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Abstract

Codes over finite rings have been studied in the early 1970. A great deal of attention

has been given to codes over finite rings from 1990, because of their new role in algebraic

coding theory and their successful application.

The key to describing the structure of cyclic codes over a ring R is to view cyclic codes

as ideals in the polynomial ring R[x]
/〈
xn − 1

〉
, where n is the length of the code.

In previous studies, some authors determined the structure of cyclic codes over Z4 for

arbitrary even length by finding the generator polynomial, the number of cyclic codes

for a given length and the duals for these codes, and also determined the structure of

negacyclic codes of even length over the ring Z2a and their dual codes.

In this thesis, we introduce cyclic codes of an arbitrary length n over the rings F2 + uF2

with u2 = 0 mod 2 and F2 + uF2 + u2F2 with u3 = 0 mod 2. We find a set of generators

for these codes. The rank and the dual of these codes are studied as well.

We will extend these results about the rings F2 +uF2 and F2 +uF2 +u2F2 to more general

rings F2 + uF2 + u2F2 = . . .+ uk−1F2 with uk = 0 mod 2.

Finally we study the structure of (1 + u)−constacyclic codes of even length n over the

ring F2 + uF2 with u2 = 0 mod 2. Also we extend this study to the ring F2 + uF2 + u2F2

with u3 = 0 mod 2.
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Introduction

Coding theory originated with 1948 publication of the paper (A mathematical theory of

communication) by Claude shannon [21]. For the past half century, coding theory has

grown into a discipline intersecting mathematics and engineering with applications to

almost every area of communication such as satellite and cellular telephone

transmission, compact disc recording, and data storage.

Shannon identified a number called the capacity of the channel and proved that

arbitrary reliable communication is possible at any rate below the channel capacity. For

example, when transmitting images of planets from deep space, it is impractical to

retransmit the images. Hence if portions of the data giving the images are altered, due

to noise arising in the transmission the data may prove useless. Shannon’s results

guarantee that the data can be encoded before transmission so that the altered data can

be decoded to the specified degree of accuracy. Examples of other communication

channels include magnetic storage devices, compact discs, and any kind of electronic

communication device such as cellular telephones.

Among all types of codes, linear codes are studied the most. Because of their algebraic

structure, they are easier to describe, encode, and decode than nonlinear codes.

Linear and cyclic codes over rings have recently aroused great interest because of their

new roles in coding theory and their successful application in combined coding and

modulation.

This thesis is organized as follows, we start by recalling background and notations about

abstract algebra and coding theory in chapter 1.

Chapter 2 covers the structure of cyclic codes over the ring Z4 for arbitrary even length

n giving the generator polynomial for these codes and describing the duals and

self-duals of the cyclic codes.

Chapter 3 examines negacyclic codes of even length over Z2a . The theory of these codes
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is an extension to the theory of negacyclic codes of even length over the ring Z4.

Chapter 4 gives the basic theory of cyclic codes over the rings

F2 + uF2 + u2F2 + . . .+ uk−1F2 with uk = 0 mod 2. This work is a generalization of the

results in [3].

Chapter 5 includes the structure of constacyclic codes of even length over the rings

F2 + uF2 with u2 = 0 mod 2 and F2 + uF2 + u2F2 with u3 = 0 mod 2. This work is a

generalization of the results in [2].
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Chapter 1

Preliminaries

1.1 Rings and Fields

Definition 1.1.1. [16] A nonempty set R, together with two binary operations addition

(+) and multiplication (.) is said to form a ring, if for all a, b, c ∈ R, the following

axioms are satisfied :

(i) a+ (b+ c) = (a+ b) + c.

(ii) a+ b = b+ a.

(iii) ∃ some element 0 (called zero) in R s.t.,

a+ 0 = 0 + a = a.

(iv) for each a ∈ R, ∃ an element (−a) ∈ R, s.t.,

a+ (−a) = (−a) + a = 0.

(v) a.(b.c) = (a.b).c.

(vi) a.(b+ c) = a.b+ a.c.

(b+ c).a = b.a+ c.a.

Definition 1.1.2. [16] A ring R is called a commutative ring if ab = ba for all a, b ∈ R.
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If ∃ a unique element e ∈ R s.t.,

ae = ea = a for all a ∈ R

then we say, R is a ring with unity. Unity is generally denoted by 1 (it is also called unit

element or multiplicative identity).

Definition 1.1.3. [16] An element a in a ring R with unity, is called invertible (or a unit)

with respect to multiplication if ∃ some b ∈ R such that ab = 1 = ba.

Definition 1.1.4. [16] Let R be a ring. An element a 6= 0 ∈ R is called a zero-divisor,

if ∃ an element b 6= 0 ∈ R s.t., ab = 0.

Definition 1.1.5. [16] A commutative ring R with unity is called an integral domain if

ab = 0 in R =⇒ either a = 0 or b = 0. In other words, a commutative ring R is called

an integral domain if R has no zero divisors.

Definition 1.1.6. [16] A field is a nonempty set F of elements with two binary operations

+ (called addition) and . (called multiplication) satisfying the following axioms. For all

a, b, c ∈ F :

(i) F is closed under + and . i.e., a+ b and a.b are in F .

(ii) Commutative laws: a+ b = b+ a, a.b = b.a.

(iii) Associative laws: (a+ b) + c = a+ (b+ c), a.(b.c) = (a.b).c.

(iv) Distributive law: a.(b+ c) = a.b+ a.c.

Furthermore, two distinct identity elements 0 and 1 (called the additive and multiplicative

identities, respectively) must exist and satisfying the following:

(v) a+ 0 = a for all a ∈ F .

(vi) a.1 = a and a.0 = 0 for all a ∈ F .

(vii) For any a in F , there exist an additive inverse element (−a) in F such that

a+ (−a) = 0.
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(viii) For any a 6= 0 in F , there exists a multiplicative inverse element a−1 in F such that

a.a−1 = 1.

We usually write a.b simply as ab, and denote by F ∗ the set F \ {0}.

Definition 1.1.7. [16] A ring R with unity is called a division ring or a skew field if all

non zero elements of R have multiplicative inverse.

Definition 1.1.8. [16] A commutative division ring is called a field.

Lemma 1.1.1. [16] A finite integral domain is a field.

Corollary 1.1.2. [16] Zp the set of integers mod p is a field, for a prime integer p.

Subring and the characteristic of a ring

Definition 1.1.9. [16] A non empty subset S of a ring R is said to be a subring of R if

S forms a ring under the binary operations of R.

Example 1.1.1. The ring
(
Z,+, .

)
of integers is a subring of the ring

(
R,+, .

)
of real

numbers.

If R is a ring then 0 and R are always subrings of R, called trivial subrings of R.

Theorem 1.1.3. [16] A non empty subset S of a ring R is a sub-ring of R if and only if

a, b ∈ S, then ab, a− b ∈ S. �

Definition 1.1.10. [16] Let R be a ring. If there exists a positive integer n such that

na = 0 for all a ∈ R, then R is said to have finite characteristic and also the smallest such

positive integer n is called the characteristic of R.

If no such positive integer exists then R is said to have characteristic infinity. Character-

istic of R is denoted by char R or ch(R).
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Example 1.1.2.

(i) The characteristics of Q, R, C are 0, where

Q is the set of all rational numbers, R is the set of all real numbers and

C is the set of all complex numbers.

(ii) The characteristic of the field Zp is p for any prime p.

Ideals and Quotient Rings

Definition 1.1.11. [13] A nonempty subset I of a ring R is called a left ideal if

(i) For all a, b ∈ I, both a+b and a-b belong to I.

(ii) For all a ∈ I and all r ∈ R, ra ∈ I.

Symmetrically, we define a right ideal. A nonempty subset which is both a left and a

right ideal is called an ideal, or sometimes, for the sake of emphasis, a two-sided ideal.

In a commutative ring the distinction between a left and a right ideal disappears. From

condition (i) above it is clear that every left (or right) ideal is a subring. However, the

converse need not be true. For example, in the ring Q of rational numbers, the set Z of

integers is a proper subring, but not an ideal because 1
2
∈ Q , 3 ∈ Z. But 3.1

2
6∈ Z. In

any ring, the set {0} consisting of the zero element alone is a two-sided ideal. It is called

the zero ideal and denoted by {0}. Similarly, the whole ring R is a two-sided ideal. If

possesses an identity e, then R is called a unit ideal and is denoted by (e). The two sided

ideals {0} and R are said to be improper, any ideal other than {0} and R is said to be

proper.

Theorem 1.1.4. [13] If R is a ring with unity, and I is an ideal of R containing a unit,

then I = R.

Definition 1.1.12. [13] Let R be a ring and let I be an ideal in R. We define the quotient

ring R/I as:

R/I = {r + I : r ∈ R} = set of all cosets of I in R.
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Definition 1.1.13. [13] An ideal I 6= R in a commutative ring R is a prime ideal if ab ∈ I

implies that either a ∈ I or b ∈ I for every a, b ∈ R.

Definition 1.1.14. [16] Let R be a ring. An ideal M 6= R of R is called a maximal ideal

of R if whenever A is an ideal of R such that, M ⊆ A ⊆ R then either A = M or A = R.

Example 1.1.3. [16]

(i) A field F has only ideals F and {0}. We can see that {0} is the only maximal ideal

of F.

(ii) {0} in the ring Z of integers is a prime ideal as ab ∈ {0} ⇒ ab = 0⇒ a ∈ 0 or b ∈ 0.

It is an example of a prime ideal which is not maximal because {0}  2Z  Z.

(iii) H4 = {4n, n ∈ Z} we can see that it is a maximal ideal in the ring E = 2Z of even

integers.

H4, however, is not a prime ideal in E as 2.2 = 4 ∈ H4 but 2 is not belong H4.

And also is not maximal ideal in Z because 4Z  2Z  Z.

In fact, H4 is neither a maximal nor a prime ideal in Z.

In the following two theorems we give alternative criterions for an ideal in an arbitrary

commutative ring to be prime or maximal.

Theorem 1.1.5. [13] Let R be a commutative ring with unity, and let I 6= R be an ideal in

R. Then R/I is an integral domain if and only if I is prime ideal in R. �

Theorem 1.1.6. [16] Let R be a commutative ring with unity. An ideal M of R is

maximal ideal of R if and only if R/M is a field. �

Corollary 1.1.7. [13] Every maximal ideal in a commutative ring R with unity is a prime

ideal, but the converse is not true.
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Definition 1.1.15. [13] A sided ideal I of a commutative ring R is called a principal

ideal if there exists an element g ∈ I such that I =< g >, where

< g >= {rg : r ∈ R}.

The element g is called a generator of I and I is said to be generated by g.

Example 1.1.4. [13] Z is a principal ideal domain. Moreover, given any nonzero ideal

I of Z, the smallest positive integer in I is a generator for the ideal I.

Definition 1.1.16. [5] A local ring is a ring that has a unique maximal ideal.

Homomorphisms and Isomorphisms

Definition 1.1.17. [13] Let R and S be rings (or fields).

A function ψ:R −→ S is a ring homomorphism if for all a, b ∈ R,

ψ(a+ b) = ψ(a) + ψ(b)

and

ψ(ab) = ψ(a)ψ(b).

Definition 1.1.18. [13] An isomorphism ψ: R −→ S is a homomorphism that is

one-to-one and onto S.

Definition 1.1.19. [13] Let f :R −→ S be a homomorphism, we define kernel of f by

ker f = {x ∈ R : f(x) = 0}

where 0 is a zero of S.

Theorem 1.1.8. [13] If f :R −→ S is a homomorphism, then

� ker f is an ideal of R.

� ker f =< 0 > if and only if f is one-to-one. �

Polynomial Rings
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Definition 1.1.20. [13] Let R be a ring. A polynomial f(x) with coefficients in R is an

infinite formal sum

∑∞
i=0 aix

i = a0 + a1x+ . . .+ anx
n + . . . ,

where ai ∈ R and ai = 0 for all but a finite number of values of i. The a′is are coefficients

of f(x). If for some i ≥ 0 it is true that ai 6= 0, the largest such value of i is the degree of

f(x). If all ai 6= 0, then the degree of f(x) is undefined.

Let us agree that if f(x) = a0 + a1x+ . . .+ anx
n + . . . has ai = 0 for i > n, then we may

denote f(x) by a0 + a1x+ . . .+ anx
n.

Addition and multiplication of polynomials with coefficients in a ring R are defined in a

way familiar to us. Let

f(x) = a0 + a1x+ . . .+ amx
m, ai ∈ R,

g(x) = b0 + b1x+ . . .+ bnx
n, bi ∈ R,

be two polynomials over R, then we say f(x) = g(x) if m = n and ai = bi for all i.

Again, addition of polynomials f(x) and g(x) is defined by

f(x) + g(x) = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x2 + . . .

Product is also defined in the usual way

f(x)g(x) = (a0 + a1x+ . . .+ amx
m)(b0 + b1x+ . . .+ bnx

n)

= a0b0 + (a1b0 + a0b1)x+ . . . = c0 + c1x+ c2x
2 + . . .+ cm+nx

m+n

where ck = a0bk + a1bk−1 + . . .+ akb0 =
∑k

r=0 arbk−r

Let now R[x] be the set of all polynomials over R. Zero of the ring will be the zero

polynomial O(x) = 0 + 0x+ 0x2 + . . . .

Additive inverse of f(x) = a0 + a1x+ . . .+ amx
m will be the polynomial −f(x) = −a0 −

a1x+ . . .+(−am)xm. In fact, if R has unity 1 then the polynomial e(x) = 1+0x+0x2 + . . .

will be unity of R[x]. e(x) is also sometimes denoted by 1. Instead of a ring R if we start

with a field F we get the corresponding ring F [x] of polynomials.

9



Theorem 1.1.9. [16] Let R[x] be the ring of polynomials over a ring R, then

(i) R is commutative if and only if R[x] is commutative.

(ii) R has unity if and only if R[x] has unity. �

Theorem 1.1.10. [16] Let R[x] be the ring of polynomial of a ring R and suppose

f(x) = a0 + a1x+ . . .+ amx
m,

g(x) = b0 + b1x+ . . .+ bnx
n,

are two non zero polynomials of degree m and n respectively, then

(i) If R is an integral domain, deg(f(x)g(x)) = m+ n.

(ii) R is an integral domain if and only if R[x] is an integral domain.

(iii) If F is a field, F [x] may not be field. �

Definition 1.1.21. [13] Let f(x) and g(x) be polynomials over the field F. If gcd(f(x), g(x)) =

1, we say that f(x) and g(x) are relatively prime (over F ). In particular, f(x) and g(x)

are relatively prime if and only if there exist polynomials a(x) and b(x) over F for which

a(x)f(x) + b(x)g(x) = 1.

Definition 1.1.22. [13] A polynomial f(x) ∈ R[x], is monic provided its leading coeffi-

cient is 1.

Definition 1.1.23. [5] Two polynomials f and g in R[x] are called coprime, or relatively

prime if

R[x] =< f > + < g > .

Definition 1.1.24. [16] A nonconstant polynomial f(x) ∈ F [x] is irreducible if whenever

f(x) = p(x)q(x), then one of p(x) or q(x) must be constant.

10



1.2 Finite Fields

In this section we want to investigate the fundamental properties of finite fields.

Vector spaces over finite fields

Definition 1.2.1. [17] Let Fq be the finite field of order q. A nonempty set V, together

with some (vector) addition denoted + and scalar multiplication by elements of Fq, is a

vector space (or linear space) over Fq if it satisfies all of the following conditions. For all

u, v, w ∈ V and for all λ, µ ∈ Fq:

(i) u+ v ∈ V ;

(ii) (u+ v) + w = u+ (v + w);

(iii) There is an element 0 ∈ V with the property 0 + v = v + 0 for all v ∈ V ;

(iv) For each u ∈ V there is an element of V, called −u, such that u + (−u) = 0 =

(−u) + u;

(v) u+ v = v + u;

(vi) λv ∈ V ;

(vii) λ(u+ v) = λu+ λv, (λ+ µ)u = λu+ µu;

(viii) (λµ)u = λ(µu);

(ix) if 1 is the multiplicative identity of Fq, then 1u = u.

Definition 1.2.2. [17] A nonempty subset C of a vector space V is a subspace of V if is

itself a vector space with the same vector addition and scalar multiplication as V.

Modules and Submodules
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Definition 1.2.3. [17] Let R be any ring, and let M be an abelian group, then M is

called a left R-module if there exists a scalar multiplication

ψ : R×M →M denoted by ψ(r,m) = rm, for all r ∈ R and all m ∈M, such that for all

r, r1, r2 ∈ R and all m,m1,m2 ∈M,

(i) r(m1 +m2) = rm1 + rm2

(ii) (r1 + r2)m = r1m+ r2m

(iii) r1(r2m) = (r1r2)m

(iv) 1m = m. To denote that M is a left R-modulo.

Example 1.2.1. [17] If R is a ring then R is an R-module (Left R-module and right

R-module).

Vector spaces over F are F -modules where F is a field.

Definition 1.2.4. [17] Any subset of M that is a left R-module under operations induced

from M is called a submodule.

The subset {0} is called the trivial submodule.

The module M is a submodule of itself.

i.e.if M is a left R-module, then a subset N ⊂ M is a submodule if and only if it is

nonempty, closed under sums, and closed under multiplication by elements of R.

Extension Field

Definition 1.2.5. [16] The order of a field is the number of elements in the field. If the

order is infinite, we call the field an infinite field, and if the order is finite, we call the field

a finite field or a Galois field.

Definition 1.2.6. [16] A finite field with pm elements is called a Galois field of order pm

and is denoted by GF (pm).

Theorem 1.2.1. [16] For any prime p and any positive integer m, there exists a finite

field, unique up to isomorphism, with q = pm elements. �

12



Lemma 1.2.2. [15] For every element β of a finite field F with q elements, we have

βq = β.

Definition 1.2.7. [13] The order of a nonzero element α ∈ Fq, denoted by ord(α), is the

smallest positive integer k such that αk = 1.

Definition 1.2.8. [13] (Primitive Root of Unity) An element α of a field is an nth

root of unity if αn = 1, n = q − 1.

It is a primitive nth root of unity if αn = 1 and αm 6= 1 for 0 < m < n.

An element α in a finite field Fq is called a primitive element (or a generator) of Fq if

Fq = {0, α, α2, . . . , αq−1}.

Theorem 1.2.3. [15] The elements of Fq are precisely the roots of the polynomial

xq − x. �

Theorem 1.2.4. [13] Division Algorithm

Let f(x) and g(x) be in Fq[x], where Fq[x] is the ring of all polynomials over the field Fq

with g(x) nonzero, then

1. There exist unique polynomials h(x), r(x) ∈ Fq[x], such that

f(x) = g(x)h(x) + r(x), where 0 ≤ deg r(x) < deg g(x) or r(x) = 0.

2. If f(x) = g(x)h(x)+r(x), then gcd(f(x), g(x)) = gcd(g(x), r(x)). �

Corollary 1.2.5. [16] Let f(x) ∈ F [x], then α is root of f(x) if and only if x − α is a

factor of f(x) over F

Definition 1.2.9. [13] (Extension Field) A field E is called an extension of a field F

if F ⊆ E and we write F ≤ E.

Thus R is an extension field of Q and C is an extension field of both R and Q.

Theorem 1.2.6. [13] Let F be a field and let f(x) ∈ F [x] be a nonconstant polynomial.

Then there exist an extension E of F and α ∈ E such that f(α) = 0. �

13



Example 1.2.2. [13] Let F = R and let f(x) = x2 + 1, which is well known to have no

zeros in R and thus is irreducible over R.

Then < x2 + 1 > is a maximal ideal in R[x], so R[x]/ < x2 + 1 > is a field.

Identifying r ∈ R with r+ < x2 + 1 > in R[x]/ < x2 + 1 >, we can view R as a subfield

of E = R[x]/ < x2 + 1 > .

Let α = x+ < x2 + 1 >, computing in R[x]/< x2 + 1 >,

we find < α2 + 1 >= (x+ < x2 + 1 >)2 + (1+ < x2 + 1 >)

=< x2 + 1 > + < x2 + 1 >= 0. Thus α is a zero of x2 + 1.

Minimal Polynomials

Let E be a finite extension of Fq. Then E is a vector space over Fq and so E= Fqt for

some positive integer t. Each element α of E is a root of the polynomial xq
t − x. Thus

there is a monic polynomial Mα in Fq[x] of smallest degree which has α as a root, this

polynomial is called the minimal polynomial of α over Fq. In the following theorem we

collect some elementary facts about minimal polynomials.

Definition 1.2.10. [15] A minimal polynomial of an element α ∈ Fqm with respect to Fq

is a nonzero monic polynomial f(x) of the least degree such that f(α) = 0.

Theorem 1.2.7. [16] Let F < E be fields, and let α ∈ E have minimal polynomial m(x)

over F.

1) The polynomial m(x) is the unique monic irreducible polynomial over F for which

m(α) = 0.

2) The polynomial m(x) is the unique monic polynomial of smallest degree over F for

which m(α) = 0.

3) The polynomial m(x) is the unique monic polynomial over F with property that, for

all f(x) ∈ F [x], we have f(α) = 0 if and only if m(x)|f(x). �

Definition 1.2.11. [16] Let n be coprime to q. The cyclotomic coset of q (or q-cyclotomic

coset) modulo n containing i is defined by
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Ci = {(i . qj(mod n) ∈ Zn : j = 0, 1, . . . }.

A subset {i1, . . . , it} of Zn is called a complete set representatives of cyclotomic cosets of

q modulo n if Ci1 , . . . , Cit are distinct and
⋃t
j Cij = Zn.

Example 1.2.3. [15] Consider the cyclotomic cosets of 2 modulo 15:

C0 = {0}, C1 = {1, 2, 4, 8}, C3 = {3, 6, 9, 12}, C5 = {5, 10},

C7 = {7, 11, 13, 14}. Thus, C1 = C2 = C4 = C8, and so on.

The set {0, 1, 3, 5, 7} is complete set of representatives of cyclotomic cosets of 2 modulo

15.

Example 1.2.4. [15] The polynomial f(x) = 1 + x+ x3 is irreducible over F2; if it were

reducible, it would have a factor of degree 1 and hence a root in F2, which it does not. So

F8 = F2/ < f(x) >, The elements of F8 for the given polynomial f(x), are given by:

Cosets V ectors Polynomials in α Power of α

0+ < f(x) > 000 0 0

1+ < f(x) > 001 1 1 = α0

x+ < f(x) > 010 α α

x+ 1+ < f(x) > 011 α + 1 α3

x2+ < f(x) > 100 α2 α2

1 + x2+ < f(x) > 101 α2 + 1 α6

x2 + x+ < f(x) > 110 α2 + α α4

x2 + x+ 1+ < f(x) > 111 α2 + α + 1 α5

The column ”power of α” is obtained by using f(α) = α3 + α+ 1 = 0, which implies that

α3 = α+1. So α4 = αα3 = α(α+1) = α2+α, α5 = αα4 = α(α2+α) = α3+α2 = α2+α+1,

etc.

Example 1.2.5. [15] The field F8 was constructed in the Example above. In the table

below we give the minimal polynomial over F2 of each element of F8 and the associated
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2-cyclotomic coset modulo 7.

Roots Minimal polynomial 2− cyclotomic coset

0 x

1 1 + x {0}

α, α2, α4 x3 + x+ 1 {1, 2, 4}

α3, α5, α6 x3 + x2 + 1 {3, 5, 6}

1.3 Basic Concepts of Coding Theory

Coding theory deals with the problem of detecting and / or correcting transmission errors

caused by noise on the channel.

In many cases, the information to be sent is transmitted by a sequence of zeros and ones.

We call a 0 or a 1 a digit. A word is a sequence of digits. The length of a word is the

number of digits in the word. Thus 0110101 is a word of length seven.

A word is transmitted by sending its digits, one after the other, across a binary channel.

The term binary refers to the fact that only two digits 0 and 1 are used. Each digit is

transmitted mechanically, electrically, magnetically, or otherwise by one of two types of

easily differentiated poulses.

Codes, generator and parity check matrices

Definition 1.3.1. [15] Let F n
q denote the vector space of all n−tuples over finite field Fq,

n is the length of the vectors in F n
q . An (n,M) code C over Fq is a subset of F n

q of size

M , that is |C| = M =the number of all codewords of C.

We usually write the vectors (c1, c2, . . . , cn) in F n
q in the form c1c2 . . . cn and call the

vectors in C codewords .

A code whose alphabet is Z2 = F2 = {0, 1} is called a binary code or a Z2-code, a code

whose alphabet is Z3 = F3 = {0, 1, 2} is called a ternary code or a Z3-code, and a code

whose alphabet consists of four elements such as Z4 = {0, 1, 2, 3} is called quaternary

code or a Z4-code.
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Definition 1.3.2. [15] If C is a k−dimentional subspace of F n
q , then C will be called an

[n, k] linear code over Fq .

Definition 1.3.3. [13] The rank of a matrix over k is the number of nonzero rows in

any row echelon form of the matrix.

Definition 1.3.4. [15] A generator matrix for an [n, k] code C is any k × n matrix G

whose rows form a basis for C.

Note that a generator matrix for C must have k rows and n columns, and it must have

rank k.

Definition 1.3.5. [15] A generator matrix of the form [Ik|A] where Ik is the k×k identity

matrix is said to be in the standard or (systematic) form.

Theorem 1.3.1. [15] If G = [Ik|A] is a generator matrix for the [n, k] code C is in system-

atic form, then H = [−AT |In−k] is a parity check matrix for C.

Example 1.3.1. The matrix G = [I4|X], where

G =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1


is a generator matrix in standard form for [7,4] binary code by Theorem 1.3.1. A parity-

check matrix is H = [XT |I3], where

H =


0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

.

This code is called a [7, 4] Hamming code.

Dual codes and weight distribution

Definition 1.3.6. [15] Let C be a linear [n, k]-code. The set

C⊥ = {x ∈ F n
q | x.c = 0,∀c ∈ C}.
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is called the dual code for C, where x.c is the usual scalar product x1c1+x2c2+......+xncn

of the vectors x and c. Note that C⊥ is an [n, n− k] code. Also the generator matrics

G for the linear code C=the parity check matrics H for the code C⊥.

Definition 1.3.7. [15] The inner product of vectors x = x1 . . . xn, y = y1 . . . yn in F n
q is

x.y =
∑n

i=1 xiyi.

Definition 1.3.8. [15]

� The (Hamming distance) d(x, y) between two vectors x, y ∈ F n
q is defined to be the

number of coordinates in which x and y differ.

� The (Hamming weight) wt(x) of a vector x ∈ F n
q is the number of nonzero coordinates

in x.

Definition 1.3.9. [15] For a code C containing at least two words, the minimum distance

of a code C, denoted by d(C), is

d(C) = min{d(x, y) : x, y ∈ C, x 6= y}.

Theorem 1.3.2. [15] If x, y ∈ F n
q , then d(x, y) = wt(x − y). If C is a linear code,

the minimum distance d is the same as the minimum weight of the nonzero codewords of

C . �

Theorem 1.3.3. [15] The distance function d(x, y) satisfies the following four properties:

(i) (non-negativity) d(x, y) ≥ 0 for all x, y ∈ F n
q .

(ii) d(x, y) = 0 if and only if x = y.

(iii) (symmetry) d(x, y) = d(y, x) for all x, y ∈ F n
q .

(iv) (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈F n
q . �

Example 1.3.2. Let C = {00000, 00111, 11111} be binary code. Then d(C) = 2 since

d(00000, 00111) = 3, d(00000, 11111) = 5, d(00111, 11111) = 2. Hence, C is a binary

(5, 3, 2)-code.
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Definition 1.3.10. [15]

� The (Lee weight) wtL(x) of a vector x ∈ F n
q = n1(x) + 2n2(x) + n3(x), where na(x)

denotes the number of components of x equal to a.

� The (Lee distance)d(x, y) between two vectors x, y ∈ F n
q = wL(x− y).

Definition 1.3.11. [15] Let Ai, also denoted Ai(C), be the number of codewords of weight

i in C. The list Ai for 0 ≤ i ≤ n is called the weight distribution or weight spectrum of

C.

Example 1.3.3. Let C be binary code with generator matrix

G =


1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1


The weight distribution of C is A0 = A6 = 1 and A2 = A4 = 3. Notice that only the

nonzero Ai are usually listed.

Definition 1.3.12. [15] A code C is called self-orthogonal provided C ⊆ C⊥.

Definition 1.3.13. [15] A code C is called self-dual if C = C⊥.

Remark 1.3.1. [15] The length n of a self-dual code C is even and the dimension of C is

n/2.

1.4 Cyclic Codes over Finite Fields

One of the most important classes of linear codes are the class of cyclic code. These

codes have great practical importance and they are also of considerable interest from an

algebraic point of view since they are easy to encode. They also include the important

family Bose-Chadhuri-Hocquengham (BCH) codes which are great practical importance

for error correction, particulary the number of errors is expected to be small compared
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with the length of the code. Moreover cyclic codes are considered important since they are

the building blocks for many other codes. We assume throughout our discussion of cyclic

codes that n and q are relatively prime. In particular, if q = 2 then n must be odd. When

examining cyclic codes over Fq, we will most often represent the codewords in polynomial

form. There is bijective correspondence between the vectors c = c0c1 . . . cn−1 in F n
q and

the polynomials c(x) = c0 + c1x + . . . cn−1x
n−1 in Fq[x] of degree at most n − 1. Notice

that if c(x) = c0 + c1x+ . . . cn−1x
n−1, then xc(x) = cn−1x

n + c0x+ c1x
2 + . . .+ cn−2x

n−1,

which would represent the codeword c cyclically shifted one to the right if xn were set

equal to 1. More formally, the fact that a cyclic code C is invariant under a cyclic shift

implies that if c(x) is in C, then so is xc(x) provided we multiply modulo xn− 1. Also the

cyclic code C will correct t = b(d− 1)/2c errors.

Polynomials and Words

The polynomial f(x) = a0 + a1x+ a2x
2 + . . .+ an−1x

n−1 of degree at most n− 1 over

field K may regarded as the word v = a0a1a2 . . . an−1 of length n in Kn.

For example if n = 7,

polynomial word

1 + x+ x2 + x4 1110100

1 + x4 + x5 + x6 1000111

1 + x+ x3 1101000

Thus a code of length n can be represented as a set of polynomials over K of degree at

most n− 1. The word a0a1a2a3 of length 4 is represented by the polynomial

a0 + a1x+ a2x
2 + a3x

3 of degree 3, for instance.

Definition 1.4.1. [14] Let υ be a word of length n, the cyclic shift π(υ) is the word of

length n

π(υ0, υ1, . . . , υn−1) = (υn−1, υ0, . . . , υn−2).

Definition 1.4.2. [15] A code C is said to be cyclic if π(υ) ∈ C, whenever υ ∈ C.
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Example 1.4.1. C1 = {102, 210, 021, 201, 120, 012, 222, 111, 000} is a linear cyclic code

over Z3, but C2 = {000, 221, 212, 200, 121, 112, 100, 021, 012} is not cyclic since π(112) =

211 which is not in C2

Theorem 1.4.1. [15] If C1 and C2 are cyclic codes of length n over Fq, then

(i) C1 + C2 = {c1 + c2 : c1 ∈ C1, c2 ∈ C2} is cyclic.

(ii) C1

⋂
C2 is cyclic. �

We remember that since Fq[x] is principle ideal domain also the ring

Rn = Fq[x]/< xn − 1 > is a principle ideal hence the cyclic codes are principle ideals of

Rn when writing a code word of a cyclic code as c(x) we mean the coset

c(x)+ < xn − 1 > in Rn.

Corollary 1.4.2. [15] The number of cyclic codes in Rn equal 2m, where m is the number

of q-cyclotomic cosets modulo n. Moreover, the dimensions of cyclic codes in Rn are all

possible sums of the sizes of the q-cyclotomic cosets modulo n.

Generating polynomial of a cyclic code

Theorem 1.4.3. [15] A linear code C in Fq is cyclic ⇐⇒ C is an ideal in Rn =

Fq[x]/(xn − 1).

Proof. (⇐) If C is an ideal in Fq[x]/(xn − 1) and c(x) = c0 + c1x+ . . .+ cn−1x
n−1 is any

codeword, then xc(x) is also a codeword, i.e (cn−1, c0, c1, . . .+ cn−2) ∈ C.

(⇒) If C is cyclic, then c(x) ∈ C we have xc(x) ∈ C.

Therefore xic(x) ∈ C, and since C is linear, then a(x)c(x) ∈ C for each polynomial a(x).

Hence C is an ideal.

Theorem 1.4.4. [15] Let C be an ideal in Rn, then

(i) There is a unique monic polynomial g(x) of minimum degree in

C =< g(x) >, and it is called the generating polynomial for C.
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(ii) The generating polynomial g(x) divides xn − 1.

(iii) If deg(g(x)) = r, then C has dimension n− r and

C =< g(x) >= {s(x)g(x) : deg s(x) < n− r}.

(iv) If g(x) = g0 +g1x+ . . .+grx
r, then g0 6= 0 and C has the following generator matrix:

G =



g0 g1 g2 . . . gr 0 0 . . . 0

0 g0 g1 g2 . . . gr 0 . . . 0

0 0 g0 g1 g2 . . . gr . . .
...

...
...

...
...

...
...

...
... 0

0 0
... 0 g0 g1 g2

... gr


Proof. (i) Suppose that C contains two distinct monic polynomials g1 and g2 of minimum

degree r. Then their difference g1 − g2 would be a nonzero polynomial in C of degree less

than r, which is not possible. Hence, there is a unique monic polynomial g(x) of degree

r in C. Since g(x) ∈ C and C is an ideal, we have < g(x) >⊆ C.

On the other hand, Suppose that p(x) ∈ C, then by Division Algorithm ∃ q(x), r(x) such

that

p(x) = q(x)g(x) + r(x) where r(x) = 0 or deg(r(x)) < r.

Then r(x) = p(x)− q(x)g(x) ∈ C has degree less than r, which possible only if r(x) = 0.

Hence p(x) = q(x)g(x) ∈< g(x) >, and so C ⊆< g(x) > . Thus C =< g(x) > .

(ii) Dividing xn − 1 by g(x), using Division Algorithm we have

xn − 1 = q(x)g(x) + r(x), where deg(r(x)) < r.

Since C is an ideal in Rn, we see that r(x) ∈ C, a contradiction unless r(x) = 0, which

shows that g(x)|(xn − 1).

(iii) The ideal generated by g(x) is

< g(x) >= {f(x)g(x) : f(x) ∈ Rn}
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with the usual reduction mod (xn−1). Now g(x) divides xn−1, and so xn−1 = h(x)g(x)

for some h(x) of degree n− r.

Divide f(x) by h(x), we get f(x) = q(x)h(x) + s(x), where deg(s(x)) < n− r or s(x) = 0,

then

f(x)g(x) = q(x)g(x)h(x) + s(x)g(x) = q(x)(xn − 1) + s(x)g(x).

So f(x)g(x) = s(x)g(x) ∈ C. Now let c(x) be in C, then

c(x) = s(x)g(x) = (a0 + a1x+ a2x
2 + . . .+ an−r−1x

n−r−1)g(x) =

(a0g(x) + a1xg(x) + . . .+ an−r−1x
n−r−1g(x).

So c(x) ∈< {g(x), xg(x), . . . , xn−r−1g(x)} >, which shows that the set

{g(x), xg(x), . . . , xn−r−1g(x)} spans C.

Also {g(x), xg(x), . . . , xn−r−1g(x)} is linearly independent, since if

a0g(x) + a1xg(x) + . . .+ an−r−1x
n−r−1g(x) = 0,

then (a0 + a1x+ a2x
2 + . . .+ an−r−1x

n−r−1)g(x) = 0 which implies that

(a0 + a1x+ a2x
2 + . . .+ an−r−1x

n−r−1) = 0,

and since 1, x, x2, . . . , xn−r−1 are linearly independent, then a0 = a1 = . . . = an−r−1 = 0

and hence {g(x), xg(x), . . . , xn−r−1g(x)} forms a basis for C.

Hence dim(c) = n− r.

(iv) If g0 = 0 then g(x) = xg1(x), where deg(g1(x)) < r and g1(x) = 1.g1(x) =

xn−1g(x), so g1(x) ∈ C which contradict the fact that no nonzero polynomial in C

has degree less than r. Thus g0 6= 0.

Finally, G is a generator matrix of C since {g(x), xg(x), . . . , xn−r−1g(x)} is a basis for

C.

Corollary 1.4.5. [15] Let C be a nonzero cyclic code in Rn. The following are equivalent:

(i) g(x) is the monic polynomial of minimum degree in C.

(ii) C =< g(x) >, g(x) is monic, and g(x)|(xn − 1).
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The Parity Check Matrix

Theorem 1.4.6. [15] Let C be a cyclic cod in Rn with generator polynomial g(x), such

that deg g(x) = r. Let h(x) = (xn− 1)/g(x) =
∑n−r

i=0 hix
i. Then the generator polynomial

of C⊥ is g⊥(x) = xn−rh(x−1)/h(0). Furthermore, a generator matrix for C⊥, and hence

a parity check matrix for C, is given by

H =



hn−r . . . . . . . . . h0 0 0 . . . 0

0 hn−r . . . . . . . . . h0 0 . . . 0

. . . 0 hn−r . . . . . . . . . h0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . . . . hn−r . . . . . . h0


Example 1.4.2. Let C be a cyclic code of length n = 9. Since x9 − 1 factors over F2

x9 − 1 = (x3 − 1)(x6 + x3 + 1) = (x− 1)(x2 + x+ 1)(x6 + x3 + 1).

Hence, there are 23 = 8 cyclic codes in R9 = F2/ < x9 − 1 >. Take C =< x6 + x3 + 1 >

with generating polynomial g(x) = x6 + x3 + 1.

Then C has dimension 9− 6 = 3 and generating matrix

G =


1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1


Also C has check polynomial h(x) = x9−1

g(x)
= (x − 1)(x2 + x + 1) = x3 − 1. Then C has

the parity check matrix

H =



1 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1
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Encoding With Cyclic Code

There are two rather straightforward ways to encode message strings using

a cyclic code one systematic method and one nonsystematic.

The First Procedure:[15]

Let G be the generator matrix of the cyclic code C =< g(x) >, then

G =


g(x)

xg(x)
...

xk−1g(x)

 =


g0 g1 g2 . . . gn−k . . . 0

0 g0 g1 . . . gn−k−1 gn−k 0

. . . . . . . . . . . . . . .

0 g0 . . . gn−k−1 gn−k


to encode the message m ∈ Fkq as the codeword c = mG. But if we transform m ∈ Fkq to

the polynomial m(x) = a0 + a1x+ . . .+ ak−1x
k−1 ∈ Fq[x], then

to encode m(x) as a codeword c(x) by forming the product c(x) = m(x)g(x). However,

this encoding is not systematic.

Example 1.4.3. [15] Let C be a binary cyclic code of length 15 with generator

polynomial g(x) = (1 + x+ x4)(1 + x+ x2 + x3 + x4).

Encode the message m(x) = 1 + x2 + x5 using the first procedure, we have

g(x) = 1 + x4 + x6 + x7 + x8.

c(x) = m(x)g(x) = (1 + x2 + x5)(1 + x4 + x6 + x7 + x8) =

1 + x2 + x4 + x5 + x7 + x10 + x11 + x12 + x13 ←→ (101011010011110).

The Second Procedure:[15]

This way is systematic. The message m(x) associated to the message m is of degree at

most k − 1 (or is the zero polynomial). The polynomial xn−km(x) has degree at most

n− 1 and has its first n-k coefficients equal to 0, thus the message is contained in the

coefficients of xn−k, xn−k+1, . . . , xn−1. By the Division Algorithm,

xn−km(x) = g(x)a(x) + r(x), where deg r(x) < n− k or r(x) = 0.

Let c(x) = xn−km(x)− r(x), as c(x) is a multiple of g(x), c(x) ∈ C. Also c(x) differs

from xn−km(x) in the coefficients of 1, x, . . . , xn−k−1 as deg r(x) < n− k. So c(x)
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contains the message m in the coefficients of the terms of degree at least n− k.

Example 1.4.4. [15] Let C be a binary cyclic code of length 15 with generator

polynomial g(x) = (1 + x+ x4)(1 + x+ x2 + x3 + x4).

Encode the message m(x) = 1 + x2 + x5 using the second procedure, we have

g(x) = 1 + x4 + x6 + x7 + x8.

xn−k = x15−7 = x8.

x8m(x) = x8.(1 + x2 + x5) = x8 + x10 + x13.

Now divide x8m(x) by g(x).

x8 + x7 + x6 + x4 + 1 |

x5 + x4 + x+ 1

x13 + + x10 + + x8

x13 + x12 + x11 + + x9 + + x5

x12 + x11 + x10 + x9 + x8 + x5

x12 + x11 + x10 + + x8 + + x4

x9 + + x5 + x4

x9 + x8 + x7 + + x5 + + x

x8 + x7 + + x4 + x

x8 + x7 + x6 + + x4 + 1

x6 + x+ 1

x8m(x) = g(x).(x5 + x4 + x+ 1) + (x6 + x+ 1)

c(x) = x8m(x) + (x6 + x+ 1) = (x13 + x10 + x8) + x6 + x+ 1

as a vector C = (110000101010010) ∈ Fnq .

Decoding With Cyclic Code

Following [15], let C be an [n, k, d] cyclic code over Fq with generator polynomial g(x) of

degree n− k, C will correct t = b(d− 1)/2c errors. Suppose that c(x) ∈ C is transmitted

and y(x) =c(x)+e(x) is received, where e(x) = e0 +e1x+ . . .+en−1x
n−1 is the error vector

with wt(e(x)) ≤ t.

Definition 1.4.3. [15] For any vector ν(x) ∈ Fq, let Rg(x) be the unique remainder when
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ν(x) is divided by g(x) according to Division Algorithm, that is, Rg(x)(ν(x)) = r(x), where

ν(x) = g(x)f(x) + r(x), with r(x) = 0 or degr(x) < n− k.

The function Rg(x) satisfies the following properties.

Theorem 1.4.7. [15] With the preceding notation the following hold:

(i) Rg(x)(aν(x) + bν
′
(x)) = aRg(x)(ν(x)) + bRg(x)(ν

′
(x)) for all ν(x), ν

′
(x) ∈ Fq[x] and

all a, b ∈ Fq.

(ii) Rg(x)(ν(x) + a(x)(xn − 1)) = Rg(x)(ν(x)).

(iii) Rg(x)(ν(x) = 0 if and only if ν(x) mod (xn − 1) ∈ C.

(iv) If c(x) ∈ C, then Rg(x)(c(x) + e(x)) = Rg(x)(e(x)).

(v) If Rg(x)(e(x)) = Rg(x)(e
′
(x)), where e(x) and e

′
(x) each have weight at most t, then

e(x) = e
′
(x).

(vi) Rg(x)(ν(x)) = ν(x) if deg ν(x) < n− k. �

Theorem 1.4.8. [15] Let g(x) be a monic divisor of xn − 1 of degree n− k. If

Rg(x)(ν(x)) = s(x), then

Rg(x)(xν(x) mod (xn − 1)) = Rg(x)(xs(x)) = xs(x)− g(x)sn−k−1, where sn−k−1 is the

coefficient of xn−k−1 in s(x). �

We now describe the first version of the Meggitt Decoding Algorithm and use example

to illustrate each step. Define the syndrome polynomial S(ν(x)) of any ν(x) to be

S(ν(x)) = Rg(x)(x
n−kν(x)).

step I:

We find the syndrome polynomials S(e(x)) of error patterns e(x) =
∑n−1

i=0 eix
i such that

wt(e(x)) ≤ t and en−1 6= 0.
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Example 1.4.5. [15] Let C be the [15, 7, 5] binary cyclic code with defining set

T = {1, 2, 3, 4, 6, 8, 9, 12}. Let α be a 15th root of unity in F16. Then

g(x) = 1 + x4 + x6 + x7 + x8 is the generator polynomial of C and the syndrome

polynomial of e(x) is S(e(x)) = Rg(x)(x
8e(x)). Step I produces the following syndrome

polynomial:

e(x) S(e(x)) e(x) S(e(x))

x14 x7 x6 + x14 x3 + x5 + x6

x13 + x14 x6 + x7 x5 + x14 x2 + x4 + x5 + x6 + x7

x12 + x14 x5 + x7 x4 + x14 x+ x3 + x4 + x5 + x7

x11 + x14 x4 + x7 x3 + x14 1 + x2 + x3 + x4 + x7

x10 + x14 x3 + x7 x2 + x14 x+ x2 + x5 + x6

x9 + x14 x2 + x7 x+ x14 1 + x+ x4 + x5 + x6 + x7

x8 + x14 x+ x7 1 + x14 1 + x4 + x6

x7 + x14 1 + x7

The computations of these syndrome polynomials were aided by Theorem 1.4.7 and

1.4.8. For example, in computing the syndrome polynomial of x12 + x14, we have

S(x12 + x14) = Rg(x)(x
8(x12 + x14)) = Rg(x)(x

5 + x7) = x5 + x7 using Theorem 1.4.7(vi).

In computing the syndrome polynomial for 1 + x14, first observe that

Rg(x)(x
8) = 1 + x4 + x6 + x7, then

S(1 + x14) = Rg(x)(x
8(1 + x14)) = Rg(x)(x

8) +Rg(x)(x
7) = 1 + x4 + x6.

We see by Theorem 1.4.7 that Rg(x)(x
9) = Rg(x)(xx

8) = Rg(x)(x+ x5 + x7) +Rg(x)(x
8) =

x+ x5 + x7 + 1 + x4 + x6 + x7 = 1 + x+ x4 + x5 + x6.

Therefore in computing the syndrome polynomial for x+ x14, we have

S(x+ x14) = Rg(x)(x
8(x+ x14)) = Rg(x)(x

9) +Rg(x)(x
7) = 1 + x+ x4 + x5 + x6 + x7. The

others follow similarly.

Step II:

Suppose that y(x) is the received vector. Compute the syndrome polynomial

S(y(x)) = Rg(x)(x
n−ky(x)). By Theorem 1.4.7(iv), S(y(x)) = S(e(x)), where

y(x) = c(x) + e(x) with c(x) ∈ C.

Example 1.4.6. [15] Continuing with Example 1.4.5, suppose that
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y(x) = 1 + x4 + x7 + x9 + x10 + x12 is received.

Then S(y(x)) = x+ x2 + x6 + x7.

Step III:

If S(y(x)) is in the list computed in the Step I, then we know the error polynomial e(x)

and this can be subtracted from y(x) to the corrected codeword c(x) = y(x)− e(x). If

S(y(x)) is not in the list, go on to Step IV .

Step IV :

Compute the syndrome polynomial of xy(x), x2y(x), . . . in succession until the

syndrome polynomial is in the list from Step I. If S(xiy(x)) is in this list and is

associated with the error polynomial e
′
(x), then the received vector is decoded as

y(x)− xn−ie′(x).

The computation in Step IV is most easily carried out using Theorem 1.4.8 As

Rg(x)(x
n−ky(x)) = S(y(x)) =

∑n−k−1
i=0 six

i, S(xy(x)) = Rg(x)(x
n−kxy(x)) =

Rg(x)(x(xn−ky(x))) = Rg(x)(xS(y(x))) = xS(y(x))− sn−k−1g(x).

Example 1.4.7. [15] Continuing with Example 1.4.6, we have

S(y(x)) = x+ x2 + x6 + x7, that

S(xy(x)) = x(x+ x2 + x6 + x7)− 1.g(x) = 1 + x2 + x3 + x4 + x6, which is not in the list

in Example 1.4.5

S(x2y(x)) = x(1 + x2 + x3 + x4 + x6)− 0.g(x) = x+ x3 + x4 + x5 + x7, which corresponds

to the error x4 + x14 implying that y(x) is decoded as

y(x)− (x2 + x12) = 1 + x2 + x4 + x7 + x9 + x10.

1.5 Codes over Rings

Definition 1.5.1. [20] R2 = F2 + uF2 is a commutative ring {0, 1, u, 1 + u} with u2 = 0,

where F2 is a binary field with two elements {0, 1}. Addition and multiplication operations

for F2 + uF2 are given in the following tables:
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+ 0 1 u 1+u

0 0 1 u 1+u

1 1 0 1+u u

u u 1+u 0 1

1+u 1+u u 1 0

· 0 1 u 1+u

0 0 0 0 0

1 0 1 u 1+u

u 0 u 0 u

1+u 0 1+u u 1

Definition 1.5.2. [4] R3 = F2 +uF2 +u2F2 is a commutative ring of 8 elements which are

{0, 1, u, u2, v, v2, uv, v3}, where u3 = 0, v = 1 + u, v2 = 1 + u2, v3 = 1 + u+ u2, uv =

u+ u2. Addition and multiplication operations over R are given in the following tables:

+ 0 1 u v u2 uv v2 v3

0 0 1 u v u2 uv v2 v3

1 1 0 v u v2 v3 u2 uv

u u v 0 1 uv u2 v3 v2

v v u 1 0 v3 v2 uv u2

u2 u2 v2 uv v3 0 u 1 v

uv uv v3 u2 v2 u 0 v 1

v2 v2 u2 v3 uv 1 v 0 u

v3 v3 uv v2 u2 v 1 u 0

· 0 1 u v u2 uv v2 v3

0 0 0 0 0 0 0 0 0

1 0 1 u v u2 uv v2 v3

u 0 u u2 uv 0 u2 u uv

v 0 v uv v2 u2 u v3 1

u2 0 u2 0 u2 0 0 u2 u2

uv 0 uv u2 u 0 u2 uv u

v2 0 v2 u v3 u2 uv 1 v

v3 0 v3 uv 1 u2 u v v2

Definition 1.5.3. [3] A code of length n over a commutative ring R is a nonempty subset

of Rn, and a code is linear over R if it is an R-submodule of Rn.

Definition 1.5.4. [15] Let Zpn be the ring of integer modulo pn, where p is a prime

number and n a positive integer. A polynomial f(x) ∈ Zpn [x] is said to be irreducible if

whenever f(x) = g(x)h(x) for two polynomials g(x) and h(x) in Zpn [x], one of g(x) or

h(x) is a unit.

Definition 1.5.5. [15] Define µ : Z4[x] → F2[x] by µ
(
f(x)

)
= f(x) (mod 2). The map

µ called reduction homomorphisim. A polynomial f(x) ∈ Z4[x] is basic irreducible if
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µ
(
f(x)

)
is irreducible in F2[x]; it is monic if its leading coefficient is 1. A polynomial

f(x) ∈ Z4[x] is primary if the principal ideal < f(x) >= {f(x)g(x) | g(x) ∈ Z4[x]} is a

primary ideal.

Definition 1.5.6. [15] An ideal I of a ring R is called a primary ideal provided ab ∈ I

implies that a ∈ I or br ∈ I for some positive integer r.

Definition 1.5.7. [5] Let Zpn be the ring of integer modulo pn, where p is a prime number

and n a positive integer. A monic irreducible polynomial f(x) ∈ Zpn [x] is said to be basic

irreducible if its reduction modulo p is irreducible.

Theorem 1.5.1. [15] (Hensels Lemma)

Let f(x) ∈ Z4[x]. Suppose µ(f(x)) = h1(x)h2(x) . . . hk(x), where h1(x), h2(x), . . . , hk(x)

are pairwise coprime polynomials in F2[x] . Then there exist g1(x), g2(x), . . . , gk(x) ∈ Z4[x]

such that:

1. µ(gi(x)) = hi(x) for 1 ≤ i ≤ k,

2. g1(x), g2(x), . . . , gk(x) are pairwise coprime, and

3. f(x) = g1(x)g2(x)...gk(x). �

Graeffe’s method[15]

(1). Let h(x) be an irreducible factor of xn + 1 in F2[x]. Write h(x) = e(x) + o(x), where

e(x) is the sum of the terms of h(x) with even exponents and o(x) is the sum of the terms

of h(x) with odd exponents.

(2). Then g(x) is the irreducible factor of xn − 1 in Z4[x], with µ
(
g(x)

)
= h(x), where

g(x2) = ±
(
e(x)2 − o(x)2

)
.

Example 1.5.1. In F2[x], x7 + 1 = (x+ 1)(x3 +x+ 1)(x3 +x2 + 1) is the factorization of

x7 + 1 into irreducible polynomials. We apply Graeffe’s method to each factor to obtain

the factorization of x7 − 1 into monic irreducible polynomials of Z4[x].

(1). If h(x) = x1 +x0 = x+1, then e(x) = 1 and o(x) = x. So g(x2) = −(1−x2) = x2−1
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and thus g(x) = x−1. Also µ
(
g(x)

)
= g(x) (mod 2) = x−1 (mod 2) = (x+1) (mod 2) =

h(x).

(2). If h(x) = x3 +x+ 1, then e(x) = 1 and o(x) = x3 +x. So g(x2) = −(1− (x3 +x)2) =

x6 + 2x4 + x2 − 1 and thus g(x) = x3 + 2x2 + x− 1.

(3). If h(x) = x3 + x2 + 1, then e(x) = x2 + 1 and o(x) = x3. So g(x2) = −((x2 + 1)2 −

(x3)2) = x6 − x4 + 2x2 − 1 and thus g(x) = x3 − x2 + 2x− 1.

Therefore x7−1 = (x−1)(x3 + 2x2 +x−1)(x3−x2 + 2x−1) is the factorization of x7−1

into monic irreducible polynomials in Z4[x].

Definition 1.5.8. [5]The Galois ring GR(pn,m) is defined as :

GR(pn,m) = Zpn [x]/〈f(x)〉

where f(x) ∈ Zpn [x] is a monic, basic, irreducible polynomial of degree m dividing

xp
m−1 − 1 and 〈f(x)〉 is the ideal of Zpn [x] generated by f(x).

Example 1.5.2. [5]

• GR(p,m) = Fpm , GR(ps, 1) = Zps .

• Let h(x) = x3 + x + 1 ∈ Z4[x] which is monic, basic irreducible over Z4. Then

GR(22, 3) = Z4[x]/〈h(x)〉.

• Let g(x) = x3 + 2x2 + x− 1 ∈ Z4[x] which is also monic, basic, irreducible over Z4.

Then GR(22, 3) = Z4[x]/〈g(x).
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Chapter 2

Cyclic Codes over Z4 of Even Length

Cyclic codes are important class of codes from both a theoretical and a practical view-

point. The key to describe the structure of cyclic codes over a ring R is to view cyclic

codes as ideals in the polynomial ring R[X]
/〈
Xn− 1

〉
, where n is the length of the code.

For this purpose, it is useful to obtain the divisors of Xn − 1, but this becomes difficult

when the characteristic of the ring is not relatively prime to the length of the code,

because then Xn − 1 does not factor uniquely over the ring. For codes over Z4, this

case corresponds to the case, when the length is even. The structure of cyclic codes over

rings of odd length n has been discussed in Bonnecaze and Udaya [7], Calderbank [8],

Dougherty and Shiromoto [11], and van Lint [22]. Calderbank and Sloane [9], and Pless

[19] presented a complete structure of cyclic codes over Z4 of odd length. In[1], Abualrub

and Oehmke determine the generators for cyclic codes over Z4 for lengths of the form 2k

and in [6], Blackford determines the generators of cyclic codes over Z4 for lengths of the

form 2n where n is odd. In this chapter we shall complete the classification by examining

cyclic codes over Z4 of length N = 2kn, where n is odd.
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2.1 Background

Definition 2.1.1. [12] Let C be a code of length n over a finite chain ring R of charac-

teristic 4 with unique maximal ideal m, then we can define the torsion and residue codes

over the residue field F := R/m of characteristic 2 by

Tor(C) = {v ∈ F n : 2v ∈ C} and Res(C) = {v ∈ F n : ∃u such that v + 2u ∈ C}.

We can describe the generator matrices of these codes over Z4. A linear code over Z4

has a generator matrix that is permutation-equivalent to the standard matrix

 Ik1 A A′

0 2Ik2 2A′′

,

where Iki is the identity matrix of size ki, A and A′′ are matrices with entries from {0, 1},

and A′ is a matrix with entries from Z4. A code of this form is said to be of type

{k1, k2}. It contains 4k12k2 elements. The code over F2 = {0, 1} with generator matrix[
Ik1 A A′

]
, where A′ is the reduction modulo 2 of A′, is the residue code. The code

over F2 with generator matrix

 Ik1 A A′

0 Ik2 A′′

 is the torsion code .

Notice that
∣∣Tor(C)

∣∣∣∣Res(C)
∣∣ = 2k12k1+k2 = 4k12k2 = |C| .

Notation: We assume throughout this chapter that n is an odd integer and N = 2kn

will denote the length of a cyclic code over Z4.

Define the ringR = Z4[u]
/〈
u2k−1

〉
. We have a module isomorphism ψ : Rn → (Z4)2kn

defined by

ψ
(
u
( 2k−1∑
j=0

an−1,ju
j
)
,

2k−1∑
j=0

a0,ju
j,

2k−1∑
j=0

a1,ju
j, . . . ,

2k−1∑
j=0

an−2,ju
j
)

=
(
an−1,2k−1, a0,0, a1,0, . . . , an−2,2k−1

)
.

This gives that a cyclic shift in (Z4)2kn corresponds to a constacyclic shift in Rn by u.

For a positive integer m, we define the following Galois ring

GR(4,m) = Z4[X]
/〈
hm(X)

〉
,
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where hm(X) is a monic basic irreducible polynomial in Z4[X] of degree m that divides

X2m−1−1. This ring is local with maximal ideal
〈
2
〉

and residue field F2m. The polynomial

hm is chosen so that ξ = X +
〈
h(X)

〉
is a primitive (2m − 1) st root of unity.

Definition 2.1.2. [12] The set τm = {0, 1, ξ, ξ2, . . . , ξ2m−2} is a complete set of coset

representatives modulo 2 and is called the Teichmüller set.

Each z ∈ GR(4,m) has a unique 2-adic expansion z = z0 + 2z1, with z0, z1 ∈ τm.

Define the ring R4(u,m) = GR(4,m)[u]
/〈
u2k − 1

〉
.

2.2 Construction the Ideals of

R4(u,m) = GR(4,m)[u]
/〈
u2k − 1

〉
.

Lemma 2.2.1. [12] Let S = R4(u,m).

(i) Every element z ∈ S is uniquely written as

z =
2k−1∑
i=0

(
zi,0 + 2zi,1

)(
u− 1

)i
, zi,j ∈ τm.

(ii)An element z ∈ S, written as in (i), is a unit if and only if z0,0 6= 0.

(iii) S is local ring with maximal ideal
〈
2, u− 1

〉
and residue field F2m.

(iv) The ideals of S are:

•
〈
0
〉
,

•
〈
1
〉
,

•
〈
2(u− 1)i

〉
, where 0 ≤ i ≤ 2k − 1,

•
〈
(u− 1)i + 2

∑i−1
j=0 sj(u− 1)j

〉
, where 1 ≤ i ≤ 2k − 1, and sj ∈ τm∀ j,

•
〈
2(u− 1)l, (u− 1)i + 2

∑l−1
j=0 sj(u− 1)j

〉
, where 1 ≤ i ≤ 2k− 1, l < i and sj ∈ τm∀ j.

Proof. (i) Since every element z ∈ GR(4,m) has a unique 2-adic expansion z = z0 + 2z1,

with z0, z1 ∈ τm. Then, we choose to expand in (u− 1) rather in u to get the result.

(ii) If z ∈ S is a unit, then z mod 2 is a unit in F2m [u]
/〈

(u− 1)2k
〉
, which is equivalent
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to z0,0 6= 0. Conversely, for an element z = x + 2y ∈ S, Suppose z mod 2 is a unit

in F2m [u]
/〈

(u − 1)2k
〉
. Then there exists x′ ∈ S such that x′x = 1 mod 2, i.e, x′x =

1 + 2µ, for some µ ∈ S. Then

(
x+ 2y

)(
x′ + 2(−µ− x′y)x′

)
= xx′ + 2

(
yx′ + xx′(−µ− x′y)

)
= 1 + 2(yx′ − µ− x′y + µ

)
= 1,

so x′ + 2(−µ− x′y)x′ is an inverse of z, i.e z is a unit in S.

(iii) We have that S
/〈

2, u−1
〉 ∼= F2m a field, so

〈
2, u−1

〉
is a maximal. To show this ideal

is the unique maximal ideal, we shall show that any element not in the ideal
〈
2, u− 1

〉
is

a unit.

If z =
∑2k−1

i=0 (zi,0 + 2zi,1)(u− 1)i not in
〈
2, u− 1

〉
, then z0,0 6= 0 and therefore z is a unit

by (ii).

(iv) We have the trivial ideals
〈
0
〉

and S =
〈
1
〉
. Let I be an ideal of S, distinct from〈

0
〉

and
〈
1
〉
. If I ⊆

〈
2
〉
, any element I can be written in the form

2s0 + 2s1(u− 1) + . . .+ 2s2k−1(u− 1)2k−1, where sj ∈ τm.

Let s ∈ I be an element with the smallest i with si 6= 0.

For all t ∈ I, t = 2
(
u− 1

)i(
ti + ti+1(u− 1) + . . .+ t2k−1(u− 1)2k−1−i),

where tj ∈ τm. Therefore I ⊆
〈
2(u− 1)

〉
.

Since s = 2
(
u − 1

)i(
si + si+1(u − 1) + . . . + s2k−1(u − 1)2k−1−i), where sj ∈ τm and

si 6= 0, this means that
(
si + si+1(u−1) + . . .+ s2k−1(u−1)2k−1−i) is invertible and hence

2(u− 1)i ∈ I, which implies, I =
〈
2(u− 1)i

〉
.

Hence all ideals contained in
〈
2
〉

are of the form
〈
2(u− 1)i

〉
, 0 ≤ i ≤ 2k − 1.

Now assume I is not contained in
〈
2
〉
. Let

I ′ = {v : v ≡ w mod 2, w ∈ I}.

Then I ′ is an ideal in F2m [u]
/〈

(u − 1)2k
〉
. Since I is not contained in

〈
2
〉
, I ′ is not the

zero ideal
〈
0
〉
. The nonzero ideals in F2m [u]

/〈
(u − 1)2k

〉
, distinct from

〈
1
〉
, are of the

form
〈
(u − 1)i

〉
, 1 ≤ i ≤ 2k − 1. Therefore I ′ =

〈
(u − 1)i

〉
with 1 ≤ i ≤ 2k − 1. Hence
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there exists an element (u− 1)i + 2s ∈ I, for some s ∈ S. Without loss of generality, we

may write

(u− 1)i + 2s = (u− 1)i + 2
2k−1∑
j=0

sj(u− 1)j, where sj ∈ τm.

Since 2(u−1)i = 2
(
(u−1)i+2s

)
∈ I, it follows that 2sj(u−1)j ∈ I for all i ≤ j ≤ 2k−1.

Therefore (u− 1)i + 2
i−1∑
j=0

sj(u− 1)j ∈ I.

Now we divide into two subcases.

Subcase 1:

I =
〈
(u− 1)i + 2

i−1∑
j=0

sj(u− 1)j
〉
.

This is the fourth type of ideals in the list of lemma 2.2.1 (iv).

Subcase 2:
〈
(u− 1)i + 2

i−1∑
j=0

sj(u− 1)j
〉
⊂ I

Let g = (u− 1)i + 2
i−1∑
j=0

sj(u− 1)j. Let r ∈ I
/〈

(u− 1)i + 2
i−1∑
j=0

sj(u− 1)j
〉
. There exists

r′ such that z = r − r′g ∈ I can be written as

z = (z0,0 + 2z0,1) + (z1,0 + 2z1,1)(u− 1) + . . .+ (zi−1,0 + 2zi−1,1)(u− 1)i−1.

Denoting the image of z in F2m [u]
/〈

(u− 1)2k
〉

by z, we have z ∈
〈
(u− 1)i

〉
, so

z0,0 = z1,0 = . . . = zi−1,0 = 0.

Thus we have

z = 2(u− 1)λ
(
zλ,1 + zλ+1,1(u− 1) + . . .+ zi−1,1(u− 1)i−1−λ) . . . . . . . . . (?), with zλ,1 6= 0,

for some λ < i. Since z,1 6= 0, (ii) shows that zλ,1 + zλ+1,1(u− 1) + . . .+ zi−1,1(u− 1)i−1−λ

is a unit. Consequently, 2(u − 1)λ ∈ I. For each r ∈ I
∖〈

(u − 1)i + 2
∑i−1

j=0 sj(u − 1)j
〉
,

we obtain such a λ. Let l be the smallest of these λ. Then〈
(u− 1)i + 2

i−1∑
j=0

sj(u− 1)j, 2(u− 1)l
〉
⊆ I.

By (?) and the definition of l for every r ∈ I, there exists some r′ ∈ I such that

r−r′g ∈
〈
2(u−1)l

〉 (
when r ∈

〈
(u−1)i+2

i−1∑
j=0

sj(u−1)j
〉
, there exists r′ such that r−r′ =
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0 ∈
〈
2(u− 1)l

〉)
, so

r ∈
〈
(u− 1)i + 2

i−1∑
j=0

sj(u− 1)j, 2(u− 1)l
〉
.

Therefore, I =
〈
(u− 1)i + 2

∑i−1
j=0 sj(u− 1)j, 2(u− 1)l

〉
.

Since 2(u− 1)l ∈ I, it follows that, for l ≤ j ≤ i− 1, we have 2sj(u− 1)j ∈ I. Therefore,

it follows that

I =
〈
(u− 1)i + 2

l−1∑
j=0

sj(u− 1)j, 2(u− 1)l
〉
.

Remark 2.2.1. [12] The ideal of the type
〈
(u − 1)i + 2

i−1∑
j=0

sj(u − 1)j
〉
, where 0 ≤ i ≤

2k−1, and sj ∈ τm for all j, can be written in the form
〈
(u−1)i + 2(u−1)th(u)

〉
, where

0 ≤ t ≤ i− 1, and h(u) is either 0 or a unit. Furthermore, we may write

h(u) =
∑

j hj(u − 1)j, where hj ∈ τm for all j. In particular, when h(u) is a unit, then

one of the following must hold:

(i) h(u) = 1;

(ii) h(u) = 1 + (u− 1)τ h̃(u), where τ ≥ 1 and h̃(u) is a unit;

(iii) h(u) =
i−t−1∑
j=0

hj(u− 1)j, with h0 ∈ τm\{0, 1}.

Suppose that T is the smallest integer such that 2(u−1)T ∈
〈
(u−1)i+2

i−1∑
j=0

sj(u−1)j
〉
.

For an ideal of the type
〈
2(u− 1)l, (u− 1)i + 2

i−1∑
j=0

sj(u− 1)j
〉
, we may assume, without

loss of generality, that l < T. Otherwise this ideal is actually
〈
(u− 1)i + 2

i−1∑
j=0

sj(u− 1)j
〉
.

Notice that ideals in the ring S may be viewed equivalently as cyclic codes of length 2k

over GR(4,m).

Lemma 2.2.2. [12] Let C be an ideal in S
(
or equivalently, a cyclic code of length 2k

over GR(4,m)
)
. Then we have that∣∣Res(C)

∣∣∣∣Tor(C)
∣∣ =

∣∣C∣∣.
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Proof. Consider the surjective reduction mod 2 map C :→ Res(C). The kernel of this

map is {c ∈ C : c = 2v for some v}. By identifying F2m with the Teichmüller set τm

in GR(4,m), it follows that there is a natural bijection between this kernel and Tor(C).

Hence, by the First Isomorphism Theorem of finite groups, we have

∣∣Tor(C)
∣∣ =

∣∣C∣∣/∣∣Res(C)
∣∣.

Theorem 2.2.3. [12]

The number of distinct ideals in S = R4(u,m) = GR(4,m)[u]
/〈
u2k − 1

〉
is

5 + (2m)2k−1

+
[
(5.2m)− 1

]
(2m)

(2m)2k−1−1 − 1

(2m − 1)2
− 4

2k−1 − 1

2m − 1
.

2.3 Discrete Fourier Transform

Following [12], we use the Discrete Fourier Transform to give the structure of cyclic codes

in the ring Z4[X]
/〈
XN − 1

〉
where N = 2kn, n is odd as a direct sum of ideals in the

ring R4(u,m). Let M be the order of 2 modulo n and let ζ denote a primitive nth root

of unity in GR(4,M).

Definition 2.3.1. [12] Let

c =
(
c0,0, c1,0, . . . , cn−1,0, c0,1, c1,1, . . . , cn−1,1, . . . , c0,2k−1, c1,2k−1, . . . , cn−1,2k−1

)
∈
(
Z4

)N
, N =

2kn (n odd), with c(x) =
n−1∑
i=0

2k−1∑
j=0

ci,jx
i+jn the corresponding polynomial. The Discrete

Fourier Transform of c(x) is the vector

(ĉ0, ĉ1, . . . , ĉn−1) ∈ R4(u,M)n

with ĉn = c
(
uńζh

)
=

n−1∑
i=0

2k−1∑
j=0

c
i,ju

ńi+j
ζhi

for 0 ≤ h < n, where nń ≡ 1 mod 2k.

Define the Mattson-Solomon polynomial of c to be ĉ(Z) =
∑n−1

h=0 cn−hZ
h (Here, ĉ0 = ĉn ).
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Lemma 2.3.1. (Inversion formula)[12]

Let c ∈ (Z4)N , where N = 2kn (n odd), with ĉ(Z) its Mattson-Solomon polynomial as

defined above. Then

c = ψ
[(

1, u−ń, u−2ń, . . . , u−(n−1)ń
)
∗ 1

n

(
ĉ(1), ĉ(ζ), . . . , ĉ(ζn−1)

)]
where ∗ indicates componentwise multiplication.

Proof. Let 0 ≤ t ≤ n− 1. Then

ĉ(ζt) =
n−1∑
h=0

ĉhζ
−ht

=
n−1∑
h=0

( n−1∑
i=0

2k−1∑
j=0

ci,ju
ńi+jζhi

)
ζ−ht

=
n−1∑
i=0

2k−1∑
j=0

ci,ju
ńi+j

n−1∑
h=0

ζh(i−t)

= (nuńt)
2k−1∑
j=0

ct,ju
j.

Hence u−ńt( 1
n
)ĉ(ζt) =

2k−1∑
j=0

ct,ju
j. Noting that u−i = u2k+1−i in R4(u,M), we get the

result.

Notation: Let J denote a complete set of representatives of the 2-cyclotomic cosets

modulo n and, for each α ∈ J , let mα denote the size of the 2-cyclotomic coset containing

α.

The following theorem allows us to describe cyclic codes which are ideals in

Z4[X]
/〈
XN − 1

〉
where N = 2kn, n is odd in terms of ideals of R4(u,mα) which we have

previously described.

Theorem 2.3.2. [12] The map γ = Z4[X]
/〈
XN − 1

〉
→
⊕

α∈J R4(u,mα) is a ring

isomorphism, where γ
(
c(X)

)
= [ĉα]α∈J for c(X) ∈ Z4[X]

/〈
XN − 1

〉
.

Since a cyclic code of length N = 2kn over Z4 can be regarded as an ideal in

Z4[X]
/〈
XN − 1

〉
, we have the following corollary.
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Corollary 2.3.3. [12] If C is a cyclic code of length N = 2kn over Z4, then C is iso-

morphic
⊕

α∈J Cα, where for each α ∈ J, Cα is an ideal in R4(u,mα).

Proof. By Theorem 2.3.2 Z4[X]
/〈
XN − 1

〉 ∼= ⊕
α∈J R4(u,mα), but C is an ideal in

Z4[X]
/〈
Xn− 1

〉
and ∀α ∈ J , Cα is an ideal in R4(u,mα). So C ∼=

⊕
α∈J Cα over Z4.

Notation: For each α ∈ J , let Nα denote the number of distinct ideals in R4(u,mα),

as given in Theorem 2.2.3, then the following result follows:

Corollary 2.3.4. [12] The number of distinct cyclic codes over Z4 of length N = 2kn,

(n odd ) is
∏

α∈J Nα.

Proof. Let Nα denote the number of distinct ideals in R4(u,mα) which is equivalent to

the number of cyclic codes in R4(u,mα)⇒ by Th.2.3.3 and Corollary 2.3.3, The number

of distinct cyclic codes over Z4 of length N = 2kn (n odd) is
∏

α∈J Nα

Example 2.3.1. (i) Consider cyclic codes of length 16 over Z4,

⇒ 16 = 24.1 ⇒ k = 4, n = 1, J = {0}

⇒ the 2-cyclotomic coset containing 0 is {0} mod 1 ⇒ m0 = 1 ⇒ by Theorem 2.2.3

N0 = 5 + 28 + (9)(2)(27 − 1) − 4(23 − 1) = 2519 ⇒ by Corollary 2.3.4, there are 2519

cyclic codes of length 16 over Z4.

(ii) Consider cyclic codes of length 28 over Z4 ⇒ 28 = 22(7) ⇒ k = 2, n = 7. The two

cyclotomic cosets mod 7 are c0 = {0}, c1 = {1, 2, 4}, c6 = {6, 5, 3}

⇒ J = {0, 1, 6} ⇒ m0 = 1, m1 = 3, m6 = 3

⇒ N0 = 5 + (21)22−1
+
[
(5.21)− 1

]
(21) (21)22−1−1−1

(21−1)2 − 4
(

22−1

21−1

)
= 23,

N1 = 5 + (23)22−1
+
[
(5.23)− 1

]
(23) (23)22−1−1−1

(23−1)2 − 4
(

22−1

23−1

)
= 113. Similarly N6 = 113.

⇒ by Corollary 2.3.4, there are 23.113.113 = 293687 cyclic codes of length 28 over Z4.

Remark 2.3.1. [12] (1) If N = 2k, then J0 = {0}. In this case m0 = 1, then the number

of cyclic codes of length 2k is

5 + 22k−1
+ (9)(2)

(
22k−1 − 1

)
− 4
(
22k−1 − 1

)
= 10.22k−1 − 4(22k−1

)− 9.
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(2) If k = 1, then N = 2n ⇒ the number of ideals in R4(u,mα) is 5 + 2mα . Hence the

number of cyclic codes of length 2n is
∏

α∈J(5 + 2mα).

2.4 Duals

Definition 2.4.1. [12] For an ideal C of S = R4(u,m), the annihilator A(C) of C is

defined to be the ideal A(C) = {g(u) : g(u)f(u) = 0, ∀f(u) ∈ C}.

Theorem 2.4.1. [12] The annihilator A(C) of the ideal C in S = R4(u,m) is of the

following form :

Case C A(C)

1
〈
0
〉 〈

1
〉

2
〈
1
〉 〈

0
〉

3
〈
2
〉 〈

2
〉

4
〈
2(u− 1)i

〉
(1 ≤ i ≤ 2k − 1)

〈
2, (u− 1)2k−i〉

5
〈
(u− 1)i

〉
(1 ≤ i ≤ 2k−1)

〈
(u− 1)2k−i + 2(u− 1)2k−1−i〉

6
〈
(u− 1)i

〉
(2k−1 + 1 ≤ i ≤ 2k − 1)

〈
2(u− 1)2k−i, (u− 1)2k−1

+ 2
〉

7
〈
(u− 1)i + 2(u− 1)i−2k−1〉 〈

(u− 1)2k−i〉
(2k−1 ≤ i ≤ 2k − 1)

8
〈
(u− 1)i + 2(u− 1)i−2k−1

(1 + (u− 1)τ h̃(u))
〉 〈

(u− 1)2k−i + 2(u− 1)2k−1+τ−ih̃(u)
〉

(2k−1 ≤ i ≤ 2k−1 + τ, τ ≥ 1)

9
〈
(u− 1)i + 2(u− 1)i−2k−1

(1 + (u− 1)τ h̃(u))
〉 〈

2(u− 1)2k−i, (u− 1)2k−1−τ + 2h̃(u)
〉

(2k−1 + τ ≤ i ≤ 2k − 1, τ ≥ 1)

10
〈
(u− 1)2k−1

+ 2h(u)
〉

(h0 6= 0, 1)
〈
(u− 1)2k−1

+ 2(1 + h(u))
〉

11
〈
(u− 1)i + 2(u− 1)i−2k−1

h(u)
〉 〈

2(u− 1)2k−i, (u− 1)2k−1
+ 2(1 + h(u))

〉
(2k−1 + 1 ≤ i ≤ 2k − 1, h0 6= 0, 1)

12
〈
(u− 1)i + 2(u− 1)th(u)

〉 〈
(u− 1)2k−i + 2(u− 1)2k−1−i

(2k−1 − i+ t 6= 0, i ≤ 2k−1, h(u) 6= 0) (1 + (u− 1)2k−1−i+th(u))
〉

13
〈
(u− 1)i + 2(u− 1)th(u)

〉 〈
2(u− 1)2k−i, (u− 1)2k−1

(2k−1 − i+ t 6= 0, +2
(
1 + (u− 1)2k−1−i+th(u))

〉
2k−1 < i < 2k−1 + t, h(u) 6= 0

)
14

〈
(u− 1)i + 2(u− 1)th(u)

〉 〈
2(u− 1)2k−i, (u− 1)i−t

(2k−1 − i+ t 6= 0, 2k−1 + t < i, +2
(
h(u) + (u− 1)i−t−2k−1

)
〉

t > 0 h(u) 6= 0
)

15
〈
(u− 1)i + 2h(u)

〉 〈
(u− 1)i + 2(h(u) + (u− 1)i−2k−1

)
〉

(2k−1 < i, h(u) 6= 0)

16
〈
2, (u− 1)i

〉
(1 ≤ i ≤ 2k − 1)

〈
2(u− 1)2k−i〉
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Case C A(C)

17
〈
2(u− 1)l, (u− 1)2k−1

+ 2
〉 〈

(u− 1)2k−l〉
(1 ≤ l ≤ 2k−1 − 1)

18
〈
2(u− 1)l, (u− 1)2k−1

+ 2(1 + (u− 1)τ h̃(u))
〉 〈

(u− 1)2k−l + 2(u− 1)2k−1−l+τ h̃(u)
〉

(1 ≤ l ≤ 2k−1 − 1, 1 ≤ l − 1)

19
〈
2(u− 1)l, (u− 1)2k−1

+ 2h(u)
〉 〈

(u− 1)2k−l + 2(u− 1)2k−1−l + (1 + h(u))
〉

(1 ≤ l ≤ 2k−1 − 1, h0 6= 0, 1)

20
〈
2(u− 1)l, (u− 1)i + 2h(u)

〉 〈
(u− 1)2k−l + 2(u− 1)2k−l−i(h(u)

(2k−1 + 1 ≤ i ≤ 2k − 1, h(u) 6= 0 +(u− 1)i−2k−1
)
〉

1 ≤ l < 2k − i− 1)
21

〈
2(u− 1)l, (u− 1)i + 2h(u)

〉 〈
(u− 1)2k−l + 2(u− 1)2k−1−l(1

(1 ≤ i ≤ 2k−1 − 1, h(u) 6= 0 +(u− 1)2k−1−ih(u))
〉

1 ≤ l < i− 1)
22

〈
2(u− 1)l, (u− 1)i

〉 〈
2(u− 1)2k−i, (u− 1)2k−l

(1 ≤ i ≤ 2k − 1, +2(u− 1)2k−1−l)
〉

i− 2k−1 + 1 ≤ l ≤ min{i, 2k−1} − 1)
23

〈
2(u− 1)l, (u− 1)i

〉 〈
2(u− 1)2k−i, (u− 1)2k−l〉

(2k−1 + 1 ≤ i ≤ 2k − 1 ,

1 ≤ l ≤ i− 2k−1)
24

〈
2(u− 1)l, (u− 1)i + 2(u− 1)i−2k−1〉 〈

2(u− 1)2k−i, (u− 1)2k−l〉
(2k−1 + 1 ≤ i ≤ 2k − 1 ,

i− 2k−1 < l < i)
25

〈
2(u− 1)l,

〈
2(u− 1)2k−i, (u− 1)2k−l

(u− 1)i + 2(u− 1)i−2k−1
(1 + (u− 1)τ h̃(u))

〉
+2(u− 1)2k−1−l+τ h̃(u)

〉
(2k−1 + 1 ≤ i ≤ 2k − 1 ,

i− 2k−1 < l < min{i, 2k−1 + τ})
26

〈
2(u− 1)l, (u− 1)i

〈
2(u− 1)2k−i

, (u− 1)2k−l

+2(u− 1)i−2k−1
h(u)

〉
+2(u− 1)2k−1−l(1 + h(u))

〉
(2k−1 + 1 ≤ i ≤ 2k − 1 ,

i− 2k−1 < l < 2k−1, h0 6= 0, 1)
27

〈
2(u− 1)l, (u− 1)i

〈
2(u− 1)2k−i

, (u− 1)2k−l

+2(u− 1)th(u)
〉

+2(u− 1)2k−1−l(1 + h(u))
〉

(2k−1 + t ≤ i ≤ 2k−1 + l, h(u) 6= 0,

0 < t < l < 2k − i+ t)
28

〈
2(u− 1)l, (u− 1)i

〈
2(u− 1)2k−i, (u− 1)2k−l

+2(u− 1)th(u)
〉

+2(u− 1)2k−l−i+th(u)
〉

(2k−1 + l ≤ i, h(u) 6= 0,

0 < t < l < 2k − i+ t)
29

〈
2(u− 1)l, (u− 1)i

〈
2(u− 1)2k−i, (u− 1)2k−l

+2(u− 1)th(u)
〉

+2(u− 1)2k−1−l(1 + (u− 1)2k−1−i+t)h(u)
〉

(1 ≤ i ≤ 2k−1 + t− 1, h(u) 6= 0,

0 < t < l < min{ 2k−1, i, 2k − i+ t})

Proof. For each C, Let D denote the corresponding ideal in the right-most column.
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A simple verification shows that D ⊆ A(C) and that |D| = (4m)2k/|C|. An argument

similar to one for Lemma 5.2 in reference [12] proves that A(C) ⊆ C⊥

⇒ (4m)2k/|C| = |D| ≤ |A(C)| = |A(C)| ≤ |C⊥| = (4m)2k/|C|.

Therefore, D = A(C) and A(C) = C⊥.

Corollary 2.4.2. [12] Let C be a cyclic code over Z4 of length 2kn and let C =
⊕

α∈J Cα. Then

C⊥ =
⊕
α∈J

A(Cα′),

where α′ denote the representative in J of the coset containing n− α, ∀α ∈ J.

Therefore to understand self-dual codes, it is first necessary to identify the ideals

C ⊆ R4(u,m) such that C = A(C).

Proposition 2.4.3. [12] With notation as in Theorem 2.4.1, if C = A(C), then C must

belong to one of the following types:

•
〈
2
〉

(case 3);

•
〈
(u− 1)i + 2h(u)

〉
, (2k−1 < i, h(u) 6= 0) (case 15);

•
〈
2(u− 1)2k−i, (u− 1)i

〉
, 3.2k−2 ≤ i ≤ 2k − 1 (case 23);

•
〈
2(u − 1)2k−i, (u − 1)i + 2(u − 1)th(u)

〉
, 2k−1 + t < i, h(u) 6= 0, 0 < t < 2k − i (case

27,28).

Proof. First we eliminate the other cases. It is clear that C in cases 1 and 2 cannot

satisfy C = A(C). For cases 4,6,7,9,11,13,14,16-21, C and A(C) are clearly of different

types (e.g., in all cases except for case 7, one ideal is principal while the other is not).

Some other cases are eliminated by showing an element is in C, if we assume C = A(C),

while it really should not. This approach works for cases 5,8,10 and 12. We illustrate

with case 8(one of the more involved among these cases). Note that Res(C)=Res(A(C))

implies that i = 2k−1. Now write h(u) =
∑
hj(u− 1)j. So, Tor(C) =

〈
(u− 1)2k−1〉

in this

case (cf. [12, Proposition 2.5]). The assumption C = A(C) implies that

C =
〈
(u− 1)2k−1

+ 2(1 +
∑

hj(u− 1)j+τ
〉

44



=
〈
(u− 1)2k−1

+ 2(u− 1)τ (
∑

hj(u− 1)ju2k−1−τ−j)
〉
,

which implies that

2
(
1 +

∑
hj(u− 1)j+τ

)
+ 2(u− 1)τ

(∑
hj(u− 1)ju2k−1−τ−j) ∈ C.

This means that

(
1 +

∑
hj(u− 1)j+τ + (u− 1)τ

(∑
hj(u− 1)ju2k−1−τ−j) ∈ Tor(C) =

〈
(u− 1)2k−1〉

,

which cannot be true since τ ≥ 1. Cases 5,10 and 12 can be eliminated in a similar fashion.

The remaining cases to eliminate, i.e., cases 22,24, 25, 26 and 29, can proved by showing

that the assumption C = A(C) leads to a contradiction to some of the conditions on i, l

and t. E.g., consider Case 25. With h̃(u) =
∑
h̃j(u − 1)j, The assumption C = A(C)

means that

〈
2(u− 1)l, (u− 1)i + 2(u− 1)i−2k−1

(1 + (u− 1)τ
∑

h̃j(u− 1)j
〉

=
〈
2(u− 1)2k−i, (u− 1)2k−l + 2(u− 1)2k−1−l+τ(∑ h̃j(u− 1)ju2k−1−τ−j)〉,

which implies that i+ l = 2k and (hence)

2(u− 1)i−2k−1(
1 + (u− 1)τ

∑
h̃j(u− 1)j

)
+ 2(u− 1)i−2k−1+τ

(∑
h̃j(u− 1)ju2k−1−τ−j) ∈ C,

so

(u − 1)i−2k−1(
1 + (u − 1)τ

∑
h̃j(u − 1)j

)
+ (u − 1)τ

(∑
h̃j(u − 1)ju2k−1−τ−j) ∈ Tor(C) =〈

(u− 1)l
〉
. This means that i− 2k−1 ≥ l, but this case assume that i− 2k−1 < l. Cases

22, 24. 26 and 29 may be dealt with in a similar way.

Consequently, only cases 3, 15, 23, 27 and 28 remain plausible for C. The additional

constraint for case 23 in the statement of the proposition follows because i + l = 2k and

l ≤ i− 2k−1.

Corollary 2.4.4. [12] For integer k such that 1 ≤ k ≤ 4, the number of ideals C ⊆

R4(u,m) such that C = A(C) is : (i) 1 (where k = 1)

(ii) 2m + 1 (where k = 2;)

(iii) 2.(2m)2 + 2m + 1 (where k = 3); and
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(iv) (2m)4 + 2.(2m)3 + (2m)2 + 2 (where k = 4)

For α ∈ J, recall that Nα denotes the number of ideals in R4(u,mα). Let Mα denote the

number of ideals C in R4(u,mα), such that C = A(C).

Let J̃ denote the subset of J consisting of those α such that α = α where α ∈ J is the

representative of the cyclotomic coset containing n − α. We also further partition J \ J̃

into two parts K, K ′ of equal size such that α ∈ K if and only if α ∈ K ′.

Proposition 2.4.5. [12] The number of self-dual cyclic codes over Z4 of length 2kn is

given by ∏
α∈K

Nα

∏
α∈J̃

Mα.

Corollary 2.4.6. [12] If there exist e such that −1 ≡ 2e mod n, then there is only one

cyclic self-dual code of length 2n, where n is odd, namely 2(Z4)2n

Proof. If N = 2n, then as N = 2kn, we have k = 1. We have that Z4[X]
/〈
XN − 1

〉 ∼=⊕
α∈J R4(u,mα). The condition that −1 ≡ 2e mod n, for some e implies that α = α′

for all α ∈ J , i.e., J = J̃ . Since k = 1, the only self-dual ideal in each R4(u,m) is
〈
2
〉
.

Therefore there is only one cyclic self-dual code and it is
⊕

α∈J
〈
2
〉

= 2(Z4)2n.

2.5 Examples

Example 2.5.1. If N = 2, then n = 1, k = 1, J = {0}, m0 = 1.

There are
∏

α∈J 5 + 2mα = 5 + 21 = 7 ideal of this case. We can list them by using

Corollary 2.3.4, and Lemma 2.2.1 as:〈
0
〉
,
〈
1
〉
,〈

2(u− 1)i
〉
, 0 ≤ i ≤ 2k − 1⇒ 0 ≤ i ≤ 21 − 1⇒ 0 ≤ i ≤ 1

⇒
〈
2(u− 1)0

〉
,
〈
2(u− 1)1

〉
⇒
〈
2
〉
,
〈
2(u− 1)

〉
.〈

(u− 1)i + 2
i−1∑
j=0

sj(u− 1)j
〉
, 1 ≤ i ≤ 2k − 1⇒ 1 ≤ i ≤ 1⇒ i = 1⇒

〈
(u− 1)

〉
.

〈
2(u− 1)l, (u− 1)i + 2

l−1∑
j=0

sj(u− 1)j
〉
, l < i ⇒

〈
(u− 1) + 2

〉
,
〈
(u− 1), 2

〉
.

By Corollary 2.4.6, there is only one cyclic self-dual code of length 2, namely
〈
2
〉

= 2(Z4)2.
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Example 2.5.2. If N = 4, then n = 1, k = 2, J = {0}, and m0 = 1. There are

10.22 − 4.21 − 9 = 23 ideals for this case. There are 2m + 1 = 21 + 1 = 3 cyclic self-dual

codes of this length. We list them:〈
2
〉
,
〈
(u− 1)3 + 2

〉
,
〈
2(u− 1), (u− 1)3

〉
.

Example 2.5.3. [12] If N = 6, then n = 3, k = 1. The two cyclotomic coset mod 3

are c0 = {0}, c1 = {1, 2} ⇒ J = {0, 1}, m0 = 1, m1 = 2

⇒There are
∏

α∈J 5 + 2mα = (5 + 21)(5 + 22) = (7)(9) = 63 ideals in this case. By

Corollary 2.4.6 , there is only 1 cyclic self-dual code, namely
〈
2
〉⊕〈

2
〉

= 2(Z4)6.

Example 2.5.4. [12] If N = 8, then n = 1, k = 3, J = {0}, and m0 = 1. There are

10(24)−4(22)−9 = 135 ideals in this case. There are 2.(2m)2+2m+1 = 2(21)2+21+1 = 11

cyclic self-dual codes of length 8. They are:〈
2
〉
,
〈
(u − 1)5 + 2

〉
,
〈
(u − 1)5 + 2(1 + (u − 1))

〉
,
〈
(u − 1)5 + 2(1 + (u − 1)2)

〉
,
〈
(u −

1)5 + 2(1 + (u− 1) + (u− 1)2)
〉
,
〈
(u− 1)6 + 2

〉
,
〈
(u− 1)6 + 2(1 + (u− 1))

〉
,
〈
(u− 1)7 +

2
〉
,
〈
2(u− 1)2, (u− 1)6

〉
,
〈
2(u− 1), (u− 1)7

〉
and

〈
2(u− 1)2, (u− 1)6 + 2(u− 1)

〉
.

Example 2.5.5. If N = 10, then n = 5, k = 1, c0 = {0}, c1 = {1, 2, 4, 3} mod 5 ⇒

m0 = 1, m1 = 4, J = {0, 1}. There are
∏

α∈J(5 + 2mα) = (5 + 21)(5 + 24) = (7)(21) = 84

ideals in this case. There is only 1 cyclic self-dual code, namely
〈
2
〉⊕〈

2
〉

= 2(Z4)10.
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Chapter 3

Negacyclic Codes of Even Length

over Z2a

In this chapter, we determine the structure of negacyclic codes of even length over the ring

Z2a and their dual codes. Furthermore we study self-dual negacyclic code of even length

over Z2a . A necessary and sufficient condition for the existence of nontrivial self-dual

negacyclic codes is given, and the number of the self-dual negacyclic codes for a given

even lengh is determined.

3.1 A ring Construction

During this chapter, we will focus on dual and self-dual negacyclic codes over Z2a of length

N = 2kn, where n is odd and k, a ≥ 1 are positive integers.

Definition 3.1.1. [23] Negacyclic codes over Z2a of length N = 2kn, (n odd) are precisely

ideals of the quotient ring RN = Z2a [x]
/〈
xN + 1

〉
.

Definition 3.1.2. [23] Define the Galois ring GR(2a,m) = Z2a [x]
/〈
hm(x)

〉
where hm(x)

is a monic basis irreducible polynomial in Z2a [x] of degree m. Note that if a = 1, then

GR(2a,m) = GF (2m) and if m = 1, then GR(2a,m) = Z2a . The Galois ring GR(2a,m)

is local ring with maximal ideal
〈
2
〉

and residue field GF (2m).
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The polynomial hm(x) has a root ξ in GR(2a,m), which is also a primitive (2m− 1)th

root of unity.

Let R = Z2a [u]
/〈
u2k + 1

〉
. There exists a natural Z2a-module isomorphism φ : Rn →

ZN
2a , where N = 2kn, (n odd) defined by

ψ
(
a0,0 + a0,1u+ . . .+ a0,2k−1u

2k−1, . . . , an−1,0 + an−1,1u+ . . .+ an−1,2k−1u
2k−1

)
=
(
a0,0, a1,0, . . . , an−1,0, a0,1, a1,1, . . . , an−1,1, . . . , a0,2k−1, a1,2k−1, . . . , an−1,2k−1

)
This gives that constacyclic shift by u in Rn corresponds to a negacyclic shift in ZN

2a .

Thus we get the following theorem:

Theorem 3.1.1. [23] Negacyclic codes over Z2a of length N = 2kn (n odd) correspond to

u-constacyclic codes over R = Z2a [u]
/〈
u2k + 1

〉
of length n via the map ψ.

Next we introduce the quotient ring Ra(u,m) = GR(2a,m)[u]
/〈
u2k + 1

〉
.

Lemma 3.1.2. [23] For any positive integer b, there exist a polynomial αb(u) ∈ Z[u]

such that (u − 1)2b = u2b + 1 − 2αb(u), and αb(u) is a unit in Ra(u,m). In particular,

(u− 1)2k = 2αk(u), where αk(u) is a unit in Ra(u,m).

Proof. We prove by induction on b. For b = 1, (u − 1)2 = u2 + 1 − 2u, αb(u) = u and

hence αb(u) = u is a unit in Ra(u,m). Assume b > 1 and the conclusion is true for all

positive integers less than b. Then

(u− 1)2b =
[
(u− 1)2b−1]2

=
[
u2(b−1)

+ 1− 2αb−1(u)
]2

= u2b + 1 + 4α2
b−1(u) + 2u2(b−1) − 4αb−1(u)− 4(u)2(b−1)

αb−1(u)

= u2b + 1− 2αb(u)

where αb(x) = −2α2
b−1(u)− u2(b−1)

+ 2αb−1(u) + 2u2(b−1)
αb−1(u).

To show αb(u) is a unit in Ra(u,m), we note that u is invertible, and so u2(b−1)
is also

invertible in Ra(u,m). As 2 is nilpotent in Ra(u,m), it follows that αb(u) has the form
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αb(u) = u2(b−1)
(1 + y), where y is nilpotent in Ra(u,m). Choose r to be an odd integer

such that yr = 0, we have 1 = 1 + yr = (1 + y)(1− y+ y2− . . .+ yr−1) which means 1 + y

is invertible in Ra(u,m), and therefore αb(u) = u2(b−1)
(1 + y) is a unit in Ra(u,m).

It remains to show that (u− 1)2k = 2αk(u). To see this, note that (u− 1)2k = u2k + 1−

2αk(u)

= 2αk(u) (since u2k + 1 is the zero element in Ra(u,m)).

Lemma 3.1.3. [23] The ring Ra(u,m) is a chain ring with maximal ideal
〈
u − 1

〉
and

residue field GF (2m). The ideals of Ra(u,m) are
〈
(u− 1)i

〉
, 0 ≤ i ≤ 2ka.

Proof. Let I be the ideal ofRa(u,m). The set β consisting of elements of I reduced modulo

2 is an ideal of Ra(1,m). Since Ra(1,m) is a chain ring with the maximal ideal
〈
u−1

〉
, then

β =
〈
(u− 1)i

〉
in Ra(1,m), for some i ∈ {0, 1, . . . , 2k}. Hence, for each element r(u) ∈ I,

there exist κ(u), γ(u) ∈ Ra(u,m) such that r(u) = (u − 1)iκ(u) + 2γ(u). By Lemma

3.1.2, 2γ(u) ∈
〈
(u − 1)2s

〉
, whenece I is contained in some ideal

〈
(u − 1)j

〉
of Ra(u,m),

where 0 ≤ j ≤ 2ka. Choose s to be the largest among those j ∈ {0, 1, . . . , 2ka} such that

I ⊆
〈
(u−1)j

〉
of Ra(u,m). Then I =

〈
(u−1)s

〉
. As I was chosen arbitrary among ideals of

Ra(u,m). It follows that the ideals of Ra(u,m) are
〈
(u−1)i

〉
, 0 ≤ i ≤ 2ka. Consequently,

Ra(u,m) is a chain ring with maximal ideal
〈
u− 1

〉
and residue field GF (2m).

Remark 3.1.1. [23] (1) In Ra(u,m), Lemma 3.1.2 implies
〈
(u − 1)2k

〉
=
〈
2
〉
. Thus, the

ideals of Ra(u,m) can be written as
〈
2j(u− 1)b

〉
, 0 ≤ j ≤ a− 1, 0 ≤ b ≤ 2k − 1.

(2) Since negacyclic codes of length 2k over GR(2a,m) are the ideals of Ra(u,m), then

by Lemma 3.1.3, we have that negacyclic codes of length 2k over GR(2a,m) are precisely〈
(u− 1)i

〉
, 0 ≤ i ≤ 2ka.

Theorem 3.1.4. [23] Let C be an ideal of Ra(u,m), then we have the following:

(i) C =
〈
(u − 1)i

〉
for some i ∈ {0, 1, . . . , 2ka} and the number of codewords in C is

|C| = 2m(2ka−i).

(ii) The dual code of C is C⊥ =
〈
(u − 1)2ka−i〉 and the number of codewords in C⊥ is

|C⊥| = 2mi.
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Proof. (i) Follows directly from Lemma 3.1.3.

(ii) Since |C||C⊥| =
∣∣Ra(u,m)

∣∣ = 22kam, we have |C⊥| = 22kam

2m(2ka−i) = 2mi.

Because C⊥ is also a negacyclic code, then there exists j ∈ {0, 1, . . . , 2ka} such that

C⊥ =
〈
(u − 1)j

〉
and |C⊥| = 2m(2ka−j). It follows that i = 2ka − j, and hence C⊥ =〈

(u− 1)2ka−i〉

3.2 The Ideals Construction

Let m be the order of 2 modulo n, and let I be a complete set of 2-cyclotomic coset

representatives modulo n. Letmi be the size of the 2-cyclotomic coset modulo n containing

i, and let ξ be a primitive nth root of unity in GR(2a,m).

Definition 3.2.1. [23]

Let c =
(
c0,0, c1,0, . . . , cn−1,0, c0,1, c1,1, . . . , cn−1,1, . . . , c0,2k−1, . . . , cn−1,2k−1

)
∈ ZN

2a , with

c(x) =
n−1∑
i=1

2k−1∑
j=0

ci,jx
i+jn ∈ Z2a [x] the corresponding polynomial. The Discrete Fourier

Transform of c(x) is the vector (ĉ0, ĉ1, . . . , ĉn−1) ∈ Ra(u,m)n with

ĉh = c(un
′
ξh) =

n−1∑
i=0

2k−1∑
j=0

ci,ju
n′i+jξhi, for 0 ≤ h ≤ n− 1, where nn′ ≡ 1( mod 2k+1).

Lemma 3.2.1. [23](Inversion Formula) Let c ∈ ZN
2a with ĉ(z) its Mattson-Solomn poly-

nomial as defined in chapter 2, (see Defn 2.3.1). Then

c = φ

[(
1, u−n

′
, u−2n′ , . . . , u−(n−1)n′

)
∗ 1

n

(
ĉ(1), ĉ(ξ), . . . , ĉ(ξn−1)

)]
where ∗ denotes componentwise multiplication.

Proof. Let 0 ≤ t ≤ n− 1, Then

ĉ(ξt) =
n−1∑
h=0

ĉhξ
−ht =

n−1∑
h=0

(
n−1∑
i=0

2k−1∑
j=0

ci,ju
n′i+jξhi

)
ξ−ht

=
n−1∑
i=0

2k−1∑
j=0

ci,ju
n′i+j

n−1∑
n=0

ξh(i−t)

= (nun
′t)

2k−1∑
j=0

ct,ju
j.
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Hence, u−n
′t( 1

n
)ĉh(ξ

t) =
2k−1∑
j=0

ct,ju
j. Noting that u−i = u2k+1−i ∈ Ra(u,m), we get the

result.

Theorem 3.2.2. [23] Let N = 2kn, where n is odd. Then

γ : RN = Z2a [x]
/〈
xN + 1

〉
7−→

⊕
i∈I
Ra(u,mi)

defined by γ(c) = (ĉi)i∈I is a ring isomorphisim.

In particular, if C is a negacyclic code of length N over Z2a, then C is isomorphic to

⊕i∈ICi where Ci is the ideal {c(un′ξi) : c(x) ∈ C} ⊆ Ra(u,mi) and I is a complete set of

2-cyclotomic coset representatives modulo n.

Combining Lemma 3.1.3, Theorem 3.1.4, and Lemma 3.2.2, we immediately get the

following enumeration result.

Corollary 3.2.3. [23]

The number of distinct negacyclic codes over Z2a of length N = 2kn (n odd) is

(2ka+1)|I|, where I is a complete set of 2-cyclotomic coset representatives modulo n, and

|I| denotes its cardinality.

Example 3.2.1. Consider the cyclic codes of length 28 over Z4

⇒ 28 = 22(7)⇒ k = 2, n = 7 and Z4 = Z22

⇒ a = 2⇒ c0 = {0}, c1 = {1, 2, 4}, c6 = {6, 5, 3}

⇒ I = {0, 1, 6} ⇒the number of distinct negacyclic codes over Z4 of length 28 is (22(2) +

1)3 = 729.

Lemma 3.2.4. [23] Let fs(x) be the minimal polynomial of ξs in Z2a, and let n′ be a

positive integer such that nn′ ≡ 1( mod 2k+1) Then

(i) fs(u
n′ξs) not equivalent to 0 mod 2;

(ii) fs(u
n′ξs) ∈

〈
u− 1

〉
but fs(u

n′ξs) not in
〈
(u− 1)2

〉
.

Now we describe a negacyclic code over Z2a of length N = 2kn (n odd) in term of its

generator polynomials.
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Theorem 3.2.5. [23]

Let C be a negacyclic code over Z2a of length N = 2kn (n odd), then C =
〈
g(x)

〉
, where

g(x) =
2ka∏
j=0

[gj(x)]j, and gj(x)’s are monic coprime divisors of xn − 1 in Z2a [x].

Proof. By Theorem 3.2.2, C is isomorphic to a direct sum
⊕

i∈I Ci, where Ci is the ideal

{c(un′ξi) : c(x) ∈ C} ∈ Ra(u,mi), where n′ be a positive integer such that nn′ ≡ 1(

mod 2k+1). For each j, we define gj(x) to be the product of all minimal polynomials of ξi

such that Ci =
〈
(u− 1)j

〉
. If a(x) = r(x)[gj(x)]b, where r(x) is relatively prime to gj(x)

and 0 ≤ b ≤ 2ka, then by Lemma 3.2.4, a(un
′
ξi) = r(un

′
ξi)
[
gj(u

n′ξi)
]b ∈ 〈(u− 1)b

〉
, but

not in
〈
(u − 1)b+1

〉
. Hence if c(x) = g(x)h(x) ∈ C for some polynomial h(x) ∈ RN ,

then c(un
′
ξi) = g(un

′
ξi)h(un

′
ξi) ∈

〈
(u− 1)j

〉
, but not in

〈
(u− 1)j−1

〉
. Thus, we can take

g(x) =
2ka∏
j=0

[gj(x)]j as the generator polynomial of C.

Corollary 3.2.6. [23] If C is a negacyclic code over Z2a of length N = 2kn (n odd), and

C =

〈
2ka∏
j=0

[gj(x)]j

〉
, where gj(x)’s are monic coprime divisors of xn − 1 in Z2a [x], then

|C| = 2q, where q =
2ka−1∑
j=0

(2ka− j) deg(gj(x))

Proof. By Theorem 3.2.2, the size of C is
∏
i∈I

|Ci|, where Ci is the ideal of Ra(u,mi). Note

that if Ci =
〈
(u − 1)j

〉
, then gj(ξ

i) = 0 and |Ci| = 2mi(2
ka−j). Calculating the product,

we obtain the result.

3.3 Dual and Self-dual

Definition 3.3.1. [23] Let R = Z2a [u]
/〈
u2k + 1

〉
, and let − : R −→ R denote the

conjugate map defined by
∑2k−1

i=0 aiui =
∑2k−1

i=0 aiu
−i, where u−i = u2k+1−i in R. This map

is also extended to Ra(u,m) in the obvious way. We define the Hermitian inner product

as fellows:

For c′ = (c0, c1, . . . , cn−1) ∈ Rn and d′ = (d0, d1, . . . , dn−1) ∈ Rn,
〈
c′, d′

〉
=

n−1∑
j=0

cjdj.
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Again recall that φ is a map fromRn to ZN
2a defined as before. Suppose that 0 ≤ t ≤ n−

1, ct =
2k−1∑
j=0

ct,ju
j and dt =

2k−1∑
j=0

dt,ju
j, then φ(c′) = c, φ(d′) = d, where

c =
(
c0,0, c1,0, . . . , cn−1,0, c0,1, c1,1, . . . , cn−1,1, . . . , c0,2k−1, c1,2k−1, . . . , cn−1,2k−1

)
∈ ZN

2a

and

d =
(
d0,0, d1,0, . . . , dn−1,0, d0,1, d1,1, . . . , dn−1,1, . . . , d0,2k−1, d1,2k−1, . . . , dn−1,2k−1

)
∈ ZN

2a

Lemma 3.3.1. [23] Let the notation as above. Let ρ denote the negacyclic shift in ZN
2a

and let . denote the Euclidean inner product in ZN
pa. Then

〈
c′, d′

〉
= 0 if and only if

ρnj
(
φ(c′)

)
.φ(d′) = 0 for all 0 ≤ j ≤ 2k − 1.

Let ϕ denote the inverse map of φ. Then applying lemma 3.3.1, we obtain the following

Theorem:

Theorem 3.3.2. [23] Let C be a negacyclic code over Z2a of length 2kn (n odd), and let

ϕ(C) be its image in Rn under ϕ. Then ϕ(C)⊥ = ϕ(C⊥), where the dual in ZN
2a is taken

with respect to the Euclidean inner product, while the dual in Rn is taken with respect to

the Hermitian inner product.

Lemma 3.3.3. [23] Let C =
〈
2j(u − 1)b

〉
be an ideal of Ra(u,m), for some integers

0 ≤ j ≤ a− 1, 0 ≤ b ≤ 2k − 1. Then C = C.

Proof. Let a(u) ∈ C, then a(u) = 2j(u− 1)bg(u), for some polynomial g(u) ∈ Ra(u,m).

Since 2j(u− 1)b = (−u)−b2j(u− 1)b, then a(u) = (−u)−bg(u)2j(u− 1)b.

Hence, C ⊆ C. Since the conjugation map is a bijection map, then C = C.

Theorem 3.3.4. [23] Let C be a negacyclic code over Z2a of length 2kn (n odd) such

that C =
⊕

i∈ I Ci and Di′ = C⊥i , where i′ is the representative of the cyclotomic coset

containing n− i for each i ∈ I, I is a complete set of 2−cyclotomic coset mod n. Then

C⊥ =
⊕

i∈ I Di.

54



Proof. Let D =
⊕

i∈ I Di, and let c ∈ C, d ∈ D. Since CiC
⊥
i = 0 for all i ∈ I, it follows

from lemma 3.3.3 that CiDi′ = 0 for all i. Let ĉ(z) =
n−1∑
h=0

ĉn−hz
h and d̂(z) =

n−1∑
h=0

d̂n−hz
h

be the Mattson-Solomon polynomials of c and d respectively, then ĉid̂n−i = 0. Thus, by

lemma 3.3.1 we get D ⊆ C⊥. Also, |Ci||Di′ | = 22kami for all i ∈ I, so that |C||D| = 22km.

Hence, D = C⊥.

Theorem 3.3.5. [23] If C is a negacyclic code over Z2a of length N = 2kn (n odd), and

C =

〈
2ka∏
j=0

[gj(x)]j

〉
, where gj(x)’s are monic coprime divisors of xn − 1 in Z2a [x], then

C⊥ =

〈
2ka∏
j=0

[g∗j (x)]2
ka−j

〉
and |C⊥| = 2t, where t =

2ka∑
j=1

j deg(gj(x)).

Proof. Define gj(x) as in the proof of Theorem 3.2.5. Let aj denote the constants of

gj(x), 0 ≤ j ≤ 2ka. Since g0(x)g1(x) . . . g2ka(x) = xn − 1, a0a1 . . . a2ka = −1. Therefore,

a′js are invertible elements of Z2a and a′js are leading coefficients of g∗j (x)′s. Define hj(x) =

ujg
∗
j (x), where u′js are suitable invertible elements in Z2a such that hj(x)′s are monic

polynomials. Note that uj = a−1
j and u0u1 . . . u2ka = a−1

0 a−1
1 . . . a−1

2ka
= −1. So

h0(x)h1(x) . . . h2ka(x) = (u0u1 . . . u2ka)g
∗
0(x)g∗1(x) . . . g∗

2ka
(x)

= −x
∑(2ka)
j=1 deg(gj(x))g0(x−1)g1(x−1) . . . g2ka(x

−1)

= −xn(x−n − 1)

= xn − 1.

Therefore, hj(x)′s are monic coprime divisors of xn − 1 in Z2a [x].

Let C =
⊕

i∈I Ci, where Ci is an ideal of Ra(u,mi), then by Theorem 3.3.4 C⊥ =⊕
i∈lD

′
i, where, Di = C⊥i . Since Ci =

〈
(u − 1)j

〉
, we have gj(ξ

i) = 0, which implies

g∗j (ξ
−i) = 0. It follows that hj(ξ

−i) = 0. Therefore, hj(x) is the product of all minimal

polynomials of ξi
′

such that Di =
〈
(u − 1)2ka−j〉. According to the proof of Theorem

3.2.5, we can get that C⊥ =
〈∏2ka

j=0[hj(x)]2
ka−j

〉
=
〈∏2ka

j=0[g∗j (x)]2
ka−j〉.

The second result follows from Corollary 3.2.5 and the fact that

|C||C⊥| = 22kan.(cf.[18, Theorem3.10(iii)])
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We now determine self-dual negacyclic codes over Z2a of length N = 2kn (n odd). The

following lemma is clear.

Lemma 3.3.6. [23] If C is a negacyclic code over Z2a of length N = 2kn (n odd), and

C =
⊕

i∈I Ci, then C is a self-dual negacyclic code if and only if Ci′ = C⊥i , where i′ is the

representative of cyclotomic coset containing n− i for each i ∈ I.

Theorem 3.3.7. [23] If C is a negacyclic code over Z2a of length N = 2kn (n odd) with

C =
〈∏2ka

j=0[gj(x)]j
〉
, where gj(x)’s are monic coprime divisors of xn − 1 in Z2a [x], then

C is self-dual if and only if g∗j (x) is an associate of g2ka−j(x).

Proof. Let C =
⊕

i∈I Ci, where Ci is an ideal of Ra(u,mi). By Lemma 3.3.6, If C is

self-dual, then Ci′ = C⊥i for each i ∈ I. Let Ci =
〈
(u − 1)j

〉
, 0 ≤ j ≤ 2ka, then

Ci′ =
〈
(u − 1)2ka−j〉. Define hj(x) as in Theorem 3.3.5. Since gj(x) = 0, which implies

that g∗j (ξ
−i) = 0, we have hj(x) = ujg

∗
j (x) = g2ka−j(x). Hence, gj∗ is an associate of

g2ka−j(x).

On the other hand, by Theorem 3.3.5, C⊥ =
〈∏2ka

j=0[g∗j (x)]2
ka−j〉, hence, if g∗j (x) is an

associate of g2ka−j(x), then

C⊥ =
〈 2ka∏
j=0

[g∗j (x)]2
ka−j〉 =

〈 2ka∏
j=0

[g2ka−j(x)]2
ka−j〉 = C,

i.e, C is self-dual.

Corollary 3.3.8. [23] If C is a self-dual negacyclic code over Z2a of length N = 2kn (n

odd), and C =
〈
g(x)

〉
, then (x− 1)2k−1a divides g(x).

Proof. Observing that
〈
(u− 1)2k−1a

〉
is the unique ideal of Ra(u,m) such that C0 = C⊥0 ,

we have the result.

Corollary 3.3.9. [23] If there exist b such that 2b ≡ −1( mod n), then the only self-dual

negacyclic code over Z2a of length N = 2kn (n odd) is
〈
(xn − 1)2k−1a

〉
.

Proof. Let C =
⊕

i∈I Ci, where Ci is an ideal of Ra(u,mi) and I is a complete set of

2−cyclotomic coset representative modulo n. Since there exists b such that 2b ≡ −1(
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mod n), i and n − i are contained in the same cyclotomic coset for all i ∈ I. Hence,

Ci′ = Ci. If C is self-dual, then Ci′ = C⊥i by Lemma 3.3.6. It follows that Ci = C⊥i .

Therefor Ci =
〈
(u− 1)2k−1a

〉
for all i. Note that the product of all minimal polynomials

of ξi is equal to xn − 1. Thus, C =
〈
(xn − 1)2k−1a

〉
.

Lemma 3.3.10. [23] If a is even, then
〈
(xn − 1)2k−1a

〉
=
〈
2
a
2

〉
in RN .

Proof. Similarly to the result in Lemma 3.1.2, it follows easily that (xn − 1)2k = x2kn +

1 + 2αk(x
n) in RN , where αk(x

n) is an invertible element in RN . Therefore, computing in

RN , (xn − 1)2k = 2αk(x
n). It follows that if a is even, then

〈
(xn − 1)2k−1a

〉
=
〈
2
a
2

〉
.

Now we consider the enumeration of self-dual negacyclic codes over Z2a of length

N = 2kn (n odd).

Let i be an integer such that 0 ≤ i < n, and let b be the the smallest positive integer such

that i.2b ≡ i( mod n), then C
(n)
i = {i, 2i, . . . , 2b−1i} is the 2-cyclotomic coset modulo n

containing i.

Definition 3.3.2. [23] A cyclotomic coset is called symmetric if n− i ∈ C(n)
i and asym-

metric otherwise. The asymmetric cosets come in pairs C
(n)
i , C

(n)
n−i, and let δ(n) denote

the number of such pairs.

Theorem 3.3.11. [23] The number of distinct self-dual negacyclic codes over Z2a of

length N = 2kn (n odd) is (2ka+ 1)δ(n), where δ(n) is the number of pairs of a symmetric

2-cyclotomic cosets modulo n.

3.4 Examples

Example 3.4.1. [23] Consider self-dual negacyclic codes of length 28 over Z4.

⇒ 28 = 22(7)⇒ k = 2, n = 7

Z4 = Z22 ⇒ a = 2. Let i = 2⇒ 0 ≤ 2 < 7⇐⇒ 0 ≤ i < 7.

Since C
(n)
i = {i, 2i, 22i, . . . , 2b−1i} where b as above, then 22b ≡ 2( mod 7) ⇒ b = 3 ⇒

C
(7)
2 = {2, 2(2), 23−1(2)} = {2, 4, 8} ⇒ n− i = 7− 2 = 5 not in C

(7)
2 .
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⇒The 2-cyclotomic coset ( mod 7) containing i = 2 is asymmetric coset ⇒ The pairs

C
(7)
2 , C

(7)
5 is asymmetric.

For i = 0, 1, 3, 4, 5, 6, we compute C
(n)
i as above to get symmetric cosets for these i′s.

Hence there is only one pair asymmetric coset ⇒ δ(n) = 1⇒ There are (2ka+ 1)δ(n) =

(22(2)+1) = 9 self-dual negacyclic codes of length 28 over Z4, all of which have order 228.

x7 − 1 = (x − 1)(x3 + 2x2 + x − 1)(x3 − x2 + 2x − 1) in Z4[x]. Using Theorem 3.2.5,

Corollary 3.2.6, and Corollary 3.3.8, we have the following self-dual negacyclic codes of

length 28 over Z4, where 2ka = 22(2) = 8.

(1)
〈
(u− 1)2k−1a

〉
=
〈
(u− 1)4

〉
=
〈
2
a
2

〉
=
〈
21
〉

=
〈
2
〉
,

(2)
〈
(x−1)4(x3−x2 +2x−1)8

〉
⇒ the order equal 24+3(8) = 228 and (x−1)4

∣∣(x−1)4(x3−

x2 + 2x− 1)8.

(3)
〈
(x−1)4(x3 +2x2 +x−1)8

〉
⇒ the order equal 24+3(8) = 228 and (x−1)4

∣∣(x−1)4(x3 +

2x2 + x− 1)8.

(4)
〈
(x3 + 2x2 + x− 1)(x− 1)4(x3− x2 + 2x− 1)7

〉
⇒ the order equal 23+4+3(7) = 228 and

(x− 1)4
∣∣(x3 + 2x2 + x− 1)(x− 1)4(x3 − x2 + 2x− 1)7.

(5)
〈
(x3 + 2x2 + x− 1)7(x− 1)4(x3 − x2 + 2x− 1)

〉
(6)

〈
(x3 + 2x2 + x− 1)2(x− 1)4(x3 − x2 + 2x− 1)6

〉
(7)

〈
(x3 + 2x2 + x− 1)6(x− 1)4(x3 − x2 + 2x− 1)2

〉
(8)

〈
(x3 + 2x2 + x− 1)3(x− 1)4(x3 − x2 + 2x− 1)5

〉
(9)

〈
(x3 + 2x2 + x− 1)5(x− 1)4(x3 − x2 + 2x− 1)3

〉

Example 3.4.2. [23] Consider self-dual negacyclic codes of length 14 over Z8.

14 = 21(7)⇒ k = 1, n = 7.

Z8 = Z23 ⇒ a = 3. Now there is only one pair asymmetric coset ⇒ δ(n) = 1⇒There are

(2ka + 1) = [21(3) + 1] = 7 self-dual negacyclic codes of length 14 over Z8, all of which

have order 221.

2k−1.a = 3⇒ (x− 1)2k−1.a = (x− 1)3.

x7 − 1 = (x− 1)(x3 + 3x2 + 2x− 1)(x3 + 6x2 + 5x− 1) in Z8[x].

We list all such self-dual negacyclic codes as follows:
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(1)
〈
(x7 − 1)3

〉
⇒ the order equal 27(3) = 221.

(2)
〈
(x−1)3(x3 + 3x2 + 2x−1)6

〉
the order equal 23+3(6) = 221, and (x−1)3

∣∣(x−1)3(x3 +

3x2 + 2x− 1)6.

(3)
〈
(x− 1)3(x3 + 6x2 + 5x− 1)6

〉
the order equal 23+3(6) = 221, and (x− 1)3

∣∣(x− 1)3(x3 +

6x2 + 5x− 1)6.

(4)
〈
(x3 + 6x2 + 5x− 1)(x− 1)3(x3 + 3x2 + 2x− 1)5

〉
(5)

〈
(x3 + 3x2 + 2x− 1)(x− 1)3(x3 + 6x2 + 5x− 1)5

〉
(6)

〈
(x3 + 6x2 + 5x− 1)2(x− 1)3(x3 + 3x2 + 2x− 1)4

〉
(7)

〈
(x3 + 3x2 + 2x− 1)2(x− 1)3(x3 + 6x2 + 5x− 1)6

〉

Example 3.4.3. Consider self-dual negacyclic codes of length 12 over Z16 ⇒ 12 =

22(3)⇒ k = 2, n = 3.

Z16 = Z24 ⇒ a = 4. According to Corollary 3.3.9, we find a constant b such that 2b ≡ −1(

mod n), choose b = 1⇔ 21 ≡ −1( mod 3)⇒The only self-dual negacyclic code of length

12 over Z16 is
〈
(xn − 1)2k−1a

〉
=
〈
(x3 − 1)22−1.4

〉
=
〈
(x3 − 1)8

〉
.

Example 3.4.4. Consider self-dual negacyclic codes of length 28 over Z16.

⇒ 28 = 22(7) ⇒ k = 2, n = 7, a = 4. There is only one pair asymmetric 2-cyclotomic

coset (mod 7). ⇒ δ(n) = 1⇒ There are (2ka+ 1)δ(n) = (22(4) + 1)1 = 17 self-dual nega-

cyclic codes of length 28 over Z16, all of which have order 256. ⇒ C0 =
〈
(u− 1)2k−1a

〉
=〈

(u− 1)8
〉
.

x7 − 1 = (x− 1)(x3 + 14x2 + 13x+ 15)(x3 + 11x2 + 10x+ 15) in Z16[x].

The following table gives all self-dual negacyclic codes of length 28 over Z16.
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Non zero generator polynomial(s)〈
(u− 1)8

〉
.〈

(u− 1)8(x3 + 14x2 + 13x+ 15)16
〉〈

(u− 1)8(x3 + 11x2 + 10x+ 15)16
〉〈

(x3 + 14x2 + 13x+ 15)(u− 1)8(x3 + 11x2 + 10x+ 15)15
〉〈

(x3 + 14x2 + 13x+ 15)15(u− 1)8(x3 + 11x2 + 10x+ 15)
〉〈

(x3 + 14x2 + 13x+ 15)2(u− 1)8(x3 + 11x2 + 10x+ 15)14
〉〈

(x3 + 14x2 + 13x+ 15)14(u− 1)8(x3 + 11x2 + 10x+ 15)2
〉〈

(x3 + 14x2 + 13x+ 15)3(u− 1)8(x3 + 11x2 + 10x+ 15)13
〉〈

(x3 + 14x2 + 13x+ 15)13(u− 1)8(x3 + 11x2 + 10x+ 15)3
〉〈

(x3 + 14x2 + 13x+ 15)4(u− 1)8(x3 + 11x2 + 10x+ 15)12
〉〈

(x3 + 14x2 + 13x+ 15)12(u− 1)8(x3 + 11x2 + 10x+ 15)4
〉〈

(x3 + 14x2 + 13x+ 15)5(u− 1)8(x3 + 11x2 + 10x+ 15)11
〉〈

(x3 + 14x2 + 13x+ 15)11(u− 1)8(x3 + 11x2 + 10x+ 15)5
〉〈

(x3 + 14x2 + 13x+ 15)6(u− 1)8(x3 + 11x2 + 10x+ 15)10
〉〈

(x3 + 14x2 + 13x+ 15)10(u− 1)8(x3 + 11x2 + 10x+ 15)6
〉〈

(x3 + 14x2 + 13x+ 15)7(u− 1)8(x3 + 11x2 + 10x+ 15)9
〉〈

(x3 + 14x2 + 13x+ 15)9(u− 1)8(x3 + 11x2 + 10x+ 15)7
〉
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Chapter 4

Cyclic Codes over the Ring

F2 + uF2 + u2F2 + . . . + uk−1F2

Among the four rings of four elements, the Galois field F4 and more recently the ring of

integers modulo four Z4 are the most used in coding theory. Z4 -codes are renowned for

producing good nonlinear codes by the Gray map, namely Kerdok, preparata or Goethals

codes. On the other hand, the ring Z4 admits a linear Gray map which does not give

good binary codes. Let Rk be the ring F2 + uF2 + u2F2 + . . . + uk−1F2 with uk = 0

mod 2, where F2 = {0, 1} = Z2.

In [3], Abualrub and Siap studied cyclic codes of an arbitrary length n over F2 + uF2 =

{0, 1, u, u + 1} where u2 = 0 mod 2 and over F2 + uF2 + u2F2 = {0, 1, u, u + 1, u2, 1 +

u2, 1 + u + u2, u + u2} where u3 = 0 mod 2. In this chapter, we extend these results to

more general rings of the form F2 + uF2 + u2F2 + . . .+ uk−1F2 where uk = 0 mod 2.

We give a unique set of generators for these codes as ideals in the ring

Rk,n = Rk[x]/
〈
xn−1

〉
. Also we study the rank of these codes and give a minimal spanning

set for them.

We show that the results of [3] concerning the codes over the rings F2 + uF2 with u2 = 0

mod 2 and F2 + uF2 + u2F2 with u3 = 0 mod 2 are valid for Rk = F2 + uF2 + u2F2 +

. . .+ uk−1F2 with uk = 0 mod 2.
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4.1 Background

Definition 4.1.1. [3] A free module C is a module with a basis (a linearly independent

spanning set for C).

Definition 4.1.2. The ring Rk = F2[u]/
〈
uk
〉

= F2 + uF2 + u2F2 + . . . + uk−1F2 is a

commutative chain ring of 2k elements with maximal ideal uRk, where uk = 0.

Since u is nilpotent with nilpotent index k, we have

Rk ⊃ uRk ⊃ u2Rk ⊃ . . . ⊃ ukRk = 0.

Moreover Rk/uRk
∼= Z2 is the residue field and |uiRk| = 2|(ui+1Rk)| = 2k−i, i =

0, 1, 2, . . . , k − 1.

Denote R1 = F2 = {0, 1}, R2 = F2 + uF2, R3 = F2 + uF2 + u2F2, . . . etc.

Definition 4.1.3. Let Ck be a code of length n over the ring Rk = F2 + uF2 + u2F2 +

. . .+ uk−1F2 with uk = 0 mod 2, we mean an additive submodule of the R−module Rn
k .

A cyclic code of length n over Rk is an ideal in the ring Rk,n = Rk[x]/
〈
xn − 1

〉
.

Following Abualrub and Siap [3, p.p. 274], the parameters of anR2−code C with 4k12k2

code words, where k1 refers to the free part and k2 refers to non free part (u−multiple

generator of C), and minimum distance d is denoted by (n, 4k12k2 , d). Such codes are

often referred to as codes of type {k1, k2}. Similarly the parameters of an R3−code

C with 8k14k22k3 code words, where k1 refers to the free part and k2, k3 refer to non

free part (u and u2 multiple generators of C), and minimum distance d is denoted by

(n, 8k14k22k3 , d). Such codes are often referred to as codes of type {k1, k2, k3}.

We define the rank of a code C over R2 of type {k1, k2}, denoted by rank(C), by the

minimum number of generators of C, and define the free rank of C, denoted by f-rank(C),

by the maximum of the ranks of R2−free submodules of C. A code C of type {k1, k2} has

a rank (k1 + k2) and a f-rank k1.

We define the rank of a code C over R3 of type {k1, k2, k3}, denoted by rank(C), by the

minimum number of generators of C, and define the free rank of C, denoted by f-rank(C),
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by the maximum of the ranks of R3−free submodules of C. A code C of type {k1, k2, k3}

has a rank (k1 + k2 + k3) and a f-rank k1.

Following the same procedure, we can define the ranks and free ranks of a code C over

Rk ∀ k ≥ 4.

Notation: We write a for a(x), g for g(x), . . .etc.

4.2 A generator Construction

The structure of cyclic codes over Ri depends on cyclic codes over Ri−1 for i = 2, 3, . . . , k

and the structure of cyclic codes over R2 depends on cyclic codes over R1 = F2.

By following results in [3], let C1 be a cyclic code in Rk,n = Rk[x]/
〈
xn − 1

〉
.

Define ψ1 : Rk → Rk−1 by ψ1(a) = a. ψ1 is a ring homomorphism that can be extended

to a homomorphism φ1 : C1 → Rk−1,n = Rk−1[x]/
〈
xn − 1

〉
defined by

φ1(c0 + c1x+ . . .+ cn−1x
n−1) = ψ1(c0) + ψ1(c1)x+ . . .+ ψ1(cn−1)xn−1.

kerφ1 = {uk−1r(x) : r(x) ∈ F2[x]}.

Let J1 = {r(x) : uk−1r(x) ∈ kerφ1}, J1 is an ideal in R1,n = R1[x]/
〈
xn − 1

〉
=

F2[x]/
〈
xn − 1

〉
and hence a cyclic code in F2[x]/

〈
xn − 1

〉
. So J1 =

〈
ak−1(x)

〉
and

kerφ1 =
〈
uk−1ak−1(x)

〉
with ak−1(x)|(xn − 1) mod 2.

Let C2 be a cyclic code in Rk−1,n = Rk−1[x]/
〈
xn − 1

〉
.

Define ψ2 : Rk−1 → Rk−2 by ψ2(a) = a. ψ2 is a ring homomorphism that can be extended

to a homomorphism φ2 : C2 → Rk−2[x]/
〈
xn − 1

〉
defined by

φ2(c0 + c1x+ . . .+ cn−1x
n−1) = ψ2(c0) + ψ2(c1)x+ . . .+ ψ2(cn−1)xn−1.

kerφ2 = {uk−2r(x) : r(x) ∈ F2[x]}.

Let J2 = {r(x) : uk−2r(x) ∈ kerφ2} is an ideal in R1,n = F2[x]/
〈
xn − 1

〉
and hence a

cyclic code in F2[x]/
〈
xn− 1

〉
. So J2 =

〈
ak−2(x)

〉
and hence ker(φ2) =

〈
uk−2ak−2(x)

〉
with

ak−2(x)|(xn − 1) mod 2.
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Let C3 be a cyclic code in Rk−2,n = Rk−2[x]/
〈
xn − 1

〉
.

Define ψ3 : Rk−2 → Rk−3 by ψ3(a) = a. ψ3 is a ring homomorphism that can be extended

to a homomorphism φ3 : C3 → Rk−3[x]/
〈
xn − 1

〉
. Continue in the same way as above

until we define ψk : R2 → R1 = F2 by ψk(a) = a2 mod 2. ψk is a ring homomorphism

because (a+ b)2 = a2 + b2 in R2 and in F2.

Extend ψk to a homomorphism φk : Ck → F2[x]/
〈
xn − 1

〉
= R1,n defined by

φk(c0 + c1x+ . . .+ cn−1x
n−1) = ψk(c0) + ψk(c1)x+ . . .+ ψk(cn−1)xn−1

= c2
0 + c2

1x+ . . .+ c2
n−1x

n−1 mod 2,

where Ck be a cyclic code in R2,n = R2[x]
/〈
xn − 1

〉
, where R2 = F2 + uF2 with u2 = 0

mod 2.

kerφk =
{
ur(x) : r(x) is a binary polynomial in F2[x]

/〈
xn − 1

〉}
=
〈
ua1(x)

〉
with a1(x)

∣∣(xn − 1
)

mod 2.

The image of φk is also an ideal and hence a binary cyclic code generated by g(x) with

g(x)
∣∣(xn − 1

)
. So the cyclic code over R2 = F2 + uF2 would be in the form:

Ck =
〈
g(x) + up(x), ua1(x)

〉
for some binary polynomial p(x). Note that a1

∣∣(pxn−1
g

)
because

φk
(xn − 1

g
[g + up]

)
= φk

(
up
xn − 1

g

)
= 0

⇒
(
upx

n−1
g

)
∈ kerφk =

〈
ua1

〉
. Also ug ∈ kerφk implies a1(x)

∣∣g(x).

Lemma 4.2.1. [3] If Ck =
〈
g(x) + up(x), ua1(x)

〉
over R2 = F2 + uF2 with (u2 = 0

mod 2), and g(x) = a1(x) with deg g(x) = r, then

Ck =
〈
g(x) + up(x)

〉
and (g + up)

∣∣(xn − 1
)

in R2.

Proof. Since u(g + up) = ug and g = a1, then Ck ⊆
〈
g(x) + up(x)

〉
.

Also as Ck =
〈
g(x)+up(x), ua1(x)

〉
, then

〈
g(x)+up(x)

〉
⊆ Ck, hence Ck =

〈
g(x)+up(x)

〉
.

Now, by applying the division algorithm,

xn − 1 = (g(x) + up(x))q(x) + t(x), where t(x) = 0 or deg t(x) < deg g(x) = r. Since
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t(x) ∈ Ck, then t(x) = 0. Thus xn− 1 =
(
g(x) + up(x)

)
q(x), and hence (g+ up)

∣∣〈xn− 1
〉

in R2.

Now since the image of φk−1 is an ideal in R2,n = R2[x]
/〈
xn−1

〉
(where R2 = F2 +uF2

with u2 = 0 mod 2), then Im(φk−1) =
〈
g(x) + up1(x), ua1(x)

〉
with a1(x)

∣∣g(x)|(xn − 1)

and a1(x)
∣∣p1(x)

(
xn−1
g(x)

)
. Also, ker(φk−1) =

〈
u2a2(x)

〉
with a2(x)

∣∣(xn − 1) mod 2. Since

u2a1 ∈ ker(φk−1) =
〈
u2a2

〉
, then the cyclic code Ck−1 over R3 = F2 + uF2 + u2F2 with

u3 = 0 mod 2 is

Ck−1 =
〈
g+up1 +u2p2, ua1 +u2q1, u

2a2

〉
with a2|a1|g|(xn−1), a1(x)

∣∣p1(x)
(
xn−1
g(x)

)
mod 2,

a2|q1

(
xn−1
a1

)
, a2|p1

(
xn−1
g

)
and a2

∣∣p2

(
xn−1
g

)(
xn−1
a1

)
.We may assume that deg p2 < deg a2, deg q1 <

deg a2, deg p1 < deg a1 (This is true since if e = (a, b), then e = (a, b+ de) for any d).

Lemma 4.2.2. [3] If Ck−1 =
〈
g+up1 +u2p2, ua1 +u2q1, u

2a2

〉
over R3 = F2 +uF2 +u2F2

with (u3 = 0 mod 2), and a2 = g, then Ck−1 =
〈
g+up1+u2p2

〉
and

(
g+up1+u2p2

)∣∣(xn−
1) in R3.

Proof. Since a2 = g, then a1 = a2 = g. From Lemma 4.2.1. we get that
(
g+ up

)∣∣(xn− 1)

in R2 and Ck−1 =
〈
g + up1 + u2p2, u

2a2

〉
. The rest of the proof is similar to Lemma

4.2.1.

Lemma 4.2.3. [3] If n is odd, then Ck−1 =
〈
g, ua1, u

2a2

〉
=
〈
g + ua1 + u2a2

〉
over R3.

Proof. See Lemma 8 in [3]

Following the same process we find the cyclic code Ck−2 over R4 = F2 + uF2 + u2F2 +

u3F2 with (u4 = 0 mod 2). So, since the image of φk−2 is an ideal in

R3,n = R3[x]
/〈
xn−1

〉
(where R3 = F2+uF2+u2F2 with u3 = 0 mod 2), then Im(φk−2) =〈

g(x)+up1(x)+u2p2(x), ua1(x)+u2q1(x), u2a2(x)
〉

with a2|a1|g|(xn−1), a1(x)
∣∣p1(x)

(
xn−1
g(x)

)
mod 2, a2|q1(x)

(
(xn−1)
a1(x)

)
and a2

∣∣p2(x)
(
xn−1
g(x)

)(
xn−1
a1(x)

)
. Also ker(φk−2) =

〈
u3a3(x)

〉
with

a3(x)
∣∣(xn − 1) mod 2.

Since u3a2 ∈ ker(φk−2) =
〈
u3a3(x)

〉
, then the cyclic code Ck−2 over
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R4 = F2 + uF2 + u2F2 + u3F2 with (u4 = 0 mod 2) is

Ck−2 =
〈
g + up1 + u2p2 + u3p3, ua1 + u2q1 + u3q2, u

2a2 + u3l1, u
3a3

〉
with

a3

∣∣a2

∣∣a1

∣∣g∣∣(xn − 1) mod 2, a1(x)
∣∣p1(x)

(xn − 1

g(x)

)
mod 2,

a2

∣∣q1(x)
((xn − 1)

a1(x)

)
, a2

∣∣p2(x)
(xn − 1

g(x)

)(xn − 1

a1(x)

)
,

a3

∣∣l1(x)
((xn − 1)

a2(x)

)
, a3

∣∣q2(x)
(xn − 1

q1(x)

)(xn − 1

a1(x)

)
and a3(x)

∣∣p3(x)
(
xn−1
g(x)

)(
xn−1
a2(x)

)(
xn−1
a1(x)

)
. Moreover

deg p3 < dega3, deg q2 < dega3, deg l1 < dega3, deg p2 < dega2, deg q1 < dega2, deg p1 <

dega1.

Lemma 4.2.4. If Ck−2 =
〈
g+up1 +u2p2 +u3p3, ua1 +u2q1 +u3q2, u

2a2 +u3l1, u
3a3

〉
over

R4 = F2 + uF2 + u2F2 + u3F2 with (u4 = 0 mod 2), and a3 = g, then

Ck−2 =
〈
g + up1 + u2p2 + u3p3

〉
and

(
g + up1 + u2p2 + u3p3

)∣∣(xn − 1) in R4.

Proof. Since a3 = g, then a1 = a2 = a3 = g. From Lemma 3.2 we get that (g + up1 +

u2p2)
∣∣(xn− 1) in R3 and Ck−2 =

〈
g+up1 +u2p2 +u3p3, ua1 +u2q1 +u3q2, u

3a3

〉
. The rest

of the proof is similar to Lemma 4.2.2.

Lemma 4.2.5. If n is odd, then the cyclic code Ck−2 over R4 can be written as

Ck−2 =
〈
g, ua1, u

2a2, u
3a3

〉
=
〈
g + ua1 + u2a2 + u3a3

〉
.

Proof. Since n is odd, then (xn−1) factors uniquely into a product of distinct irreducible

polynomials. So, gcd
(
a1,

xn−1
g(x)

)
= gcd

(
a2,

xn−1
a1(x)

)
= gcd

(
a2,

xn−1
g(x)

)
= gcd

(
a3,

xn−1
a2(x)

)
=

gcd
(
a3,

xn−1
g(x)

)
= 1.

Since a1

∣∣p1(x)
(
xn−1
g(x)

)
, then a1

∣∣p1. But deg p1 < deg a1. Hence p1 = 0, since a2

∣∣q1(x)
(
xn−1
a1(x)

)
and a2(x)

∣∣p2(x)
(
xn−1
g(x)

)(
xn−1
a1(x)

)
, then a2

∣∣q1 and a2

∣∣p2. But deg q1 < deg a2

and deg p2 < deg a2.

Hence, p2 = q1 = 0. Similarly p3 = q2 = l1 = 0. So Ck−2 =
〈
g, ua1, u

2a2, u
3a3

〉
.
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Let h = g + ua1 + u2a2 + u3a3.

Then, u3h = u3g, xn−1
a2

h = xn−1
a2

u3a3 and u2 xn−1
g
h = xn−1

g
u3a2 ∈

〈
h
〉
. Since n is odd, we

have
(
xn−1
g
, g
)

=
(
xn−1
a2

, a2

)
= 1. Hence

1 = f1
xn−1
g

+ f2g for some polynomials f1 and f2, and 1 = m1
xn−1
a2

+ m2a2 for some

polynomials m1 and m2.

u3a2 = u3a2f1
xn−1
g

+ u3a2f2g ∈
〈
h
〉
. Also

u3a3 = u3a3m1
xn − 1

a2

+ u3a3m2a2 ∈
〈
h
〉

and u2a2 = u3m2a
3
2 ∈ Ck−2 and hence g ∈

〈
h
〉
. Similarly ua1 ∈

〈
h
〉
.

Therefore Ck−2 =
〈
g, ua1, u

2a2, u
3a3

〉
=
〈
g + ua1 + u2a2 + u3a3

〉
.

From all the above discussion, we can construct any cyclic code C1 over

Rk by using the same process and induction to get the following theorem:

Theorem 4.2.6. Let C1 be a cyclic code in Rk,n = Rk[x]
/〈
xn − 1

〉
, Rk = F2 + uF2 +

u2F2 + . . .+ uk−1F2 with uk = 0 mod 2.

(1) If n is odd, then Rk,n is a principal ideal ring and

C1 =
〈
g, ua1, u

2a2, . . . , u
k−1ak−1

〉
=
〈
g + ua1 + u2a2 + . . .+ uk−1ak−1

〉
where g(x), a1(x), a2(x), . . . , ak−1(x) are binary polynomials with

ak−1(x)
∣∣ak−2(x)

∣∣ . . . ∣∣a2(x)
∣∣a1(x)

∣∣g(x)|(xn − 1) mod 2.

(2) If n is not odd, then

(a) C1 =
〈
g + up1 + u2p2 + . . . + uk−1pk−1

〉
where g(x), pi(x) are binary polynomials

∀i = 1, 2, . . . , k− 1 with g(x)
∣∣(xn − 1) mod 2, (g + up1 + u2p2 + . . .+ uk−1pk−1)

∣∣(xn − 1)

in Rk and deg pi < deg pi−1 for all 2 ≤ i ≤ k − 1. Or,

(b) C1 =
〈
g + up1 + u2p2 + . . . + uk−1pk−1, u

k−1ak−1

〉
where ak−1|g|(xn − 1) mod 2,

(g + up)|(xn − 1) in R2, g(x)|p1

(
xn−1
g(x)

)
and ak−1|p1

(
xn−1
g(x)

)
, ak−1|p2

(
xn−1
g(x)

)(
xn−1
g(x)

)
, . . . and

ak−1|pk−1

(
xn−1
g(x)

)
. . .
(
xn−1
g(x)

)
(k − 1, times) and deg pk−1 < deg ak−1. Or,

(c) C1 =
〈
g + up1 + u2p2 + . . .+ uk−1pk−1, ua1 + u2q1 + . . .+ uk−1qk−2, u

2a2 + u3l1 + . . .+

uk−1lk−3, . . . , u
k−2ak−2 + uk−1t1, u

k−1ak−1

〉
with ak−1

∣∣ak−2

∣∣ . . . ∣∣a2

∣∣a1

∣∣g|(xn − 1) mod 2,

ak−2|p1

(
xn−1
g

)
, . . . , ak−1|t1

(
xn−1
ak−2

)
, . . . , ak−1|pk−1

(
xn−1
g

)
. . .
(
xn−1
ak−2

)
.

Moreover deg pk−1 < deg ak−1, . . . , deg t1 < deg ak−1, . . . and deg p1 < deg ak−2.
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4.3 Ranks and Minimal Spanning Sets for Cyclic Codes

over Rk

Theorem 4.3.1. [3] Let C be a cyclic code of even length n over R2 = F2 + uF2 with

u2 = 0 mod 2.

(1) If C =
〈
g(x) + up(x)

〉
with deg g(x) = r and

(
g(x) + up(x)

)∣∣(xn − 1), then C is a

free module with rank(C) = n− r and basis

β =
{
g + up(x), xg(x) + up(x), . . . , xn−r−1(g(x) + up(x))

}
, and |C| = 4n−r.

(2) If C =
〈
g(x)+up(x), ua(x)

〉
with deg g(x) = r, deg a(x) = t, then C has rank(C) =

n− t and a minimal spanning set given by

χ =
{
g(x) + up(x), x(g(x) + up(x)) + . . .+ xn−r−1

(
g(x) + up(x)

)
, ua(x), xua(x), . . . ,

xr−t−1ua(x)
}
, and |C| = 22n−r−t.

Proof. (1)Let C be a cyclic code of even length n over R2 = F2 +uF2 with u2 = 0 mod 2.

Suppose xn − 1 = (g + up)(h + up) over R2. Let c(x) ∈ C =
〈
g(x) + up(x)

〉
, then

c(x) = (g(x) + up(x))f(x) for some polynomial f(x).

If f(x) has a degree less than or equal n− r− 1, then we are done, otherwise by division

algorithm there exist two polynomials q(x), s(x) such that f(x) =
(
xn−1
g+up

)
q(x) + s(x),

where s(x) = 0 or deg s(x) ≤ n− r − 1.

Now, (g(x) + up(x))f(x) = (g(x) + up(x))
(

xn−1
g(x)+up(x)

q(x) + s(x)
)

= (g(x) + up(x))s(x).

Since deg s(x) ≤ n− r− 1, then β spans C. Now we only need to show that β is linearly

independent. Let g(x) = 1 + g1x + . . . + xr and p(x) = p0 + p1x + . . . + plx
l. Suppose

(g(x) + up(x))c0 + x(g(x) + up(x))c1 + . . .+ xn−r−1(g(x) + up(x))cn−r−1 = 0.

Comparing coefficients in the above equation we get that

(1 + up0)c0 = 0 (constant coefficient).

Since (1 + up0) is a unit, then c0 = 0.

Hence x(g(x) + up(x))c1 + . . .+ xn−r−1(g(x) + up(x))cn−r−1 = 0.

Again comparing coefficient we get that

(1 + up0)c1 = 0 (coefficient of x).
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This implies that c1 = 0. Similarly we get that ci = 0 for all i = 0, 1, . . . , n − r − 1.

Therefore β is linearly independent and hence a basis for C.

(2) Suppose C =
〈
g(x) +up(x), ua(x)

〉
with deg g(x) = r, deg a(x) = t. Since the lowest

degree polynomial in C is ua(x), then it is suffices to show that

χ spans γ =
{
g(x) + up(x), x(g(x) + up(x)), . . . , xn−r−1

(
g(x) + up(x)

)
, ua(x), xua(x),

. . . , xn−t−1ua(x)
}
.

Similarly it suffices to show that uxr−ta(x) ∈ span(γ).

uxr−ta(x) = u(g(x) + up(x)) + um(x) where um(x) is a polynomial in C of degree less

than r. Since any polynomial in C must have degree greater than or equal to deg a(x) = t,

then t ≤ degm(x) < r. Hence um(x) = α0ua(x) + α1xua(x) + . . .+ αr−t−1x
r−t−1ua(x).

Hence, χ is a generating set. By comparing coefficients as in (1) there is no elements in

χ is a linear combination of the others. Therefore χ is a minimal generating set.

By following the same process, we find the rank and the minimal spanning set for any

cyclic code over the ring Ri for i = 2, 3, . . . , k.

To do this, let us consider the cyclic code Ck−2 of even length n over the ring

R4 = F2 + uF2 + u2F2 + u3F2 with u4 = 0 mod 2.

(1) If Ck−2 =
〈
g + up1 + u2p2 + u3p3

〉
as in Lemma 4.2.4, deg g(x) = r, then Ck−2 is a

free module with rank(Ck−2) = n− r and basis

β =
{

(g+up1+u2p2+u3p3), x(g+up1+u2p2+u3p3), . . . , xn−r−1(g+up1+u2p2+u3p3)
}
.

(2) If Ck−2 =
〈
g + up1 + u2p2 + u3p3, ua1 + u2q1 + u3q2, u

2a2 + u3l1, u
3a3

〉
,

where a3

∣∣a2

∣∣a1

∣∣g∣∣(xn − 1) mod 2 with deg g(x) = r,

deg a1(x) = s, deg a2(x) = t and deg a3(x) = b, then Ck−2 has rank(Ck−2) = n−b and a

minimal spanning set given by

χ =
{(
g + up1 + u2p2 + u3p3), x(g + up1 + u2p2 + u3p3), . . . , xn−r−1(g + up1 + u2p2 +

u3p3), (ua1 + u2q1 + u3q2), x(ua1 + u2q1 + u3q2), . . . , xr−s−1(ua1 + u2q1 + u3q2), (u2a2 +

u3l1), x(u2a2+u3l1), . . . , xs−t−1(u2a2+u3l1), (u3a3(x)), x(u3a3(x)), . . . , xt−b−1(u3a3(x))
}
.

(3) If Ck−2 =
〈
g+ up1 + u2p2 + u3p3, u

3a3

〉
where deg g(x) = r, deg a3(x) = t, then Ck−2

has rank(Ck−2) = n− t and a minimal spanning set given by
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Γ =
{

(g+up1 +u2p2 +u3p3), x(g+up1 +u2p2 +u3p3), . . . , xn−r−1(g+up1 +u2p2 +

u3p3), u3a3, xu
3a3, . . . , x

r−t−1u3a3

}
.

Continue in the same way as above to get the following Theorem which is a generalization

of the results in [3].

Theorem 4.3.2. Let C1 be a cyclic code of even length n over

Rk = F2 + uF2 + u2F2 + . . .+ uk−1F2 with uk = 0 mod 2.

The constraints on the generator polynomials as in Theorem 4.2.6.

(1) If C1 =
〈
g + up1 + u2p2 + . . . + uk−1pk−1

〉
, deg g(x) = r, then C1 is a free module

with rank(C1) = n− r and basis

β =
{

(g+up1 +u2p2 + . . .+uk−1pk−1), x(g+up1 +u2p2 + . . .+uk−1pk−1), . . . , xn−r−1(g+

up1 + u2p2 + . . .+ uk−1pk−1)
}
.

(2) If C1 =
〈
g+up1 +u2p2 + . . .+uk−1pk−1, ua1 +u2q1 + . . .+uk−1qk−2, u

2a2 +u3l1 + . . .+

uk−1lk−3, . . . , u
k−2ak−2+uk−1t1, u

k−1ak−1

〉
with deg g(x) = r1, deg a1(x) = r2, deg a2(x) =

r3, . . . , deg ak−1 = rk, then C1 has rank(C1) = n− rk and a minimal spanning set given

by

χ =
{(
g+up1+u2p2+. . .+uk−1pk−1

)
, x
(
g+up1+u2p2+. . .+uk−1pk−1

)
, . . . , xn−r1−1

(
g+

up1+u2p2+. . .+uk−1pk−1

)
,
(
ua1+u2q1+. . .+uk−1qk−2

)
, x
(
ua1+u2q1+. . .+uk−1qk−2

)
, . . . ,

xr1−r2−1
(
ua1 +u2q1 + . . .+uk−1qk−2

)
, (u2a2 +u3l1 + . . .+uk−1lk−3), x(u2a2 +u3l1 + . . .+

uk−1lk−3), . . . , xr2−r3−1(u2a2+u3l1+. . .+uk−1lk−3), . . . , uk−1ak−1(x), xuk−1ak−1(x), . . . ,

xrk−1−rk−1uk−1ak−1(x)
}
.

(3) If C1 =
〈
g + up1 + u2p2 + . . . + uk−1pk−1, u

k−1ak−1

〉
with deg g(x) = r,deg ak−1 = t

then C1 has rank(C1) = n− t and a minimal spanning set given by

Γ =
{

(g+up1 +u2p2 + . . .+uk−1pk−1), x(g+up1 +u2p2 + . . .+uk−1pk−1), . . . , xn−r−1(g+

up1 + u2p2 + . . .+ uk−1pk−1), uk−1ak−1, xu
k−1ak−1, . . . , x

r−t−1uk−1ak−1

}
.

Proof. (1) Let C1 be a cyclic code of even length over

Rk = F2 + uF2 + u2F2 + . . .+ uk−1F2 with uk = 0 mod 2. Suppose

xn − 1 =
(
g + up1 + u2p2 + . . .+ uk−1pk−1

)(
h+ up1 + u2p2 + . . .+ uk−1pk−1

)
overRk.

70



Let c(x) ∈ C1 =
〈
g(x) + up1(x) + u2p2(x) + . . .+ uk−1pk−1(x)

〉
, then

c(x) =
(
g(x) + up1(x) + u2p2(x) + . . .+ uk−1pk−1(x)

)
f(x) for some polynomial f(x).

If deg(f(x) ≤ n − r − 1, then we are done, otherwise by division algorithm there exist

two polynomials q(x), s(x) such that

f(x) =

(
xn − 1

g + up1 + u2p2 + . . .+ uk−1pk−1

)
q(x) + s(x)

where s(x) = 0 or deg(s(x)) ≤ n− r − 1.

Now,

(
g(x) + up1(x) + u2p2(x) + . . .+ uk−1pk−1(x)

)
f(x)

=

(
g(x) + up1(x) + u2p2(x) + . . .+ uk−1pk−1(x)

)(
xn−1

g+up1+u2p2+...+uk−1pk−1
q(x) + s(x)

)
=

(
g(x)+up1(x)+u2p2(x)+ . . .+uk−1pk−1(x)

)
s(x). Since deg(s(x)) ≤ n− r−1, then β

spans C1. Now we only need to show that β is linearly independent. Let g(x) = 1 + g1x+

. . .+xr, p1(x) = p1,0 +p1,1x+ . . .+p1,lx
l, p2(x) = p2,0 +p2,1x+ . . .+p2,bx

b, . . . , pk−1(x) =

pk−1,0 +pk−1,1x+ . . .+pk−1,dx
d. Suppose

(
g(x)+up1(x)+u2p2(x)+ . . .+uk−1pk−1(x)

)
c0 +

x
(
g(x) +up1(x) +u2p2(x) + . . .+uk−1pk−1(x)

)
c1 + . . .+xn−r−1

(
g(x) +up1(x) +u2p2(x) +

. . .+ uk−1pk−1(x)
)
cn−r−1 = 0. Comparing coefficients in the above equation we get that(

1 + up1,0 + u2p2,0 + . . .+ uk−1pk−1,0

)
c0 = 0 (constant coefficient).

Since
(
1 + up1,0 + u2p2,0 + . . .+ uk−1pk−1,0

)
is a unit, then c0 = 0.

Hence, x
(
g(x) + up1(x) + u2p2(x) + . . . + uk−1pk−1(x)

)
c1 + . . . + xn−r−1

(
g(x) + up1(x) +

u2p2(x) + . . .+ uk−1pk−1(x)
)
cn−r−1 = 0.

Again comparing coefficients we get that(
1 + up1,0 + u2p2,0 + . . .+ uk−1pk−1,0

)
c1 = 0. (coefficient of x)

This implies that c1 = 0. Similarly we get that ci = 0 for all i = 0, 1, . . . , n − r − 1.

Therefore, β is linearly independent and hence a basis for Ck.

(2) Suppose C1 =
〈
g+up1 +u2p2 + . . .+uk−1pk−1, ua1 +u2q1 + . . .+uk−1qk−2, u

2a2 +u3l1 +

. . .+ uk−1lk−3, . . . , u
k−1ak−1

〉
with deg(g + up1 + . . .+ uk−1pk−1) = r1, deg(ua1 + u2q1 +

. . . + uk−1qk−2) = r2, deg(u2a2 + u3l1 + . . . + uk−1lk−3) = r3, . . . , deg(uk−1ak−1) = rk.

Since the lowest degree polynomial in C1 is uk−1ak−1(x), then it’s suffices to show that χ

spans
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γ =
{(
g+up1+u2p2+. . .+uk−1pk−1

)
, x
(
g+up1+u2p2+. . .+uk−1pk−1

)
, . . . , xn−r1−1

(
g+

up1+u2p2+. . .+uk−1pk−1

)
,
(
ua1+u2q1+. . .+uk−1qk−2

)
, x
(
ua1+u2q1+. . .+uk−1qk−2

)
, . . . ,

xr1−r2−1
(
ua1 +u2q1 + . . .+uk−1qk−2

)
, (u2a2 +u3l1 + . . .+uk−1lk−3), x(u2a2 +u3l1 + . . .+

uk−1lk−3), . . . , xr2−r3−1(u2a2+u3l1+. . .+uk−1lk−3), . . . , uk−1ak−1(x), xuk−1ak−1(x), . . . ,

xn−rk−1uk−1ak−1(x)
}

.

Similarly, it suffices to show that uk−1xrk−1−rkak−1 ∈ spanγ.

uk−1xrk−1−rkak−1(x) = uk−1
(
g(x)+up1(x)+u2p2(x)+. . .+uk−1pk−1(x)

)
+uk−1m(x), where

uk−1m(x) is a polynomial in C1 of degree less than rk−1.

Since any polynomial in C1 must have degree greater or equal to

deg(uk−1ak−1(x)) = rk, then rk ≤ deg(m(x)) < rk−1.

Hence uk−1m(x) = α0u
k−1ak−1(x)+α1xu

k−1ak−1(x)+. . .+αrk−1−rk−1x
rk−1−rk−1uk−1ak−1(x).

Hence, χ is a generating set.

By comparing coefficients as in (1) we get that non of elements in χ is a linear combination

of the others. Therefore χ is a minimal generating set.

(3) this case is a special case of case (2). So the proof is similar to case (2).

Definition 4.3.1. [3] Let C =
〈
g + up(x), ua(x)

〉
be a cyclic code of even length n over

R2 = F2 + uF2. We define Cu =
{
k(x) : uk(x) ∈ C

}
in R2,n = R2[x]

/〈
xn − 1

〉
.

Remark 4.3.1. [3] Cu is a cyclic code over F2 = {0, 1} = R1.

Proof. Let k(x) ∈ Cu, we need to show that xk(x) ∈ Cu.

Now since k(x) ∈ Cu ⇒ uk(x) ∈ C, but C is cyclic code over R2 ⇒ xuk(x) ∈ C ⇒

xk(x) ∈ Cu.

Definition 4.3.2. [3] Let C =
〈
g + up1 + u2p2, ua1 + u2q1, u

2a2

〉
be a cyclic code of

even length over R3 = F2 + uF2 + u2F2 with (u3 = 0 mod 2). We define Cu2 =
{
k(x) :

u2k(x) ∈ C
}

in R3,n = R3[x]
/〈
xn − 1

〉
.

Remark 4.3.2. [3] Cu2 is a cyclic code over R1 = {0, 1} = F2.

Proof. Let k(x) ∈ Cu2 , we need to show that xk(x) ∈ Cu2 .
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Now, since k(x) ∈ Cu2 ⇒ u2k(x) ∈ C, but C is cyclic code over R3 ⇒ xu2k(x) ∈ C ⇒

xk(x) ∈ Cu2 .

By following the same process, we define Cui−1 over the ring Ri for i = 2, 3, . . . , k.

So, if i = 4, then we let C =
〈
g+up1 +u2p2 +u3p3, ua1 +u2q1 +u3q2, u

2a2 +u3l1, u
3a3

〉
be

a cyclic code of even length over R4 = F2 + uF2 + u2F2 + u3F2 with (u4 = 0 mod 2) ⇒

Cu3 = {R(x) : u3k(x) ∈ C} is a cyclic code over F2.

Hence, we generalize these definitions to more general ring Rk as follows:

Definition 4.3.3. Let C =
〈
g+ up1 + . . .+ uk−1pk−1, ua1 + u2q1 + . . .+ uk−1qk−2, u

2a2 +

u3l1 + . . .+ uk−1lk−3, . . . , u
k−2ak−2 + uk−1t1, u

k−1ak−1

〉
be a cyclic code of even length n overRk = F2+uF2+u2F2+. . .+uk−1F2 with uk = 0mod 2.

We define Cuk−1 =
{
k(x) : uk−1k(x) ∈ C

}
in Rk,n.

Remark 4.3.3. Cuk−1 is a cyclic code over F2 = {0, 1}.

Proof. Let k(x) ∈ Cuk−1 , we need to show that xk(x) ∈ Cuk−1 .

Now, since k(x) ∈ Cuk−1 ⇒ uk−1k(x) ∈ C, but C is cyclic code over Rk ⇒ xuk−1k(x) ∈

C ⇒ xk(x) ∈ Cuk−1 .

Theorem 4.3.3. [3] Let C =
〈
g + up1 + u2p2, ua1 + u2q1, u

2a2

〉
.

Then Cu2 =
〈
a2(x)

〉
and wH(C) = wH(Cu2).

Proof. Since u2a2 ∈ C, then
〈
a2(x)

〉
⊆ Cu2 . Now given an b(x) ∈ Cu2 , then u2b(x) ∈ C

and hence there exist polynomials c(x), e(x), k(x) ∈ F2[x] such that

u2b(x) = c(x)u2g(x) + e(x)u2a1(x) + k(x)u2a2(x). Since a2(x)
∣∣g(x) and a2(x)

∣∣a1(x), we

have u2b(x) = u2l(x)a2(x) for some l(x). So Cu2 ⊆
〈
a2(x)

〉
and hence Cu2 =

〈
a(x)

〉
.

Furthermore, given a codeword l(x) = l0(x) + ul1(x) + u2l2(x) ∈ C where

l0(x), l1(x), l2(x) ∈ F2[x], since u2l(x) = u2l0(x) ∈ C and wH(u2l(x)) ≤ wH(l(x)) and

u2C is a subcode of C with wH(u2C) ≤ wH(C) it is sufficient to focus on the subcode

u2C in order to compute the Hamming weight of C. Since u2C =
〈
u2a2(x)

〉
, thus

wH(C) = wH(Cu2).
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According to Theorem 4.3.3,

if C =
〈
g + up1 + u2p2 + u3p3, ua1 + u2q1 + u3q2, u

2a2 + u3l1, u
3a3

〉
over

R4 = F2 + uF2 + u2F2 + u3F2 with (u4 = 0 mod 2).

Then Cu3 =
〈
a3(x)

〉
and wH(C) = wH(Cu3).

Continue in the same way as above we have the following theorem:

Theorem 4.3.4. If C =
〈
g + up1 + . . . + uk−1pk−1, ua1 + u2q1 + . . . + uk−1qk−2, u

2a2 +

u3l1 + . . .+ uk−1lk−3, . . . , u
k−2ak−2 + uk−1t1, u

k−1ak−1

〉
is a cyclic code of even length over

Rk = F2 + uF2 + u2F2 + . . . + uk−1F2 with uk = 0 mod 2. Then Cuk−1 =
〈
ak−1

〉
and

wH(C) = wH(Cuk−1).

Proof. Since uk−1ak−1 ∈ C, then
〈
ak−1(x)

〉
⊆ Cuk−1 . Now given an b(x) ∈ Cuk−1 , then

uk−1b(x) ∈ C and hence there exist polynomials c1(x), c2(x), . . . , ct(x) ∈ F2[x] such that

uk−1b(x) = c1(x)uk−1g(x) + c2(x)uk−1a1(x) + c3(x)uk−1a2(x) + . . . + ct(x)uk−1ak−1(x).

Since ak−1(x)
∣∣ak−2(x)

∣∣ . . . ∣∣a2(x)
∣∣a1(x)

∣∣g(x), we have uk−1b(x) = uk−1m(x)ak−1(x) for

some m(x). So Cuk−1 ⊆
〈
ak−1(x)

〉
and hence Cuk−1 =

〈
ak−1(x)

〉
.

Further, given a codeword m(x) = m0(x0) + um1(x) + u2m2(x) + . . .+ uk−1mk−1(x) ∈ C,

where m0(x), m1(x), m2(x), . . . , mk−1(x) ∈ F2[x], since uk−1m(x) = uk−1m0(x) ∈ C

and wH(uk−1m(x)) ≤ wH(m(x)) and uk−1C is a subcode of C with wH(uk−1C) ≤ wH(C)

it is sufficient to focus on the subcode uk−1C in order to compute the Hamming weight

of C. Since uk−1C =
〈
uk−1ak−1(x)

〉
, thus wH(C) = wH(Cuk−1).

4.4 Examples

Example 4.4.1. Cyclic codes of length 5 over R4 = F2 + uF2 + u2F2 + u3F2 with u4 = 0

mod 2.

Now, x5 − 1 = (x+ 1)(x4 + x3 + x2 + x+ 1) = g1g2

⇒The Nonzero cyclic codes of length 5 over R4 with generator polynomials are on the

following table:
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Non zero generator polynomials〈
1
〉
,
〈
g1

〉
,
〈
g2

〉〈
u
〉
,
〈
ug1

〉
,
〈
ug2

〉〈
u2
〉
,
〈
u2g1

〉
,
〈
u2g2

〉〈
u3
〉
,
〈
u3g1

〉
,
〈
u3g2

〉〈
g1, u

〉
,
〈
g2, u

〉
,
〈
g1, u

2
〉
,
〈
g2, u

2
〉〈

g1, u
3
〉
,
〈
g2, u

3
〉〈

ug1, u
2
〉
,
〈
ug2, u

2
〉〈

u2g1, u
3
〉
,
〈
u2g2, u

3
〉

Table 1 : Cyclic codes of length 5 over R4 = F2 + uF2 + u2F2 + u3F2

Example 4.4.2. [3] If k = 2⇒ R2 = F2 +uF2, let n = 8, then x8−1 = (x−1)8 = [g(x)]8

over Z2.

We will list all free module cyclic codes and all non free module of length 8 over

R2 = F2 + uF2.

In the case for free module cyclic codes, and due to the classification theorems, we have

the following tables that give all such codes:

Non zero generator polynomial(s) =g=x+1

1〈
g
〉
,
〈
g + u

〉〈
g + u(c0 + c1x)

〉〈
g3 + u(c0 + c1x+ c2x

2)
〉〈

g4 + u(c0 + c1x+ c2x
2 + c3x

3)
〉〈

g5 + u(x2 + 1)(c0 + c1x+ c2x
2)
〉〈

g6 + u(x+ 1)4(c0 + c1x)
〉〈

g7 + uc0

〉
Table 2 : Free module cyclic code of length 8 over R2 = F2 + uF2

To illustrate the cyclic code
〈
g3 + u(c0 + c1x+ c2x

2)
〉

C =
〈
g(x) + up(x)

〉
⇒ g(x) = g3 = (x+ 1)3 mod 2,
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p(x) = c0 + c1x+ c2x
2 mod 2⇒ deg p(x) < deg g(x),

g(x)
∣∣(x8 − 1) since (x+ 1)3

∣∣(x8 − 1),

g(x)
∣∣p(x)

(
x8−1
g(x)

)
since x8−1

g(x)
= x8−1

(x+1)3 = (x+ 1)5

⇒ (x+ 1)3
∣∣∣(c0 + c1x+ c2x

2)(x+ 1)5.

According to Theorem 4.3.1
deg
(
g(x) + up(x)

)
= 3 ⇒ f-rank(C) = n− r = 8− 3 = 5 and C has a basis given by

β =
{
g3 +u(c0 + c1x+ c2x

2), x
(
g3 +u(c0 + c1x+ c2x

2)
)
, · · · x4

(
g3 +u(c0 + c1x+ c2x

2)
)}

and |C| = 4n−r = 45 codewords.
Non zero generator polynomial(s) :g=x+1〈

u
〉〈
ugi
〉
, i = 1, 2, 3, 4, 5, 6〈

ug7
〉〈

gi, u
〉
, i = 1, 2, 3, 4, 5, 6, 7〈

g2 + uc0, ug)
〉〈

g3 + uc0, ug)
〉〈

g3 + u(c0 + c1x), ug2
〉〈

g4 + uc0, ug
〉〈

g4 + u(c0 + c1x), ug2
〉〈

g4 + u(c0 + c1x+ c2x2), ug3
〉〈

g5 + uc0, ug
〉〈

g5 + u(c0 + c1x), ug2
〉〈

g5 + u(c0 + c1x+ c2x2), ug3
〉〈

g5 + u(x+ 1)(c0 + c1x+ c2x2), ug4
〉〈

g6 + uc0, ug
〉〈

g6 + u(c0 + c1x), ug2
〉〈

g6 + ug(c0 + c1x), ug3
〉〈

g6 + ug2(c0 + c1x), ug4
〉〈

g6 + ug3(c0 + c1x), ug5
〉〈

g7 + uc0, ug
〉〈

g7 + ugc0, ug2
〉
,
〈
g7 + ug2c0, ug3

〉
,
〈
g7 + ug3c0, ug4

〉〈
g7 + ug4c0, ug5

〉
,
〈
g7 + ug5c0, ug6

〉
Table 3 : Non Free module cyclic code of length 8 over R2 = F2 + uF2

To illustrate the generator polynomial
〈
g5 + uc0, ug

〉
:

C =
〈
g(x) + up(x), ua(x)

〉
⇒ g(x) = g5 = (x+ 1)5 mod 2, p(x) = c0 mod 2,

a(x) = g = x+ 1 mod 2⇒ deg a(x) > deg p(x),

a(x)
∣∣g(x)

∣∣x8 − 1 mod 2, since (x+ 1)
∣∣(x+ 1)5

∣∣(x8 − 1),

a(x)
∣∣p(x)

(
x8−1
g(x)

)
since x8−1

g(x)
= x8−1

(x+1)5 = (x+ 1)3 mod 2

⇒ x+ 1
∣∣c0(x+ 1)3.
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Example 4.4.3. If n = 8 over R3 = F2 + uF2 + u2F2 with u3 = 0 mod 2.

x8 − 1 = (x− 1)8 =
(
g(x)

)8
over F2 = {0, 1}.

The nonzero free/non free module cyclic codes over R3 are on the following tables:
Non zero generator polynomial(s): g=x+1〈

1
〉
,
〈
g
〉
,
〈
g + u

〉
,
〈
g + u2

〉〈
g + u(c0 + c1x)

〉
,
〈
g + u2(c0 + c1x)

〉〈
g3 + u(c0 + c1x+ c2x2)

〉
,
〈
g3 + u2(c0 + c1x+ c2x2)

〉〈
g4 + u(c0 + c1x+ c2x2 + c3x3)

〉
,
〈
g4 + u2(c0 + c1x+ c2x2 + c3x3)

〉〈
g5 + u(x2 + 1)(c0 + c1x+ c2x2)

〉
,
〈
g5 + u2(x2 + 1)(c0 + c1x+ c2x2)

〉〈
g6 + u(x+ 1)4(c0 + c1x)

〉
,
〈
g6 + u2(x+ 1)4(c0 + c1x)

〉〈
g7 + uc0

〉
,
〈
g7 + u2c0

〉
Table 4 : Non zero Free module cyclic codes of length 8 over R3 = F2 + uF2 + u2F2

Non zero generator polynomial(s): g=x+1〈
u
〉
,
〈
u2
〉〈

ugi
〉
, i = 1, . . . , 7,

〈
u2gi

〉
, i = 1, . . . , 7.〈

gi, u
〉
, i = 1, 2, . . . , 7,

〈
gi, u2

〉
, i = 1, . . . , 7.〈

g2 + uc0, ug
〉
,
〈
g2 + u2c0, u2g

〉〈
g3 + uc0, ug)

〉
,
〈
g3 + u2c0, u2g)

〉〈
g3 + u(c0 + c1x), ug2

〉
,
〈
g3 + u2(c0 + c1x), u2g2

〉〈
g4 + uc0, ug

〉
,
〈
g4 + u2c0, u2g

〉〈
g4 + u(c0 + c1x), ug2

〉
,
〈
g4 + u2(c0 + c1x), u2g2

〉〈
g4 + u(c0 + c1x+ c2x2), ug3

〉
,
〈
g4 + u2(c0 + c1x+ c2x2), u2g3

〉〈
g5 + uc0, ug

〉
,
〈
g5 + u2c0, u2g

〉〈
g5 + u(c0 + c1x), ug2

〉
,
〈
g5 + u2(c0 + c1x), u2g2

〉〈
g5 + u(c0 + c1x+ c2x2), ug3

〉
,
〈
g5 + u2(c0 + c1x+ c2x2), u2g3

〉〈
g5 + u(x+ 1)(c0 + c1x+ c2x2), ug4

〉
,
〈
g5 + u2(x+ 1)(c0 + c1x+ c2x2), u2g4

〉〈
g6 + uc0, ug

〉
,
〈
g6 + u2c0, u2g

〉〈
g6 + u(c0 + c1x), ug2

〉
,
〈
g6 + u2(c0 + c1x), u2g2

〉〈
g6 + ug(c0 + c1x), ug3

〉
,
〈
g6 + u2g(c0 + c1x), u2g3

〉〈
g6 + ug2(c0 + c1x), ug4

〉
,
〈
g6 + u2g2(c0 + c1x), u2g4

〉〈
g6 + ug3(c0 + c1x), ug5

〉 〈
g6 + u2g3(c0 + c1x), u2g5

〉〈
g7 + uc0, ug

〉
,
〈
g7 + u2c0, u2g

〉〈
g7 + ugc0, ug2

〉
,
〈
g7 + u2gc0, u2g2

〉〈
g7 + ug2c0, ug3

〉
,
〈
g7 + u2g2c0, u2g3

〉〈
g7 + ug3c0, ug4

〉
,
〈
g7 + u2g3c0, u2g4

〉〈
g7 + ug4c0, ug5

〉
,
〈
g7 + u2g4c0, u2g5

〉〈
g7 + ug5c0, ug6

〉
,
〈
g7 + u2g5c0, u2g6

〉
Table 5 : Non Free module cyclic codes of length 8 over R3 = F2 + uF2 + u2F2
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Chapter 5

Constacyclic Codes over the Rings

F2 + uF2 and F2 + uF2 + u2F2

In this chapter, we study the structure of (1 + u)−constacyclic codes of even length n

over the ring F2 + uF2, with u
2 = 0 mod 2. We find a set of generators for each (1 + u)-

constacyclic code and its dual. We study the rank of cyclic codes and find their minimal

spanning sets. We prove that the Gray image of a (1 + u)-constacyclic code is a binary

cyclic code of length 2n. We extend these results that was proved in [2] to the ring

F2 + uF2 + u2F2, with u
3 = 0 mod 2. Examples of (1 + u), (1− u2)-constacyclic codes of

even lengths are also studied.

5.1 Classification of (1+u), (1−u2)-Constacyclic Codes

Definition 5.1.1. [2] Consider the ring R = F2 + uF2 = {0, 1, u, u + 1}, where u2 = 0

mod 2 and S = F2 + uF2 + u2F2 = {0, 1, u, u + 1, u2, 1 + u2, 1 + u + u2, u + u2}, where

u3 = 0 mod 2.

A linear code of length n is a (1 + u)−constacyclic if it is invariant under the automor-

phism v which is given by v(c0, c1, . . . , cn−1) =
(
(1 + u)cn−1, c0, . . . , cn−2

)
,where 1 + u is a

unit in R.
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A linear code of length n is a (1− u2)−constacyclic if it is invariant under the automor-

phism σ which is given by σ(c0, c1, . . . , cn−1) =
(
(1− u2)cn−1, c0, . . . , cn−2

)
, where 1− u2

is a unit in S.

A subset C of Rn is a linear cyclic code if its polynomial representation is an ideal in

Mn = S[x]/
〈
xn − 1

〉
.

A subset C of Rn is a linear (1 + u)−Constacyclic code if its polynomial representation

is an ideal in Rn = S[x]/
〈
xn − (1 + u)

〉
.

A subset C of Sn is a linear cyclic code if its polynomial representation is an ideal in

Tn = S[x]/
〈
xn − 1

〉
.

A subset C of Sn is a linear (1− u2)−Constacyclic code if its polynomial representation

is an ideal in Sn = S[x]/
〈
xn − (1− u2)

〉
.

Definition 5.1.2. [4] Let S = F2 + uF2 + u2F2 = {0, 1, u, 1 + u, u2, 1 + u2, 1 + u+ u2, u+

u2} where u3 = 0 mod 2. We define the Generalized Lee weight of any non zero element

t in S by

wtGL(t) =

 2, if t 6= u2

4, if t = u2

and the Generalized Lee weight of 0 is 0.

Further the Generalized Lee weight of any non zero n− tuple in Sn is the sum of Gener-

alized Lee weights of its components.

Example 5.1.1. If n = 8, let x = (1, 0, u2, 1 + u, 1, u+ u2, u2, 0) ∈ S8.

⇒wtGL(x) = 16.

Definition 5.1.3. [4] The Generalized Lee distance between x and y ∈ Rn is defined by

dGL(x, y) = wtGL(x− y).

Example 5.1.2. If n = 4, let x = (0, u, 1 +u, u2) and y = (0, 1, u, 0) be two vectors in S4

⇒dGL(x, y) = wtGL(x− y) = wtGL(0, 1 + u, 1, u2) = 8.

Notation:We write a for a(x) and (a)2 represents a binary cyclic codes in F2[x] with

generator a.
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Following results in [3], let R = F2 + uF2 = {0, 1, u, 1 + u} with u2 = 0 mod 2,

and S = F2 + uF2 + u2F2 with u3 = 0 mod 2. Let C be a constacyclic code in Sn =

S[x]
/〈
xn − (1 − u2)

〉
. Define Ψ1 : S → R by Ψ1(a) = a. Ψ1 is a ring homomorphism

that can be extended to a homomorphism Φ : C → Rn = R[x]
/〈
xn − (1 + u)

〉
defined by

Φ(c0 + c1x+ . . .+ cn−1x
n−1) = Ψ1(c0) + Ψ1(c1)x+ . . .+ Ψ1(cn−1)xn−1.

KerΦ =
{
u2r(x) : r(x) ∈ Z2[x]

}
. Let J =

{
r(x) : u2r(x) ∈ kerΦ

}
⇒ J is an ideal

in Z2[x]
/〈
xn − 1

〉
and hence a cyclic code in Z2[x]

/〈
xn − 1

〉
. So J =

〈
a2(x)

〉
and

kerΦ =
〈
u2a2(x)

〉
with a2(x)|(xn − 1) mod 2. In order to determine the generators of a

cyclic code in Sn, we need to know the image Φ which is a constacyclic code in Rn. Let D

be a constacyclic code in Rn as above, we define Ψ2 : R→ Z2 by Ψ2(a) = a2 mod 2. Ψ2

is a ring homomorphism because (a + b)2 = a2 + b2 in R and in Z2 =
{

0, 1
}

. Extend Ψ2

to a homomorphism ϕ : D → Z2[x]
/〈
xn − 1

〉
defined by ϕ(c0 + c1x + . . . + cn−1x

n−1) =

Ψ2(c0) + Ψ2(c1)x+ . . .+ Ψ2(cn−1)xn−1 = c2
0 + c2

1x+ . . .+ c2
n−1x

n−1 mod 2.

Kerϕ =
{
ur(x) : r(x) is a binary polynomial in Z2[x]

/〈
xn − 1

〉}
=
〈
ua1(x)

〉
with

a1(x)|(xn − 1) mod 2. The image of ϕ is also an ideal and hence a binary cyclic code

generated by g(x) with g(x)|(xn − 1). So, C =
〈
g(x) + up(x), ua1(x)

〉
for some binary

polynomial p(x). Note that a1|
(
px

n−1
g

)
because ϕ

(
xn−1
g

[g + up]
)

= ϕ
(
upx

n−1
g

)
= 0 which

implies
(
upx

n−1
g

)
∈ kerϕ =

〈
ua1

〉
. Also ug ∈ kerϕ implies a1(x)|g(x). Now since the

image of Φ is an ideal in Rn, then Im(Φ) =
〈
g(x)+up1(x) , ua1(x)

〉
witha1(x)|g(x)|

(
xn−

1
)

and a1(x)|p1(x)
(
xn−1
g(x)

)
. Also kerΦ =

〈
u2a2(x)

〉
with a2(x)|

(
xn − 1

)
mod 2. Since

u2a1 ∈ kerΦ =
〈
u2a2

〉
, then we get the following lemma.

Lemma 5.1.1. [3] If C =
〈
g(x) +up(x), ua1(x)

〉
is a linear-cyclic code in Rn and g(x) =

a1(x) with deg
(
g(x)

)
= r, then C =

〈
g(x) + up(x)

〉
and (g + up)|(xn − 1) in R.

Proof. Since u(g + up) = ug andg = a1, then C ⊆
〈
g(x) + up(x)

〉
,

hence C =
〈
g(x)+up(x)

〉
. By the division algorithim, xn−1 =

(
g(x)+up(x)q(x)

)
+ t(x),

where t(x) = 0 or deg t(x) < r. Since t(x) ∈ C then t(x) = 0 and hence (g+up)|(xn− 1)

in R .
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Lemma 5.1.2. [3] If C =
〈
g + up1 + u2p2, ua1 + u2q1, u

2a2

〉
is a linear-cyclic code in Sn

and if a2 = g, then C =
〈
g + up1 + u2p2

〉
and

(
g + up1 + u2p2

)
|
(
xn − 1

)
in S.

Proof. Since a2 = g, then a1 = a2 = g. From Lemma 5.1.1, we get that (g + up)|(xn − 1)

in R and C =
〈
g+up1 +u2p2, u

2a2

〉
. The rest of the proof is similar to Lemma 5.1.1 .

Lemma 5.1.3. Let C be a linear-constacyclic code in Sn = S[x]/
〈
xn − (1− u2

〉
, then C

can be written uniquely as C =
〈
g(x)+up1(x)+u2p2(x), ua1(x)+u2q1(x), u2a2(x)

〉
, where

a1(x), a2(x), p1(x), p2(x), q1(x) and g(x) are binary polynomials with a2|a1|g|
〈
xn − 1

〉
mod 2, a1(x)|p1(x)

(
xn−1
g(x)

)
and a2 divides q1(x)

(
xn−1
a1(x)

)
and p2(x)

(
xn−1
g(x)

)(
xn−1
a1(x)

)
. Moreover

deg p2 < deg a2, deg q1 < deg a2 and deg p1 < deg a1.

Proof. Assume that C =
〈
g(x) + up1(x) + u2p2(x), ua1(x) + u2q1(x), u2a2(x)

〉
=
〈
h(x) +

um1(x) + u2m2(x), ub1(x) + u2l1(x), u2b2(x)
〉
. Since kerΦ =

〈
u2a2(x)

〉
=
〈
u2b2(x)

〉
, then

a2(x) = b2(x) and similarly kerϕ =
〈
ua1(x)

〉
=
〈
ub1(x)

〉
implies a1(x) = b1(x).

Also ϕ
(
Φ(C)

)
=
〈
g(x)

〉
=
〈
h(x)

〉
and hence g(x) = h(x). Since g+up1+u2p2 ∈ C =

〈
g+

um1+u2m2, ua1+u2l1, u
2a2

〉
, then g+up1+u2p2 = g+um1+u2m2+(ua1+u2l1)α1+u2a2α2

. . .. . .. . .. . .. . .. . .. . .. . . (1).

Multiplying by u we get u2(p1 − m1) = u2a1α1. Since deg(p1 − m1) < deg(p1), then

p1 = m1. So equation (1) becomes u2p2 = u2m2+(ua1+u2l1)α1+u2a2α2 and u2(p2−m2) =

(ua1 + u2l1)α1 + u2a2α2. So u2(p2 −m2) ∈ C and hence ∈ kerΦ =
〈
u2a2(x)

〉
.

But again deg(p2−m2) < deg
(
a2(x)

)
. Thus p2 = m2. Similarly, we can show that q1 = l1

and hence we are done.

Remark 5.1.1. The above generators a1(x), a2(x) and g(x) of C are divisors of (xn −

1)mod 2 and they are not divisors of
(
xn − (1− u2)

)
, so for this fact makes the study of

(1− u2)−constacyclic codes easier to understand.

Lemma 5.1.4. [2]
(
x+ (1 + u)

)2L
=
(
x+ 1

)2L
for any integer L.

Proof.
(
x+ (1 + u)

)2L
=
[(
x+ (1 + u)

)2]L
=
[
x2 + (1 + u)2

]L
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=
(
x2 + 1 + u2 + 2u

)L
=
(
x2 + 1

)L
=
[
(x+ 1)2

]L
=
(
x+ 1

)2L
.

Lemma 5.1.5.
(
x+ (1− u2)

)2L
=
(
x+ 1

)2L
for any integer L.

Proof.
(
x+ (1− u2)

)2L
=
[(
x+ (1− u2)

)2]L
=
[
x2 + (1− u2)2 + 2x(1− u2)

]L
=
(
x2 + 1 + u4 − 2u2

)L
=
(
x2 + 1 + uu3

)L
=
(
x2 + 1

)L
=
[
(x+ 1)2

]L
=
(
x+ 1

)2L
.

Lemma 5.1.6. [2] Let n = 2em where gcd(2,m) = 1. Then u belongs to both ideals〈
xm + 1

〉
and

〈(
x+ 1

)2e〉
in Rn.

Proof. In the ring Rn = R[x]
/〈
xn− (1 + u)

〉
, we have xn− (1 + u) is the zero element, so

u = xn + 1 = x2em + 1 =
(
xm + 1

)2e
=
[(
x+ 1

)
f(x)

]2e
,(

since xm + 1 =
(
x+ 1

)
f(x) for some f(x) ∈ f2(x)

)
so u =

(
x+ 1

)2e[
f(x)

]2e
=
(
x2e + 1

)[
f(x)

]2e
.

Therefore u belongs to both ideals
〈
xm + 1

〉
and

〈(
x+ 1

)2e〉
in Rn.

Lemma 5.1.7. Let n = 2em where gcd(2,m) = 1. Then u2 belongs to both ideals
(
(xm +

1)
)

and
(
(x+ 1)2e

)
in Sn.

Proof. Similar to the proof of Lemma 5.1.6

Lemma 5.1.8. [2] If n = 2e, then
(
1 + (x + 1)ip

)
is a unit in Rn and in Sn for any

polynomial p and e > 0.

Proof. Let k = 2n, then
[
1 + (x+ 1)ip

]k
= 1 +

(
x+ 1

)ik
pk = 1 +

(
x+ 1

)2ni
pk = 1.

Theorem 5.1.9. [2] Let C =
〈
g(x) + up(x), ua1(x)

〉
be a

(
1 + u

)
−constacyclic code in

Rn for n = 2e. Then C =
〈
d(x+ 1)i

〉
, where d = 1 or u and i < n.

Proof. If g(x) + up(x) = 0, then

C =
〈
ua1(x)

〉
with a1(x)|

(
xn − 1

)
.
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Hence a1(x) = (x− 1)i, i < n and C =
〈
u(x+ 1)i

〉
. If g(x) + up(x) 6= 0, then

g(x) + up(x) = (x+ 1)i + (x+ 1)np(x)

= (x+ 1)i
[
1 + (x+ 1)n−ip(x)

]
= (x+ 1)v for some unit v.

Hence we may assume that C =
〈
(x+1)i, u(x+1)j

〉
. Since u = (x+1)n, then u(x+1)j ∈〈

(x+ 1)i
〉
. Therefor C =

〈
(x+ 1)i

〉
.

Theorem 5.1.10. Let C =
〈
g(x) +up1(x) +u2p2(x), u2a2(x)

〉
be a

(
1−u2

)
−constacyclic

code in Sn for n = 2e. Then C =
〈
d(x+ 1)i

〉
where d = 1 or u2 and i < n

2
.

Proof. If g(x) + up1(x) + u2p1(x) + u2p2(x) = 0, then

C =
〈
u2a2(x)

〉
with a(x)|

(
xn − 1

)
.

Hence a2(x) = (x−1)i, i < n and C =
〈
u2(x+1)i

〉
. If g(x)+up1(x)+u2p2(x) 6= 0, then

g(x) + up1(x) + u2p2(x) = (x+ 1)i + (x+ 1)
n
2 p1(x) + (x+ 1)np2(x)

= (x+ 1)i
[
1 + (x+ 1)

n
2
−ip1(x) + (x+ 1)n−ip2(x)

]
= (x+ 1)i

[
1 + (x+ 1)

n
2
−i(p1(x) + (x+ 1)

n
2 p2(x)

)]
= (x+ 1)v for some unit v.

Hence we may assume that C =
〈
(x + 1)i, u2(x + 1)j

〉
. Since u2 = (x + 1)n, then

u2(x+ 1)j ∈
〈
(x+ 1)i

〉
. Therefor C =

〈
(x+ 1)i

〉
.

Theorem 5.1.11. [2] Let C =
〈
g(x) + up(x), ua1(x)

〉
be a

(
1 + u

)
−constacyclic code in

Rn for n = 2em and gcd(2,m) = 1. If p(x) = 0, then C =
〈
g(x)

〉
or
〈
ug(x)

〉
.

Proof. Let C =
〈
g(x) + up(x), ua1(x)

〉
be a (1 + u)−constacyclic code in Rn. Assume

that p(x) = 0, then C =
〈
g(x), ua1(x)

〉
, where ua1(x) = (xn − 1)a1(x).

Since g(x)|
〈
xn − 1

〉
, then ua1(x) ∈

〈
g(x)

〉
. Hence C =

〈
g(x)

〉
or
〈
ug(x)

〉
.

Theorem 5.1.12. Let C =
〈
g(x) +up1(x) +u2p2(x), u2a2(x)

〉
be a

(
1−u2

)
−constacyclic

code in Sn for n = 2em and gcd(2,m) = 1. If p1(x) = p2(x) = 0, then C =
〈
g(x)

〉
or〈

u2g(x)
〉
.
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Proof. Let C =
〈
g(x) + up1(x) + u2p2(x), u2a2(x)

〉
be a (1 − u2)−constacyclic code in

Sn. Assume that p1(x) = p2(x) = 0, then C =
〈
g(x), u2g(x)

〉
, where u2a2(x) = (xn −

1)a2(x). Since g(x)|
〈
xn−1

〉
, then u2a2(x) ∈

〈
g(x)

〉
. Hence C =

〈
g(x)

〉
or
〈
u2g(x)

〉
.

Lemma 5.1.13. [2] Suppose that C =
〈
fk
〉

is a (1 + u)−constacyclic code in Rn for

n = 2em, gcd(2,m) = 1 and f |(xm − 1). Then we may assume that k ≤ 2e+1.

Proof. Since g.c.d.
(
xn−1
f2e , f

2e
)

= 1, then

s1(xn − 1)f 2e + s2f
2e = 1,

s1(xn − 1) + s2f
2e+1

= f 2e ,

s1u+ s2f
2e+1

= f 2e . (squaring both sides),

s2
2f

2e+2
= f 2e+1

.

This implies
〈
f 2e+2〉

= (f 2e+1
) and hence〈

f 2e+1〉
= (fk) if 2e+2 ≤ k ≤ 2e+1.

If k = 2e+2 + t, then〈
fk
〉

=
〈
f 2e+2+t

〉
=
〈
f 2e+1+t

〉
=
〈
f 2e+1〉

.

Lemma 5.1.14. Suppose that C =
〈
fk
〉

is a (1−u2)−constacyclic code in Sn for n = 2em,

gcd(2,m) = 1 and f |(xm − 1). Then we may assume that k ≤ 2e+1.

Proof. Since
(
xn−1
f2e , f

2e
)

= 1, then

s1(xn − 1)f 2e + s2f
2e = 1,

s1(xn − 1) + s2f
2e+1

= f 2e ,

s1u
2 + s2f

2e+1
= f 2e . (squaring both sides),

s2
2f

2e+2
= f 2e+1

.

This implies
〈
f 2e+2〉

= (f 2e+1
) and hence〈

f 2e+1〉
= (fk) if 2e+2 ≤ k ≤ 2e+1.

If k = 2e+2 + t, then〈
fk
〉

=
〈
f 2e+2+t

〉
=
〈
f 2e+1+t

〉
=
〈
f 2e+1〉

.

Lemma 5.1.15. [2] Suppose C =
〈
f i, ugk

〉
is a (1 + u)−constacyclic code in Rn for

n = 2em, where e > 0, f and g divides (xm+1) and gcd(2,m) = 1, then C =
〈
h
〉
, where

h = gcd(f i, (xn + 1)gk).
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Proof. First, note that u = xn+1 in Rn. Also note that f i and (xn+1)gk are polynomials

in Z2[x] and hence h = gcd(f i, (xn + 1)gk) exists. Second, let h = gcd(f i, (xn + 1)gk)

which implies h|f i and h|(xn + 1)gk, then f i and (xn + 1)gk ∈
〈
h
〉
. Hence C ⊆

〈
h
〉
.

On the other hand h = αf i + β(xn + 1)gk (properties of gcd) for some α, β ∈ R[x].

⇒ h ∈ C ⇒
〈
h
〉
⊆ C.

Therefor, C =
〈
h
〉
.

Lemma 5.1.16. Suppose C =
〈
f i, u2gk

〉
is a (1 − u2)−constacyclic code in Sn for n =

2em, where e > 0, f and g divides (xm + 1) and gcd(2,m) = 1, then C =
〈
h
〉
, where

h = gcd(f i, (xn + 1)gk).

Proof. First, note that u2 = xn+1 in Sn. Also note that f i and (xn+1)gk are polynomials

in Z2[x] and hence h = gcd(f i, (xn + 1)gk) exists. Second, let h = gcd(f i, (xn + 1)gk)

which implies h|f i and h|(xn + 1)gk, then f i and (xn + 1)gk ∈
〈
h
〉
. Hence C ⊆

〈
h
〉
.

On the other hand h = αf i + β(xn + 1)gk (properties of gcd) for some α, β ∈ S[x]

⇒ h ∈ C ⇒
〈
h
〉
⊆ C.

Therefor, C =
〈
h
〉
.

Theorem 5.1.17. [2] Let C =
〈
g(x) + up(x), ua1(x)

〉
be a (1 + u)−constacyclic code in

Rn for n = 2em and gcd(2,m) = 1. Suppose p(x) 6= 0, then C =
〈
f i11 f

i2
2 . . . f irr

〉
, where

f1, f2, . . . , fr are the monic binary divisors of (xm − 1) mod 2, and i1, i2, . . . , ir ≤ 2e+1.

Proof. Suppose p 6= 0. Consider

Φ
[(

xn−1
g(x)

)(
g(x) + up(x)

)]
= Φ

[
(xn − 1) + ux

n−1
g(x)

p(x)
]

= Φ
[
u+ ux

n−1
g(x)

p(x)
]

= Φ
[
u
(
1 + xn−1

g(x)
p(x)

)]
= 0

Hence u
(
1 + xn−1

g(x)
p(x)

)
∈ kerΦ =

〈
ua1(x)

〉
.

So 1 + xn−1
g(x)

p(x) = a1(x)k(x),

g(x) +
(
xn − 1

)
p(x) = g(x)a1(x)k(x).

⇒ g(x) + up(x) = g(x)a1(x)k(x)
(
Since u = xn − 1

)
in R.
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Hence C =
〈
g(x)a1(x)k(x), ua1(x)

〉
. But 1 + xn−1

g(x)
p(x) = a1(x)k(x).

⇒ 1 = xn−1
g(x)

p(x) + a1(x)k(x).

⇒ g(x)a1(x) = ua1(x)p(x) + g(x)a1
2(x)k(x).

This implies that g(x)a1(x) ∈ Cand C =
〈
g(x)a1(x), ua1(x)

〉
.

So we may assume that C =
〈
gl11 (x)gl22 (x) . . . glrr (x), ua1(x)

〉
, where gi(x)|

(
xn− 1

)
. Since(

xn − 1
)

=
(
xm − 1

)2e
, then each gi(x) = f lii (x), where fi is a monic divisor of xm + 1

mod 2 and li ≤ 2e.

So C =
〈
fm1

1 fm2
2 . . . fmrr , uf ltt

〉
, where

{
fi
}

are monic coprime divisors of
(
xm + 1

)
mod

2. By Lemma 5.1.15, we get that C =
〈
f i11 f

i2
2 . . . f irr

〉
, where fs|

(
xm − 1

)
mod 2 and

i1, i2, . . . ir ≤ 2e+1.

Theorem 5.1.18. Let C =
〈
g(x) +up1(x) +u2p2(x), u2a2(x)

〉
be a (1−u2)−constacyclic

code in Sn for n = 2em and gcd(2,m) = 1. Suppose p1(x) and p2(x) 6= 0, then C =〈
f i11 f

i2
2 . . . f irr

〉
, where f1, f2, . . . , fr are the monic binary divisors of (xm − 1) mod 2 and

i1, i2, . . . , ir ≤ 2e+1.

Proof. Suppose p1(x), p2(x) 6= 0. Concider

Φ
[(

xn−1
g(x)

)(
g(x) + up1(x) + u2p2(x)

)]
= Φ

[
xn − 1 + ux

n−1
g(x)

p1(x) + u2 xn−1
g(x)

p2(x)
]

= Φ
[
u2 + ux

n−1
g(x)

p1(x) + u2 xn−1
g(x)

p2(x)
]

= Φ
[
u
(
u+ xn−1

g(x)
p1(x) + ux

n−1
g(x)

p2(x)
)]

= 0.

Hence u
(
u+ xn−1

g(x)
p1(x) + ux

n−1
g(x)

p2(x)
)
∈ kerΦ =

〈
u2a2(x)

〉
.

So u+ xn−1
g(x)

p1(x) + ux
n−1
g(x)

p2(x) = a2(x)k(x),

ug(x) +
(
xn − 1

)
p1(x) + u

(
xn − 1

)
p2(x) = g(x)a2(x)k(x).

⇒ ug(x) + u2p1(x) = g(x)a2(x)k(x)
(
Since u2 = xn − 1 ⇒ u(xn − 1) = 0

)
.

Hence C =
〈
g(x)a2(x)k(x), u2a2(x)

〉
. But u+ xn−1

g(x)
p1(x) + ux

n−1
g(x)

p2(x) = a2(x)k(x).

⇒ u = xn−1
g(x)

p1(x) + ux
n−1
g(x)

p2(x) + a2(x)k(x).

⇒ ug(x)a2(x) = u2a2(x)p1(x) + g(x)a2
2(x)k(x).

This implies that g(x)a2(x) ∈ C and C =
〈
g(x)a2(x), u2a2(x)

〉
.

So we may assume that C =
〈
gl11 (x)gl22 (x) . . . glrr (x), u2a2(x)

〉
, where gi(x)|

(
xn−1

)
. Since
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(
xn − 1

)
=
(
xm − 1

)2e
, then each gi(x) = f lii (x), where fi is a monic divisor of xm + 1

mod 2 and li ≤ 2e.

So C =
〈
fm1

1 fm2
2 . . . fmrr , u2f ltt

〉
, where

{
fi
}

are monic coprime divisors of
(
xm + 1

)
mod

2. By lemma 5.1.16, we get that C =
〈
f i11 f

i2
2 . . . f irr

〉
, where fs|

(
xm − 1

)
mod 2 and

i1, i2, . . . ir ≤ 2e+1.

5.2 The Dual and the Minimal Spanning Sets of (1 +

u), (1− u2)-Constacyclic Codes

Lemma 5.2.1. [2] Let C =
〈
g
〉

be a (1 + u)−constacyclic code of length n = 2em and

gcd(2,m) = 1 in Rn, where g|
(
xn − 1

)
mod 2 and deg g = r. Then C has a minimal

spanning set over R given by

β = {g, xg, . . . , xn−r−1g, u, xu, . . . , xr−1u},

and
∣∣C∣∣ = 4n−r2r.

Proof. Since u = xn − 1 in Rn, and g|
(
xn − 1

)
in Rn, then u ∈ C.

The rest of the proof is similar to the proof of Theorem 4.2.1 in the previous chapter.

Lemma 5.2.2. Let C =
〈
g
〉

be a (1 − u2)−constacyclic code of length n = 2em and

gcd(2,m) = 1 in Sn, where g|
(
xn − 1

)
mod 2 and deg g = r. Then C has a minimal

spanning set over S given by

β = {g, xg, . . . , xn−r−1g, u, xu, . . . , xr−1u, u2, xu2, . . . , xr−1u2},

and |C| = 8n−r4r2r.

Proof. Since u2 = xn − 1 in Sn, and g|
(
xn − 1

)
in Sn, then u2 ∈ C.

Let g(x) = 1 + g1(x) + . . . xr and gc0 + xgc1 + . . . + xn−r−1gcn−r−1 = 0 ⇒ ci = 0 for

every i = 0, 1, . . . , n− r − 1.
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Now, we show that β spans

γ = {g, xg, . . . , xn−r−1g, u, xu, . . . , xn−1u, u2, xu2, . . . , xn−1u2}.

So we only show that uixr ∈ span
(
γ
)
, for i = 1, 2.

uixr = uig(x) + uim(x) where m(x) is a polynomial in C of degree less than r, since any

polynomial in C must have degree greater or equal to zero, then 0 ≤ deg m(x) < r.

Hence uim(x) = α0u
i + α1xu

i + . . .+ αr−1x
r−1ui. Hence β is a generating set.

By comparing coefficient as above, we have that non of the elements in β is a linear

combination of the others. Therefore β is a minimal generating set for C and |C| =

8n−r4r2r.

Lemma 5.2.3. [2] Let C =
〈
ug
〉

be a (1 + u)−constacyclic code of length n = 2em and

gcd(2,m) = 1 in Rn, where g|
(
xn − 1

)
mod 2 and deg g = r. Then C has a minimal

spanning set over R given by

β = {ug, uxg, . . . , uxn−r−1g},

and
∣∣C∣∣ = 2n−r.

Proof. Since the binary code generated by g(x) has basis
{
g, xg, . . . , xn−r−1g

}
, then the

code C =
〈
ug
〉

has a minimal spanning set β = {ug, uxg, . . . , uxn−r−1g}, and hence∣∣C∣∣ = 2n−r.

Lemma 5.2.4. Let C =
〈
ug
〉

be a (1 − u2)−constacyclic code of length n = 2em and

gcd(2,m) = 1 in Sn, where g|
(
xn − 1

)
mod 2 and deg g = r. Then C has a minimal

spanning set over S given by

β = {ug, uxg, . . . , uxn−r−1g, u2g, u2xg, . . . , u2xr−1g},

and
∣∣C∣∣ = 4n−r2r.
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Proof. Since the binary code generated by g(x) has basis
{
g, xg, . . . , xn−r−1g, ug, uxg, . . . , uxr−1g

}
,

then the code C =
〈
ug
〉

has a minimal spanning set β = {ug, uxg, . . . , uxn−r−1g, u2g, u2xg, . . . , u2xr−1g},

and hence
∣∣C∣∣ = 4n−r2r.

Lemma 5.2.5. Let C =
〈
u2g
〉

be a (1 − u2)−constacyclic code of length n = 2em and

gcd(2,m) = 1 in Sn, where g|
(
xn − 1

)
mod 2 and deg g = r. Then C has a minimal

spanning set over S given by

β = {u2g, u2xg, . . . , u2xn−r−1g}.

and |C| = 2n−r.

Proof. Since the binary code generated by g(x) has basis
{
g, xg, . . . , xn−r−1g

}
, then the

code C =
〈
u2g
〉

has a minimal spanning set β = {u2g, u2xg, . . . , u2xn−r−1g}.

Lemma 5.2.6. [2] Let C =
〈
f i11 f

i2
2 . . . f irr

〉
be a (1 + u)−constacyclic code of length

n = 2em and gcd(2,m) = 1 in Rn. Suppose for some ij we have 2e < ij ≤ 2e+1. Let

C =
〈
fg
〉
, where g is a polynomial of largest degree such that deg g = r, deg f = t and

f |g|
〈
xn − 1

〉
mod 2. Then C has a minimal spanning set over R spanned by

β = {fg, xfg, . . . , xn−r−1fg, uf, xuf, . . . , xr−t−1uf}

and
∣∣C∣∣ = 4n−r2r−t.

Proof. Since C =
〈
fg
〉

and f |g|
(
xn−1

)
mod 2, then the lowest degree polynomial in C is

uf . Let c(x) ∈ C, then c(x) = fgh, for some polynomial h ∈ Rn. Applying the division

algorithm, we get h = xn−1
g
q + d, where deg q ≤ r − 1, and d = 0 or deg d < n− r − 1.

This implies that fgh = fg
(
xn−1
g
q + d

)
= fuq + fgd. Note that fgd ∈ span

(
β
)
.

If deg q ≤ r − t − 1, then fuq ∈ span
(
β
)

and hence c(x) = fgh ∈ span
(
β
)
. If

deg q > r − t, then r < deg
(
fuq

)
≤ r + t− 1 < n+ t− 1 = deg

(
xn−r−1fg

)
.

Hence fuq ∈ span
(
β
)
. Therefore β spans C. From the construction of C, we have β is

a minimal spanning set and hence
∣∣C∣∣ = 4n−r2r−t.
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Lemma 5.2.7. Let C =
〈
f i11 f

i2
2 . . . f irr

〉
be a (1−u2)−constacyclic code of length n = 2em

and gcd(2,m) = 1 in Sn. Suppose for some ij we have 2e < ij ≤ 2e+1. Let C =
〈
fg
〉

where

g is a polynomial of largest degree such that deg g = r, deg f = t and f |g|(xn−1) mod 2.

Then C has a minimal spanning set over S spanned by

β = {fg, xfg, . . . , xn−r−1fg, uf, xuf, . . . , xr−t−1uf, u2f, xu2f, . . . , xr−t−1u2f}.

and |C| = 8n−r4r−t2r−t.

Proof. Since C =
〈
fg
〉

and f |g|
(
xn−1

)
mod 2, then the lowest degree polynomial in C is

u2f . Let c(x) ∈ C, then c(x) = fgh, for some polynomial h ∈ Sn. Applying the division

algorithm, we get h = xn−1
g
q + d, where deg q ≤ r − 1, and d = 0 or deg d < n− r − 1.

This implies that fgh = fg
(
xn−1
g
q + d

)
= fu2q + fgd.

Note that fgd ∈ span
(
β
)
. If deg q ≤ r − t − 1 , then fu2q ∈ span

(
β
)

and hence

c(x) = fgh ∈ span
(
β
)
. If deg q > r − t, then r < deg

(
fu2q

)
≤ r + t− 1 < n+ t− 1 =

deg
(
xn−r−1fg

)
.

Hence fu2q ∈ span
(
β
)
. Therefore β spans C. From the construction of C, we have β is

a minimal spanning set and hence|C| = 8n−r4r−t2r−t.

Theorem 5.2.8. [2]

Let C be be a (1 + u)−constacyclic code in Rn, where n = 2em,

gcd(2,m) = 1.

(1) If C =
〈
g(x)

〉
, then

A(C) =
(
ux

n−1
g

)
and C⊥ =

(
u(x

n−1
g

)∗
)
.

(2) If C =
〈
ug(x)

〉
, then

A(C) =
(
xn−1
g

)
and C⊥ =

(
(x

n−1
g

)∗
)
.

(3) If C =
〈
f i11 f

i2
2 . . . f irr

〉
then for some ij and 2e < ij ≤ 2e+1, then

A(C) =
(
f 2e+1−i1

1 f 2e+1−i2
2 . . . f 2e+1−ir

r

)
and

C⊥ =
((
f 2e+1−i1

1

)∗
,
(
f 2e+1−i2

2

)∗
, . . . ,

(
f 2e+1−ir
r

)∗)
.
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Proof. (1) Since C =
〈
g(x)

〉
, then from Lemma 5.2.1

(
ux

n−1
g

)
⊆ A(C)

and
∣∣(uxn−1

g

)∣∣ = 4n−deg
(
ux

n−1
g

)
, but |C||C⊥| = 4n, hence C⊥ =

(
u(x

n−1
g

)∗
)
.

(2) Similarly it follows directly from Lemma 5.2.3 .

(3) Similarly it follows directly from Lemma 5.2.6 .

Theorem 5.2.9. Let C be be a (1− u2)−constacyclic code in Sn where n = 2em,

gcd(2,m) = 1.

(1) If C =
〈
g(x)

〉
, then

A(C) =
(
u2 xn−1

g

)
and C⊥ =

(
u2(x

n−1
g

)∗
)
.

(2) If C =
〈
ug(x)

〉
, then

A(C) =
(
ux

n−1
g

)
and C⊥ =

(
u(x

n−1
g

)∗
)
.

(3) If C =
〈
u2g(x)

〉
,then

A(C) =
(
xn−1
g

)
and C⊥ =

(
(x

n−1
g

)∗
)
.

(4) If C =
〈
f i11 f

i2
2 . . . f irr

〉
where for some ij and 2e < ij ≤ 2e+1, then

A(C) =
(
f 2e+1−i1

1 f 2e+1−i2
2 . . . f 2e+1−ir

r

)
and

C⊥ =
((
f 2e+1−i1

1

)∗
,
(
f 2e+1−i2

2

)∗
, . . . ,

(
f 2e+1−ir
r

)∗)
.

Proof. (1) Since C =
〈
g(x)

〉
, then from Lemma 5.2.2

(
u2 xn−1

g

)
⊆ A(C)

and
∣∣(u2 xn−1

g

)∣∣ = 8n−deg
(
u2 x

n−1
g

)
, but |C||C⊥| = 8n, hence C⊥ =

(
u2(x

n−1
g

)∗
)
.

(2) Since C =
〈
ug(x)

〉
, then from Lemma 5.2.4

(
ux

n−1
g

)
⊆ A(C) and |C| = 4n−r2r,

but |C||C⊥| = 8n, hence C⊥ =
(
u(x

n−1
g

)∗
)
.

(3) Similarly it follows directly from Lemma 5.2.5 .

(4) Similarly it follows directly from Lemma 5.2.7 .

91



5.3 The Gray Map and (1 + u), (1 − u2)-constacyclic

Codes

An element z ∈ S can expressed uniquely as

z = a+ ur + u2q, where a, r, q ∈ Z2.

Following [4]; The Generalized Gray map ψ : Sn → Z4n
2 is defined by

ψ(z1, z2, . . . , zn) =
(
q1, q2, . . . , qn, q1 ⊕ a1, q2 ⊕ a2, . . . , qn ⊕ an, q1 ⊕ r1, q2 ⊕ r2, . . . , qn ⊕

rn, q1 ⊕ r1 ⊕ a1, q2 ⊕ r2 ⊕ a2, . . . , qn ⊕ rn ⊕ an
)
, where ⊕ is componentwise addition in Z2

and zi = ai + uri + u2qi, 1 ≤ i ≤ n.

ψ is an isometry from (Sn, Generalized Lee distance) to (Z4n
2 , Hamming distance). The

polynomial representation of the Generalized Gray map was given in the following way:

Every polynomial z(x) ∈ S[x] of degree less than n can be expressed as z(x) = b(x) +

ut(x) + u2m(x), where b(x), t(x), and m(x) ∈ Z2[x] are polynomials of degree less than

n. Recall that Sn = S[x]/
〈
xn − (1− u2)

〉
.

Define the map ψp : Sn → Z2[x]/
〈
x4n + 1

〉
by

ψp(z(x)) = b(x)xn + t(x)(xn + 1) +m(x)(x2n + 1).

ψp is the polynomial representation of ψ where ψ : S → Z4
2 defined by

ψ(a+ ur + u2q) = (q, q ⊕ a, q ⊕ r, q ⊕ a⊕ r).

Similarly, as above an element z ∈ R = F2 + uF2 can be expressed as z = r + uq where

r and q are in F2 =
{

0, 1
}

. The Gray map Ψ : R → F 2
2 is defined by

Ψ
(
r + uq

)
=
(
q, q ⊕ r

)
. This map can be extended to ψ : Rn → F 2n

2 defined by

ψ(z1, z2, . . . zn) = (q1, q2, . . . qn, q1 ⊕ r1, q2 ⊕ r2, . . . , qn ⊕ rn),

where z = (z1, z2, . . . , zn), zi = ri + uqi , 1 ≤ i ≤ n, and ⊕ is a binary addition.
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Example:-

Ψ(1) = 01 q = 0 , r = 1

Ψ(0) = 00 q = 0 , r = 0

Ψ(u) = 11 q = 1 , r = 0

Ψ(1 + u) = 01 q = 1 , r = 1.

It well known that ψ is an isometry from (Rn, Lee distance) to (Z2n
2 , Hamming distance).

The polynomial representation of the Gray map was given in the following way:

Every polynomial z(x) ∈ R[x] of degree less than n can be expressed as z(x) = a(x) +

ub(x), where a(x), b(x) ∈ Z2[x], are polynomials of degree less than n. Recall that

Rn = S[x]/
〈
xn − (1 + u)

〉
.

Define the map ψp : Rn → Z2[x]/
〈
x2n + 1

〉
by

ψp(z(x)) = a(x)xn + b(x)(xn + 1).

ψp is the polynomial representation of ψ.

Lemma 5.3.1. [2] Let C =
〈
g
〉

be a (1 + u)−constacyclic code in Rn, where g|(xn − 1)

mod 2.

Then ψp(C) =
〈
g
〉

2
is a cyclic code of Z2n

2 [x].

Proof. Let C =
〈
g
〉

be any (1+u)−constacyclic code in Rn where g|(xn−1) mod 2. From

the definition of ψp we have

ψp(
〈
g
〉
) = gxn ∈

〈
g
〉

2
.

Hence ψp(C) ⊆
〈
g
〉

2
. We have ψp(gx

n) = gx2n = g. Hence
〈
g
〉

2
⊆ ψp(C) and ψp(C) =〈

g
〉

2
.

Lemma 5.3.2. Let C =
〈
g
〉

be a (1 − u2)−constacyclic code in Sn, where g|(xn − 1)

mod 2.

Then ψp(C) =
〈
g
〉

2
is a cyclic code of Z4n

2 [x].

Proof. Let C =
〈
g
〉

be any (1−u2)−constacyclic code in Sn, where g|(xn−1) mod 2. From

the definition of ψp we have

ψp(
〈
g
〉
) = gxn ∈

〈
g
〉

2
.
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Hence ψp(C) ⊆
〈
g
〉

2
. We have ψp(gx

n) = gx4n = g. Hence
〈
g
〉

2
⊆ ψp(C) and ψp(C) =〈

g
〉

2
.

Lemma 5.3.3. [2] Let C =
〈
ug
〉

be a (1 + u)−constacyclic code in Rn where g|(xn − 1)

mod 2.

Then ψp(C) =
〈
g(xn + 1)

〉
2

is a cyclic code of Z2n
2 [x].

Proof. Similar to the proof of Lemma 5.3.1 .

Lemma 5.3.4. Let C =
〈
ug
〉

be a (1 − u2)−constacyclic code in Sn where g|(xn − 1)

mod 2.

Then ψp(C) =
〈
g(xn + 1)

〉
2

is a cyclic code of Z4n
2 [x].

Proof. Similar to the proof of Lemma 5.3.2 .

Lemma 5.3.5. Let C =
〈
u2g
〉

be a (1 − u2)−constacyclic code in Sn where g|(xn − 1)

mod 2.

Then ψp(C) =
〈
g(xn + 1)

〉
2

is a cyclic code of Z4n
2 [x].

Proof. Similar to the proof of Lemma 5.3.2 .

Lemma 5.3.6. [2] Let C =
〈
f i11 f

i2
2 . . . f irr

〉
be a (1 + u)−constacyclic code of length

n = 2em and gcd(2,m) = 1 in Rn. Suppose for some ij, we have 2e < ij ≤ 2e+1. Then

ψp(C) is a binary cyclic code of length 2n with generator
〈
f i11 f

i2
2 . . . f irr

〉
2
.

Proof. Similar to the proof of Lemma 5.3.1 .

Lemma 5.3.7. Let C =
〈
f i11 f

i2
2 . . . f irr

〉
be a (1−u2)−constacyclic code of length n = 2em

and gcd(2,m) = 1 in Sn. Suppose for some ij, we have 2e < ij ≤ 2e+1. Then ψp(C) is a

binary cyclic code of length 4n with generator
〈
f i11 f

i2
2 . . . f irr

〉
2
.

Proof. Similar to the proof of Lemma 5.3.2 .
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5.4 Examples

Example 5.4.1. [2] Let C =
〈
f 3

1 f2

〉
where x6 − 1 = f 2

1 f
2
2 , f1(x) = x + 1, and f2(x) =

x2 + x+ 1. According to Lemma 5.2.6, f(x) = f1(x) and g(x) = f 2
1 (x)f2(x)

⇒ C =
〈
(x+ 1)3(x2 + x+ 1)

〉
=
〈
(x+ 1)(x+ 1)2(x2 + x+ 1)

〉
=
〈
f(x)g(x)

〉
⇒ deg f = 1 , deg g = 4 i.e.r = 4 , t = 1. Hence the generating set of codewords of C

over R is given by: β = {f 3
1 f2, xf

3
1 f2, uf1, xuf1, x

2uf1}, and |C| = 42.23.

Example 5.4.2. x10 − 1 = (x+ 1)2(x4 + x3 + x2 + x+ 1)2 = f 2
1 (x)f 2

2 (x)

According to Lemma 5.2.7 , let f(x) = x+ 1 = f1(x) and g(x) = (x+ 1)2(x4 + x3 + x2 +

x+ 1) = f 2
1 (x)f2(x).

⇒ deg
(
g(x)

)
= 6, deg

(
f(x)

)
= 1 ⇒ r = 6, t = 1, n− r − 1 = 3, r − t− 1 = 4.

Since (x+ 1)|(x+ 1)2(x4 + x3 + x2 + x+ 1)|(x10 − 1)

⇒ f |g|(x10 − 1) mod 2 ⇒ C =
〈
fg
〉

=
〈
f 3

1 f2

〉
. Thus the generating set of code words of

C over S is given by:

β =
{
fg, xfg, x2fg, x3fg, uf, xuf, x2uf, x3uf, x4uf, u2f, xu2f, x2u2f, x3u2f, x4u2f

}
. Thus

|C| = 84.45.25.

Example 5.4.3. [2] Let C =
〈
ug3

1g
2
2g

4
3

〉
where x28 − 1 = g4

1g
4
2g

4
3, g1(x) = x + 1, g2(x) =

x3 + x + 1, and g3(x) = x3 + x2 + 1. According to Lemma 5.2.3, g(x) = g3
1g

2
2g

4
3 and a

generating set of codewords of C is given by β = {ug, uxg, . . . , ux6g}. Thus |C| = 27 =

128..

Example 5.4.4. x8 − 1 = (x− 1)8 in S.

Now, since u2 = xn − 1 ⇒ u2 = x8 − 1. Let g(x) = (x − 1)4 ⇒ g(x)|(x8 − 1) mod 2 ⇒

u2g = (x8 − 1)(x− 1)4 = x12 − 1 = x4 − 1
(
mod x8 − 1

)
⇒ C =

〈
x4 − 1

〉
=
〈
g(x)

〉
.

According to Lemma 5.2.2, deg g = 4 ⇒ r = 4, n− r − 1 = 3, r − 1 = 3. Thus C has a

minimal spanning set over S given by:

β =
{
x, xg, x2g, x3g, u, xu, x2u, x3u, u2, xu2, x2u2, x3u2

}
. Thus |C| = 84.44.24.
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Conclusion

In this thesis, we studied cyclic codes of an arbitrary length n over the ring

F2 + uF2 + u2F2 + . . .+ uk−1F2, with uk = 0 mod 2. The rank and minimum spanning

of this family of codes are studied as well.

We also studied constacyclic codes of even length n over the ring F2 + uF2 + u2F2, with

u3 = 0 mod 2. The dual and Gray images of this family of codes are studies as well.

Open problems include the study of constacyclic codes of even length over the ring

Fp + uFp + u2Fp + . . .+ ukFp, where k is positive, uk+1 = 0 mod p and p is a prime

integer. Also it will be interesting to construct a decoding algorithm for these codes that

works for any length n.
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