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ABSTRACT

Fiber-Bragg-grating (FBG) sensors have become commercially available sensors for the measurement of tem-
perature, strain and many other quantities. The sensor information is encoded in the spectral reflection charac-
teristic of these devices. Their usage as strain sensors is one of the most prominent fields of application. Strains
from a structure which is to be monitored are transferred into the fiber-Bragg-grating, by surface bonding or
embedding. In general an arbitrary state of strain may thus occur within the FBG, represented by a full strain
tensor with normal strain components, as well as with shear strain components. The influence of normal strains
is well understood and has been treated theoretically by many authors. The influence of shear strains is how-
ever not well understood. As we were recently able to theoretically demonstrate by a full tensor coupled mode
analysis, shear strains do influence the spectral response of fiber-Bragg-sensors and thus have to be considered.
In this work, an introduction to the modeling of shear strains within fiber-Bragg-gratings is given. We discuss
reasonable approximations for the simplification of the theoretical model. We compute, to our knowledge for
the first time, the direct influence of shear strains on the output of a FBG measurement system and show the
cases when shear strain effects are relevant. Furthermore, we compare the sensitivity of different interrogation
algorithms towards shear strain influences on the measurement system output.
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1. INTRODUCTION

Fiber Bragg gratings (FBGs) have been considered for numerous sensing applications including temperature,
strain and force among others. One intriguing aspect is the possibility to extract two parameters from the sensor
position by using a polarization sensitive interrogation scheme. FBGs may be integrated into composite materi-
als or concrete1 due to their small dimensions. This possibility has gained much interest, because reconstruction
of the state of strain within such materials may improve application such as condition monitoring.

A transversally loaded or embedded fiber Bragg grating will give an optical response corresponding to the
strains that are distributed along the core of the fiber at the position of the sensor. This is due to the fact, that
light is only guided close to the fiber core, which is only around ten micron in diameter, whereas the whole
fiber measures approximately 100 μm. This approximation is called ”center strain approximation”2 and greatly
simplifies the computation of the optical response of the FBG, since transversal gradients in the strain field
may be neglected. The loads applied to the fiber, either by transversal loading19 or by embedding into a host
material that is itself strained, as pictured in figure 1 will result in a position dependant strain field within the
fiber, represented by the strain tensor ef(x, y, z). Since the dominant contribution to the change in the optical
response of the FBG will result from the core of the fiber we assume ec(z) = ef(0, 0, z). The optical response of
the grating upon this load is computed from coupled mode theory (CMT). CMT is a widely employed tool and
has been applied to fiber Bragg gratings in various articles, see for example3.4

The influencing quantity ec(z) is a tensor of second rank. It will, to first order produce a dielectric per-
turbation in the fiber, which is also represented by a second rank tensor, namely the dielectric perturbation
tensor Δε.5 Each of the perturbation tensor’s entries may be nonzero in an arbitrary load case. We recently
demonstrated, how the optical response of fiber Bragg gratings may be computed from the knowledge of this
perturbation tensor by a full tensorial coupled mode theory6 and derived a transfer matrix formalism for the
problem.7
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The electromagnetic problem considers the four propagation modes of the fiber, two of orthogonal polariza-
tion p and s, propagating in positive z-direction and two propagating in negative z-direction. The amplitudes
of these four modes Ap+, As+, Ap− and As− are coupled by the dielectric perturbations induced by the grating
and the mechanical loads. In a polarization maintaining fiber, the propagation constants of the mode having
orthogonal polarization βp/s differ by a value Δβ = 2π/LB, where LB is called the beat length of the fiber.18

This difference in propagation constant will prevent the coupling of the polarization modes when the fiber is
mechanically loaded, such as by twists or bends or other loads8.9 However, this only works for moderate loads,
and polarization coupling takes place, when the fiber is substantially loaded.
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Figure 1. Optical fiber with coating embedded into a host structure. The strains in the host eh(x, y, z) will result in strains
within the optical fiber ef(x, y, z).

When polarization mode coupling is neglected, the two orthogonal polarizations may be used to measure
two different parameters from the FBGs position.10, 11, 20 Then, only the three normal strains exx, eyy, ezz and
the temperature T have an influence on the optical response of the FBG. If all parameters are applied homo-
geneously along the length L of the grating, the Bragg reflection peaks of the two polarization axes will shift,
without deforming their shape. The center wavelength of the two Bragg peaks is computed and from it, for
example the two normal strain entries exx and eyy in the strain tensor may be reconstructed. The center wave-
length is obtained by using algorithms such as maximum search, a centroid algorithm12 or gaussian fit.13

This is only possible, if the two other parameters, for example exx and T stay constant, which is not neces-
sarily satisfied in every application. A solution to this has been suggested by E. Udd giving an overview in.14

The suggestion is to fabricate two Bragg gratings at the same position inside the fiber, with strongly different
wavelengths (1300 nm and 1500 nm). The fiber needs to be single mode in both wavelengths. If the material
properties of the fiber (Pockel’s coefficients and thermo-optic coefficient) are different at both wavelengths, then
it is possible to measure all four influencing quantities with one sensor. In a recent work by Mawatari15 this
suggestion is investigated. The authors note the necessity of being able to neglect polarization rotation within
the fiber, due to its polarization holding capabilities. They state that the problem of reconstructing the four
parameters would become much more complicated, if such a polarization mode coupling would occur.

It is the aim of our work, to study the influence of polarization mode coupling within fiber Bragg gratings on
the basis of the theory presented in.6 We give a short summary on the theory and introduce the measurement
setup we model with our simulations. We show, how the parameter ”shear strain”, which has been widely
ignored in the discussions on multiparameter strain sensing has a significant influence on the response of such
a sensor. For this purpose, we simulate the reflection spectrum of a mechanically loaded FBG sensor, when
shear strain is neglected andf when shear strain effects are considered and compare the results. Furthermore,
we calculate the performance of three different peak fitting algorithms namely maximum search, centroid and
Gaussian fit.
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2. FUNDAMENTALS AND MODELING

Several FBG interrogation schemes have been proposed to date. For the polarization sensitive interrogation, a
polarization independent measurement is conducted and the two Bragg peaks are separated by an algorithm15

or the polarization spectra are recorded independently.16, 17 We model the latter setup, which is pictured in
figure 2. We assume, that polarized light, with an angle of 45◦ with respect to the axes of the polarization main-
taining fiber is used to illuminate the Bragg grating. The two polarization spectra are split up by a polarization
splitter and are directed to two polarization independent optical spectrum analyzers.
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FBG

polarization splitterspectrum analyzer

spectrum analyzer
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Figure 2. Possible measurement setup for determining the spectral response of a fiber Bragg grating written in a polarization
maintaining fiber. The fiber Bragg grating is illuminated by a well polarized source. Both axes of the polarization maintain-
ing fiber are illuminated equally. The reflected spectra are directed to a polarization splitter by a 3 dB fiber coupler. The
polarization splitter splits the light in the fast and the slow polarization axis of the fiber. Both outputs are fed to two optical
spectrum analyzers with low polarization dependency.

In a real world application, the strain tensor entries may vary independently of each other, giving a large
range of parameters. In the transversal loading experiments15–17 this range of parameters is reduced, since only
two parameters, namely the load angle φ and the load force F are varied. This results in a strain tensor ec that
may be approximated by the form6

ec(φ) = F · R(φ)

⎛
⎝

exx 0 0
0 −mexx 0
0 0 0

⎞
⎠ · R(φ)T , (1)

where R(φ) is the rotation matrix around the z-axis. By rotating the fiber in the experiment, the shear strain exy
is generated, which possesses a maximum value of roughly that of exx.

To further simplify the model, we restrict our selves to the following load case: The only nonzero strain
tensor entries are exx, eyy = −mexx and exy. Entry exx is varied from zero to 2000 μm/m, eyy is scaled with
m = 0.2, and exy is either zero, when neglecting shear strain effects of possesses a value of exy = 2000 μm/m.
These parameters may very well be found in a real application. From the spectral information, the ”Bragg-
wavelength” has to be extracted. Therefor several algorithms have been used. For a symmetrical Bragg peak,
the algorithms - peak maximum, centroid and gaussian fit yield the same value. If the Bragg peak becomes
unsymmetrical, the outputs of these algorithms will show differences. We apply the three algorithms to the two
polarization mode reflections separately.
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3. RESULTS AND DISCUSSION

The first load case is computed to illustrate in detail the influence of shear strain on the reflection spectra. A
normal strain exx = 2000 μm/m and exy = 2000 μm/m is used. Figure 3 shows the computed result neglecting
shear strain and taking into account shear strain.
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Figure 3. Result of the simulation using a normal strain exx = 2000 μm/m and eyy = −mexx, m = 0.2. The shear strain
is neglected in the thin lined result and set to 2000 μm/m for the simulation with shear strain. The results without shear
strain show the expected shift of the spectral response, without changing the shape of the spectrum. With shear strain, the
polarization modes couple and the reflection spectra are changed in shape.

As may be seen from the results neglecting shear strain, the spectral shapes of both Bragg peaks are sym-
metric. They shift by some amount according to the load, but do not change their spectral characteristic. The
reflection spectra considering shear strain do change their characteristic. The left peak, corresponding to the
s-polarization couples intensity into the right peak, corresponding to the p-polarization. This would by itself
not change the output of the peak finding algorithms. But what may also be observed, is that the shear strain
changes the spectral position of the peaks, something that would yield a different result. Apart from that, a sec-
ond order effect may be observed, when taking a look at the s-mode’s intensity at the position of the p-mode’s
reflection peak. There, due to polarization mode coupling, the backward propagating p-mode couples onto the
backward propagating s-mode. This leads to a second peak in the s-mode spectrum, something that has been
observed by Ye et al.17 in their lateral loading experiment attributing it to structural changes in the polarization
maintaining fiber.

To get a further impression of the effect, the reflection spectra of the Bragg grating are computed for increas-
ing load exx = {0, 400, 800, 1200, 1600, 2000} μm/m and eyy accordingly, see figure 4. exy is fixed to 2000 μm/m.
For low exx, the two peaks are only separated by the fiber’s birefringence and the polarization modes couple
strongly. This results in a s-mode reflection peak, that nearly possesses two equally strong maxims. For increas-
ing normal strain, the separation of the polarization modes reflection peaks increases, and the the propagation
constant difference increases, leading to lower polarization mode coupling. Hence, the second maxima in the
s- mode reflection decreases.

Calculating the response of the interrogation algorithms we use the loads described before. We compute
the output of the measurement setup for two different kind of fibers. Because polarization mode coupling will
increase with increasing beat length LB, we use the beat length values of 7.7 mm and 3.0 mm. These fibers are
commercially available and represent the lower end of available fibers. Thus, polarization mode coupling is
generally low in the selected fibers and effects may be expected to increase with higher beat lengths.
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Figure 4. Six simulations with increasing normal strain and a fixed shear strain of exy = 2000 μm/m. For low normal strains,
the reflection peaks are only separated by the birefringence of the fiber and polarization mode coupling is high, leading to
a strong second peak in the s-mode reflection spectrum. For higher normal strain loads, the peaks separate further and
polarization mode coupling is reduced.

The upper plot in figure 5 shows the results for the LB = 7.7 mm. The lower values correspond to the Bragg
wavelength of the s-mode reflection spectrum, those at higher wavelengths to the p-mode reflection. The p-
mode’s spectral response is less deformed in shape than the s-mode. This is simply determined by the positive
sign of the shear strain, using a negative value, the p-mode would be deformed in a comparable way. It may be
observed, that the values for the p-mode Bragg-wavelength are all situated at higher wavelengths than without
shear strain. This is something that may be explained by the spectral shift to higher values given in figure 3.
Yet, the s-modes results show positive as well as negative differences. This may be explained as follows:

The maximum of the s-modes Bragg peak is at lower wavelengths than without shear strain. This will also
give lower values for the maximum algorithm. The Gaussian fit will fit to the strong left peak of the s-mode in
figure 3, but the centroid algorithm will integrate over the whole spectrum, and weighting it with the spectral
position. This will give the right second peak in the s-modes reflection spectrum a special influence on the
position of the Bragg-wavelength. For low normal strains, the polarization mode coupling is strongest, leading
to a strong second peak in the s-modes reflection spectrum. The Gaussian fit algorithm will either fit to one or
the other, yielding strong deviations.

If the beat length is decreased viz. the birefringence of the fiber is higher, the polarization mode coupling
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Figure 5. Computation of the Bragg wavelength of the s- and p-mode by three algorithms - maximum search, Gaussian
fit and centroid. For comparison, the Bragg wavelength neglecting shear strain influences is computed. For symmetrical
reflection peaks, all three algorithms yield the same result, therefore the result without shear is independent of the algorithm
used. The upper figure simulates a fiber with a lower birefringence and a beat length of LB = 7.7 mm. The lower figure
corresponds to a fiber with a higher birefringence and a beat length of LB = 3, 0 mm.
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is reduced and the effects are smaller. This may be observed by comparing the upper plot in figure 5 with the
lower one in figure 5. Because of the higher birefringence, the reflection peaks of the polarization modes are
stronger separated initially, leading to a different scaling of the plots.

The effect of polarization cross coupling will result in measurement error in the determination of the actual
Bragg wavelength, since the spectral response becomes deformed. This interferes with the concept of multi-
parameter strain sensing as suggested by Udd.14 The shear strain component exy has to be considered as an
individual parameter, yielding a total of five parameters. These are exx, eyy, exy, ezz and T. The four values
extracted from the four Bragg peaks as suggested by Udd thus yield a singular problem.

4. CONCLUSION AND OUTLOOK

In this work we applied full tensor coupled mode theory to compute the optical response of a mechanically
loaded fiber Bragg grating in a polarization maintaining fiber, when strong shear strains are present. We con-
structed a representative load case which may occur in a fiber sensing application. For several load values we
calculated the output spectrum for the two polarization modes. We used this data to test three algorithms to
determine the Bragg wavelength - maximum search, centroid and Gaussian fit. We showed how the algorithms
perform for two different types of polarization maintaining fibers possessing different beat lengths. As expected
we found the influence of shear strain to be reduced when fibers with high birefringence are employed. For
a case of LB = 7.7 mm, the deviations of the Bragg peak, caused by shear strain were found to be more than
100 pm.

Thus, a load case, which shows the same normal strains, but different shear strains may lead to strongly
differing outputs. Comparing the values to a temperature measurement, the 100 pm would correspond to ap-
proximately 10◦C or 100 μm/m. As a result this means, that shear strain has to be considered as a parameter
influencing the output of a fiber Bragg grating measurement system. This has implications for the method of re-
constructing the three normal strains and temperature as proposed by E. Udd.14 Since actually five parameters
are influencing the spectral response significantly, the four parameters derived from the proposed experiment
will not suffice to reconstruct the state of strain.

However, it may be observed, that the relative power of the polarization reflection peaks is strongly de-
pending on the applied shear strain. It may therefore be possible to use this dependency to reconstruct a fifth
parameter, possibly directly the shear strain component exy from the relative intensities of the two Bragg peaks.
This would then allow to overcome the singularity of the problem and to again have a method at hand that
allows the reconstruction of the full strain tensor by a single fiber Bragg grating sensor.
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