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Abstract

In this paper, we generalized the constant bandwidth kernel es-
timator of the hazard rate function from Watson and Leadbetter
(1964), which depends on a single bandwidth to the adaptive ker-
nel estimator, which depends on different bandwidths. We derive
the asymptotic normality of the adaptive kernel estimator. Also
we illustrate the use of the adaptive kernel hazard rate estima-
tor in both simulation and real life data and compared it to the
constant bandwidth kernel estimator. In our study, we show that
the adaptive estimator has no boundary effects as the constant
bandwidth kernel estimator, and has smaller bias.

Keywords: Hazard rate function, adaptive kernel estimation, constant

bandwidth kernel estimation, density estimation.
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1 Introduction

Hazard rate function is important, since it provides information in relia-
bility theory and survival analysis as well as in many fields as engineering,
medical statistics and geophysics.

The hazard rate function r(·) is defined as

r(x) = lim
4x−→0

P (X ≤ x+4x|X > x)

4x
, x > 0,

and it can be written as

r(x) =
f(x)

1− F (x)
,

where f(·) and F (·) are the density and distribution function of a con-
tinuous random variable X respectively.

If X1, X2, . . . , Xn is a random sample distributed as X, then Watson and
leadbetters (1964) proposed the following estimator for r(·)

r̂(x) =
f̂(x)

1− F̂ (x)
, (1)

where f̂(x) =
1

nh

n∑

i=1

K(
x−Xi

h
), and F̂ (x) =

1

nh

n∑

i=1

∫ x

−∞

K(
u−Xi

h
)du,

where K is a bounded and symmetric kernel, integrating to one.

The estimator in (1) depends on a single bandwidth h, and we will call it
the constant bandwidth kernel estimator in this paper. An extension of
(1) to an adaptive kernel estimation that having different n bandwidth
depend on Xi, i = 1, 2, . . . , n is important since the bandwidth plays an
important role as a smoothing parameter. The basic idea of the adaptive
kernel estimation is to construct a kernel estimator consisting of kernels
placed at the observed data points, but allows the bandwidth of kernels
to vary from point to another.

The adaptive kernel estimator rn(x) of r(x) is defined as

rn(x) =
fn(x)

1− Fn(x)
, (2)
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where

fn(x) =
1

n

n∑

i=1

1

λih
K(

x−Xi

λih
),

and

Fn(x) =
1

n

n∑

i=1

1

λih

∫ x

−∞

K(
u−Xi

λih
) du,

are adaptive kernel estimators of f(x) and F (x) respectively.

λi = {
f̃(Xi)

g
}−α, where f̃(x) is a pilot estimate that satisfies f̃(Xi) > 0

for all i and g = {
n∏

i=1

f̃(Xi)}
1

n , 0 ≤ α ≤ 1.

Abramson (1982) shows that taking α = 0.5 is a good choice since one
can achieve a bias of order h4 rather than h2. For more details, see
Silverman (1986), Wand and Jones (1995), and Fan and Gijbels (1992).

2 Conditions

The following conditions will be used in the sequel:

C1 Suppose that the kernel function K satisfies the following:

(i) K is asymmetric density function.

(ii) lim
y−→∞

|y|K(y) = 0.

(iii)
∫∞
−∞

K2(u)du <∞.

(iv)
∫∞
−∞

uK(u)du = 0.

(v)
∫∞
−∞

u2K(u)du <∞.

C2 Suppose that the bandwidth h satisfies the following:

(i) h −→ 0.

(ii) nh −→∞.

(iii) nh5 −→ 0.

C3 f ′′ exists and integrable.
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3 Preliminary Lemmas

In this section, we state and prove some basic lemmas that we need to
prove our main results.

Lemma 1 (Bochner Lemma). Suppose that K satisfies the conditions
C1(i), (ii) . Let g(x) satisfy

∫∞
−∞

g(x)dx < ∞. Let h be a sequence of
positive constants satisfying C2(i). Then at every point x of continuity
of g(·),

lim
n−→∞

1

h

∫ ∞

−∞

K(
y − x

h
)g(y) dy = g(x)

∫ ∞

−∞

K(y) dy.

Proof. See Parzen (1962).

Lemma 2. Under the conditions C1(i), (ii), (iv), (v), C2(iii) and C3,

then (nh)
1

2 |Fn(x)− F (x)| converges in probability to zero.
Proof.

(nh)
1

2 |Fn(x)− F (x)| = (nh)
1

2 |Fn(x)− EFn(x) + EFn(x)− F (x)|

≤ (nh)
1

2 |Fn(x)− EFn(x)|

+ (nh)
1

2 |EFn(x)− F (x)|. (3)

First we will show that

lim
n−→∞

(nh)
1

2 |EFn(x)− F (x)| = 0. (4)

EFn(x) = E

∫ x

−∞

1

λh
K(

u−X

λh
) du

=

∫ ∞

−∞

∫ x

−∞

1

λh
K(

u− s

λh
)f(s) du ds

=

∫ ∞

−∞

∫ x

−∞

K(v)f(λhv + u) dv du

=

∫ x

−∞

∫ ∞

−∞

f(u)K(v) du dv

−

∫ x

−∞

∫ ∞

−∞

f ′(u)λhvK(v) dv du

+

∫ x

−∞

∫ ∞

−∞

1

2
f ′′(u)(λh)2v2K(v) dv du+ o(h2)

= F (x) + o(h2).
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|EFn(x)− F (x)| = o(h2). (nh)
1

2 |EFn(x)− F (x)| = o((nh5)
1

2 ).
Using Condition C2(iii) completes the proof of (4).

Secondly we will prove that

lim
n−→∞

(nh)
1

2 |Fn(x)− EFn(x)| = 0. (5)

Fn(x) =
1

n

n∑

i=1

1

λih

∫ x

−∞

K(
u−Xi

λih
) du =

1

n

n∑

i=1

Wi(x),

where

Wi(x) =
1

λih

∫ x

−∞

K(
u−Xi

λih
) du.

Let ε > 0, δ > 0 be given.

P ((nh)
1

2 |Fn(x)− EFn(x)| > ε) ≤ ε−2−2δ(nh)1+δE|
1

n

n∑

i=1

[Wi(x)− EWi(x)]|
2+2δ

= ε−2−2δh1+δn−1−δE|

n∑

i=1

[Wi(x)− EWi(x)]|
2+2δ

≤ 21+δε−2−2δ(n−1h)1+δ

n∑

i=1

E|Wi(x)|
2+2δ

+ 21+δε−2−2δ(n−1h)1+δ

n∑

i=1

|EWi(x)|
2+2δ

(n−1h)1+δ

n∑

i=1

E|Wi(x)|
2+2δ = (n−1h)1+δn

∫ ∞

−∞

∫ x

−∞

|
1

λh
K(

u− v

λh
)|2+2δf(v) du dv

= n−δh1+δ(λh)−(1+2δ)

∫ ∞

−∞

∫ x

−∞

|K(s)|2+2δf(u− λhs) du ds

≤ C(nh)−δ −→ 0.

Similarly, (n−1h)1+δ

n∑

i=1

|EWi(x)|
2+2δ −→ 0. This completes the proof of

Equation (5).
Now substitution of the Equations (4) and (5) in Equation (3) completes
the proof of the lemma. ¤
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Lemma 3. Under the conditions C1(i), (ii), (iii) and C2(i), we have

V ar(fn(x)) '
1

nhgα
f(x)1+α

∫ ∞

−∞

K2(u)du.

Proof.

V ar(fn(x)) =
1

n
V ar

(
1

λh
K(

x−Xi

λh
)

)
.

let h̃ = λh. Since h −→ 0, h̃ −→ 0.

nhV ar(fn(x)) = hV ar

(
1

h̃
K(

x−Xi

h̃
)

)
= hE

(
1

h̃2
K2(

x−Xi

h̃
)

)

= h

∫ ∞

−∞

1

h̃
K2(

x− u

h̃
)f(u)

1

hgαf̃(u)−α
du.

Since f̃(u) is an estimate of f(u), then f̃(u) −→ f(u) as n −→∞ and by
an application of Bochner lemma the proof of the lemma is completed. ¤

4 Main Results

In this section, we state and prove our main results.
Theorem 1. Under the conditions C1(i), (ii), (iii) and C2(i), (ii), we
have

(nh)
1

2 (fn(x)− f(x))
D
−→N(0,

1

hgα
f(x)1+α

∫ ∞

−∞

K2(u)du).

Proof.
Let

Vni =
1

λih
K(

x−Xi

λih
).

Then fn(x) =
1

n

n∑

i=1

Vni, where Vni, i = 1, 2, . . . , n are iid random vari-

ables as Vn =
1

λh
K(

x−X

λh
).

Now we want to show that Liapounov condition is satisfied, that is for
some δ > 0

lim
n−→∞

E|Vn − E(Vn)|
2+δ

nδ/2σ2+δ(Vn)
= 0,
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see Pranab and Julio (1993).

E|Vn|
2+δ =

∫ ∞

−∞

|
1

λh
K(

x− y

λh
)|2+δf(y)dy −→

1

(λh)1+δ
f(x)

∫ ∞

−∞

|K(y)|2+δdy.

V ar(Vn(x)) '
1

hgα
f(x)1+α

∫ ∞

−∞

K2(u)du.

E|Vn − E(Vn)|
2+δ

nδ/2σ2+δ(Vn)
=

(λh)1+δE|Vn − E[Vn]|
2+δ

λ1+δ(nh)δ/2h1+δ/2σ2+δ(Vn)
−→ 0,

since

(λh)1+δE|Vn|
2+δ −→ f(x)

∫ ∞

−∞

|K(u)|2+δdu <∞,

h1+δ/2σ2+δ(Vn) = (hσ2(Vn))
2+δ

2 −→ (g−αf(x)1+α

∫ ∞

−∞

K2(u)du)
2+δ

2 <∞,

and (nh)δ/2 −→∞, by condition C2(ii).
This implies that {fn(x)} is asymptotically normally distributed with

mean f(x) and variance
1

hgα
f(x)1+α

∫ ∞

−∞

K2(u)du. This completes the

proof of the Theorem. ¤

Theorem 2. Under the conditions C1, C2 and C3 the following is true

(nh)
1

2 (rn(x)− r(x))
D
−→N(0,

1

gα
z2(x)

f(x)1−α

∫ ∞

−∞

K2(u)du).

Proof.

(nh)
1

2 (rn(x)− r(x)) = (nh)
1

2

[
fn(x)

1− Fn(x)
−

f(x)

1− F (x)

]

= (nh)
1

2

[
fn(x)

1− Fn(x)
−

f(x)

1− Fn(x)
−

f(x)

1− F (x)
+

f(x)

1− Fn(x)

]

=
(nh)

1

2

1− Fn(x)

[
fn(x)− f(x)−

f(x)(1− Fn(x))

1− F (x)
+ f(x)

]

=
(nh)

1

2

1− Fn(x)
[fn(x)− f(x)]

+
(nh)

1

2f(x)

(1− Fn(x))(1− F (x))
[Fn(x)− F (x)] .

By Lemma 2 and Theorem 1, the proof is completed. ¤
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5 Applications

We now illustrate the method of adaptive kernel estimator, rn, via sim-
ulation study and a real data set. The purpose of the applications is
to demonstrate that the adaptive method works reasonably well espe-
cially in the tails and it is better than the constant bandwidth ker-
nel estimator, r̂. Throughout this section, the Epanechnikov kernel
K(x) = 0.75(1 − x2)I|x|<1, where I denotes the indicator function is
used.

5.1 A simulation Application

We simulated a data of size 200 from a standard normal N(0, 1). After
that we evaluated the hazard rate function of the standard normal at 61
points in the interval [0,3]. We estimated the standard normal hazard
rate function at the same points by using the estimators rn and r̂. Fig-
ure 1 shows that the adaptive is reasonable good and performs better
than the constant bandwidth especially at the tails of the hazard rate
function. Figure 2 gives estimated standard deviations of the two esti-
mators appears in , from which we see that the two standard deviations
are very close in the interior but in the tail the standard deviation of
r̂ is very large compared to the standard deviation of rn. Finally, we
calculated a 95% confidence intervals using Theorem 2 for the first and
last 5 observations. We found that the confidence intervals contain all
the corresponding true values and the average lengths of the first 5 con-
fidence intervals, the last 5 confidence intervals, and the average length
of the 10 confidence intervals were 28.8%, 85.1%, and 57.0% of the range
of the data, respectively.

i True value 95% conf. int. i True value 95% conf. int.
1 0.799 (0.357, 1.131) 57 3.099 (1.559, 3.788)
2 0.830 (0.361, 1.141) 58 3.1440 (1.590, 3.875)
3 0.863 (0.376, 1.168) 59 3.190 (1.566, 3.889)
4 0.896 (0.410, 1.222) 60 3.237 (1.699, 4.121]
5 0.929 (0.461, 1.302) 61 3.283 (1.888, 4.435)

Table 1: 95% confidence intervals for the standard normal hazard rate
function
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Figure 1: True hazard rate function, adaptive and constant kernel hazard
rate estimates
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Figure 2: The estimated standard deviations of the adaptive and the
constant bandwidth kernel hazard rate estimates
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5.2 Application for a real life data

In this subsection, we use the suicide data given in Silverman (1986:
pp.8), to exhibit the practical performance of the adaptive kernel esti-
mator rn. The data gives the lengths of the treatment spells in days of
control patients in a suicide study. We estimate the hazard rate which
represents the instant potential per unit of time that an individual com-
mits suicide within the time interval (t, t+∆t) given that it was known
to alive up to time t.
For comparison purposes we also estimate the hazard rate function using
the constant bandwidth kernel estimator r̂. For both estimators we used
the Epanechnikov kernel. The result is given in Figure 3. Although
the suggested value of the hazard rate function from the two estimators
is different, they both suggest a similar structure for the hazard rate
function. As we see the behavior of the two estimators is very similar in
the interior especially from approximately x = 300 to x = 450, and the
divergence of the two estimators gets large at the boundary.
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Figure 3: The adaptive and the constant bandwidth kernel hazard rate
estimates for the suicide data

80



References

[1] Abramson, I. (1982). On the bandwidth variation in kernel
estimation-a square root law. The Annals of Statistics, 10, 1217-1223.

[2] Fan, J. and Gijbels, I. (1992). Variable bandwidth and local linear
regression smoothers. The Annals of Statistics, 20, 2008-2036.

[3] Parzen, E., (1962). On estimation of a probability density function
and mode. Annals of Mathematical Statistics, Vol. 33,1065-1076.

[4] Pranab K. and Julio M. (1993). Large sample methods in statistics.
Chapman & Hall. Inc.

[5] Silverman, B. W. (1986). Density estimation for statistics and data
analysis.Chapman & Hall. Inc.

[6] Wand, M. P. and Jones, M. C. (1995), Kernel smoothing. Chapman
& Hall. Inc.

[7] Watson, G. and Leadbetter, M. (1964). Hazard Analysis I.
Biometrika, 51, 175-184.

81


