaussian 
kernel estimator for points near zero. 
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