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ABSTRACT 
 

The amount of text data mining in the world and in our life seems ever increasing and there’s no end to it. 

The concept (Text Data Mining) defined as the process of deriving high-quality information from text. It 

has been applied on different fields including: Pattern mining, opinion mining, and web mining. The 

concept of Text Data Mining is based around the global Stemming of different forms of Arabic words. 

Stemming is defined like the method of reducing inflected (or typically derived) words to their word stem, 

base or root kind typically a word kind. We use the REP-Tree to improve text representation. In addition, 

test new combinations of weighting schemes to be applied on Arabic text data for classification purposes. 

For processing, WEKA workbench is used. The results in the paper on data set of BBC-Arabic website also 

show the efficiency and accuracy of REP-TREE in Arabic text classification.  
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1. INTRODUCTION 

 
Text Mining is an important basic process because of huge availability of text documents which 

located in various formats. [1] On the other hand, the process of understanding text at human 

level by machines is basically difficult. The Arabic is employed by quite three hundred million 

folks in over twenty countries [2]. The Arabic expressive style is additionally employed by 

several alternative languages like Persian, Urdu, Iranian language and alternative regional 

languages of Pakistan, Afghanistan and Persia. Following Latin script, it's the second most 

generally used script within the world.  Text data mining has the same targets as data mining 

including [3], text classification, clustering, document recapitulation, and extracting useful trends. 

Text mining must predominance difficulty that there is no explicit structure.  The unique nature 

of Arabic language morphological principles called for few of the literature in the field of 

classification of Arabic texts.  Arabic could be a difficult language for variety of reasons [4, 5, 6, 

7, 8]:  

 

1- Bound mixtures of characters is written in numerous techniques.  

2- Advanced morphology recording as compare to West Germanic. 

3- Short vowels which give different pronunciation. 

4- A huge number of Arabic synonyms.  

 

We will study the impact of text pre-processing and totally different term weight  

Schemes combos on Arabic text as a result of scarceness of literature during this regard. The 

study will be on a dataset of Arabic words collecting from the BBC-Arabic website. 

The rest of the paper is organized as follows: Section 2 reviews related work. Section 3 shows 

proposed work. Section 4 presents the results, and finally, we tend to conclude the paper in 

Section 5. 
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2. RELATED WORK 
 
In the discussion below, we focus on the works addressing Arabic TC. Since the amount and 

quality of options wont to categorical texts have a direct impact on classification algorithms, the 

subsequent discusses the major goal of feature reduction and choice and their impact on TC. 

Duwairi et al. [9] compared between three reduction techniques (stemming, light stemming, and 

word cluster). K Nearest Neighbor was chosen for (training samples) and testing and therefore the 

results showed that light stem yielded the highest accuracy and lowest time of model building. 

 

Another study [10] compared 3 Feature Subset Selection (FSS) metrics. They applied a 

comparative study check the result of the feature choice metrics in terms of exactness. The 

outcome in general disclosed that Odd magnitude relation (OR) worked higher than the others. 

Some studies used alternative techniques like N-gram and totally different distance measures and 

verified their effects on Arabic TC. For example, [11] used a statistical method called Maximum 

Entropy (ME) for the classification of Arabic words. The author showed that the Dice measures 

using N-gram outperforms using the Manhattan distance. Al-Zoghby [12] used Association Rules 

for Arabic text classification, and also he used CHARM algorithm with soft-matching over hard 

big O exact matching. Data sets consisting of 5524 records. Each record is a snippet of emails 

having the subject nuclear. The vocabulary size is 103,253 words. Similar classifier was used in 

[13], but different selection and reduction techniques were applied. The author used 

normalization, stop words removal to increase the ultimate accuracy. Most of Previous research 

added to the literature used tiny datasets, and applied one or 2 classifiers to classify one corpus 

that isn't enough to gauge Arabic TC. In this paper, we provide a comprehensive study for Arabic 

text classification. We examine the impact and therefore the advantages of employing completely 

different Arabic morphological techniques with different weight schemes applied on seven 

corpora by exploitation REP-Tree with combos of weight schemes. 

 

3. PROPOSED WORK  
 
In this section we proposed our work by Implementing and integrating an Arabic morphological 

analysis tools (khoja light stemming) into leading open source machine learning tools (Weka). 

The tool is available publically accessible freely at [14]. The implemented Arabic morphological 

analysis tools were applied on BBC-ARABIC data set. We will apply the REP-Tree as a 

classification algorithm with a combination of weighting schemes: (Term Frequency, Inverse 

Document Frequency, and Term Frequency-Inverse Document Frequency). 

 
3.1 Pre-processing  
 

Text pre-processing is a necessary component of any natural language process (NLP) system, 

since the characters, words, and sentences known at this  stage are the basic units passed to any or 

all more text classification stages, from analysis and tagging elements, like morphological 

analyzers and part-  of-speech taggers, through applications, like data retrieval and artificial 

intelligence systems.The most used method for text mining presentations is displaying text as a 

bag-of-tokens (words, n-grams). So we can already reduce, classify, cluster, and compute 

participate stats over text. These are useful to classify and managing height dimension amount 

text. The reason that natural language processing normally is so complicated is that text is 

extremely ambiguous. Linguistic communication is supposed for human consumption and 

infrequently contains ambiguities beneath the idea that humans are going to be ready to develop 

context and interpret the supposed meaning. Weighting schemes functionality lies in   enhance 

text document representation as feature vector. Popular term weighting schemes are the following 

[15]: 
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Term Frequency: A simple way to start out is by eliminating documents that do not contain all 

three words "the", "brown", and "cow", but this still leaves many documents. To additional 

characterize them, we would count the amount of times every term happens in each document and 

total the all together; the number of times a term happens through document is named its term 

frequency. 

 

Inverse Document Frequency: -  However, as a result of the term "the" is so popular, this may 

tend to incorrectly emphasize documents that happen to use the word "the" a lot of oftentimes, 

while not giving enough weight to the additional significant terms "brown" and "cow".The term 

"the" isn't a decent keyword to characterize relevant and non-relevant documents and terms, in 

contrast to the less common words "brown" and "cow". Therefore associate inverse document 

frequency factor is included that diminishes the terms weighting that occur terribly oft within the 

document set and will increase the burden of terms that seldom occur. 

 

Term Frequency-Inverse Document Frequency: A high weight in tf–idf is reached by a high 

term frequency (in the given document) and a low document frequency of the term in the whole 

collection of documents; the weights hence tend to filter out common terms. Since the 

quantitative relation within the idf's log function is usually larger than or adequate to one, the 

value of idf (and tf-idf) is bigger than or adequate to zero. As a term seems in additional 

documents, the quantitative relation within the log approaches one, transfer the idf and tf-idf 

nearer to zero. In several things, short documents tend to be diagrammatic by short vectors, 

whereas a lot of larger-term sets are assigned to the longer documents. Normally, all text 

documents must have an equivalent importance for text mining aims. this means that a 

standardization factor to be included into the term-weighting to equalize the length of the 

document vectors [16]. In most cases it's so difficult of the morphological variants to recognize 

by matching only. The text recognition process need additional algorithm called stemming. 

Stemming is the term used in linguistic morphology and information retrieval to describe the 

process for reducing inflected (or sometimes derived) words to their word stem, base or root form 

generally a written word form. The term after stemming needs not to be typical to the 

morphological root of the original term; it is usually sufficient that closed terms map to the same 

stem, even if new term is not in itself a valid stem. Stemming approaches are studied in 

technology since the Nineteen Sixties. several search engines treat words with an equivalent stem 

as synonyms as a type of inquiry growth, a method referred to as conflation. For the needs of 

Stemming, Khoja algorithmic rule are going to be used [17] and it's a popular Arabic 

Stemmer.Weka (Waikato Environment for Knowledge Analysis) [18] is a popular suite of 

machine learning software written in Java, developed at the University of Waikato. It is free 

package obtainable underneath the GNU General Public License.Weka gives a large combination 

of classification, clustering, and visualization algorithms for data mining, which can be derived 

through a familiar Graphical User Interface. By using weka software we can choose the  'String 

To Word Vector' tool  with totally different combos, we tend to setup the term weighting combos 

given in Table one to be passed to our reduced error pruning decision tree 'REP'. Then we make a 

list of combination between the weighting schemes: Term Frequency, Inverse Document 

Frequency, and Term Frequency-Inverse Document Frequency (TF, IDF, and TFIDF). Activating 

the counting words property (CW) and apply the previse weighting schemes, the resulting 

combinations (described in Table 2) are tfcw, idfcw, tf-idfcw, norm-cw, minFreq3cw, norm-

minFreq3cw, and all-minFreq3cw. The term (freq) refers to the number of letters in the word 

during the classification stage determined by the user as he like. 
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Table 1: Show Weka weighting schemes- String to Word Vector options.[19] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two major combinations are used; Bag of Tokens (BOT) (without Khoja stemming algorithm), 

and term Stemming. Symbols used in the preprocessing combinations for Stem and BOT are 

(shown in Table 2). 
 

Table 2: Symbols used in experiment setup pre-processing combos for weka weighting schemes. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2 Problem with encoding in Weak Tool 

 
When you deal with Arabic files in weka such as: Arrf and CSV formats you will face problem 

with the misunderstanding of the Arabic texts which present if like symbols. The solution is to 

use a unique encoding from Java to display them under Windows (= "Cp1252").If you change the 

file encoding to "utf-8" in the system.ini file. 
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4. EXPERIMENTAL RESULTS AND ANALYSIS 
 
Experiments  had been applied on Arabic dataset collected  from BBC- Arabic website (http:// 

www.BBc.co.uk/arabic/).The dataset contains 110 text documents belonging to one of the seven 

categories (Middle East news, Sport, Health, Compute Technology, Varieties and 

Communications).For text classification; we use REP-tree with specific training set of 66% cross-

validation and comparing them by the G-graph tree. Table 3 shows text mining classification for 

BOT and Stemmed terms using weighting schemes combinations described in Table 2. 

 
Table 3.A: Text Classification result by REP-Tree for BOT and Stemmed term using different text 

preprocessing combos. 

  

Table 3.A and 3.B describe the reduction of dataset text using different weighting schemes 

combinations. Comparison between BOT and Stemmed term using REP-Tree compared with G-

graph-Tree, using term stemming lead to reduce dimensionality for all weighting schemes 

combinations because stemming reduces the size of the huge text dataset, which have many 

morphological variants, to their root. The results show that the REP-Tree is more correctly than 

G-graph-Tree. 

 
Table 3.B: Text Classification result by G-graph-Tree for BOT and Stemmed term using different text 

preprocessing combos 

 

Figure 1: is configured from Tables (3.A &3.B) describes the reduction of document data set 

using different weighting schemes combinations. Comparison between BOT and Stemmed Term, 

using term stemming lead to reduce dimensional for all weighting schemes combinations because 

stemming reduce the size of the huge text data set, which have many morphological variants, to 

their root. Dimensionality dramatically reduced using term pruning with minimum frequency of 3 

Time 

Stemmed(sec)  

Time 

BOT(sec) 

Correctly 

Stemmed % 

Correctly 

BOT % 

Stemmed By 

Khoja 

Algorithm 

BOT   Weighting 

Schemes  

38.58 100.5 95.9234 90.8521 2439 4423 CW 

39.29 110.6 95.9234 90.8521 2439 4423 tf CW 

36.17 110.6 95.9234 90.8521 2439 4423 IdfCw 

39.76 110.6 95.9234 90.8521 2439 4423 TfidfCw 

38.54 99.4 95.9234 90.8521 2439 4423 Norm Cw 

6.77 8.4 93.8854 91.5647 320 328 minFreq3 Cw 

11.34 22.5 96.7789 89.5372 540 1090 Norm 

minFreq3Cw 

Time 

Stemmed(sec)  

Time 

BOT(sec) 

Correctly 

Stemmed % 

Correctly 

BOT % 

Stemmed By 

Khoja Algorithm 

BOT   Weighting Schemes  

34.45 90.8 97.8581 92.3581 2424 4452 CW 

30.24 98.6 97.8581 92.3581 2424 4452 tf CW 

29.17 98.6 97.8581 92.3581 2424 4452 IdfCw 

29.17 98.6 97.8581 92.3581 2424 4452 TfidfCw 

28.21 74.4 97.8581 92.3581 2424 4452 Norm Cw 

3.55 7.7 95.9234 93.2463 314 337 minFreq3 Cw 

9.77 17.5 98.3451 88.3552 534 1120 Norm minFreq3Cw 

http://www.bbc.co.uk/arabic/
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because there are many infrequent terms in the document collection. Stemming with REP-Tree 

gives the less value or the optimum value. 
 

Figure 1: Text dataset dimensionality for different text preprocessing combos. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2 shows classification accuracy for different text preprocessing combinations, cw-norm-

minFreq3 gives highest accuracy for REP-Tree Stemmed terms, while cw-minFreq3. Obviously, 

pruning infrequent terms enhance classification accuracy. The accuracy for REP-Tree stemmed 

terms is better than G-graph for all preprocessing combinations. Stemming enhance term 

weighting and this affect classification accuracy. 

 
Figure 2: REP-TREE and G-graph stemmed classification accuracy for each text preprocessing combos. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 depicts the running time for classification process. Shortest running time is achieved 

when use term pruning with minimum 3 occurrences. Again, running time for REP-Tree stemmed 

terms is shorter than BOT for all pre-processing combinations. Term stemming and pruning 

dramatically reduce dimensionality and enhance classification accuracy and performance. The 

empirical results also show that cw-norm and cw-tfidf give good accuracy and performance; this 

may vary from dataset to another. Furthermore, it is known that document normalization and 

TFIDF work well for large text dataset [20]. Running time with REP-Tree gives the less value or 

the optimum value. 
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Figure 3: Text classification running time for REP-Tree and G-graph tree. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

5. CONCLUSIONS 

 

Text preprocessing is a core step in text data mining. There are many preprocessing weight 

schemes combination that can be used for text preprocessing, but it is very difficult to determine 

the best preprocessing and term weighting. In this paper we have a tendency to examine the pre-

processing phase as a main step in Arabic text mining. Empirical results showed term stemming 

and pruning, document normalization, and term coefficient dramatically cut back spatiality, 

enhance text illustration and directly impact text mining performance. 
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