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Abstract. In this article; Intelligent Water Drops (IWD) algorithm is
adapted for feature selection with Rough Set (RS). Specifically, IWD is
used to search for a subset of features based on RS dependency as an
evaluation function. The resulting system, called IWDRSFS (Intelligent
Water Drops for Rough Set Feature Selection), is evaluated with six
benchmark data sets. The performance of IWDRSFS are analysed and
compared with those from other methods in the literature. The outcomes
indicate that IWDRSFS is able to provide competitive and comparable
results. In summary, this study shows that IWD is a useful method for
undertaking feature selection problems with RS.
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1 Introduction

Feature Selection (FS) refers to the process of selecting the minimum subset of
features that preserves the meaning of the original features [3]. An irrelevant
feature is a feature that is weakly correlated to the decisional feature, which
can be removed with little or no effect to the given outcomes. A redundant
feature is a feature that is highly correlated with other features, and it does not
carry significant knowledge when it is added to the entire set of features. If the
irrelevant and redundant features can be removed, the dimension of the data
set can be reduced without significantly affecting the knowledge represented by
the entire features [19]. Moreover, learning and classification accuracy can be
improved by simple, easy, and understandable presentation of the underlying
rules, which are formulated from fewer numbers of features [10].

The main elements of an FS algorithm include subset generation, subset eval-
uation, and the stopping criterion [9]. Subset generation is the search technique,
which is used to explore the search space. Subset evaluation then uses an eval-
uation approach to assess the goodness of the subset of features. The stopping
criterion is used to terminate the search process. FS problem is a combinatorial
NP-hard problem [19]. This is because the numbers of alternatives are propor-
tional to the number of features in the data set. As an example, if we have a



data set with N features, FS can be seen as a search process over a search space
with 2N possible subsets of features. Although exhaustive search techniques can
be used to find the optimal subset of features, it is impractical in the presence
of large number of features. To manage the complexity of the search process,
many search strategies such as heuristic and metaheuristic methods have been
proposed [1, 5, 8, 17, 18]. A detailed taxonomy and the associated algorithms of
FS can be found in [9].

Rough Set Theory (RST) is a mathematical theory introduced by Pawlak in
1982 [12], which was used as a tool for analyzing incomplete or uncertain data.
RST is popular for feature selection. It is characterized by its ability to evaluate
features indiscernibility without needing any external information. Indeed, RST
is used to analyze only the hidden information within a data set to find the
minimal knowledge representation. RST has been successfully used with many
search algorithms for feature selection in order to measure the goodness of the
selected subsets [1, 5, 8, 17, 18].

The Intelligent Water Drops (IWD) algorithm is a meta-heuristic method in-
troduced by Shah-Husseini [16]. It is a nature-inspired optimization algorithm.
IWD imitates some of the natural phenomena of a swarm of water drops with
the soil onto the river bed. Within the last 5 years, IWD has been very success-
ful in many discrete optimization problems [4, 6, 11, 13, 16] and machine learning
tasks [15]. IWD has recently been adapted for continuous optimization prob-
lems [14]. This success is partly owing to the fundamental advantages of IWD
over other traditional optimization techniques [13, 15, 16]. IWD has a simple and
easily understandable mathematical model. It can be adapted easily for many
optimization problems, and is applicable to both discrete and continuous prob-
lems. It converges fast to the optimal solution. It considers the construction of
solution in the population based on information given by experience (gained
from the previous iteration of the search) rather than considering refinement of
the existing population.

In this paper, the IWD is adapted with the rough set for feature selection.
The resulting model is called Intelligent Water Drops algorithm for Rough Set
Feature Selection (IWDRSFS). IWDRSFS is evaluated with 6 benchmark data
sets obtained from [7]. Many of these data sets come from the UCI machine
learning repository [2]. The numbers of the input features vary between 13 and
56. The results from IWDRSFS are compared with those from local search-based
methods, such as hill climbing, as well as population search-based methods such
as ant colony and the genetic algorithm.

The rest of the paper is organized as follows. Section 2 provides a brief
introduction to RST and RS dependency for feature selection. Section 3 describes
the detailed modeling and implementation of IWD for feature selection. The
experiments and the associated results are presented in section 4. Conclusions
and suggestions for future work are highlighted in section 5.



2 Rough set theory and feature dependency for feature
selection

RST is an approximation approach developed to deal with incomplete knowl-
edge Pawlak [12]. The fundamental concept of RST is the approximation of the
uncertain set (knowledge) with a pair of precise sets, called the lower and upper
approximations. The lower approximation is a set that describes objects that are
definitely belonging to the subset of interest, while the upper approximation is
a set that describes objects that are possibly belonging to the subset of interest.
The pair of lower and upper approximations as a tuple is defined as a Rough Set
(RS)[12].

Let IS= (U,A
⋃
D) be an information system, U is a non-empty finite set of

objects (universe), A is a non empty finite set of conditional features, and D is
the decisional feature. For any S ⊆ A there exists an equivalence relation called
the S -indiscernibility relation that can be used to group objects into classes
which are called equivalence classes denoted as [x]s. Each class contains the set
of objects that have the same vector of features values in S. Let X ⊆ U. X be a
target equivalence class (concept) induced by the decisional feature D. X cannot
be expressed directly by [x]S because X may include an object that is not in [x]S
and vice versa. RST is able to approximate this uncertainty by comparing the
equivalent classes induced by the conditional features with the target equivalence
class. RST defined the lower and upper approximations to find the positive
region, which is a set that includes objects that can certainly be classified by a
feature or subset of features.The positive region can be employed to find feature
dependency, and is denoted as γS(Q). γS(Q) is used to measure the strength of
the relation (correlation) between two set of features S, and Q. If γS(Q) = 1,
then Q is totally dependent on S, and denoted as (S⇒ Q). If γS(Q) < 1 then Q
is partially dependent on S with a degree γS(Q), and is denoted as (S ===⇒

γS(Q)
Q).

Finally, if γS(Q) = 0, then Q and S are independent. The detailed information
on RS can found in [9].

The main idea of FS with RS is to remove features that do not have sig-
nificant effects on feature dependency. So, the FS algorithm aims to search for
the minimum subset of features, S, that has feature dependency equals to the
dependency of the full features C, i.e. γS(Q) ≈ γC(Q), where S ⊆ C.

FS problems require finding one subset of features that has feature depen-
dency equals to the dependency of the full set of features. The ideal FS algorithms
aim to find all subsets of features that satisfy the abovementioned condition.
However, finding all subsets of features is computationally expensive. Therefore,
an efficient search algorithm is required to find the optimal subset of features by
considering the maximum dependency and minimum subset size.

3 Intelligent water drops for feature selection

In nature, water drops have to overcome obstacles and barriers in the environ-
ment in order to find the shortest path from its source to the destination. Water



drops prefer to follow the direction of the easy path, i.e. a path with less soil.
Water drops are transferred from one point to another with a velocity. During
the move, water drops carry an amount of soil gained from the bed of the path.
Changes on the soil carried by the water drops, the soil in the path, and the
velocity, encourage water drops to move through the shortest path that has less
soil and, at the same time, to reinforce other water drops to follow the same
path.

The key properties of water drops are soil and velocity. During the trip of the
water drops, a certain amount of soil from the bed of the path will be carried
together. The change on the soil carried by the drops is proportional to the
inverse of the velocity in a nonlinear way. Specifically, during the lifetime of
the water drops, the velocity will be changed with a value that is nonlinearly
proportional to the inverse of the soil between two points in the path. Thus,
water drops on a path with less soil become faster, and the soil on the path
is decreased. Changes of the soil and velocity have an influential role on the
probability of selecting the direction of flow. The probability of selecting the
next path is inversely proportional to the soil of the available paths. As a result,
a path with low soil has a higher probability of being the selected path. The
whole process will converge when the probability of selecting the shortest path
equals to 1.

The following subsections describe the detailed modeling and implementation
of IWD for feature selection.

3.1 Modeling of feature selection as the IWD environment

FS aims to select a subset S from the full set of features C where the knowledge
represented by C is contained in S. The process of searching for the optimal sub-
set using IWD is modeled as a complete undirected graph G= (V, E ), where V
is number of nodes (i.e. features) connected by set of edges E. An edge represents
the choice of the next feature. An edge holds an amount of soil that represents the
hardness of the local path (edge between two features). A number of water drops
are spreaded randomly to the set of features, where every drop is allocated with a
different feature. Water drops can be used as agents that construct the solutions
(population). A water drop starts to move from its source, i.e., the first allocated
feature, to the next until it completes a path. A selection mechanism is required
by IWD to determine the direction of the next local path, as described in section
3.2. Every water drop has a list k has a list V IWDk

C , which is used to record the

visited features. V IWDk

C is the solution k, which is constructed by the water drop
IWDk . The population is a set of solutions which are constructed by the entire

water drops i.e. T IWD =
{
V IWD1

C ,V IWD2

C , ...,V IWDk

C , ...,V
IWDNIWD

C

}
, where

NIWD is the maximum number of water drops.

In this article, RS dependency is used as the evaluation function to assess
the goodness of the partial solution.



3.2 The Proposed IWDRSFS Model

In the following we present the main phases and steps of the proposed IWDRSFS
model.

Initialization phase The initialization phase is used for initializing the static
and dynamic parameters of the water drops and to spread the water drops on
their sources.

i. Initializing the static parameters
Static parameters are parameters that assume specific initial values at the
beginning of the search, and they remain unchanged during the whole pro-
cess. The static parameters of the proposed IWDRSFS model are:

– NIWD : a set of water drops, which represents the set of solutions.
– Velocity updating parameters(av, bvcv) : set of parameters used for

updating the velocity of the water drops (equation 5).
– Soil updating parameters (as, bs, cs) : set of parameters used for

computing the amount of changes in the soil of the local path (equation
6).

– MaxIter: the maximum number of iterations for a water drops before
terminating the IDW algorithm.

– initSoil: the initial value of the local soil.

ii. Initializing the dynamic parameters
Dynamic parameters are parameters that are initialized at the beginning of
the search, and are updated dynamically during the lifetime of search.

– VIWDk

C : a list of visited features for each water drop k,

– intiVelIWDk : the initial velocity of water drop k at the beginning of
the search.

– Soil IWDk : the initial soil of water drop k, at the beginning of the search,
where 1 ≤ k ≤ NIWD.

dynamic parameters should be reset to their default initial values at the
beginning of iteration.

iii. Spread drops on their sources
Water drops are spread randomly to the set of features, where every drop
k is allocated with a different feature, which is considered as the source of
water drop. V IWDk

C is updated by adding the source.

Construction phase The main goal of the construction phase for every water
drop is to complete its solution starting from the source (the first point the water
drop is spread on). The construction phase is completed by the fluency of all
water drops amongst the features using the following four steps:

i. Edge selection mechanism
A water drop k, which is resided in the current feature i can determine the
next feature j, which is not in the visited list (V IWDk

C ) using the probability



pIWDk
i (j ) as shown in equation ( 1). V IWDk

C ) is updated by adding the
selected edge.

pIWDk
i (j ) =

f (soil(i , j ))∑
l/∈V

IWDk
C

f (soil(i , l))
(1)

where f(soil(i, j)) = 1
ε+g(soil(i,j )) , ε is a small positive number prevents the

division by zero in f(.)

g(soil(i , j )) =


soil(i , j ) if min

∀l/∈V
IWDk
C

soil(i , l) > 0,

soil(i , j )− min
∀l/∈V

IWDk
C

soil(i , l) Otherwise.

Where soil(i , l) refers to the amount of soil on the local path between fea-
tures i, and j. The function min (.) returns the minimum value among all
available values for its argument.

ii. Update the velocity and local soil
The velocity of the drop k at time t + 1 is denoted as velIWDk(t + 1). It is
changed every transit from feature i to feature j using equation (2).

velIWDk(t + 1) = velIWDk(t) +
av

bv + cv ∗ soil(i , j )
(2)

where av, bv, cv are the static parameters used to represent the non-linear
relationship between the velocity of a water drop k, ( i.e. velIWDk), and the
inverse of soil onto the local path, (i.e. soil(i, j)). soil(i, j) and the amount
of soil carried by the drop k (i.e. soilIWDk) are updated by 4soil(i, j)
using equations (5), (6) respectively. 4soil(i, j) refers to the amount of
soil removed from the local path and carried by the drop. 4soil(i, j) is
nonlinearly proportional to the inverse of velIWDk as shown in equation (3).

4soil(i, j) =
as

bs + cs ∗ time(i , j : vel IWDk (t + 1 ))
(3)

where, as, bs, cs are the static parameters used to represent the non-linear re-
lationship between4soil(i, j) and the inverse velIWDk . time(i, j : velIWDk(t+
1)) refers to the time needed for a drop k to transit from feature i to feature
j at time t+1. It can be calculated using equation (4).

time(i , j : vel IWDk (t + 1 )) =
HUD(i, j)

velIWDk(t+ 1)
(4)

where HUD(i, j) is the heuristic desirability of the edge between features i
and j. In this work, the RS dependency is used to evaluate the goodness of
the path between two features.

soil(i , j ) = (1− ρn) ∗ soil(i,j)− ρn ∗ 4soil(i, j) (5)

soilIWDk = soilIWDk +4soil(i, j) (6)

where ρn is a small positive constant between zero and one.



Reinforcement phase A solution with the minimum number of features amongst
T IWD, called the iteration best solution (i.e T IB), is selected using equation (7).
For each iteration, if T IB is shorter than the best solution found so far, the total
best solution i.e (TTB) is replaced with T IB . Otherwise TTB is kept unchanged.
To reinforce water drops in the subsequent iterations to follow TTB , , the soil of
all edges (i.e. the global path soil) exist in T IB is updated using equation (8).

TTB = arg min
∀l∈T IWB

q(x) (7)

where q(.) is the function that is used to evaluate the quality of the solu-
tions. In feature selection, it refers to the number of features in a solution (i.e.
cardinality of the solution).

soil(i, j) = (1 + ρIWD) ∗ soil(i,j)− ρIWD ∗
1

q(TIWB)
(8)

where q(T IB) is cardinality of T IB , and ρIWD is a positive constant.

Termination phase Construction and reinforcement phases are repeated until
the termination criterion (i.e. the maximum number of iterations, MaxIter) is
satisfied. At any iteration, if T IB is better than TTB , TTB is replaced by T IB

otherwise TTB is kept unchanged, as shown in equation (9). The IWD dynamic
parameters are reset to their default values at the beginning of each iteration.

TTB =

{
T IB ifq(T IB ) < q(TTB )
TTB Otherwise.

(9)

4 Experiments and results

The proposed IWDRSFS model was evaluated using six benchmark data sets
obtained from [7], because they had been preprocessed, such as discretizing real
valued features, treating the missing values, and removing outlier instances. Most
of these data sets came from the UCI machine learning repository [2]. The cho-
sen data sets had different degrees of difficulties, e.g. the numbers of features
(dimensions) varied from low (13) to high (56), and the numbers of samples were
small for high dimensional data sets, as shown in Table 1.

The IWDRSFS model was implemented using the Java programming lan-
guage. The experiments were conducted using an Intel Pentium 4 core 2 Quad
2.66 GHz personal computer. The parameter setting of IWDRSFS is summarized
in Table 2.

RS dependency was used as the evaluation function to measure the goodness
of the partial solution, where a dependency of 1 was used as the stopping criterion
for a complete solution.

Table 3 shows the results of IWDRSFS for the six data sets. The results of
IWDRSFS are compared with those from four state-of-the-art RS methods for



Table 1. the main properties of the data sets

No. Data sets Abbreviations No. of features No. of samples

1 Artificial domains concept M-of-N 13 1000
2 Statlog German credit data CREDIT 20 1000
3 Letter recognition LETTERS 25 26
4 Dermatology DERM 34 366
5 Water Treatment Plant WQ 38 521
6 Lung Cancer LUNG 56 32

Table 2. IWDRSFS Parameter settings

Description Parameters Values

NIWD Number of features
av, bv, cv 1000, 0.01, 1

Static parameters as, bs, cs 1000, 0.01, 1
initSoil 100
MaxIter 250
ε, ρIWD, ρn 0.01, 0.9, 0.9

V
IWDk
C Empty

Dynamic parameters intiV elIWDk 4
soilIWDk 0

FS, as published in [8]. They included the RS attribute reduction algorithm based
on the greedy hill-climbing technique (RSAR), entropy-based data reduction
(EBR), ant colony rough set attribute reduction (AntRSAR), genetic algorithm
rough set attribute reduction (GenRSAR). For each data set, the experiment
was repeated 20 times.

AntRSAR, GenRSAR, and IWDRSAR are multi-solution methods (i.e., ev-
ery run may provide a different solution with different dimension). The results
of AntRSAR, GenRSAR, and IWDRSAR in Table 3 are presented as a number
with parenthesized superscript. The number refers to the dimension of the so-
lution (i.e. a smaller subset size is better a larger subset size). The superscript
refers to the number of runs that provides the corresponding dimension. On
the other hand, RSAR and EBR are single solution methods, i.e. they provide
the same solution even with different runs. So, the RSAR, and EBR results are
presented as a single number.

As shown in Table 3, IWDRSFS outperformed RSAR and EBR in all data
sets, except for CREDIT where RSAR performed better than IWDRSFS. Com-
paring IWDRSFS with GenRSAR; out of the six data sets; IWDRSFS found
better solutions in three data sets (i.e., 4, 5, and 6), and comparable solutions in
the remaining data sets (i.e. 1, 2, and 3). Comparing with AntRSAR, IWDRSFS
produced comparable results for 4 data sets (i.e. 1, 3, 4, and 6).

In general; the results indicate that IDWRSFS outperforms local-based search
methods (RSAR, and EBR) and are comparable with population-based search
methods (AntRSAR and GenRSAR). The success of IWDRSFS for FS is owing



to the characteristic of exploration, where the solutions from different places in
the solution space are explored. Then, the search process is guided by the strat-
egy that maintains the history of the search learned in the previous iterations.

5 Conclusions

This article has proposed a new FS method, i.e. IDWRSFS that combines the
IDW algorithm with RS. IWD is used as the search procedure, and RS depen-
dency is used as the subset evaluation function. IWDRSFS has been evaluated
using six benchmark data sets. The empirical evaluation has shown that IW-
DRSFS is suitable for FS with RS, whereby good solutions have been produced.
A performance comparative study with four RS-based FS methods has been car-
ried out. The results of IWDRSFS are generally better than those from RSAR
and EBR. Furthermore, the results of IWDRSFS are comparable with those
from GenRSAR and AntRSAR.

While IWDRSFS has shown good results for FS, future work to improve the
robustness of IWDRSFS by adapting a local search method and tuning the IWD
parameters can be conducted. In addition, further investigations to verify the
usefulness of IWDRSFS for real-valued data sets are required.

Table 3. :- Results of 20 runs of IWDRSFS for six UCI datasets. The results are
compared with those from four state of the art methods as published in [8].

No. of Comparative methods IWDRSAR
No. Dataset Features RSAR EBR AntRSAR GenRSAR

1 M-of-N 13 8 6 6 6(6)7(12) 6(18)7(2)

2 CREDIT 20 9 10 8(12)9(4)10(4) 10(6)11(14) 10(12)11(8)

3 LETTERS 25 9 9 8 8(8)9(12) 8(16)9(4)

4 DERM 34 7 6 6(17)7(3) 10(6)11(14) 6(2)7(3)8(5)9(5)10(5)

5 WQ 38 14 14 12(2)13(7)14(11) 16 13(3)14(17)

6 LUNG 56 4 4 4 6(8)7(12) 4(6)5(12)6(2)
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