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Multi-Objective Solution Based on Various Particle Swarm
Optimization Techniques in Power Systems
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Abstract: A proposed optimization technique based on fuzzy logic and particle swarm is presented in this
paper. This technique is referred to as Fuzzy Adaptive Particle Swarm Optimization (FAPSO). In this
technique, the fuzzy logic is employed to adjust the parameters of the particle swarm. The proposed technique
is applied to the IEEE-30-bus-system model along with previous optimization methods to obtain a multi-
objective solution to the voltage control, the voltage deviation, and the real power loss problems in power
systems. The multi-objective problem is subjected to the same constraints for all methods and a comparison
between the results obtained by various methods is presented. It has been demonstrated that the results of the
proposed technique superseded that of all previous optimization technique methods. 
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INTRODUCTION

It is of great importance to maintain acceptable
voltage levels at all power system buses, since all present
day equipments which utilize electric power such as
lights; motors, thermal appliances, and electronic
appliances are designed for use within a definite terminal
voltage, the nameplate voltage. If the voltage deviates
from this value, the efficiency, life expectancy, and the
quality of performance of the equipment will suffer. Some
electrical equipment is more sensitive to voltage
variations than others such as motors. Despite the fact that
several voltage-control techniques are available to electric
power system operational staff, power systems are still
subjected to voltage instabilities and in some cases to
voltage collapses that could lead to sudden system
breakdowns. Keeping the voltage profile at power system
buses within a prescribed tolerance is a challenging task;
however, it is not economically possible to maintain
voltage absolutely constant at every consumer’s service
terminals (John and Joseph, 1954). This means that the
variations in voltage are permissible, but within favorable
zones, for example the rise or the drop in voltage should
not exceed ±%5 of the nominal voltage. Although a large
spectrum of optimization problems has grown in size and
complexity (Rardin, 1998), the solution to complex
multidimensional    problems    by   means   of   classical

optimization techniques is extremely difficult and
computational expensive (Gray et al., 1997). These tools
include: Genetic algorithms, evolutionary strategies,
evolutionary programming, simulated annealing, and
particle swarm optimization (Van den Bergh, 2002; Al-
Rashidi and El-Hawary, 2009).

Particle Swarm Optimization (PSO) (Venter and
Sobieszczanski-Sobieski, 2002) refers to a relatively new
family of algorithms that based on iterative process and
may be used to find optimal or near optimal solutions to
numerical and qualitative problems. Optimization was
introduced by Russell and James (1995), and inspired by
social behavior of bird flocking or fish schooling. Yoshida
et al. (2000) proposed a Particle Swarm Optimization for
reactive power and Voltage-VAR Control (VVC). It
determines an on-line VVC strategy with continuous and
discrete control variables  such  as  automatic  voltage
 regulator AVR, tap positions of online tap changing
transformers and a number of reactive power
compensation equipment. The PSO algorithm has three
parameters called inertia weight (w), cognitive parameter
(c1), and social parameter (c2). In adaptive particle swarm,
the inertia weight (w) is modified according to linearly
decreased equation while cognitive and social parameters
remain constant during the  iterative  process  according
to (Cui-Ru et al., 2005).
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Fig. 1: The IEEE 30-Bus system model

Wen and Yutian (2008) presented Fuzzy Particle Swarm
Optimization (FPSO). In the FPSO, the fuzzy system was
used to modify all of the parameters of particle swarm
optimization. The Fuzzy Adaptive Particle Swarm
Optimization (FAPSO) was introduced as a new
technique, where the inertia weight (w) of the APSO is
adjusted separately according to a certain linear function
while cognitive and social parameters are modified using
the fuzzy logic.

The objective of this study is to demonstrate the
superiority of the fuzzy adaptive particle swarm
optimization technique over the other particle swarm
methods. This will be done by obtaining a solution to the
voltage control problem and at the same time keeping the
voltage deviation and the real power loss as low as
possible by employing various PSO techniques. At the
end, a comparison between the outcomes of these
techniques will be presented, taking the results of the
classical Optimal Economic Dispatch (OED) as a
reference case. In all cases, the voltage control problem
will be treated through rescheduling of the reactive power
generation (Prabha, 1994) and flow in the power system
transmission lines taking advantage of the various control
tools  for  the  given  loading  condition (Thierry and
Costas, 2008). 

METHODOLOGY

In order to achieve the objectives and to make a
comparison   between   the   various  PSO  techniques  to

demonstrate the superiority of the proposed FAPSO
technique over other techniques, it is suggested to select
an appropriate power system model, to develop an
appropriate mathematical model for each technique, and
finally to solve the mathematical model to obtain an
acceptable voltage profile while keeping the voltage
deviation and the real power loss as low as possible and
at the same time to satisfy a number of constraints. It is
also worth mentioning that this research has been
conducted at the Electrical Engineering Department at the
Islamic University of Gaza in the period between
September 2009 and February 2010. The following
summarizes these procedures and steps (Husam Shaheen,
2010): 

C Selecting a system model that has an appropriate
number of buses, number of transmission lines that
includes a variety of voltage-control tools such as
tap-changing transformers and capacitor banks.

C Formulating the voltage-control, the voltage
deviation and the real power loss as mathematical
optimization problems using the suggested control
techniques subject to the applicable constraints.

C Solving the corresponding mathematical model
applying the OED, PSO, APSO, FPSO and FAPSO
techniques using Matlab code.

C Tabulating, examining, analyzing, and comparing the
results obtained taking the results of OED method as
a reference case.
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System model description: The IEEE 30-bus system is
proposed as a model system in order to examine and
employ the stochastic optimization techniques. The
system consists of thirty buses, bus number one is
assigned as slack bus, while buses 2, 5, 8, 11, and 13 are
taken as voltage controlled buses, and the remaining are
load buses.

Four tap changer transformers are also available: the
first transformer between bus number 6 and bus number
9, the second between bus number 6 and bus number 10,
the third between bus number 4 and bus number 12, and
the last transformer between bus number 28 and bus
number 27. All tap settings of the four transformers are
used as control variable. There are also two capacitor
banks  connected  to  buses  10  and 24 (Hadi, 2002).
Figure 1 shows the system topology. The objective
function of voltage-control problem comprises three
important terms, which are: maintaining acceptable
system voltage profile, minimizing the voltage deviation
at the load buses, and minimizing the real power loss in
the transmission grid. One of the effective ways to avoid
the voltages from moving toward their maximum or
minimum limits after optimization is to choose the
deviation of voltage from the desired value as an objective
function, that is:

(1)min
*

f
v v

N
i i
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N L
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1

=
−

=
∑

where f1 is the per unit average voltage deviation, NL is
the total number of the system load buses, vi and v*i are
the actual voltage magnitude and the desired voltage
magnitude at bus i.  Minimizing the total real power loss
can be expressed as follows:

min f 2 = Ploss (x , u) (2)

where f2 is the total active power losses of the power
system, x is the state variable vector consisting of load bus
voltages VL, and generator reactive power outputs QG.
While, u is the control variable vector consisting of
generator voltages VG, shunt VAR compensation Qc, and
transformer tap settings T. On the other hand, the
mathematical formulation can be expressed as follows: 
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where; 

N : Number of buses
|Vi| : Voltage magnitude at bus i
|Vj| : Voltage magnitude at bus j
gij : Conductance of transmission line between bus i

and bus j
*i : Voltage angle at bus i
*j : Voltage angle at bus j

The following constraints are known as the power balance
constraints. They guarantee that the load demand will be
met considering the transmission losses of the system.
These constraints are the main objective in a power flow
analysis.

(4)P P PG D L− − =∑∑ 0

(5)Q Q QG D L− − =∑∑ 0

where; 
pG : Real power generation 
PD : Real power demand 
PL : Real power loss 
QG : Reactive power generation 
QD : Reactive power demand 
QL : Reactive power loss 

The operational constraints guarantee a safe operation of
the system. The capacity limits should be met at all time
to avoid damage to power system components and
maintain system stability. The following constraints state
real and reactive power generation limits for each
generation unit:

(6)P P PGi Gi Gi
min max≤ ≤

(7)Q Q QGi Gi Gi
min max≤ ≤

where; 
: Lower real power generation limit of unit i PGi

min

: Upper real power generation limit of unit iPGi
max

: Lower reactive power generation limit of unit iQGi
min

: Upper reactive power generation limit of unit iQGi
max

In order to maintain system stability, the voltage at each
bus should be within its limits. The following constrain
shows this operational condition:



Res. J. Appl. Sci. Eng. Technol., 3(6): 519-532, 2011

522

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Bus Number

Vo
lta

ge
 M

ag
ni

tu
de

System Voltage Profile for OED

 

 

Table 1: The control variable solution by OED
Control variables vector or particle
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
V1 V2 V5 V8 V11 V13 T 6-9 T 6-10 T 4-12 T 28-27 Q10 Q24

1.05 1.05 1.05 1.05 1.05 1.05 0.9780 0.9690 0.9320 0.9680 10 4.3

Fig. 2: System voltage profile for OED

(8)v v vi i i
min max≤ ≤

where;
: Lower voltage magnitude limit at bus i vi

min

: Upper voltage magnitude limit at bus ivi
max

The optimal voltage-control and reactive power
dispatch can be achieved by employing reactive power
compensator devices such as shunt capacitor banks, and
by adjusting the transformer tap positions, and these
devices are used as control variables for the voltage-
control problem. The operational limits of these devices
are expressed in the following constrains:

(9)Q Q Qc c c
min max≤ ≤

(10)T T Tk k k
min max≤ ≤

where;
Qc : Reactive power generated by the shunt

capacitor bank C
: Lower limit of shunt capacitor bank CQc

min

: Upper limit of shunt capacitor bank CQc
max

: Tap position of transformer kTk

: Lower tap position limit of transformer kTk
min

: Upper tap position limit of transformer kTk
max

The transformer tap settings and the adjustable shunt
capacitor banks are the essential key elements in
transmission loss reduction. In power systems, almost all
transformers provide taps on windings to adjust the ratio
of transformation, also have adjustable shunt capacitor
banks located in specified buses in order to correct
voltage and power factor problems. In a mathematical
formulation, the transformers tap settings and the
adjustable shunt capacitor banks may be represented
either as continuous or discrete variables, depending on
the study issued. In this work, the transformers tap
settings and the adjustable shunt capacitor banks are
considered as continuous variables. Variables values were
forced to be within their limits. Any parameter that
violates the limits is replaced with values using Eq. (11):

(11)u
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where;
ui is any parameter variable
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Optimal economic dispatch results: The Newton-
Raphson Optimal Power Flow method is employed as a
reference case for solving the voltage-control problem.
The simulation results show that the voltage magnitudes
obtained are within the range (0.95-1.05). Also the real
power generation, reactive power generation, and all
control variables are within the ranges specified. The
results of the simulation can be summarized as follows:
The total system loss, TSL = 8.3703-j13.6527 MVA, the
voltage deviation, VD = 0.0325 pu, the incremental fuel
cost, 8 = 3.3897 $/MWH, the total cost, TC = 782.2480
$/H, and the time elapsed for this simulation, t = 0.2383
S. The system voltage profile is shown in Fig. 2 while
Table 1 contains the magnitude of all control variables.

Particle Swarm Optimization (PSO): The control
variables for voltage-control problem which will be
modified by the particle swarm optimization process are:
the voltage magnitude at the slack bus, the voltage level
at the voltage-controlled buses, transformers’ tap settings,
and adjustable shunt capacitor banks. There are twelve
control variables for the IEEE 30-Bus system. The first
position of control variables vector is the slack bus. The
next five position for the five voltage magnitudes at the
voltage-controlled buses (PV-buses). The next four
positions of the control variables vector are the
transformers’ tap settings. The transformer tap settings are
considered as continuous variables, they are adjusted in
the range [0.9-1.1]. The last two positions of the control
variables vector are the adjustable shunt capacitor banks.
These variables are also considered as continuous
variables, they are adjusted in the range [0-10 MVAR].
All control variables were handled using the Particle
Swarm Optimization model for continuous variables. At
each iteration: every particle determines a possible set of
values for voltage magnitudes at PV buses, transformers’
tap positions and total reactive power of each shunt
capacitor bank. Subsequently, they are used to run a
power flow, calculate the transmission losses, voltage
deviation and evaluate the fitness function. The particle
swarm optimization contains three tuning parameters w,
c1 and c2 as shown in Eq. (12) and (13) that influences the
algorithm   performance,  often  stated  as  the
exploration-exploitation tradeoff. Exploration is the
ability to test various regions in the problem space in
order to locate a good optimum, the global one.
Exploitation is the ability to concentrate the search around
a promising candidate solution in order to locate the
optimum precisely. The inertia weight w is employed to
control the impact of the previous history of velocities on
the current velocity.

v w v c randi
k

i
k+ = × + × ×1

1 1( )

(12)( ) ( )pbest s c rand gbest si i
k

i
k− + × × −2 2( )

(13)S S vi
k

i
k

i
k+ += +1 1

where,
: velocity of particle i at iteration k + 1vi

k+1

: velocity of particle i at iteration kvi
k

: position of particle i at iteration k + 1Si
k+1

: position of particle i at iteration kSi
k

w : inertia weight 
c1 : constant weighting factor related to pbest
c2 : constant weighting factor related to gbest
rand(   )1 : random number between 0 and 1
rand(   )2 : random number between 0 and 1 
pbest i : pbest position of particle i
gbest : gbest position of swarm

Expressions in equations (12) and (13), describe the
velocity and position update, respectively (Wen and
Yutian, 2008). The expression in equation (12) calculates
a new velocity for each particle based on the particle’s
previous velocity, the particle’s location at which the best
fitness has been achieved so far, and the population global
location at which the best fitness has been achieved so far.
In addition, c1 and c2 are positive constants called the
cognitive and the social parameters, respectively. These
constants provide the correct balance between exploration
and exploitation (individuality and sociality). Acceleration
is   weighted  by  a  random  term,  with  separate  random
numbers being generated for acceleration toward p-best
and g-best locations. The random numbers provide a
stochastic characteristic for the particles velocities in
order to simulate the real behavior of the birds in a flock.
An inertia weight parameter w was introduced in order to
improve the performance of the original Particle Swarm
Optimization model. This parameter plays the role of
balancing the global search and local search capability of
Particle Swarm Optimization. It can be a positive constant
or even a positive linear or nonlinear function of time. A
larger  inertia  weight w  facilitates  global  exploration
while  a smaller  inertia  weight  tends  to  facilitate  local
exploration to fine-tune the current search area. Suitable
selection of the inertia weight w can provide a balance
between global and local exploration abilities, thus
require less iterations on average to find the optimum. The
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Table 2: The control variable solution by Particle Swarm Optimization
Control variables vector or particle
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
V1 V2 V5 V8 V11 V13 T6-9 T6-10 T4-12 T28-27 Q10 Q24

1.05 1.042 1.013 1.025 0.969 1.050 1.0467 0.9000 1.0577 0.9758 7.73 0.00

Fig. 3: Flow chart of the particle swarm optimization

learning factors c1 and c2 determine the influence of
personal best p-best and global best g-best. Since c1
expresses how much the particle trusts its own past
experience, it is called cognitive parameter. While c2
expresses how much it trusts the swarm, it is called social
parameter. In addition the PSO is influenced by the
number of particles and the swarm size N, in the swarm.
Since the parameters of PSO are influenced and deeply
affect the algorithm performance, we concentrate in this
paper on these parameters. Each control variables vector
or particle was evaluated according to the following steps:

Step 1: Initial search points and velocities are randomly
generated for each of the three variables between
their upper and lower bounds.

Step 2: Power loss and voltage deviation for each set
(one value of voltage-controlled bus, transformer
tap position and adjustable shunt capacitor) of
particles is evaluated based on the fitness
function. If the constraints are violated, the
control variable is corrected according to Eq.
(11).

Step 3: Assign the particle’s position to p-best position
and fitness to p-best fitness. Identify the best
among the p-bests as the g-best.

Step 4: New velocities and new search points
(directions) are formulated using the Eq. (12)
and (13), respectively.

Step 5: Power loss and voltage deviation corresponding
to the new search points and velocities are
evaluated.

Step 6: Compare the best current fitness evaluation with
the population’s g-best. If the current value is
better than the g-best, reset g-best to the current
best position and fitness value.

Step 7: If iteration reaches maximum number, then exit,
otherwise go to step 4.

The model of PSO can be as shown in Fig. 3.
The particle swarm optimization was employed with

inertia weight w = 0.9, the cognitive and the social
parameters c1 = c2 = 1, swarm size 50 and the number of
iteration 20. After the run is complete, the voltage
magnitudes obtained are within the range (0.95-1.05). The
real and reactive power generations are also within the
range. It is noted that the reactive power needed at bus
number 10 equals 7.73 MVAR, while no reactive power
is needed from the bank at bus number 24. In Particle
swarm optimization method, all control variables are
within the range specified and the output of simulation
can be summarized as follows: the total system loss, TSL
= 8.0359-j9.1446 MVA, the voltage deviation, VD =
0.0206 pu, the incremental fuel cost, 8 = 3.3869 $/MWH,
the total cost, TC = 781.8074 $/H, and the time elapsed
for this simulation, t = 13.3194 S. The system voltage
profile for this method is shown in Fig. 4 followed by
Table 2 that shows the control variables obtained
employing the particle swarm optimization technique.

Adaptive Particle Swarm Optimization algorithm
(APSO): In the adaptive particle swarm optimization, the
inertia weight decreased linearly according to the
following equation:

(14)w w w w
iter

iter= −
−⎛

⎝
⎜

⎞

⎠
⎟ ×max

max min

max

where;
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Fig. 4: System voltage profile for PSO

Fig. 5: System voltage profile for APSO

Table 3: The control variable solution by APSO
Control variables vector or particle
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
V1 V2 V5 V8 V11 V13 T6-9 T6-10 T4-12 T28-27 Q10 Q24

1.05 1.042 1.004 1.028 1.050 1.050 0.9646 1.0948 1.1000 0.9954 9.23 10

itermax : maximum number of iteration
iter : current iteration number 
wmax : maximum inertia weight 
wmin : minimum inertia weight 

while setting c1 = c2 = 1.0, which means that each particle
will be attracted to the average of p-best and g-best. The
swarm size is taken at 50 and the number of iterations is
set at 20. Note that the voltage magnitudes on load buses
are within the range, also the capacitor banks on bus
number 10 is increased to 9.23 MVAR and has a
maximum (10 MVAR) on bus number 24. In the adaptive

particle swarm optimization methods, all control variables
are within the range specified and the output of simulation
as follows: the total system loss, TSL = 7.9509-j10.1218
MVA, the voltage deviation, VD = 0.018 pu, the
incremental fuel cost, 8 = 3.3846 $/MWH, the total cost,
TC=781.677 $/H, and the time elapsed for this simulation,
t =  12.5933 S. The system voltage profile is shown in
Fig. 5 and Table 3 shows the control variables obtained
using the adaptive particle swarm optimization method.

Fuzzy Particle Swarm Optimization Algorithm
(FPSO): A fuzzy particle swarm optimization (FPSO) is
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intended to improve the performance of PSO; a fuzzy
system will be employed to adjust the parameters of PSO,
the inertia weight w and learning factors c1 and c2 during
the evolution process. From experience, it is known that:

C When the best fitness is low at the end of the run in
the optimization of a minimum function, low inertia
weight and high learning factors are often preferred.

C When the best fitness is stuck at one value for a long
time, number of generations for unchanged best
fitness is large. The system is often stuck at a local
minimum, so the system should probably concentrate
on exploiting rather than exploring. That is, the
inertia weight should be increased and learning
factors should be decreased. Based on this kind of
knowledge, a fuzzy system is developed to adjust the
inertia weight, and learning factors with best fitness
(BF) and number of generations for unchanged best
fitness (NU) as the input variables, and the inertia
weight (w) and learning factors (c1 and c2) as output
variables. The BF measures the performance of the
best candidate solution found so far. Different
optimization problems have different ranges of BF
value. To design a FPSO applicable to a wide range
of problems, the ranges of BF and NU are normalized
into [0, 1.0]. To convert BF to a normalized BF
format, we use Eq. (15):

(15)
( )

( )NBF
BF BF

BF BF
=

−
−

min

max min

where BFmin is the real minimum fitness value and BFmax
is greater than the maximum fitness value. NU can be
converted into [0, 1.0] in similar way. The value for w is
bounded between 0.2#w #1.2 and the values of c1 and c2
are bounded between 1.0 # c1, c2 # 2.0. In the fuzzy
particle swarm optimization, each control variables vector
or particle was evaluated according to the following steps:

Step 1: Input the power system data and the FPSO
parameter limits.

Step 2: Generate the initial searching points and
velocities of particles randomly and uniformly in
the searching space. For each particle, calculate
objective functions.

Step 3: Set each initial searching point to p-best; the
initial best evaluated value among p-best is set to
g-best.

Step 4: Update the FPSO control parameters (w, c1 and
c2) by the fuzzy system.

Fig. 6: Flow Chart of the fuzzy particle swarm optimization
method

Step 5: New velocities and searching points are
calculated using (12) and (13).

Step 6: Evaluate all the particles in the new position.
That is to calculate objective functions.

Step 7: If the evaluation value of each particle is better
than the previous p-best, the value is set to p-
best; if the best p-best is better than g-best, the
value is set to g-best. All of g-bests are stored as
candidates for the final solution.

Step 8: If iteration reaches maximum number, then exit,
otherwise go to step 4. The model of FPSO can
be described as shown in Fig. 6.

The membership function of inputs and outputs of FPSO
model is shown in Fig 7-11. The fuzzy system consists of
four principal components (Li-Xin, 1997).: fuzzification,
fuzzy rules, fuzzy reasoning and defuzzification, which
are described as following:

Fuzzification: Among a set of membership functions,
left-triangle, triangle and right-triangle membership
functions are used for every input and output as illustrated
in Fig. 7-11. Four membership function were used in this
work PS (positive small), PM (positive medium), PB
(positive big) and PR (positive bigger) are the linguist
variables for the inputs and outputs.

Fuzzy rules: The Mamdani-type fuzzy rule is used to
formulate the conditional statements that comprise fuzzy
logic.  The  fuzzy  rules  in  Table  4 is used to adjust the
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PS PM PB PR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Membership function

Input variable (Best fitness)

Membership function

PS PM PB PR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Input variable (number of generation for unchanged best fitness)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Membership function

PS PM PB PR

Output variable (C  )1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Output variable (C  )2

Membership function

PS PM PB PR

Membership function

PS PM PB PR

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2
Output variable (w)

1.0

Table 4: Fuzzy rules for inertia weight (w), and learning factor c1 and c2

w c1 c2
-------------------------------------------------- ---------------------------------------------------- ------------------------------------------------------------

NU NU NU
------------------------------------ ------------------------------------- ----------------------------------------------

NBF PS PM PB PR NBF PS PM PB PR NBF PS PM PB PR
PS PS PM PB PB PS PR PB PB PM PS PR PB PM PM
PM PM PM PB PR PM PB PM PM PS PM PB PM PS PS
PB PB PB PB PR PB PB PM PS PS PB PM PM PS PS
PR PB PB PR PR PR PM PM PS PS PR PM PS PS PS

Fig. 7: Membership function of Best fitness BF

Fig. 8: Membership function of number of generations for
unchanged best fitness NU

Fig. 9: Membership function for learning factor c1

Fig. 10: Membership function for learning factorc2

Fig. 11: Membership function of inertia weight w

inertia weight (w) and learning factors (c1 and c2),
respectively. Each rule represents a mapping from the
input space to the output space.

Fuzzy reasoning: The fuzzy control strategy is used to
map from the given inputs to the outputs (Timothy, 1997).
Mamdani’s fuzzy inference method is used in this study
(Mamdani, 1974). The AND operator is typically used to
combine the membership values for each fired rule to
generate the membership values for the fuzzy sets of
output variables in the consequent part of the rule. Since
there may be several rules fired in the rule sets, for some
fuzzy sets of the output variables there may be different
membership values obtained from different fired rules.
These output fuzzy sets are then aggregated into a single
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Table 5: The control variable solution by Fuzzy Particle Swarm Optimization
Control Variables Vector or Particle
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
V1 V2 V5 V8 V11 V13 T6-9 T6-10 T4-12 T28-27 Q10 Q24

1.05 1.0383 1.0135 1.0213 1.040 1.050 1.0592 0.900 0.9980 1.0167 9.84 10

Table 6: The control variable solution by FAPSO
Control Variables Vector or Particle
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
V1 V2 V5 V8 V11 V13 T6-9 T6-10 T4-12 T28-27 Q10 Q24

1.05 1.039 1.011 1.023 1.05 1.043 1.0099 0.9234 1.0254 0.9796 0 9.43

Fig. 12: System voltage profile for FPSO

output fuzzy set by OR operator. That is to take the
maximum value as the membership value of that fuzzy
set.

Defuzzification: To obtain a deterministic control action,
a defuzzification strategy is required. The method of
centroid (center-of-sums) is used as shown below:

(16)
( )

( )
y

y y dy

y dy
i

n

Biy

Bii

n

y

=
=

=

∑∫
∑∫

.µ

µ
1

1

Defuzzified value is directly acceptable values of w, c1
and c2 parameters, where the input for the defuzzification
process is a fuzzy set :Bi (y) (the aggregate output fuzzy
set) and the output is a single number y. 

Note that the voltage magnitudes are within the range
(0.95- 1.05) with decreased in voltage deviation, also the
real and reactive power generation are within the range.
The capacitor banks are increased and within its range. In
the fuzzy particle swarm optimization methods, all control
variables are within the range specified and the output of

simulation as follows: The total power loss, TSL =
7.8699-j11.6112 MVA, the voltage deviation, VD =
0.0146 pu, the incremental fuel cost, 8 = 3.3836 $/MWH,
the total cost, TC = 781.1845 $/H, the time elapsed for
this simulation, t = 14.0566 S. The system voltage profile
is shown in Fig. 12. 

Table 5 contains the values for the control variables
obtained by employing the fuzzy particle swarm
optimization.

Fuzzy adaptive particle swarm optimization
algorithm: This new control method combined both
fuzzy system and adaptive particle swarm optimization,
where the inertia weight was modified according to Eq.
(14), while c1 and c2 are modified according to fuzzy logic
presented in the previous section. The fuzzy rule base and
membership functions used in FAPSO are the same as in
the FPSO apart from the inertia weight The voltage
magnitudes are within the range (0.95-1.05) with
decreased in voltage deviation to 0.0109. The real and
reactive power generations are within the range, while the
capacitor bank equal 9.43 on bus number 24 and equal 0
on bus number 10. Table 6 shows the control variable
results  obtained.  In  the  fuzzy  adapted  particle swarm
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Fig. 13: System voltage profile for FAPSO

Fig. 14: System voltage profile

Table 7: The control variable limits and optimal control value
Control variable limits

Control ----------------------------
Variable Min Max OED PSO APSO FPSO FAPSO
VG1 0.95 1.05 1.050 1.050 1.050 1.0500 1.050
VG2 0.95 1.05 1.050 1.042 1.042 1.0383 1.039
VG5 0.95 1.05 1.050 1.013 1.004 1.0135 1.011
VG8 0.95 1.05 1.050 1.025 1.028 1.0213 1.023
VG11 0.95 1.05 1.050 0.969 1.050 1.0403 1.050
VG13 0.95 1.05 1.050 1.050 1.050 1.0500 1.043
T6-9 0.90 1.10 0.978 1.047 0.965 1.0590 1.010
T6-10 0.90 1.10 0.969 0.900 1.095 0.9000 0.923
T4-12 0.90 1.10 0.932 1.058 1.100 0.9980 1.025
T28-27 0.90 1.10 0.968 0.976 0.995 1.0170 0.980
Qc10 0.00 0.10 0.010 0.0773 0.0923 0.0984 0.000
Qc24 0.00 0.10 0.043 0.000 0.010 0.0100 0.0943
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Table 8: Results from various voltage control methodology
Control Reduction Reduction
strategy VD (pu)  (MW) 8 ($/MWH) TC ($/H) t (s) VD (%) R (%)
OED 0.0325 8.3703 3.3897 782.2480 0.2383 Original Original
PSO 0.021 8.0359 3.3869 781.8074 13.3194 35.38 3.99
APSO 0.018 07.9509 3.3846 781.677 12.5933 44.61 5.01
FPSO 0.0146 7.8699 3.383691 781.1845 14.0566 55.07 5.97
FAPSO 0.0109 7.8369 3.382931 780.9932 14.1275 66.46 6.37

optimization method, all control variables are within the
range specified and the output of simulation as follows:
The total system loss, TSL = 7.8369-j13.1478   MVA, the
voltage deviation, VD = 0.0109 pu, the incremental fuel
cost, 8 = 3.3829 $/MWH, the total cost, TC = 780.9932
$/H, and the time elapsed for this simulation is t =
14.1275  sec.  The  system  voltage  profile is shown in
Fig. 13 and Table 6 shows the magnitude of the
corresponding control variables obtained by using the
fuzzy adaptive particle swarm optimization technique.

The system voltage profile: The system voltage profile
obtained by optimal economic dispatch, particle swarm
optimization, adaptive particle swarm optimization, fuzzy
particle swarm optimization and fuzzy adaptive particle
swarm optimization meet the main objective criterion and
these values are depicted in Fig. 14. 

The control variable limits and optimal control of
IEEE-30  bus  power  system  can  be  summarized  in
Table 7. It is noted that all control variables met their
operational limits for all cases. It is noted that the voltage
magnitudes of all PV buses, transformers tap settings and
shunt capacitor banks are adjusted differently according
to the optimization technique employed.

Table 8 contains a summary of the results obtained by
the different methods. In comparison with the OED, the
PSO gives a reduction in the VD of 35.38%, while the
APSO gives 44.61% reduction, the FPSO gives 55.07%
reduction, and finally the FAPSO gives best reduction of
66.46%.

Moreover, there is a reduction in the real power loss
of 3.99% using PSO, while a reduction of 5.01% is
obtained using APSO, the FPSO gives a reduction of
5.97% and the reduction using the FAPSO reaches the
6.37%. The time elapsed for OED is 0.2383 second which
is the smallest for all optimization technique because all
control variable values are constant, thus has only a single
solution, while for the PSO technique was 13.3194
second, the APSO takes 12.5933 second, also the FPSO
elapse  14.0566 seconds and FAPSO time elapsed is
14.1275 seconds, which is the largest one. This small
incremental in time for FAPSO technique can be tolerated
when considering the significant improvement in voltage
deviation and real power loss reduction. The comparison

Fig. 15: Voltage deviation

Fig. 16: Percent of voltage deviation

shows clearly the superiority of the proposed technique
FAPSO over the traditional optimal economic dispatch
method.

Figure 15 represents the magnitude of voltage
deviations after obtaining the final solutions for the five
voltage control strategies. For all cases, the magnitudes of
the voltage deviation lie within a tolerable range. It is
noted that the magnitude of this deviation is largest for the
OED and is smallest for the FAPSO. This shows that one
of the main objectives has been satisfied. Figure 16
presents the percentage of voltage deviation in the various
techniques when taking the OED as a reference case.
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Fig. 17: Real power loss

Fig. 18: Percent real power loss

Figure 17 presents the real power loss for all voltage
control strategies. It shows that the real power loss for
OED is the largest at 8.3703 MW, while it is the smallest
for FAPSO 7.8369, and this also satisfies the second
objective. Figure 18 presents the percentage of the real
power loss of the various techniques when taking the
OED as a reference case. It should be mentioned that the
simulation and calculations are implemented using the
Matlab programming language and executed on a PC with
a Pentium IV, Intel Core 2 Due 2.26 G CPU.

CONCLUSION

Various optimization methods have been employed
to obtain a multi-objective solution to the IEEE 30-bus
power system model. The objectives set for the study are
the voltage control, the voltage deviation, and the real
power loss. The Optimal Economic Dispatch and various
Particle Swarm Optimization methods are applied to the
system model. For all particle swarm techniques, the
swarm size is taken as 50 and the number of iterations is

set at 20, the inertia weight is linearly changed from 0.95
to 0.7 according to a linearly decreased equation while the
learning factors are modified using fuzzy logic.  All
techniques are employed taking advantage of a variety of
control tools such as transformer tap setting, static VAR
compensations and voltage-control buses in order to
maintain an acceptable voltage profile while keeping the
voltage deviation and the real power loss as low as
possible.

All optimization methods have provided valid
solutions to the problem addressed as far as the voltage
magnitudes at the system buses and the range set for the
control variables are concerned. It has been shown that all
particle swarm techniques achieve better results than the
optimal economic dispatch in regard to the voltage
deviation and the real power loss. However, the proposed
fuzzy adaptive particle swarm technique introduced in this
study accomplishes the best results and supersedes the
various particle swarm optimization methods employed in
this study.
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