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Abstract

Codes over finite rings have been studied in the early 1970. A great deal of attention
has been given to codes over finite rings from 1990, because of their new role in algebraic
coding theory and their successful application.

The key to describing the structure of cyclic codes over a ring R is to view cyclic codes
as ideals in the polynomial ring R[x] / <:B" — 1>, where n is the length of the code.

In previous studies, some authors determined the structure of cyclic codes over Z; for
arbitrary even length by finding the generator polynomial, the number of cyclic codes
for a given length and the duals for these codes, and also determined the structure of
negacyclic codes of even length over the ring Zs. and their dual codes.

In this thesis, we introduce cyclic codes of an arbitrary length n over the rings Fs + uF5
with u?2 = 0 mod 2 and F; + uF5 + u?F, with u® = 0 mod 2. We find a set of generators
for these codes. The rank and the dual of these codes are studied as well.

We will extend these results about the rings Fy +ul, and Fy +ul, +u?F; to more general
rings Fy 4+ uFy + u?Fy = ...+ u* 71, with ¥ = 0 mod 2.

Finally we study the structure of (1 + u)—constacyclic codes of even length n over the
ring I + ulh with u? = 0 mod 2. Also we extend this study to the ring 5 + uFs + u?F,

with 3 = 0 mod 2.
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Introduction

Coding theory originated with 1948 publication of the paper (A mathematical theory of
communication) by Claude shannon [21]. For the past half century, coding theory has
grown into a discipline intersecting mathematics and engineering with applications to
almost every area of communication such as satellite and cellular telephone
transmission, compact disc recording, and data storage.

Shannon identified a number called the capacity of the channel and proved that
arbitrary reliable communication is possible at any rate below the channel capacity. For
example, when transmitting images of planets from deep space, it is impractical to
retransmit the images. Hence if portions of the data giving the images are altered, due
to noise arising in the transmission the data may prove useless. Shannon’s results
guarantee that the data can be encoded before transmission so that the altered data can
be decoded to the specified degree of accuracy. Examples of other communication
channels include magnetic storage devices, compact discs, and any kind of electronic
communication device such as cellular telephones.

Among all types of codes, linear codes are studied the most. Because of their algebraic
structure, they are easier to describe, encode, and decode than nonlinear codes.

Linear and cyclic codes over rings have recently aroused great interest because of their
new roles in coding theory and their successful application in combined coding and
modulation.

This thesis is organized as follows, we start by recalling background and notations about
abstract algebra and coding theory in chapter 1.

Chapter 2 covers the structure of cyclic codes over the ring Z, for arbitrary even length
n giving the generator polynomial for these codes and describing the duals and
self-duals of the cyclic codes.

Chapter 3 examines negacyclic codes of even length over Zs.. The theory of these codes



is an extension to the theory of negacyclic codes of even length over the ring Zj.
Chapter 4 gives the basic theory of cyclic codes over the rings

Fy+uly +u?Fy + ... +u*'F, with ¥ = 0 mod 2. This work is a generalization of the
results in [3].

Chapter 5 includes the structure of constacyclic codes of even length over the rings

F, + uF, with v? = 0 mod 2 and Fy + uF, + u?F, with u? = 0 mod 2. This work is a

generalization of the results in [2].



Chapter 1

Preliminaries

1.1 Rings and Fields

Definition 1.1.1. [16] A nonempty set R, together with two binary operations addition
(4+) and multiplication (.) is said to form a ring, if for all a, b, ¢ € R, the following

axioms are satisfied :
i) a+(b+c)=(a+b)+c.
(ii) a+b="0+a.

(iii) 3 some element 0 (called zero) in R s.t.,

a+0=0+a=a.

(iv) for each a € R, 3 an element (—a) € R, s.t.,

a+(—a)=(—a)+a=0.
(v) a.(b.c) = (a.b).c.

(vi) a.(b+¢) =a.b+a.c.
(b+c).a=b.a+ c.a.

Definition 1.1.2. [16] A ring R is called a commutative ring if ab = ba for all a,b € R.



If 4 a unique element e € R s.t.,
ae =ea=aforalla e R

then we say, R is a ring with unity. Unity is generally denoted by 1 (it is also called unit

element or multiplicative identity).

Definition 1.1.3. [16] An element a in a ring R with unity, is called invertible (or a unit)

with respect to multiplication if 4 some b € R such that ab =1 = ba.

Definition 1.1.4. [16] Let R be a ring. An element a # 0 € R is called a zero-divisor,
if 3 an element b #0 € R s.t., ab=0.

Definition 1.1.5. [16] A commutative ring R with unity is called an integral domain if
ab=0in R => either a = 0 or b = 0. In other words, a commutative ring R is called

an integral domain if R has no zero divisors.

Definition 1.1.6. [16] A field is a nonempty set F of elements with two binary operations
+ (called addition) and . (called multiplication) satisfying the following axioms. For all
a, b, ce F":

(i) F is closed under + and . i.e., a + b and a.b are in F.

(ii) Commutative laws: a +b=0b+a, a.b = b.a.
(iii) Associative laws: (a +b) +c=a+ (b+¢), a.(b.c) = (a.b).c.
(iv) Distributive law: a.(b+ ¢) = a.b + a.c.

Furthermore, two distinct identity elements 0 and 1 (called the additive and multiplicative

identities, respectively) must exist and satisfying the following:
(v) a+0=aforallackF.
(vi) a.1 =a and a.0 =0 for all a € F.

(vii) For any a in F', there exist an additive inverse element (—a) in F' such that

a+(—a)=0.



(viii) For any a # 0 in F, there exists a multiplicative inverse element a~! in F' such that

a.a”t =1.
We usually write a.b simply as ab, and denote by F* the set F'\ {0}.

Definition 1.1.7. [16] A ring R with unity is called a division ring or a skew field if all

non zero elements of R have multiplicative inverse.
Definition 1.1.8. [16] A commutative division ring is called a field.
Lemma 1.1.1. [16] A finite integral domain is a field.

Corollary 1.1.2. [16] Z, the set of integers mod p is a field, for a prime integer p.

Subring and the characteristic of a ring

Definition 1.1.9. [16] A non empty subset S of a ring R is said to be a subring of R if

S forms a ring under the binary operations of R.

Example 1.1.1. The ring (Z,+, ) of integers is a subring of the ring (R,+, ) of real

numbers.
If R is a ring then 0 and R are always subrings of R, called trivial subrings of R.

Theorem 1.1.3. [16] A non empty subset S of a ring R is a sub-ring of R if and only if
a,b e S, then ab, a—b € S. O

Definition 1.1.10. [16] Let R be a ring. If there exists a positive integer n such that
na = 0 for all a € R, then R is said to have finite characteristic and also the smallest such
positive integer n is called the characteristic of R.

If no such positive integer exists then R is said to have characteristic infinity. Character-

istic of R is denoted by char R or ch(R).



Example 1.1.2.

(i) The characteristics of Q, R, C are 0, where
Q is the set of all rational numbers, R is the set of all real numbers and

C s the set of all complexr numbers.

(i) The characteristic of the field Z, is p for any prime p.
Ideals and Quotient Rings
Definition 1.1.11. [13] A nonempty subset I of a ring R is called a left ideal if
(i) For all a,b € I, both a+b and a-b belong to I.
(ii) Foralla € I and all r € R, ra € I.

Symmetrically, we define a right ideal. A nonempty subset which is both a left and a
right ideal is called an ideal, or sometimes, for the sake of emphasis, a two-sided ideal.
In a commutative ring the distinction between a left and a right ideal disappears. From
condition (i) above it is clear that every left (or right) ideal is a subring. However, the
converse need not be true. For example, in the ring Q of rational numbers, the set Z of
integers is a proper subring, but not an ideal because % €Q,3€Z But 3.% Z¢7Z. In
any ring, the set {0} consisting of the zero element alone is a two-sided ideal. It is called
the zero ideal and denoted by {0}. Similarly, the whole ring R is a two-sided ideal. If
possesses an identity e, then R is called a unit ideal and is denoted by (e). The two sided
ideals {0} and R are said to be improper, any ideal other than {0} and R is said to be

proper.

Theorem 1.1.4. [13] If R is a ring with unity, and I is an ideal of R containing a unit,
then I = R.

Definition 1.1.12. [13] Let R be a ring and let I be an ideal in R. We define the quotient
ring R/I as:
R/I ={r+1:r¢€ R} =setof all cosets of I in R.



Definition 1.1.13. [13] Anideal I # R in a commutative ring R is a prime ideal if ab € T

implies that either a € I or b € I for every a,b € R.

Definition 1.1.14. [16] Let R be a ring. An ideal M # R of R is called a maximal ideal
of R if whenever A is an ideal of R such that, M C A C R then either A= M or A = R.

Example 1.1.3. [16]

(i) A field F' has only ideals F' and {0}. We can see that {0} is the only mazimal ideal
of F.

(i1) {0} in the ring Z of integers is a prime ideal as ab € {0} = ab=0=a € 0or b € 0.

It is an example of a prime ideal which is not mazimal because {0} G 2Z ¢ Z.

(11i) Hy = {4dn,n € Z} we can see that it is a mazimal ideal in the ring B = 27 of even
integers.
Hy, however, is not a prime ideal in E as 2.2 =4 € Hy but 2 is not belong Hy.
And also s not mazimal ideal in Z because 4Z & 27 G Z.

In fact, Hy is neither a maximal nor a prime ideal in Z.

In the following two theorems we give alternative criterions for an ideal in an arbitrary

commutative ring to be prime or maximal.

Theorem 1.1.5. [13] Let R be a commutative ring with unity, and let [ # R be an ideal in

R. Then R/I is an integral domain if and only if I is prime ideal in R.

Theorem 1.1.6. [10] Let R be a commutative ring with unity. An ideal M of R is
maximal ideal of R if and only if R/M is a field. U

Corollary 1.1.7. [15] Every mazimal ideal in a commutative ring R with unity is a prime

1deal, but the converse is not true.



Definition 1.1.15. [13] A sided ideal I of a commutative ring R is called a principal

ideal if there exists an element g € I such that [ =< g >, where
<g>={rg:r e R}
The element g is called a generator of I and [ is said to be generated by g.

Example 1.1.4. [13] Z is a principal ideal domain. Moreover, given any nonzero ideal

I of Z, the smallest positive integer in I is a generator for the ideal I.

Definition 1.1.16. [5] A local ring is a ring that has a unique maximal ideal.

Homomorphisms and Isomorphisms

Definition 1.1.17. [13] Let R and S be rings (or fields).

A function ¢:R — S is a ring homomorphism if for all a,b € R,

(a+0b) =(a) +p(b)

and
P(ab) = ¢(a)y(b).

Definition 1.1.18. [13] An isomorphism ¢: R — S is a homomorphism that is

one-to-one and onto S.

Definition 1.1.19. [13] Let f:R — S be a homomorphism, we define kernel of f by
ker f={zx € R: f(z) =0}
where 0 is a zero of S.

Theorem 1.1.8. [19] If f:R — S is a homomorphism, then
. ker f is an ideal of R.

« ker f =< 0 > if and only if f is one-to-one. O

Polynomial Rings



Definition 1.1.20. [13] Let R be a ring. A polynomial f(z) with coefficients in R is an

infinite formal sum
D oimg @it = !
im0 UiT = Qo + 1T+ ... F AT+ ...

where a; € R and a; = 0 for all but a finite number of values of i. The a.s are coefficients
of f(x). If for some i > 0 it is true that a; # 0, the largest such value of 7 is the degree of
f(z). If all a; # 0, then the degree of f(x) is undefined.

Let us agree that if f(z) = a9+ a1z + ...+ a,2™ + ... has a; = 0 for i > n, then we may
denote f(x) by ap+ a1z + ... + apa™.
Addition and multiplication of polynomials with coefficients in a ring R are defined in a

way familiar to us. Let
flz)=ap+ a1z + ...+ anx™, a; € R,
gx) =by+bx+...+b2", b € R,

be two polynomials over R, then we say f(z) = g(x) if m = n and a; = b; for all i.

Again, addition of polynomials f(z) and g(z) is defined by
f(@) +g(x) = (a0 + bo) + (a1 + b1)x + (az + by)z® + . ..

Product is also defined in the usual way

flx)g(z) = (a0 + a1z + ... + apaz™)(by + b1z + ... + byz™)

= agby + (a1bg + aghy))x + ... = co + 17 + 2% + ...+ Cppnr™ "

where ¢, = agby, + a1by_1 + ... + arby = ZI::O aybp_,

Let now Rx] be the set of all polynomials over R. Zero of the ring will be the zero
polynomial O(z) =0+ 0z + 0z% + ... .

Additive inverse of f(x) = ag+ a1z + ...+ a,z™ will be the polynomial —f(x) = —ag —
arz+. ..+ (—ay,)x™. In fact, if R has unity 1 then the polynomial e(z) = 1+0z+0x?+. ..
will be unity of R[z]. e(x) is also sometimes denoted by 1. Instead of a ring R if we start

with a field F' we get the corresponding ring F'[x] of polynomials.

9



Theorem 1.1.9. [16] Let R[x] be the ring of polynomials over a ring R, then
(1) R is commutative if and only if R[z| is commutative.

(i1) R has unity if and only if R[z] has unity. O

Theorem 1.1.10. [16] Let R[z] be the ring of polynomial of a ring R and suppose
f(z) =ap+arx+ ...+ apa™,
g(x) =by+ bz + ...+ ba™,
are two non zero polynomials of degree m and n respectively, then
(i) If R is an integral domain, deg(f(z)g(x)) = m +n.
(i1) R is an integral domain if and only if R[z| is an integral domain.
(i11) If F is a field, F[z] may not be field. O

Definition 1.1.21. [13] Let f(z) and g(x) be polynomials over the field F. If ged(f(x), g(z)) =
1, we say that f(z) and g(z) are relatively prime (over F'). In particular, f(z) and g(z)

are relatively prime if and only if there exist polynomials a(x) and b(z) over F' for which

al@)f(z) + bla)g(x) = 1.

Definition 1.1.22. [13] A polynomial f(z) € R|z], is monic provided its leading coeffi-

cient is 1.

Definition 1.1.23. [5] Two polynomials f and g in R[z] are called coprime, or relatively
prime if

Rlz]=<f>+<g>.
Definition 1.1.24. [16] A nonconstant polynomial f(z) € F[z] is irreducible if whenever

f(z) = p(x)q(x), then one of p(x) or ¢(x) must be constant.

10



1.2 Finite Fields

In this section we want to investigate the fundamental properties of finite fields.

Vector spaces over finite fields

Definition 1.2.1. [17] Let F}, be the finite field of order ¢. A nonempty set V, together
with some (vector) addition denoted + and scalar multiplication by elements of F, is a
vector space (or linear space) over Fy if it satisfies all of the following conditions. For all

u,v,w € V and for all A\, u € F:
i) ut+veV,;
(i) (u+v)+w=u+ (v+w);
(iii) There is an element 0 € V' with the property 0 +v = v + 0 for all v € V;

(iv) For each u € V there is an element of V, called —u, such that u + (—u) = 0 =

(—u) +u;
(V) u+v=v+u
(vi) dv eV,
(vii) Au+v) = Au+ Ao, (A + p)u = u + pu;
(viii) (Ap)u = A(puw);
(ix) if 1 is the multiplicative identity of Fj, then lu = u.

Definition 1.2.2. [17] A nonempty subset C' of a vector space V' is a subspace of V if is

itself a vector space with the same vector addition and scalar multiplication as V.

Modules and Submodules

11



Definition 1.2.3. [17] Let R be any ring, and let M be an abelian group, then M is
called a left R-module if there exists a scalar multiplication
¥ Rx M — M denoted by ¢(r,m) = rm, for all r € R and all m € M, such that for all

r,r1,m9 € R and all m,my,my € M,
(i) r(my 4+ mg) = rmy + rmy
(i) (r1+mr2)m =riym+ram
(iii) ri(rgm) = (r1r2)m
(iv) 1m = m. To denote that M is a left R-modulo.

Example 1.2.1. [17] If R is a ring then R is an R-module (Left R-module and right
R-module).

Vector spaces over F' are F-modules where F' is a field.

Definition 1.2.4. [17] Any subset of M that is a left R-module under operations induced
from M is called a submodule.

The subset {0} is called the trivial submodule.

The module M is a submodule of itself.

i.e.if M is a left R-module, then a subset N C M is a submodule if and only if it is

nonempty, closed under sums, and closed under multiplication by elements of R.

FExtension Field

Definition 1.2.5. [16] The order of a field is the number of elements in the field. If the
order is infinite, we call the field an infinite field, and if the order is finite, we call the field

a finite field or a Galois field.

Definition 1.2.6. [16] A finite field with p™ elements is called a Galois field of order p™
and is denoted by GF (p™).

Theorem 1.2.1. [16] For any prime p and any positive integer m, there exists a finite

field, unique up to isomorphism, with g = p™ elements.

12



Lemma 1.2.2. [15] For every element 3 of a finite field F with q elements, we have
p=4.

Definition 1.2.7. [13] The order of a nonzero element o € F,;, denoted by ord(«), is the

smallest positive integer k such that o = 1.

Definition 1.2.8. [13] (Primitive Root of Unity) An element « of a field is an nth
root of unity if " =1, n =q — 1.
It is a primitive nth root of unity if &” =1 and a™ # 1 for 0 < m < n.

An element « in a finite field F is called a primitive element (or a generator) of F if

F,={0,a,a? ...;a% '}

Theorem 1.2.3. [15] The elements of F,, are precisely the roots of the polynomial

! — . [

Theorem 1.2.4. [13] Division Algorithm
Let f(z) and g(x) be in F,lx], where F,|x] is the ring of all polynomials over the field F,

with g(x) nonzero, then

1. There exist unique polynomials h(x), r(x) € F,lx], such that
f(z) = g(x)h(z) + r(z), where 0 < deg r(x) <deg g(x) orr(z)=0.

2. 1f f(z) = g(x)h(z)+r(x), then ged(f(z), 9(x)) = ged(g(x), r(x)).

Corollary 1.2.5. [16] Let f(x) € Flz|, then « is root of f(z) if and only if xt — « is a
factor of f(x) over F

Definition 1.2.9. [13] (Extension Field) A field E is called an extension of a field F
if ¥ C FE and we write F' < F.
Thus R is an extension field of Q and C is an extension field of both R and Q.

Theorem 1.2.6. [15] Let F be a field and let f(x) € F[x] be a nonconstant polynomiall.
Then there ezist an extension E of F and « € E such that f(a) = 0.

13



Example 1.2.2. [19] Let F = R and let f(x) = 2> + 1, which is well known to have no
zeros in R and thus is irreducible over R.
Then < 2% + 1 > is a mazimal ideal in R[z], so R[x]/ < 22 + 1 > is a field.
Identifying r € R with r+ < 2> +1 > in R[z]/ < 2> + 1 >, we can view R as a subfield
of E=Rlz]/ <z*+1>.

Let a = 2+ < 22 + 1 >, computing in Rlz]/< 2? +1 >,
we find < a?+1>= (z+ <22 +1>)2+ 1+ <22 +1>)

=<2’ +1>+<2?2+1>=0. Thus o is a zero of *> + 1.
Minimal Polynomzials

Let E be a finite extension of F,. Then E is a vector space over Fj, and so K= F for
some positive integer ¢t. Each element o of E is a root of the polynomial 29 — z. Thus
there is a monic polynomial M, in F[z]| of smallest degree which has « as a root, this
polynomial is called the minimal polynomial of o over F,. In the following theorem we

collect some elementary facts about minimal polynomials.

Definition 1.2.10. [15] A minimal polynomial of an element o € Fim with respect to Fj,

is a nonzero monic polynomial f(z) of the least degree such that f(«) = 0.

Theorem 1.2.7. [16] Let F < E be fields, and let « € E have minimal polynomial m(z)

over F.

1) The polynomial m(x) is the unique monic irreducible polynomial over F for which
m(a) = 0.

2) The polynomial m(x) is the unique monic polynomial of smallest degree over F for
which m(«a) = 0.

3) The polynomial m(x) is the unique monic polynomial over F with property that, for

all f(x) € Flx], we have f(a) =0 if and only if m(x)|f(x). O

Definition 1.2.11. [16] Let n be coprime to g. The cyclotomic coset of ¢ (or g-cyclotomic

coset) modulo n containing i is defined by

14



Ci={(i.¢(modn)€ Z,:57=0,1,...}

A subset {i1,...,i;} of Z, is called a complete set representatives of cyclotomic cosets of

q modulo n if C;, ..., C;, are distinct and U§ Ci, = Zy.

Example 1.2.3. [15] Consider the cyclotomic cosets of 2 modulo 15:

Co={0}, C; ={1,2,4,8}, C3 = {3,6,9,12}, C5 = {5, 10},

Cr; ={7,11,13,14}. Thus, C, = Cy = Cy = Cy, and so on.

The set {0,1,3,5,7} is complete set of representatives of cyclotomic cosets of 2 modulo

15.

Example 1.2.4. [15] The polynomial f(x) =1+ x + 23 is irreducible over Fy; if it were
reducible, it would have a factor of degree 1 and hence a root in Fy, which it does not. So

Fy = Fy/ < f(x) >, The elements of Fg for the given polynomial f(x), are given by:

Cosets Vectors Polynomials in o Power of «

0+ < f(z) > 000 0 0

1+ < f(z) > 001 1 1=a°
r+ < f(z) > 010 a a
r+ 1+ < f(z) > 011 a+1 a?
4 < f(x) > 100 a? a?
1+ 2%+ < f(x) > 101 o +1 ab
2+ 2+ < f(z) > 110 o+« ot
4+ r+1+ < f(x) > 111 o +a+1 a®

The column "power of &” is obtained by using f(a) = o +a + 1 = 0, which implies that
a? =a+1. Soat = aa® = alat+l) = a’+a, o® = aa? = a(a®+a) = a*+a? = a’+a+1,

etc.

Example 1.2.5. [15] The field Fy was constructed in the Example above. In the table

below we give the minimal polynomial over Fy of each element of Fg and the associated

15



2-cyclotomic coset modulo 7.

Roots  Minimal polynomial 2 — cyclotomic coset

0 x

1 1+ {0}
a,a?, ot B +r+1 {1,2,4}
a3, a ab P+ 2t +1 {3,5,6}

1.3 Basic Concepts of Coding Theory

Coding theory deals with the problem of detecting and / or correcting transmission errors
caused by noise on the channel.

In many cases, the information to be sent is transmitted by a sequence of zeros and ones.
We call a 0 or a 1 a digit. A word is a sequence of digits. The length of a word is the
number of digits in the word. Thus 0110101 is a word of length seven.

A word is transmitted by sending its digits, one after the other, across a binary channel.
The term binary refers to the fact that only two digits 0 and 1 are used. Each digit is
transmitted mechanically, electrically, magnetically, or otherwise by one of two types of

easily differentiated poulses.
Codes, generator and parity check matrices

Definition 1.3.1. [15] Let F' denote the vector space of all n—tuples over finite field Fy,
n is the length of the vectors in F'. An (n, M) code C over F is a subset of F' of size
M, that is |C| = M =the number of all codewords of C.

We usually write the vectors (ci,cy,...,¢,) in Fj' in the form c¢jcy... ¢, and call the

vectors in C' codewords .

A code whose alphabet is Zy = Fy = {0, 1} is called a binary code or a Zs-code, a code
whose alphabet is Z3 = F3 = {0,1,2} is called a ternary code or a Z3-code, and a code
whose alphabet consists of four elements such as Z, = {0, 1, 2,3} is called quaternary

code or a Z4-code.
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Definition 1.3.2. [15] If C' is a k—dimentional subspace of F}', then C' will be called an

[n, k] linear code over Fj, .

Definition 1.3.3. [13] The rank of a matrix over k is the number of nonzero rows in

any row echelon form of the matrix.

Definition 1.3.4. [15] A generator matrix for an [n, k] code C' is any k x n matrix G
whose rows form a basis for C.

Note that a generator matrix for C' must have k& rows and n columns, and it must have

rank k.

Definition 1.3.5. [15] A generator matrix of the form [[;|A] where I, is the k x k identity

matrix is said to be in the standard or (systematic) form.

Theorem 1.3.1. [15] If G = [Ix|A] is a generator matriz for the [n, k] code C' is in system-

atic form, then H = [—AT|I,,_.] is a parity check matriz for C.

Example 1.3.1. The matriz G = [14| X], where

10000171

0100101
G =

0010110

0001111

15 a génemtor matriz in standard form for [7,4] binary code by Theorem 1.3.1. A parity-

check matriz is H = [XT|I3], where

0111100
H=1101101 0]

1101001
This code is called a [7,4] Hamming code.

Dual codes and weight distribution
Definition 1.3.6. [15] Let C be a linear [n, k]-code. The set

Ct={z€F}| zc=0,VceC}.
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is called the dual code for C', where x.c is the usual scalar product xc;+x2co+...... +T,Cn
of the vectors x and c. Note that C* is an [n,n — k| code. Also the generator matrics

G for the linear code C'=the parity check matrics H for the code C*.

Definition 1.3.7. [15] The inner product of vectors * =y ... 2n, Yy =y1.. .Y, in I} is
.Yy = Z?zl Lili-

Definition 1.3.8. [15]

. The (Hamming distance) d(z,y) between two vectors =, y € F" is defined to be the

number of coordinates in which x and y differ.

. The (Hamming weight) wt(z) of a vector € F}" is the number of nonzero coordinates

mn x.

Definition 1.3.9. [15] For a code C containing at least two words, the minimum distance

of a code C, denoted by d(C), is
d(C) = min{d(z,y) : 2,y € C,z # y}.

Theorem 1.3.2. [15] If x, y € F}, then d(z,y) = wt(x —y). If C is a linear code,
the minimum distance d is the same as the minimum weight of the nonzero codewords of

C . O
Theorem 1.3.3. [15] The distance function d(x,y) satisfies the following four properties:
(i) (non-negativity) d(z,y) > 0 for all v, y € F}.
(i1) d(z,y) =01if and only if v =y.
(ii) (symmetry) d(z,y) = d(y,x) for all x, y € F}.
(iv) (triangle inequality) d(z,z) < d(z,y) +d(y,z) for allx, y, z €Fy. O

Example 1.3.2. Let C' = {00000,00111,11111} be binary code. Then d(C) = 2 since
d(00000,00111) = 3, d(00000,11111) = 5, d(00111,11111) = 2. Hence, C is a binary
(5,3,2)-code.
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Definition 1.3.10. [15]

. The (Lee weight) wt(z) of a vector x € F' = ny(z) + 2na(z) + n3(r), where ny(z)

denotes the number of components of x equal to a.

. The (Lee distance)d(z,y) between two vectors x, y € F}' = wr(z — y).

Definition 1.3.11. [15] Let A;, also denoted A;(C), be the number of codewords of weight
1 in C. The list A; for 0 <1 < n is called the weight distribution or weight spectrum of
C.

Example 1.3.3. Let C' be binary code with generator matriz

1 10000
G=1001100
00 0O0T11

The weight distribution of C' is Ag = Ag = 1 and Ay = Ay = 3. Notice that only the

nonzero A; are usually listed.

Definition 1.3.12. [15] A code C is called self-orthogonal provided C C C*.
Definition 1.3.13. [15] A code C is called self-dual if C = C*.

Remark 1.3.1. [15] The length n of a self-dual code C' is even and the dimension of C' is
n/2.

1.4 Cyclic Codes over Finite Fields

One of the most important classes of linear codes are the class of cyclic code. These
codes have great practical importance and they are also of considerable interest from an
algebraic point of view since they are easy to encode. They also include the important
family Bose-Chadhuri-Hocquengham (BCH) codes which are great practical importance

for error correction, particulary the number of errors is expected to be small compared
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with the length of the code. Moreover cyclic codes are considered important since they are
the building blocks for many other codes. We assume throughout our discussion of cyclic
codes that n and ¢ are relatively prime. In particular, if ¢ = 2 then n must be odd. When
examining cyclic codes over F,, we will most often represent the codewords in polynomial
form. There is bijective correspondence between the vectors ¢ = cocy ... ¢, 1 in FJ' and
the polynomials ¢(x) = ¢ + 1z + ... c,_12" ! in F,[x] of degree at most n — 1. Notice
that if c(z) = co + 1z + ... cu_12™ 1, then xc(z) = ¢ 12™ + cox + 122 + ... + cpgx™ 1,
which would represent the codeword c cyclically shifted one to the right if ™ were set
equal to 1. More formally, the fact that a cyclic code C' is invariant under a cyclic shift
implies that if ¢(z) is in C| then so is xzc(x) provided we multiply modulo 2™ — 1. Also the

cyclic code C' will correct ¢t = [(d — 1)/2] errors.

Polynomials and Words

The polynomial f(z) = ag + a1z + asx® + ... + a2

of degree at most n — 1 over
field K may regarded as the word v = agaqas . ..a,_1 of length n in K".

For example if n = 7,

polynomial word

1+xz+22+2* | 1110100
14+ 2*+ 254+ 2% | 1000111
142+ 23 1101000

Thus a code of length n can be represented as a set of polynomials over K of degree at
most n — 1. The word agajasas of length 4 is represented by the polynomial

aop + a1 + asx? + azx® of degree 3, for instance.

Definition 1.4.1. [14] Let v be a word of length n, the cyclic shift 7(v) is the word of

length n

T(Vo, U1y« oy Up—1) = (Up—1,V0, -, Un_2).
Definition 1.4.2. [15] A code C' is said to be cyclic if 7(v) € C, whenever v € C.
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Example 1.4.1. C; = {102,210, 021,201, 120,012, 222,111,000} is a linear cyclic code
over Zs, but Cy = {000,221, 212,200,121, 112,100,021,012} is not cyclic since w(112) =
211 which is not in Cy

Theorem 1.4.1. [15] If Cy and Cy are cyclic codes of length n over F,, then
(i) C14+Cy={c1+co:c1 € Ch, o € Co}is cyclic.

(11) C1(Cy is cyclic. O

We remember that since F[x] is principle ideal domain also the ring
R, = F,[z]/< ™ — 1 > is a principle ideal hence the cyclic codes are principle ideals of
R,, when writing a code word of a cyclic code as ¢(x) we mean the coset

cle)+ <a™—1>in R,.

Corollary 1.4.2. [15] The number of cyclic codes in R,, equal 2™, where m is the number
of q-cyclotomic cosets modulo n. Moreover, the dimensions of cyclic codes in R, are all

possible sums of the sizes of the q-cyclotomic cosets modulo n.
Generating polynomaial of a cyclic code

Theorem 1.4.3. [15] A linear code C in F, is cyclic <= C is an ideal in R, =
Fylal/ (2" = 1).

Proof. (<) If C'is an ideal in Fy[z]/(z™ — 1) and ¢(z) = co + 12 + ... + ¢,_12™ ! is any
codeword, then zc(z) is also a codeword, i.e (¢,—1, ¢, C1,. ..+ Ch2) € C.

(=) If C is cyclic, then ¢(x) € C' we have zc(z) € C.
Therefore x'c(x) € C, and since C' is linear, then a(x)c(x) € C for each polynomial a(z).

Hence C' is an ideal. ]
Theorem 1.4.4. [15] Let C be an ideal in R, then

(i) There is a unique monic polynomial g(x) of minimum degree in

C =< g(x) >, and it is called the generating polynomial for C.

21



(i) The generating polynomial g(x) divides ™ — 1.

(111) If deg(g(x)) = r, then C' has dimension n —r and
C =< g(x) >={s(x)g(x) : deg s(xz) <n —r}.

(iv) If g(z) = go+q1x+. ..+ g.2", then go # 0 and C' has the following generator matriz:

go 91 g2 ... Gr
0 90 1 92
0 0 g0 91 g

00 © 0 g

gr

g1

Gr

g2

gr

0

Proof. (i) Suppose that C' contains two distinct monic polynomials ¢g; and go of minimum

degree r. Then their difference g; — go would be a nonzero polynomial in C' of degree less

than r, which is not possible. Hence, there is a unique monic polynomial g(z) of degree

r in C. Since g(x) € C and C' is an ideal, we have < g(z) >C C.

On the other hand, Suppose that p(z) € C, then by Division Algorithm 3 ¢(z), r(z) such

that

p(x) = q(z)g(x) + r(z) where r(z) = 0 or deg(r(z)) < 7.

Then r(x) = p(x) — q(x)g(x) € C has degree less than r, which possible only if r(z) = 0.

Hence p(z) = q(z)g(z) €< g(z) >, and so C C< g(x) > . Thus C =< g(z) > .

(ii) Dividing ™ — 1 by g(z), using Division Algorithm we have

" —1=q(z)g(x) + r(x), where deg(r(x)) < r.

Since C'is an ideal in R,,, we see that r(z) € C, a contradiction unless r(x) = 0, which

shows that g(x)|(z" — 1).

(iii) The ideal generated by g(z) is

< g(x) >={f(zx)g(x) : f(x) € Rn}
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with the usual reduction mod (z"—1). Now g(z) divides 2" —1, and so " —1 = h(x)g(x)
for some h(z) of degree n —r.

Divide f(z) by h(x), we get f(z) = q(x)h(x)+ s(x), where deg(s(z)) < n—r or s(z) =0,
then

f(@)g(z) = q(z)g(x)h(x) + s(x)g(x) = q(x)(a" — 1) + s(x)g(x).
So f(z)g(z) = s(x)g(x) € C. Now let ¢(z) be in C, then

c(z) = s(x)g(z) = (ap + a1z + ax? + ... + ap_p 12" " Hg(x) =

n—r—1

(apg(z) + arzg(x) + ... + ap_p1x g(x).

So ¢(x) €< {g(x),zg(z),..., 2" ""1g(x)} >, which shows that the set

n—r—1

{9(x),zg(x),...,x g(z)} spans C.

Also {g(x),zg(z),..., 2" ""1g(x)} is linearly independent, since if
aog(z) + arzg(x) + ... + ap_p1 2" " Lg(x) = 0,
then (ap + a1 + asz® + ... + ap_p_12" " 1)g(x) = 0 which implies that

(ao + a1z + apx® + ...+ an_T_lx”*’”*l) =0,

and since 1,z,22%,..., 2" !

are linearly independent, then ag = a1 = ... =a,_,_1 =0
and hence {g(z),zg(z),...,2""'g(x)} forms a basis for C.

Hence dim(c) =n —r.

(iv) If go = 0 then g(z) = zgi(x), where deg(gi(z)) < r and ¢1(z) = l.g1(x) =
2" tg(z), so gi(x) € C which contradict the fact that no nonzero polynomial in C
has degree less than r. Thus gy # 0.

Finally, G is a generator matrix of C since {g(z),zg(x),..., 2" "'g(x)} is a basis for

C. ]

Corollary 1.4.5. [15] Let C be a nonzero cyclic code in R,,. The following are equivalent:
(1) g(x) is the monic polynomial of minimum degree in C.

(i1) C =< g(x) >, g(x) is monic, and g(x)|(z™ — 1).
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The Parity Check Matrix

Theorem 1.4.6. [15] Let C be a cyclic cod in R, with generator polynomial g(x), such
that deg g(x) = r. Let h(z) = (2" —1)/g(x) = Y 1~y hix’. Then the generator polynomial
of Ct is gt (x) = 2™ "h(x~1)/h(0). Furthermore, a generator matriz for C+, and hence

a parity check matriz for C, is given by

B he 0 0 0

0 hoy ho 0 0

H= 0 h,_, ho 0 0
0 0 0 B ho

Example 1.4.2. Let C be a cyclic code of length n = 9. Since x° — 1 factors over Fy
1= -1 +22+1)=@-D)@*+2+ 1) +2°+1).

Hence, there are 2° = 8 cyclic codes in Ry = Fy/ < 2% —1 >. Take C =< 2° + 23+ 1 >
with generating polynomial g(z) = 25 + 23 + 1.

Then C has dimension 9 — 6 = 3 and generating matrix

100100100
010010010
0010010O0°T1

G:

Also C' has check polynomial h(z) = 5;9(;)1 =(x—1)(2*+x+1)=2%~1. Then C has
the parity check matriz
(10010000 0
010010000
[T 001001000
0001O0O01O00O0
00001O0O0T10
_0 000O01O0P®O0 1_
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Encoding With Cyclic Code

There are two rather straightforward ways to encode message strings using

a cyclic code one systematic method and one nonsystematic.

The First Procedure:[15]

Let G be the generator matrix of the cyclic code C' =< g(x) >, then

g(z) g 91 G2 o Gk ... 0
xg(x) 0 9 91 - Gn-k-1 Gn-k 0
G = ) =
wk_lg(x) 0 90 cee In—k—-1 UGn—k

to encode the message m € F'g as the codeword ¢ = m(G. But if we transform m € IF’; to
the polynomial m(z) = ag + a1z + ... + ap_12" ' € F,[z], then
to encode m(z) as a codeword ¢(x) by forming the product ¢(x) = m(x)g(z). However,

this encoding is not systematic.

Example 1.4.3. [15] Let C be a binary cyclic code of length 15 with generator
polynomial g(x) = (1 + 2+ 2*)(1 + 2 + 2% + 23 + 2%).

Encode the message m(x) = 1+ 2% + 2° using the first procedure, we have

g(x) =1+ a* +a% + 27 + 2%

c(z) =m(x)g(z) = (1 + 2> +2°) (1 + 2" +2° + 27 +2%) =

1+ 22+ 2t + 2%+ 2" + 20 + 2 + 212 + 21 «— (101011010011110).

The Second Procedure:[15]

This way is systematic. The message m(z) associated to the message m is of degree at
most k& — 1 (or is the zero polynomial). The polynomial 2" *m(z) has degree at most
n — 1 and has its first n-k coefficients equal to 0, thus the message is contained in the
coefficients of "%, z"~*+1 . 2"l By the Division Algorithm,

2" Fm(x) = g(x)a(z) + r(z), where degr(z) <n —k or r(x) = 0.

Let c(z) = 2™ *m(x) — r(z), as c¢(z) is a multiple of g(z), c(z) € C. Also c(x) differs

from 2" *m(x) in the coefficients of 1, x, ..., 2" %1 as degr(x) <n — k. So c(x)
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contains the message m in the coefficients of the terms of degree at least n — k.

Example 1.4.4. [15] Let C be a binary cyclic code of length 15 with generator
polynomial g(z) = (1 +z + 2*)(1 + = + 2% + 2° 4+ 2*).
Encode the message m(x) = 1+ 2% + 2° using the second procedure, we have
g(x) =1+ 2"+ 28 + 27 + 28
2k — 15T _ 8
m(x) = 2% (1 + 2 + 2°) = 2% + 210 + 213,
Now divide x®m(x) by g(x).
P +at+r+1

x8+1’7—|—x6+x4—|—1|$13+ +LE1O+ +x8

$13+I12+I11+ +CL’9+ +I5

$12+$11+$10+l’9+l‘8+$5

e e e I o i Y

9 + + a2 + 2

2+ 28 +a” + +2°+ o

a®+ 2" + +at+

¥+ 2"+ a2+ +at+l
P +r+1

P®m(z) =g(x).(P+ 2t +z+ 1)+ (2 + 2+ 1)
c(z) =x®*m(x)+ (2 +2+1)= @2 +20%+28) + 2%+ 2 +1
as a vector C' = (110000101010010) € Fy.

Decoding With Cyclic Code

Following [15], let C' be an [n, k, d] cyclic code over F, with generator polynomial g(x) of
degree n — k, C will correct t = |(d — 1)/2] errors. Suppose that c¢(z) € C is transmitted
and y(x) =c(x)+e(x) is received, where e(z) = eg+e1x+. ..+ €, 12" is the error vector

with wt(e(z)) < t.
Definition 1.4.3. [15] For any vector v(z) € [Fy, let Ry, be the unique remainder when
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v(z) is divided by g(z) according to Division Algorithm, that is, Ry (v(z)) = r(z), where
v(z) =g(x)f(x) +r(z), with r(x) =0 or degr(z) <n—k.

The function R, satisfies the following properties.
Theorem 1.4.7. [15] With the preceding notation the following hold:

(i) Ry (av(z) +bv' (7)) = aRyw(v(z)) + bRy (V' (2)) for all v(z), v'(z) € F,z] and
all a,b € IF,.

(1) Ry@)(v(z) + alz)(z" = 1)) = Ry (v(2)).
(iii) Ry (v(z) =04if and only if v(x) mod (2" —1) € C.
(iv) If c(x) € C, then Ryg)(c(x) + e(x)) = Ry)(e(x)).
(v) If Ry (e(x)) = Rywy(€ (), where e(x) and € (x) each have weight at most t, then
e(z) = €' (x).
(vi) Ryy(v(x)) =v(x) if degr(z) <n —k. O
Theorem 1.4.8. [15] Let g(x) be a monic divisor of 2™ — 1 of degree n — k. If
Ry (v(x)) = s(x), then

Ry@y(zv(xr) mod (2™ — 1)) = Ryu)(ws(x)) = ws(x) — g(x)Sp—k—1, where s,__y is the

n=k=1in s(x). O

coefficient of x

We now describe the first version of the Meggitt Decoding Algorithm and use example
to illustrate each step. Define the syndrome polynomial S(v(x)) of any v(x) to be
S(w(z)) = Ry (2" *v(2)).

step I:
We find the syndrome polynomials S(e(z)) of error patterns e(x) = 31— e;z’ such that
wt(e(x)) <t and e, # 0.
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Example 1.4.5. [15] Let C be the [15,7,5] binary cyclic code with defining set
T=A{1, 2, 3, 4, 6, 8, 9, 12}. Let a be a 15th root of unity in Fis. Then

g(x) =1+ 2 + 2% + 27 + 28 is the generator polynomial of C' and the syndrome
polynomial of e(x) is S(e(x)) = Ry (z®e(x)). Step I produces the following syndrome

polynomial:

e(x) S(e(x)) e(x) S(e(x))

214 27 26 4 g4 23 + 25 + 26
213 4 g4 | 26 427 | 25 4 g4 22 4+ 2% + 25 + 26 + &7
212 4 g4 | 25 4 g7 | g4 4 g4 2423+t a2+ a7
21l f g4 | 24 427 | 23 414 1422423 +at+27
210 4 214 | 23 4 o7 | 22 4 214 z+z2 425 + b
z9 4zl 22 4+ z7 z + x4 14+z+zt+25+26 427
28 + x4 z+ a7 14zt 14 z* 4 26
27 + 14 1427

The computations of these syndrome polynomials were aided by Theorem 1.4.7 and
1.4.8. For example, in computing the syndrome polynomial of 22 + x', we have

S(x'? 4+ 2M) = Ry (2®(z'? + 1)) = Ry (2® + 27) = 2° + 27 using Theorem 1.4.7(vi).
In computing the syndrome polynomial for 1 + x'#, first observe that

Ry()(2®) =1+ a* + 28 + 27, then

S(1+ 2™) = Ry (2®(1 + ') = Ry(z) (2%) + Ry (2”) = 1 + 2 + 5.

We see by Theorem 1.4.7 that Ry (2°) = Ry (22®) = Ry@)(x + 2° + 27) + Ry (2%) =
r+2P+ 2"+ 142t + a8+ 2" =142+ 2t + 28+ 25

Therefore in computing the syndrome polynomial for x + 24, we have

S(x + ') = Ry (23(x + ) = Ry) (27) + Ryy (27) = 1+ x + 2* + 2° + 25 + 27. The

others follow similarly.

Step I1I:

Suppose that y(z) is the received vector. Compute the syndrome polynomial
S(y(z)) = Ry@y(z"*y(z)). By Theorem 1.4.7(iv), S(y(x)) = S(e(x)), where
y(x) = c(x) + e(x) with ¢(z) € C.

Example 1.4.6. [15] Continuing with Ezample 1.4.5, suppose that
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y(z) =1+ a2t + 27 4+ 2% + 210 + 212 s received.

Then S(y(z)) = x + 2? + 25 + 27.

Step I11:

If S(y(x)) is in the list computed in the Step I, then we know the error polynomial e(x)
and this can be subtracted from y(z) to the corrected codeword c(z) = y(z) — e(x). If
S(y(z)) is not in the list, go on to Step IV

Step IV

Compute the syndrome polynomial of zy(x), x?y(z), ... in succession until the
syndrome polynomial is in the list from Step I. If S(z'y(z)) is in this list and is
associated with the error polynomial € (z), then the received vector is decoded as

y(x) — 2" (z).

The computation in Step I'V is most easily carried out using Theorem 1.4.8 As
Ryto(ey(x)) = S(y(@)) = Y™ siat, S(ay(e)) = Ry (@ Fay(e)) =

By (25" 4y(2))) = R (58 (5(2))) = 25 (y(2)) — 501 19(2).

Example 1.4.7. [15] Continuing with Ezample 1.4.6, we have

S(y(z)) =z + 2> +2° + 27, that

S(zy(z)) =x(x+ 2?2+ 25+ 27) — Lg(x) = 1+ 2® + 23 + 2* + 2°, which is not in the list
in Erxample 1.4.5

S(x?y(x)) =ax(1+ 22+ 23+ 2 +2° — 0.9(2) = 2 + 23 + 2 + 25 + 27, which corresponds
to the error x* + 2 implying that y(x) is decoded as

yx) — (@ +2?) =1+ 22 + 2 + 27 + 2% 4+ 2.

1.5 Codes over Rings

Definition 1.5.1. [20] Ry = F; + uF; is a commutative ring {0, 1,u, 1 + u} with u? = 0,
where F5 is a binary field with two elements {0, 1}. Addition and multiplication operations

for Fy 4+ uF, are given in the following tables:
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+ 0 1 u 14u 0 1 u | l+u
0 0 1 u | 14u 0O (0] 0 (O] O
1 1 0 I4u | u 1 0 1 u | 1+u
u u |[1+u| O 1 u (0] uw |[0] u
I4u | 1+u | u 1 0 I4u (0| 1+ufu| 1

Definition 1.5.2. [4] Ry = Fy+uFy+u?F, is a commutative ring of 8 elements which are
{0, 1, u,u?,v,v%, uv, v*}, where u®> =0, v=1+u, v’ =1+v? Vv’ =14+u+uv? w=

u + u?. Addition and multiplication operations over R are given in the following tables:

+ 101 [u| v |u|lu]|v®|? O 1 |u | v | |uv]|v® |3
OO0 |1 |ul|v |uw|u]|v®|? ojlofo|O]OlO]|]O|O]O
110 v]|ulo|[v|u|uv 1101 |u/|v |uw|lu]|v? |3
ulu | v]O0 |1 |u|u]|v®]|? u 0| u v |lu | 0 || uluv
viv|iul|1l]|0]||0]|u]|u? viIi0o| v iu|o®|uw?| ul|v|1
Wl | uv | ¥ 0] ul|ll]|v w2 0w ] 0 |w| 0|0 |u |
w luv |3 | w? P u| 0| v 1 w [0 luv|w? | u | 0 |uw?|u| u
vl w? v fuv ] 1 v 0 u V20l u || |uv| 1 v
vlvdluv | v ] v 1 u| 0 ol uv | 1 [w?| ul| v |?

Definition 1.5.3. [3] A code of length n over a commutative ring R is a nonempty subset

of R™, and a code is linear over R if it is an R-submodule of R".

Definition 1.5.4. [15] Let Z,» be the ring of integer modulo p", where p is a prime
number and n a positive integer. A polynomial f(x) € Z,»[z] is said to be irreducible if
whenever f(z) = g(x)h(x) for two polynomials ¢g(z) and h(z) in Z,[z], one of g(x) or

h(z) is a unit.

Definition 1.5.5. [15] Define p : Zy[x] — Fb[z] by p(f(z)) = f(z) (mod 2). The map

p called reduction homomorphisim. A polynomial f(x) € Z,[z| is basic irreducible if
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p( f (a:)) is irreducible in Fy[z]; it is monic if its leading coefficient is 1. A polynomial
f(z) € Z[z| is primary if the principal ideal < f(z) >= {f(x)g(z) | g(x) € Z4lz]} is a

primary ideal.

Definition 1.5.6. [15] An ideal I of a ring R is called a primary ideal provided ab € I

implies that a € I or b" € I for some positive integer r.

Definition 1.5.7. [5] Let Z,» be the ring of integer modulo p™, where p is a prime number
and n a positive integer. A monic irreducible polynomial f(z) € Z,»[z] is said to be basic

irreducible if its reduction modulo p is irreducible.

Theorem 1.5.1. [15] (Hensels Lemma)
Let f(x) € Zy|x]. Suppose pu(f(z)) = hi(x)ho(z). .. hi(x), where hy(z), ho(z), ..., hi(x)
are pairwise coprime polynomials in Fy[z] . Then there exist g1(x), g2(x), . .., gp() € Z4[z]

such that:
1. w(gi(x)) = hi(z) for 1 <i<k,
2. q1(x), g2(x), ..., gk(x) are pairwise coprime, and

3. f(x) = g1(2)g2()...gx (). =

Graeffe’s method|15]
(1). Let h(x) be an irreducible factor of " + 1 in Fy[x]. Write h(z) = e(x) + o(z), where
e(z) is the sum of the terms of h(z) with even exponents and o(z) is the sum of the terms
of h(x) with odd exponents.
(2). Then g(z) is the irreducible factor of z™ — 1 in Zy[z], with p(g(z)) = h(z), where

g(2?) = +(e(x)? — o(z)?).

Example 1.5.1. In Fyz], 2"+ 1= (z+1)(2®* + 2+ 1)(z® + 22 + 1) is the factorization of
27 + 1 into irreducible polynomials. We apply Graeffe’s method to each factor to obtain

the factorization of x7 — 1 into monic irreducible polynomials of Z4[x).

(1). If h(z) = 2 +2° = 2 +1, thene(x) = 1 and o(z) = x. So g(2*) = —(1—2?) = 2% -1
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and thus g(z) = x—1. Also p(g(z)) = g(x) (mod 2) = x—1 (mod 2) = (z+1) (mod 2) =
h(z).

(2). If h(z) = 23+ x +1, then e(x) = 1 and o(z) = 2° +x. So g(2?) = —(1 — (2* +2)?) =
25 +22* + 22 — 1 and thus g(z) = 2® + 222 + 2 — 1.

(3). If h(z) = 2® + 22 + 1, then e(x) = 2> + 1 and o(z) = x3. So g(x*) = —((2* + 1)* —
(3)%) = 2% — 2* + 222 — 1 and thus g(x) = 2* — 2> + 22 — 1.

Therefore 27 —1 = (z —1)(23 4+ 222 + 2 — 1) (23 — 2% + 22 — 1) is the factorization of 27 —1

into monic irreducible polynomials in Z,[z].

Definition 1.5.8. [5]The Galois ring GR(p",m) is defined as :
GR(p",m) = Zpn|x]/(f(x))

where f(x) € Zyn[z] is a monic, basic, irreducible polynomial of degree m dividing

27" — 1 and (f(z)) is the ideal of Z,n[z] generated by f(z).
Example 1.5.2. [J]
* GR(p, m) = Fpm> GR(ps, 1) = Zps'

o Let h(z) = 23+ x + 1 € Zy[x] which is monic, basic irreducible over Zy. Then

GR(2%,3) = Zy[x]/{h(x)).

o Let g(x) = 23+ 22° + x — 1 € Zy[x] which is also monic, basic, irreducible over Zy.

Then GR(2%,3) = Zy[x]/{g(x).
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Chapter 2

Cyclic Codes over 7, of Even Length

Cyclic codes are important class of codes from both a theoretical and a practical view-
point. The key to describe the structure of cyclic codes over a ring R is to view cyclic
codes as ideals in the polynomial ring R[X]/(X" — 1), where n is the length of the code.
For this purpose, it is useful to obtain the divisors of X™ — 1, but this becomes difficult
when the characteristic of the ring is not relatively prime to the length of the code,
because then X™ — 1 does not factor uniquely over the ring. For codes over Z,, this
case corresponds to the case, when the length is even. The structure of cyclic codes over
rings of odd length n has been discussed in Bonnecaze and Udaya [7], Calderbank [8],
Dougherty and Shiromoto [11], and van Lint [22]. Calderbank and Sloane [9], and Pless
[19] presented a complete structure of cyclic codes over Zy of odd length. In[1], Abualrub
and Oehmke determine the generators for cyclic codes over Z, for lengths of the form 2%
and in [6], Blackford determines the generators of cyclic codes over Z, for lengths of the
form 2n where n is odd. In this chapter we shall complete the classification by examining

cyclic codes over Z, of length N = 2¥n, where n is odd.
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2.1 Background

Definition 2.1.1. [12] Let C be a code of length n over a finite chain ring R of charac-
teristic 4 with unique maximal ideal m, then we can define the torsion and residue codes

over the residue field F' := R/m of characteristic 2 by
Tor(C) = {v € F" : 2v € C} and Res(C) = {v € F" : Ju such that v + 2u € C}.

We can describe the generator matrices of these codes over Z4. A linear code over Z,

1 A A
has a generator matrix that is permutation-equivalent to the standard matrix h
0 2, 24"

where [; is the identity matrix of size k;, A and A” are matrices with entries from {0, 1},

and A’ is a matrix with entries from Z;. A code of this form is said to be of type

{ki,ko}. Tt contains 4¥12%2 elements. The code over I, = {0,1} with generator matrix

[ I, A A } . where A’ is the reduction modulo 2 of A’ is the residue code. The code
I, A A

0 I, A
Notice that ’Tor(C’)HRes(C’)’ = 2Mokitks — gkigk: — || |

over Fy with generator matrix is the torsion code .

Notation: We assume throughout this chapter that n is an odd integer and N = 2*n
will denote the length of a cyclic code over Zj.

Define the ring R = Zy[u] /(u* —1). We have a module isomorphism 1 : R — (Z,;)*""
defined by

2k_1 2k_1 2k_1 2k_1
¢<U( E Qp—1,;U ), E Qo ;U E G1,3U37 ) E Qp—2,;U )
Jj=0 Jj=0 Jj=0 Jj=0
- (an—l,Qk—b Qo,0, 1,0, - - - aan—2,2k—l) .

This gives that a cyclic shift in (Z4)2k" corresponds to a constacyclic shift in R™ by wu.

For a positive integer m, we define the following Galois ring

GR(4,m) = Z4[X]/(hm(X)),
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where h,,(X) is a monic basic irreducible polynomial in Z;[X] of degree m that divides
X?"~1 1. This ring is local with maximal ideal <2> and residue field Fy»_ The polynomial
hy is chosen so that ¢ = X + (h(X)) is a primitive (2 — 1) st root of unity.

Definition 2.1.2. [12] The set 7, = {0,1,£,&%,...,£2"72} is a complete set of coset

representatives modulo 2 and is called the Teichmiiller set.

Each z € GR(4,m) has a unique 2-adic expansion z = zg + 2z1, with 2g,21 € 7.

Define the ring R4(u, m) = GR(4,m) /<u —1).

2.2 Construction the Ideals of
Ry(u,m) = GR(4,m) /<u2k —1).

Lemma 2.2.1. [12] Let S = Ry(u,m).
(i) Every element z € S is uniquely written as

2k—1

z = Z (ZLO + 2zz~,1) (u — l)i, Zij € Tm.

=0
(11)An element z € S, written as in (i), is a unit if and only if zo # 0.
(iii) S is local ring with mazimal ideal (2,u — 1) and residue field Fom.
(v) The ideals of S are:
e (0),
o (1),
<2(u—1 Z> where 0 < i <2F — 1,
((u—1) —i—ZZ] 05i(u—1) ), where 1 <i < 2% —1, and s; € 7,V j,
(2(u—1)", (u—1) —{—QZ] o 8j(u—1)7), where 1 <i<2"—1, 1 <iands; € 7,V j.

Proof. (i) Since every element z € GR(4,m) has a unique 2-adic expansion z = 2y + 221,
with 29, 21 € 7,. Then, we choose to expand in (u — 1) rather in u to get the result.

(i) If z € S is a unit, then z mod 2 is a unit in Fom[u] /{(u — 1)2k>, which is equivalent
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to 290 # 0. Conversely, for an element z = x + 2y € S, Suppose z mod 2 is a unit
in Fom[u) /((u — 1)2k>. Then there exists 2’ € S such that 2’z = 1 mod 2, ie, 2’z =

1+ 2u, for some p € S. Then
(z+2y) (2 + 2(—p — 2'y)2") = xa’ + 2(y2’ + za'(—p — 2'y))

=1+2(ya’ —p—a'y+p) =1,

so ' + 2(—p — 2'y)a’ is an inverse of z, i.e z is a unit in S.

(iii) We have that S/(2,u—1) = Fym a field, so (2,u—1) is a maximal. To show this ideal
is the unique maximal ideal, we shall show that any element not in the ideal <2, U — 1> is
a unit.

If z = Zfial(zm +22;1)(u — 1)" not in <2,u — 1>, then 29 # 0 and therefore z is a unit
by (ii).

(iv) We have the trivial ideals (0) and S = (1). Let I be an ideal of S, distinct from
<O> and <1> If1cC <2>, any element [ can be written in the form

250 +2s1(u—1)+ ... + 2896 (u — 1)2k_1, where s; € 7.

Let s € I be an element with the smallest ¢ with s; # 0.
Forallt €I, t =2(u— 1)i(ti Flia(u—1)+ .t (u—1)2 1),
where ¢; € 7,,. Therefore I C (2(u —1)).
Since s = 2(u — 1)i(si +osipa(u — 1) + .+ sy (u — 1)2717), where s; € 7, and
s; # 0, this means that (s; +s;41(u— 1)+ ...+ sy _1(u—1)% 1) is invertible and hence
2(u—1)" € I, which implies, I = (2(u — 1)*).

Hence all ideals contained in <2> are of the form <2(u — 1)i>, 0<i<2F_—1.

Now assume [ is not contained in <2> Let
I'={v:v=w mod 2, weIl}.

Then I’ is an ideal in Fom[u]/{(u — 1)2k>. Since I is not contained in (2), I’ is not the
zero ideal (0). The nonzero ideals in Fom[u]/{(u — 1)2k>, distinct from (1), are of the
form <(u — 1)i>, 1 <i<?2F—1. Therefore I' = <(u — 1)’> with 1 <7 < 2F — 1. Hence
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there exists an element (u — 1)" + 2s € I, for some s € S. Without loss of generality, we

may write
2k—1
(u—1)"+2s=(u—1)"+2 Z sj(u — 1), where s; € T,
=0
Since 2(u—1)" = 2((u—1)"+2s) € I, it follows that 2s;(u—1)7 € [ foralli < j < 2F—1.
i—1
Therefore (u — 1)" + 2 Z si(u—1) € I.
=0
Now we divide into two subcases.
Subcase 1: -
I={(u—1)"+2) s;(u—1))
=0
This is the fourth type of ideals in the list of lemma 2.2.1 (iv).
i—1
Subcase 2: ((u—1)"+ QZsj(u —1Y)cI
=0
i1 i—1
Let g = (u—1)"+2 Z sjlu—1). Letrel/((u—1)+2 Z sj(u—1)7). There exists
=0 =0

r’ such that z = r —r’g € I can be written as
z = (200 +2201) + (210 +2211)(u — 1)+ ...+ (zi_10 + 22i11) (u — 1)1
Denoting the image of z in Fym[u] /((u — 1)2k> by z, we have z € ((u — 1)), so
200=721,0=...= 2i—10 = 0.

Thus we have

z=2u—-DMag+tagiu—1) 4.z (w—1)7) Lo (%), with 2y 1 # 0,
for some A < i. Since z; # 0, (ii) shows that 2)1 + 2ap11(u—1) + ...+ 2z 1 (u—1)71A
is a unit. Consequently, 2(u — 1)* € I. For each r € I\{(u—1)"+2 Z;;B sj(u—1)7),
we obtain such a . Let [ be the smallest of these A\. Then

i—1

((w=1)+2> sj(w—1),2u—1)") C I.

J=0

By (%) and the definition of [ for every r € I, there exists some 7’ € [ such that
i—1

r—r'g € (2(u—1)") (whenr € <(u—1)i+225j(u—1)j>, there exists r' such that r—r' =
=0
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0€ (2(u—1)"),so

Therefore, I = ((u— 1)’ —l—QZJ 085 (u—1)7, 2(u—1)").
Since 2(u —1)! € I, it follows that, for | < j <i—1, we have 2s;(u—1)7 € I. Therefore,
it follows that

j=0
[
i—1
Remark 2.2.1. [12] The ideal of the type ((u — 1)" + QZsj(u —1)7), where 0 < i <
7=0

2F —1, and s; € 7,, for all j, can be written in the form < u—1)"+2(u—1)h(u > where
0<t<i—1, and h(u) is either 0 or a unit. Furthermore, we may write
h(u) = 32, hj(u — 1)/, where h; € 7, for all j. In particular, when h(u) is a unit, then

one of the following must hold:

(i) h(u) =1;
(ii) h(u) = 1 —|— (u —1)7 h(u), where 7 > 1 and h(u) is a unit;
(iii) Z hj(u —1)7, with hy € 7,,\{0,1}.
i—1
Suppose that T is the smallest integer such that 2(u—1)T € ((u—1)"+2 Z sj(u—1)7).
=0
i—1 ’
For an ideal of the type (2(u — 1), (u — 1)" 4 2 Z sj(u—1)7), we may assume, without
=0
! i—1
loss of generality, that [ < T. Otherwise this ideal is actually ((u—1)"+2 Z sj(u—1)7).

j=0
Notice that ideals in the ring S may be viewed equivalently as cyclic codes of length 2%

over GR(4, m).

Lemma 2.2.2. [12] Let C' be an ideal in S (07" equivalently, a cyclic code of length 2*
over GR(4,m) ). Then we have that

‘Res(C)HTor(C’)‘ = |C’|
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Proof. Consider the surjective reduction mod 2 map C' :— Res(C). The kernel of this
map is {¢ € C' : ¢ = 2v for some v}. By identifying Fym with the Teichmiiller set 7,
in GR(4,m), it follows that there is a natural bijection between this kernel and Tor(C).

Hence, by the First Isomorphism Theorem of finite groups, we have

‘TOI(C)} = |C’|/‘Res(0)‘.

Theorem 2.2.3. [12]
The number of distinct ideals in S = Ry(u, m) = GR(4,m) [u]/<u2k — 1> is

2m>2k*1—1 -1 B 42k—1 -1

54 (2M% T + [(5.2m) —1] (2m)< PR ST

2.3 Discrete Fourier Transform

Following [12], we use the Discrete Fourier Transform to give the structure of cyclic codes
in the ring Zy[X] /(X" — 1) where N = 2¥n, n is odd as a direct sum of ideals in the
ring Ry(u,m). Let M be the order of 2 modulo n and let ¢ denote a primitive nth root
of unity in GR(4,M).

Definition 2.3.1. [12] Let

N

c= (00,0, €1,05--+5,Cn-1,0,€0,1,C1,15- -+, Cn—1,15---,Cp2k—1,C1 2615 - - - ,Cn—1,2k—1) € (Z4) , N =
n—12F—1

2kn (n odd), with c(z) = E E ¢; jx"" the corresponding polynomial. The Discrete
i=0 j=0

Fourier Transform of ¢(x) is the vector

(Co,C1y -y Cno1) € Ra(u, M)

n—12F—1
with ¢, = c(u”(’h) = Z Z C; jurti+i chi
=0 j=0
for 0 < h < n, where nn =1 mod 2*.
Define the Mattson-Solomon polynomial of ¢ to be &(Z) = 31—} e, nZ" (Here, & = ¢é, ).
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Lemma 2.3.1. (Inversion formula)[12]
Let ¢ € (Zy)N, where N = 2%n (n odd), with ¢(Z) its Mattson-Solomon polynomial as
defined above. Then

where x indicates componentwise multiplication.

Proof. Let 0 <t <mn—1. Then

e¢) = g

2k 1 n—1
_ vitj h(i—t)
= Z ety ¢
i=0 h=0
1
= (nu"t) U
=0
2k 1
Hence u™(1)é(¢h) = Z ci;jul. Noting that w=* = v~ in Ry(u, M), we get the
result. O

Notation: Let J denote a complete set of representatives of the 2-cyclotomic cosets
modulo n and, for each a € J, let m,, denote the size of the 2-cyclotomic coset containing
a.

The following theorem allows us to describe cyclic codes which are ideals in
X]/<XN — 1> where N = 2Fn, n is odd in terms of ideals of Ry(u,m,) which we have

previously described.

Theorem 2.3.2. [12 The map v = ZyX]/(XN — 1) — @, c; Ri(u,my) is a ring
isomorphism, where v(c(X)) = [ealacs for o(X) € Zy[X] /(XN —1).

Since a cyclic code of length N = 2*n over Z, can be regarded as an ideal in

X] / <X N _ 1>, we have the following corollary.
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Corollary 2.3.3. (12 If C is a cyclic code of length N = 2*n over Zy, then C' is iso-

morphic @, ; Co, where for each a € J, C, is an ideal in Ry(u,my).

Proof. By Theorem 2.3.2 Zy[X]/(X" — 1) = @,; Ri(u,m,), but C is an ideal in
Z4[X]/<X” — 1> and Ya € J ,C, is an ideal in Ry(u, mq). So C = @, ., Cq over Zy. [

Notation: For each a € J, let N, denote the number of distinct ideals in Ry(u, m,),

as given in Theorem 2.2.3, then the following result follows:

Corollary 2.3.4. [12] The number of distinct cyclic codes over Zy of length N = 2¥n,
(n odd ) is [],c; Na-

Proof. Let N, denote the number of distinct ideals in R4(u,m,) which is equivalent to
the number of cyclic codes in R4(u, m,) = by Th.2.3.3 and Corollary 2.3.3, The number
of distinct cyclic codes over Zy of length N = 2*n (n odd) is [[,c; Na O

Example 2.3.1. (1) Consider cyclic codes of length 16 over Zy,

= 16=2'1 = k=4, n=1, J={0}

= the 2-cyclotomic coset containing 0 is {0} mod 1 = mg=1 = by Theorem 2.2.3
Ny =5+284(9)(2)(2" — 1) — 4(2% — 1) = 2519 = by Corollary 2.3.4, there are 2519
cyclic codes of length 16 over Z,.

(ii) Consider cyclic codes of length 28 over Zy = 28 =2%(7) = k=2, n="7. The two
cyclotomic cosets mod 7 are ¢cg = {0}, ¢1 ={1,2,4}, ¢ = {6,5,3}

= J={0,1,6}=me=1, m; =3, mg=3

= No=5+ (202" +[(5:2) - 1)) Cht - 4(35) = 23,

(2T-1)2 211

319211 91
Ny =5+ (2377 4 [(5.2%) — 1] (23 =L 4(2 ) — 113. Similarly Ng = 113.

(23-1)2 231

= by Corollary 2.3.4, there are 23.113.113 = 293687 cyclic codes of length 28 over Z,.

Remark 2.3.1. [12] (1) If N = 2* then Jy = {0}. In this case mg = 1, then the number
of cyclic codes of length 2 is

54227 +(9)(2)(22 - 1) —4(22 —1)

=10.22"" —4(22" ") 0.
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(2) If K =1, then N = 2n = the number of ideals in R4(u, m,) is 5 + 2™«.

number of cyclic codes of length 2n is [] ., (5 + 2™<).

24

Duals

Hence the

Definition 2.4.1. [12] For an ideal C' of S = Ry(u,m), the annihilator A(C) of C is
defined to be the ideal A(C) = {g(u) : g(u)f(u) =0, Vf(u) € C}.

Theorem 2.4.1. [12] The annihilator A(C) of the ideal C in S = Ry(u,m) is of the

following form :

Case c A(C)
1 (0) (1)
2 (1) (0)
3 (2) (2)
4 (2u—1)i) (1<i<2k—1) (2, (u—1)2" 1)
5 ((u—1)7) (1<i< 2k ((u—1)2" =1 4 2(u—1)2"" =)
6 ((u—1)i) k=1 41 <i< 2k —1) (2(u—1)2" =1 (u—1)2""" 4 2)
7 ((u—1)F 4 2(u—1)i=2""") ((u—1)2"=1)
(21 <i<2k—1)
8 | (=1 +2w-1)"2" 1+ = 1)Thw) | (=12 72— )2 T RW)
@1 <i<2b=1 47 7>1)
9 | (=1 +2u—-1)"2"" 1+ (w—1DTh(w)) | (2u—1)2""F (u—1)2"""=7 4 2h(w))
@1y r<i<2k -1, 7>1)
10 ((u=1)2""" 4 2n(w)) (ho #0,1) ((w—=1)2""" 4201 4 h(w))
11 ((uw—1)" +2(u—1)"=2"""h(w)) (2(u—1)2"=1 (u—1)2""" 4 2(1 + h(u)))
2F-14+1<i<2k -1, hg #0,1)
12 ((u—1)" +2(u— 1)th(u)) ((w—1)2" =i 4 2(u—1)2" "=
(281 — it #£0,i <281, h(u) #0) 1+ (u— 1) ()
13 ((u—1)F +2(u— 1)*h(u)) (2(u—1)"=1, (u—1)2"""
(281 —i4t#£0, +2(1 + (u— 1)2" 7 =ittp(w)))
2F1 < j <281 1 h(u) #0)
14 ((u—1)" +2(u— 1)th(u)) (2(u—1)2" =1, (u— 1)i~t
(281 — i+t £ 0,281 ¢ <4, +2(h(u) 4 (u—1)i—t=2"1)
t >0 h(u) #0)
15 {(w—1)" + 2h(u)) ((u—1)F 4 2(h(u) + (u — 1)i=2"71))
(281 <4, h(u) #0)
16 (2,(u—1)) 1<i<2k—1) (2(u — 1)2" 1)
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Case C A(C)

17 (2u—1)! uw—1)2"" 4 2) ((uw—1)2"1)
(1<i<2k—1 1)
18 | (2(u—1! (w— 12" 4201+ (u—1)7h(w)) ((uw—1)2" =1 2w — 1)2 7 =1+ h(w)
(1<i<2k-t—1,1< 1-1)
19 (2(u— 1)}, (u— 127" 4 2h(u)) ((w=1)2" =1 4200 — )27 =1 4 (1 + h(u)))
(1<1<28=1 — 1 hg# 0,1)
20 (2(u — 1)1, (w — 1)F + 2h(u)) ((u— 12"~ 4 2(u — 1)2"~1=i(h(u)
(25141 <i<2—1,h(u) #0 HF(u—1)i=2"h))
1<l<2Fk—i—1)
21 (2(u— 1)}, (u— 1) + 2h(w)) ((w=1)2" "1 4 20u — )2 ' =1(1
(1<i<2k=1—1 h(u)#£0 +(u—1)2"" =in(w))
1<li<i-1)
22 (2(u— 1), (u — 1)7) (2(u—1)2"=1, (u—1)2"
(1<i<2k_1, +2(u—1)2"7 )
i—2F1 41 <1 <min{i, 281} - 1)
23 (2(u — 1), (u — 1)7) (20w —1)2" =1 (u—1)2" 1)

@F-lyri1<i<ok—1,
1<1<i—2k1

24 (2(u— 1)1, (u — 1)F +2(u — 1)i=2°7") (20w — 1)2" =1 (u—1)2" 1)
@Flri<i<ok—1,
i— 2k <1 <)

25 (2(u — 1)}, (2(u—1)2" =1 (u—1)2"

(u—1)" +2(u—1)=2"" (1 4 (u— 1)Th(u))) +2(u—1)2 7 TR (u))
2Fl41<i<2k—1,

i— 21 <1 <min{i, 2"t + 7})

26 (20w — 1)}, (u — 1)t (2(u—1)2"" (u—1)2"
+2(u — 1)i=2" " h(w) +2(u— 1) U1+ h(u)))
F-ly1<i<ok—1,

i— 281 <1< 281 by £0,1)

27 (2(u — 1)1, (u — 1)i (2(u—1)2""" (u—1)2"

+2(u— 1)*h(u)) +2(u— 1) 11+ h(u)))

(2F 1 4t <i < 2RV 1 [ h(u) #0,
0<t<l<2F—i+t)

28 (2w — 1)}, (u — 1)¢ (2(u—1)2" =1 (u—1)2"

+2(u — 1)th(u)) +2(u — 1)2 =it (u))
(281 41 < i, h(u) #0,

0<t<l<2F—itt)

29 (2(u — )Y, (u — 1)t (2(u—1)2" =1 (u—1)2"
+2(u — 1)th(u)) +2(u— 1271 4 (u— 1) T R (w))
(1<i<2k=t 4t —1,h(u) #0,
0<t<l<min{ 281 i 2F —i4t})

Proof. For each C, Let D denote the corresponding ideal in the right-most column.
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A simple verification shows that D C A(C) and that |D| = (4™)%"/|C|. An argument

similar to one for Lemma 5.2 in reference [12] proves that A(C) C C*

= (4™ /|C] = |D| < JA(C)| = [AC)] < |C*| = @™)*/|Cl.

Therefore, D = A(C) and A(C) = C*. O

Corollary 2.4.2. [12] Let C be a cyclic code over Zy of length 2*n and let C = @, Cy. Then

acJ T
Cct =P A(Ca),

a€eJ

where o/ denote the representative in J of the coset containing n — o, Yo € J.

Therefore to understand self-dual codes, it is first necessary to identify the ideals

C' C R4(u,m) such that C' = A(C).

Proposition 2.4.3. [12] With notation as in Theorem 2.4.1, if C = A(C), then C' must
belong to one of the following types:

o (2) (case 3);

o ((u—1)"+2h(u)), (257" <4, h(u) #0) (case 15);

o (2(u— 1) (u—1)1) 3252 < < 2% — 1 (case 23);

o (2(u— 1) (u— 1)+ 2(u — 1)h(u)), 257"+t < i, h(u) # 0,0 <t < 2F —i (case
27,28).

Proof. First we eliminate the other cases. It is clear that C' in cases 1 and 2 cannot
satisfy C' = A(C). For cases 4,6,7,9,11,13,14,16-21, C' and A(C) are clearly of different
types (e.g., in all cases except for case 7, one ideal is principal while the other is not).
Some other cases are eliminated by showing an element is in C if we assume C' = m,
while it really should not. This approach works for cases 5,8,10 and 12. We illustrate
with case 8(one of the more involved among these cases). Note that Res(C')=Res(A(C))
implies that i = 2¥~1. Now write h(u) = >_ hj(u—1)7. So, Tor(C) = ((u—1)>""") in this

case (cf. [12, Proposition 2.5]). The assumption C' = A(C') implies that
C=((u—-1*""+201+3 hj(u— 1))
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:<(u—1)2k1 2(u—1)7 Zh (u—1) 2k1’73)>

which implies that
201+ hy(u—1747) + 2u—1)7 () hy(u— 170 ) e C.
This means that

1+ hjlu— 1)+ (=17 (D hj(u—1)u* 7)€ Tor(C) = ((u—1)*""),

which cannot be true since 7 > 1. Cases 5,10 and 12 can be eliminated in a similar fashion.
The remaining cases to eliminate, i.e., cases 22,24, 25, 26 and 29, can proved by showing
that the assumption C' = A(C') leads to a contradiction to some of the conditions on i,

and t. E.g., consider Case 25. With h(u) = 32 hj(u — 1), The assumption C' = A(C)

means that

-1 (=1 +2u— 1" (1 + (=17 hj(u—1)7)

= (2= P (= D) 200 = )T (= ),

which implies that i 4+ [ = 2* and (hence)

2(u— 1) (14 (u—1)7 3 hy(u— 1)) +2(u — 1)=2 7 (3 hy(u — 1)Ya® ' —779) € O,
SO

(=12 (14 (u— 17" hj(u— 1)) + (u— 1)7( X hy(u — 1)7u* " =77) € Tor(C) =
((u—1)"). This means that i — 257! >, but this case assume that i — 257! < 1. Cases
22, 24. 26 and 29 may be dealt with in a similar way.

Consequently, only cases 3, 15, 23, 27 and 28 remain plausible for C'. The additional
constraint for case 23 in the statement of the proposition follows because i 4+ | = 2¥ and

[ <i—2k1 O

Corollary 2.4.4. [12] For integer k such that 1 < k < 4, the number of ideals C C
Ry(u,m) such that C = A(C) is : (i) 1 (where k =1)

(i1) 2™ + 1 (where k = 2;)

(iii) 2.(2™)2 + 2™ + 1 (where k = 3); and
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(iv) (2™)% +2.(2m)3 + (2™)% + 2 (where k = 4)

For o € J, recall that N, denotes the number of ideals in Ry(u, m,). Let M, denote the
number of ideals C' in Ry(u,my), such that C = A(C).

Let J denote the subset of J consisting of those a such that ot = @ where @ € J is the

representative of the cyclotomic coset containing n — «. We also further partition J \ J

into two parts K, K' of equal size such that o € K if and only if @ € K'.

Proposition 2.4.5. [12] The number of self-dual cyclic codes over Zy of length 2Fn is
given by

I~ ] M.

aceK aej
Corollary 2.4.6. [12] If there exist e such that —1 = 2¢ mod n, then there is only one

cyclic self-dual code of length 2n, where n is odd, namely 2(Z4)*"

Proof. If N = 2n, then as N = 2¥n, we have k = 1. We have that Zy[X]/(X" — 1) =
@D, Ra(u,my). The condition that —1 = 2° mod n, for some e implies that a = o
for all & € J, i.e., J = J. Since k = 1, the only self-dual ideal in each Ry(u,m) is <2>
Therefore there is only one cyclic self-dual code and it is @, ., (2) = 2(Z4)*". O

2.5 Examples

Example 2.5.1. I[f N =2, thenn=1, k=1, J={0}, my=1.

There are [[,c;5 + 2™ = 5+ 21 = 7 ideal of this case. We can list them by using
Corollary 2.3.4, and Lemma 2.2.1 as:

(0). (1.

u—1)), 0<i<2"~1= 0<i<2'-1=0<:i<1

= (2u—1)%), (2(u—1)") = (2), (2(u—1)).

<(u—1)i+2§sj(u—1)j>, 1< i<2"-1=1<i<1= i=1=((u—1)).

J=0
-1

Qu-1" (=142 sju—1)), I<i= ((u—1)+2), ((u—1),2).

=0

By Corollary 2.4.6, there is only one cyclic self-dual code of length 2, namely <2> = 2(Z,y)°.
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Example 2.5.2. I[f N = 4, thenn =1, k =2, J = {0}, and mg = 1. There are
10.22 — 4.2 — 9 = 23 ideals for this case. There are 2™ +1 = 2' +1 = 3 cyclic self-dual
codes of this length. We list them:

(2), ((u—=1+2), (2u—1),(u—1)%).

Example 2.5.3. [12] If N =6, then n = 3, k = 1. The two cyclotomic coset mod 3
are cg = {0}, o, ={1,2} = J ={0,1}, mg=1, m; =2

= There are [[,c;5+ 2™ = (54 2')(5+ 2%) = (7)(9) = 63 ideals in this case. By
Corollary 2.4.6 , there is only 1 cyclic self-dual code, namely (2) @ (2) = 2(Z4)".

Example 2.5.4. [12] If N =8, thenn =1, k=3, J = {0}, and mg = 1. There are
10(2%)—4(2%)—9 = 135 ideals in this case. There are 2.(2™)2+2m+1 = 2(21)2+21+1 =11
cyclic self-dual codes of length 8. They are:

(2), (u=1°42), {(u—1°+21+ (u—1))), ((u—1°4+2(1+ (u—1)2)), ((u—
DP+21+ (u—1)+ (u—1)%)), (u—=1°+2), {(u—1)°+2(1+ (u—1))), ((u—1)7"+
2), (2(u—1)%(u—1)%, (2(w—1),(u—1)") and (2(u — 1)%, (u — 1)® 4+ 2(u — 1)).

Example 2.5.5. If N = 10, thenn =5, k =1, ¢g = {0}, ¢1 = {1,2,4,3} mod 5 =
mo=1, my =4, J={0,1}. There are [[,.,;(5+2m) = (5+2")(5+2%) = (7)(21) =84
ideals in this case. There is only 1 cyclic self-dual code, namely <2> &P <2> = 2(Zy)".
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Chapter 3

Negacyclic Codes of Even Length

over Zoa

In this chapter, we determine the structure of negacyclic codes of even length over the ring
Zaa and their dual codes. Furthermore we study self-dual negacyclic code of even length
over Zsa. A mnecessary and sufficient condition for the existence of nontrivial self-dual
negacyclic codes is given, and the number of the self-dual negacyclic codes for a given

even lengh is determined.

3.1 A ring Construction

During this chapter, we will focus on dual and self-dual negacyclic codes over Zs. of length

N = 2Fn, where n is odd and k, a > 1 are positive integers.

Definition 3.1.1. [23] Negacyclic codes over Zsa of length N = 2*n, (n odd) are precisely
ideals of the quotient ring Ry = Za[z] /(z™ +1).

Definition 3.1.2. [23] Define the Galois ring GR(2%, m) = Zaa[x] /(hyn(z)) where hy,(z)
is a monic basis irreducible polynomial in Zs[x] of degree m. Note that if a = 1, then
GR(2*,m) = GF(2™) and if m = 1, then GR(2% m) = Zs.. The Galois ring GR(2% m)
is local ring with maximal ideal (2) and residue field GF(2™).
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The polynomial h,,(z) has a root £ in GR(2% m), which is also a primitive (2™ — 1)th
root, of unity.
Let R = Zaa [u]/<u2k + 1>. There exists a natural Zs.-module isomorphism ¢ : R" —
7z, where N = 2*n, (n odd) defined by

2k 1 2k 1
zﬂ(ao,o +ap u+ ...+ agok_qu ey Q10 T Apo11U + o Qg 0k g U )

= ((10,07 a1,0y--+50n-1,0,20,1,A1,1y -+, n—115--+, 00 2k_1,A1 2k_1, .- 7%71,2’@71)

This gives that constacyclic shift by u in R" corresponds to a negacyclic shift in ZZ.

Thus we get the following theorem:

Theorem 3.1.1. [25] Negacyclic codes over Zsa of length N = 2%n (n odd) correspond to
u-constacyclic codes over R = Zja [u]/<u2k + 1> of length n via the map 1.

Next we introduce the quotient ring R,(u,m) = GR(2%, m)[u]/(qu +1).

Lemma 3.1.2. [23] For any positive integer b, there exist a polynomial ap(u) € Zu]
such that (u — 1) = v +1 — 2a,(u), and oap(u) is a unit in Ry(u,m). In particular,

(u—1)2" = 204 (u), where oy () is a unit in Ry(u,m).

Proof. We prove by induction on b. For b = 1, (u—1)? = u?> + 1 — 2u, ay(u) = u and
hence ap(u) = w is a unit in R,(u, m). Assume b > 1 and the conclusion is true for all

positive integers less than b. Then

(w—12 = [(u—172"]
= [V 41— 2041771(“)}2
= ¥ + 14402 (u) + 202" — 4oy (u) — 4(w) 2"y (u)
— w1 = 20(w)

where ap(2) = =202, (1) — w2 + 2051 (1) + 202" ay_y (u).
To show ay(u) is a unit in Re(u,m), we note that u is invertible, and so u2“~" is also

invertible in R,(u,m). As 2 is nilpotent in R,(u,m), it follows that a,(u) has the form
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ay(u) = w2 (1 +y), where y is nilpotent in Ry(u,m). Choose r to be an odd integer
such that y" =0, wehave 1 = 1+y" = (1+y)(1 —y+y*—...+y ') which means 1+y
is invertible in Ry (u,m), and therefore ay(u) = u2“~" (1 + ) is a unit in Ry (u, m).

It remains to show that (u — 1)2" = 204 (u). To see this, note that (u—1)2" =u2" +1 —
20, (u)

= 204(u) (since u* + 1 is the zero element in R, (u, m)). O

Lemma 3.1.3. [25] The ring R,(u,m) is a chain ring with mazimal ideal {u — 1) and

residue field GF(2™). The ideals of Rq(u,m) are ((u— 1)), 0 <14 < 2%a.

Proof. Let I be the ideal of R,(u, m). The set 3 consisting of elements of I reduced modulo
2is an ideal of R,(1,m). Since R,(1,m) is a chain ring with the maximal ideal (u—1), then
B=((u—1)") in R,(1,m), for some i € {0,1,...,2"}. Hence, for each element r(u) € I,
there exist x(u), v(u) € Rq(u,m) such that r(u) = (u — 1)'x(u) + 2v(u). By Lemma
3.1.2, 2y(u) € {(u— 1)*), whenece I is contained in some ideal {(u — 1)7) of Ry(u, m),
where 0 < j < 2%a. Choose s to be the largest among those j € {0,1,...,2%a} such that
I C {(u—1)7) of Ry(u,m). Then I = ((u—1)*). As I was chosen arbitrary among ideals of
Ra(u, m). It follows that the ideals of R,(u,m) are ((u—1)"), 0 < < 2*a. Consequently,
Rq(u,m) is a chain ring with maximal ideal (u — 1) and residue field GF(2™). O

Remark 3.1.1. [23] (1) In R,(u,m), Lemma 3.1.2 implies ((u — 1)2k> = (2). Thus, the
ideals of R,(u,m) can be written as <2j(u — 1)b>, 0<j<a—-1,0<b<2F—1.
(2) Since negacyclic codes of length 2% over GR(2%,m) are the ideals of R,(u,m), then

by Lemma 3.1.3, we have that negacyclic codes of length 2% over GR(2%,m) are precisely
((u—1)"), 0<i< 2k,

Theorem 3.1.4. [23] Let C be an ideal of R,(u,m), then we have the following:

(i) C = {(u—1)") for somei € {0,1,...,2%a} and the number of codewords in C is
O = 2m@*a=d),

(it) The dual code of C is C+ = ((u — 1)2k“*i> and the number of codewords in C* is
|CH| =27,
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Proof. (i) Follows directly from Lemma 3.1.3.

i : kam 2k am mi
(ii) Since |C||CH| = |Ra(u, m)| = 2%, we have |C*| = 23(2,%_1,) = 2mi,
Because C is also a negacyclic code, then there exists j € {0,1,...,2%a} such that
Ct = {(u—1)7) and |C*| = 2" =) Tt follows that i = 2Fa — j, and hence C+ =
<<U _ 1)2ka7i> 0

3.2 The Ideals Construction

Let m be the order of 2 modulo n, and let I be a complete set of 2-cyclotomic coset
representatives modulo n. Let m; be the size of the 2-cyclotomic coset modulo n containing
i, and let £ be a primitive nth root of unity in GR(2% m).

Definition 3.2.1. [23]

Let ¢ = (0070, C10y -+ > Cne1,0,C0,15 CL,1y+ -+ > Cn—1,15- -+ CO2k—1s- - - ,cn,mk,l) € Z¥, with
n—12F—1
c(x) = Z Z ¢i j2" 7" € Zsa[x] the corresponding polynomial. The Discrete Fourier
i=1 j=0
Transform of ¢(z) is the vector (¢, ¢1,...,¢0-1) € Ra(u, m)™ with
n—12F-1
& = c(u™ e = Z Z cium IEM for 0 < h <n —1, where nn/ = 1( mod 2F1).
=0 j=0

Lemma 3.2.1. [25](Inversion Formula) Let ¢ € ZI with ¢é(2) its Mattson-Solomn. poly-
nomial as defined in chapter 2, (see Defn 2.3.1). Then

Cc = ¢ (1, u*”/’ u*2n/7 . ,Uf(n—l)n') * l(é(l), 6(5)7 L 76(5”1))]

n

where x denotes componentwise multiplication.

Proof. Let 0 <t <n—1, Then

n—1 n—1 /n—12k-1
é(é&t) _ Zéhg—ht _ ( Ci’jun’z+3€hz> é_ht

h=0 h=0 \ i=0 j=0
n—12F—1 n—1
_ n'i+j h(i—t
- E ¢ jul E ghi=t
i=0 4j=0 n=0
2k_1
, )
= (nu™?) RIS
Jj=0



2k—1
Hence, u=""*(1)é,(¢") = Z ¢ juf. Noting that u=' = u®"' =" € R,(u,m), we get the

=0
result. O]

Theorem 3.2.2. [25] Let N = 2%n, where n is odd. Then

= 2l 1) @) Rl

defined by v(c) = (¢;)ier 18 a ring isomorphisim.
In particular, if C' is a negacyclic code of length N over Zsa, then C' is isomorphic to
®ic1C; where Cy is the ideal {c(u™ &) : c(x) € C} C Ry(u,m;) and I is a complete set of

2-cyclotomic coset representatives modulo n.

Combining Lemma 3.1.3, Theorem 3.1.4, and Lemma 3.2.2, we immediately get the

following enumeration result.

Corollary 3.2.3. [25]
The number of distinct negacyclic codes over Zsa of length N = 2*n (n odd) is
(2%a + 1)'”, where I is a complete set of 2-cyclotomic coset representatives modulo n, and

|I| denotes its cardinality.

Example 3.2.1. Consider the cyclic codes of length 28 over Z,

S 98 =22T) = k=2n="T and Zy = 7

=a=2=c={0}, o ={1,2,4}, ¢ = {6,5,3}

= I ={0,1,6} =the number of distinct negacyclic codes over Z, of length 28 is (22(2) +
19 = 729.

Lemma 3.2.4. [29] Let fi(x) be the minimal polynomial of £° in Zaa, and let n' be a
positive integer such that nn' = 1( mod 2¥*1) Then

(i) fs(u' &) not equivalent to 0 mod 2;

(ii) fs(uVes) € (u—1) but fy(uE) not in ((u—1)?).

Now we describe a negacyclic code over Zya of length N = 2%n (n odd) in term of its

generator polynomials.
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Theorem 3.2.5. [25]
Let C be a negacyclic code over Zsa of length N = 2*n (n odd), then C = <g(:v)>, where

2kq
g(x) = H[gj (z)), and g;(x)’s are monic coprime divisors of x™ — 1 in Zsa|z].
=0

Proof. By Theorem 3.2.2, C'is isomorphic to a direct sum €, _; C;, where C; is the ideal

iel
{e(u™ &) @ c(z) € C} € Ry(u,m;), where n’ be a positive integer such that nn/ = 1(
mod 2¥1). For each j, we define g;(z) to be the product of all minimal polynomials of £
such that C; = ((u— 1)7). If a(z) = r(z)[g;(2)]°, where r(z) is relatively prime to g;(x)
and 0 < b < 2%a, then by Lemma 3.2.4, a(u™ &) = r(u™ &) [gj(unlfi)}b € ((u—1)%), but
not in ((u — 1)*). Hence if ¢(z) = g(z)h(z) € C for some polynomial h(z) € Ry,
then c(u'¢’) = g(u™¢)h(u'¢Y) € {(u—1)7), but not in ((u — 1)~1). Thus, we can take

2kq
g(x) = H[gj (z)) as the generator polynomial of C. O
=0

Corollary 3.2.6. [29] If C is a negacyclic code over Z of length N = 2*n (n odd), and

2kq
C= <H[gj(x)}j>, where gj(x)’s are monic coprime divisors of x™ — 1 in Zsa|x], then

7=0
2ka—1
C| =29, where g =Y (2"a — j) deg(g;(x))
=0
Proof. By Theorem 3.2.2, the size of C'is H |C;|, where C; is the ideal of R,(u, m;). Note
icl

that if C; = ((u — 1)7), then g;(¢') = 0 and |G| = 9mi(2*a=j)  (Calculating the product,

we obtain the result. O

3.3 Dual and Self-dual

Definition 3.3.1. [23] Let R = ZQa[U]/<U2k +1), and let — : R — R denote the

2k—1

conjugate map defined by > au’ = Zfial a;u"", where u =

= «?""' =" in R. This map
is also extended to R,(u,m) in the obvious way. We define the Hermitian inner product

as fellows:

n—1
For ¢ = (¢o,¢1y.. . ¢n1) € R" and d' = (dp,ds,...,d,1) € R", <c’,d’> = chd_j.
=0
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Again recall that ¢ is a map from R™ to Z2¥ defined as before. Suppose that 0 < t < n—

2k—1 2k—1
1, ¢ = g ¢ ;v and dy = 5 diju’, then ¢(c') = ¢, ¢(d') = d, where
=0 J=0
N
Cc= (00,07 €1,05-++5Cn-1,0,€0,1,C1,15+ -+, Cn—1,15 - - -, Co 2k—1,C1 2k 1, - - - 7Cn—1,2k—1) € Zja

and
0,0, 41,05 - - -y dn—-1,0, 40,1, 41,15 - - -y Un—-1,15 -, U0 2k—1, L1 2k_1y -+, Up_12k_1 2a

Lemma 3.3.1. [25] Let the notation as above. Let p denote the negacyclic shift in ZX
and let . denote the Fuclidean inner product in Zé\f;. Then <c’,d’> = 0 of and only if
p" (A()).o(d) =0 forall 0 < j < 2F—1.

Let ¢ denote the inverse map of ¢. Then applying lemma 3.3.1, we obtain the following

Theorem:

Theorem 3.3.2. [25] Let C be a negacyclic code over Zsa of length 2%n (n odd), and let
©(C) be its image in R™ under p. Then p(C)*+ = ¢(C*), where the dual in Z2 is taken
with respect to the Fuclidean inner product, while the dual in R"™ is taken with respect to

the Hermitian inner product.

Lemma 3.3.3. [25] Let C = <2j(u — 1)b> be an ideal of R,(u,m), for some integers
0<j<a—1,0<b<2F—1. ThenC=C.

Proof. Let a(u) € C, then a(u) = 27(u — 1)g(u), for some polynomial g(u) € R,(u,m).

Since 27(u — 1) = (—u) 72/ (u — 1)°, then a(u) = (—u)’g(u)27(u — 1)°.

Hence, C C C. Since the conjugation map is a bijection map, then C = C. O]

Theorem 3.3.4. [23] Let C be a negacyclic code over Zsa of length 28n (n odd) such
that C' = @

e 1Ci and Dy = Ci-, where ' is the representative of the cyclotomic coset

containing n — i for each v € I, I is a complete set of 2— cyclotomic coset mod n. Then

ct = @ie IDi'
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Proof. Let D = @,. ; D;,;andlet ce C, d € D. Since C Ct=0forallie I, it follows

from lemma 3.3.3 that C;D; = 0 for all 5. Let ¢z ch L2 and d Z dy_p2"

be the Mattson-Solomon polynomials of ¢ and d respectlvely, then claln_Z = 0. Thus, by
lemma 3.3.1 we get D € C*. Also, ||| Dy| = 22" for all i € I, so that |C||D| = 22"™.
Hence, D = C*. ]

Theorem 3.3.5. [23] If C is a negacyclic code over Zsa of length N = 2%n (n odd), and

2k
C = <H[gj(x)]j>, where g;(x)’s are monic coprime divisors of x™ — 1 in Zya[z|, then

=0

2kq 2kq

* ka—j :

Ct = <H[gj (z)]? J> and |C*+| = 2!, where t = Z] deg(g;(x)).

=0 j=1
Proof. Define g;(z) as in the proof of Theorem 3.2.5. Let a; denote the constants of
g;i(z), 0 <j <2%a. Since go(z)g1(x) ... gora(x) = 2™ — 1, apay . ..ag, = —1. Therefore,
as are invertible elements of Zy. and ajs are leading coefficients of g7 (z)’s. Define h;(z) =
ujgi(z), where u)s are suitable invertible elements in Z. such that hj(z)'s are monic

polynomials. Note that u; = aj_l and uouy . . . Ugk, = Qg olart .. a2k = —1. So

ho(@)ha(2) o) = (ugtis . . )G (2)7(2) - . G ()

(2%a)
= T deg(9;(=) go (2~ VY gy (21 . .. gara (21

Therefore, h;(z)’s are monic coprime divisors of ™ — 1 in Zsa|x].

Let C = @,;Ci, where C; is an ideal of R,(u,m;), then by Theorem 3.3.4 C+ =
@D, D., where, D; = Ci-. Since C; = {(u — 1)7), we have g;(¢") = 0, which implies
gi(&7") = 0. It follows that h;(§~") = 0. Therefore, h;(z) is the product of all minimal
polynomials of £ such that D; = ((u — 1) 2a—j ). According to the proof of Theorem
3.2.5, we can get that C+ = <H§iao[h](x ]2fa- 9> = <HJ olg; (@ )]2Fa- 7).

The second result follows from Corollary 3.2.5 and the fact that

C||C+| = 22" (¢ f [18, Theorem3.10(iii))) O
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We now determine self-dual negacyclic codes over Zsa of length N = 2*n (n odd). The

following lemma is clear.

Lemma 3.3.6. [23] If C is a negacyclic code over Zsa of length N = 2kn (n odd), and
C =, Ci, then C is a self-dual negacyclic code if and only if Cy = = O, where i is the

[

representative of cyclotomic coset containing n — v for each i € I.

Theorem 3.3.7. [23] If C is a negacyclic code over Zya of length N = 2*n (n odd) with
C = <HJ olg;(2))7), where g;(z)’s are monic coprime divisors of x™ — 1 in Zs.[z], then

C is self-dual if and only if gi(x) is an associate of gorq—;(T).

Proof. Let C = @, Ci, where C; is an ideal of R,(u,m;). By Lemma 3.3.6, If C' is
self-dual, then Cy = Ci for each i € I. Let C; = ((u—1)7),0 < j < 2%a, then
Cy = {(u— 1)?">77). Define h;(z) as in Theorem 3.3.5. Since g;(x) = 0, which implies
that g5(§7) = 0, we have h;(x) = u;g;(r) = gorq—j(2). Hence, g;* is an associate of
Gora—j(T).

On the other hand, by Theorem 3.3.5, C*+ = <HJ olg;(x)]?"*7), hence, if gi(x) is an

associate of gar,_ (), then

2kq 2kq
= (TTlg; @) = ([ Tlo2eams(@)**7) = C,
7=0 J=0
i.e, C' is self-dual. ]

Corollary 3.3.8. (23] If C is a self-dual negacyclic code over Zsa of length N = 2Fn (n
odd), and C = {g(x)), then (z — 1)2"7' divides g(x).

Proof. Observing that ((u — 1 2"1aY is the unique ideal of R,(u, m) such that Cy = C3-,
0

we have the result. O

Corollary 3.3.9. [29] If there exist b such that 2° = —1( mod n), then the only self-dual
negacyclic code over Zaa of length N = 2*n (n odd) is <(xn _ 1)2k71a>_

Proof. Let C = @,.; C;, where C; is an ideal of R,(u,m;) and I is a complete set of

i€l

2—cyclotomic coset representative modulo n. Since there exists b such that 2° = —1(
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mod n), i and n — i are contained in the same cyclotomic coset for all i € I. Hence,
Cy = C;. If C is self-dual, then Cy = Ci* by Lemma 3.3.6. It follows that C; = C;-.
Therefor C; = ((u — 1)2k71“> for all i. Note that the product of all minimal polynomials
of € is equal to 2™ — 1. Thus, C' = { (2" — 1)*""'o). O

Lemma 3.3.10. [25] If a is even, then ((z" — 1)2k71“> = (22) in Ry.

Proof. Similarly to the result in Lemma 3.1.2, it follows easily that (z™ — 1)2k = 22 4
1+ 20y (2™) in Ry, where ag(z™) is an invertible element in Ry. Therefore, computing in

Ry, (" —1)2" = 2a,(z™). It follows that if a is even, then ((z™ — 1)2k71a> =(22). O

Now we consider the enumeration of self-dual negacyclic codes over Zs. of length
N = 2kn (n odd).
Let 7 be an integer such that 0 < i < n, and let b be the the smallest positive integer such
that 4.2 = i( mod n), then C\™ = {i,2i,..., 2%} is the 2-cyclotomic coset modulo n

containing 7.

Definition 3.3.2. [23] A cyclotomic coset is called symmetric if n —i € Ci(") and asym-

metric otherwise. The asymmetric cosets come in pairs C\™, C™

n—i?

and let d(n) denote

the number of such pairs.

Theorem 3.3.11. [25] The number of distinct self-dual negacyclic codes over Za of
length N = 2n (n odd) is (28a+1)°™ | where 6(n) is the number of pairs of a symmetric

2-cyclotomic cosets modulo n.

3.4 Examples

Example 3.4.1. [25] Consider self-dual negacyclic codes of length 28 over Z,.

= =27 =k=2n="7

Ii=lyp=>a=2. Let 1 =2=0<2< T« 0<1<T.

Since Ci(n) = {i,2i,2%,...,2°7Y} where b as above, then 22° = 2( mod 7) = b = 3 =
iV ={2,2(2),221(2)} = {2,4,8} = n—i=T7—2=5not in C}".
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= The 2-cyclotomic coset ( mod 7) containing i = 2 is asymmetric coset = The pairs
6’2(7), C’éﬂ s asymmetric.

Fori =0,1,3,4,5,6, we compute C’i(n) as above to get symmetric cosets for these i's.
Hence there is only one pair asymmetric coset = §(n) = 1= There are (2Fa +1)°" =
(22(2) +1) = 9 self-dual negacyclic codes of length 28 over Zy, all of which have order 228.
" —1=(z—1)(2®+ 222 + 2 — 1)(2® — 2?2 + 22 — 1) in Zylx]. Using Theorem 3.2.5,
Corollary 3.2.6, and Corollary 3.3.8, we have the following self-dual negacyclic codes of
length 28 over Z,, where 28a = 22(2) = 8.

(1) ((w=127) = ((u—1)") = (2%) = (2') = (2),

(2) ((x=1)*(2* = 2* + 20— 1)*) = the order equal 273®) = 2% and (x —1)*|(z —1)*(2® -
2 4 2z — 1)8.

(3) ((x—1)"(a* +22% + 2 —1)%) = the order equal 273®) = 2% and (z—1)*|(z—1)* (23 +
222+ — 1)8.

(4) {(z3 422 +x — 1)(z — 1)*(2® — 2® + 22 — 1)) = the order equal 2574737 = 228 qnd
(x —1)4 |(x +222 + 2 —1)(x — 1) (2® — 22+ 22— 1)".

(5) ((2® +22° + & — 1)"(z — 1)*(2® — 2? 4+ 22 — 1))
(6) {(z® +22° + & — 1)*(z — 1)*(2® — 2* 4+ 22 — 1)°
(7) {(z® + 22% + & — 1)5(
( )
( ) (

1) )
1*( )*)
— D)"a® — 2? + 2z — 1)?)
1)%( )%)
D*( )*)

%3

(8) ((#*+ 222 + z — 1)*(z — 1)*(2® — 2® + 2z — 1)°

(9) {(z® +22° + 2 — 1)°(x — 1)*(2® — 2* 4 22 — 1)®

Example 3.4.2. [25] Consider self-dual negacyclic codes of length 14 over Zs.
M=2Y("=k=1n="T.

Zs = Zys = a = 3. Now there is only one pair asymmetric coset = 6(n) = 1 = There are
(2Fa + 1) = [2Y(3) + 1] = 7 self-dual negacyclic codes of length 14 over Zg, all of which
have order 22!,

2k—1,

2 la=3=(x-1)? 2= (z—1)>3
7 —1=(z—1)(2®+32% + 22 — 1)(2® + 622 + 5z — 1) in Zg[x|.

We list all such self-dual negacyclic codes as follows:
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(1){(z" — 1)3) = the order equal 27® = 2.
(2) ((x—1)3(2® + 32 + 22 — 1)%) the order equal 2°73®) = 22 and (z —1)3|(x — 1)3(z® +
322 + 2z — 1)S.
(3){(x —1)*(2® + 62 + 5 — 1)°) the order equal 2°*3® =22 and (z — 1)*|(z — 1)3(2® +
622 + bz — 1)S.
(4) {(z® + 62% + 5z — 1)(z — 1)3(2® + 32% + 22 — 1)°)
(5) {(z® + 32% + 2z — 1)(z — 1)3(2® + 62% + 5z — 1)°)
(6) ((2* + 622 + 5z — 1)*(z — 1)3(2® + 32% + 2z — 1)*)
( )*(z — 1)3(2® + 62% + 5a — 1))

(
(
(7) {(z® + 32* + 2z — 1)?

Example 3.4.3. Consider self-dual negacyclic codes of length 12 over Zig = 12 =
2(3)= k=2 n=3.

Z1g = Zgs = a = 4. According to Corollary 3.5.9, we find a constant b such that 2° = —1(
mod n), choose b =1 2 = —1( mod 3) = The only self-dual negacyclic code of length
12 over Zyg is ((a" — 1)2710) = ((2® — 1)¥7) = ((2® — 1)®).

Example 3.4.4. Consider self-dual negacyclic codes of length 28 over Zig.

= 28 =2%(7) = k = 2,n = 7,a = 4. There is only one pair asymmetric 2-cyclotomic
coset (mod 7). = 6(n) =1 = There are (28a+1)°™ = (22(4) + 1)! = 17 self-dual nega-
cyclic codes of length 28 over Zig, all of which have order 2°5. = Cy = ((u — 1)2k_1“> =
((u—1)%).

" —1=(z—1)(«® + 142” + 13z 4 15)(2® + 112° + 10z + 15) in Zygz].

The following table gives all self-dual negacyclic codes of length 28 over Z.
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Non zero generator polynomial(s)

U — 1)8>

u —1)8(2® + 1422 + 13z + 15)16)

u— 1)Sz + 1122 + 10z + 15)16)

23 + 1422 + 13z + 15) (u — 1)8 (23 + 1122 + 10z + 15)1%)

23 + 1422 + 13z + 15)15(u — 1)%(23 + 1122 + 10z + 15))

@3 + 1422 + 13z + 15)2(u — 1)3(23 + 1122 + 10z + 15)14)

o3 + 1422 + 13z + 15) 1 (u — 1)8(23 + 1122 + 10z 4 15)2)

23 + 1422 + 13z + 15)3 (u — 1)8(23 + 1122 + 10z + 15)13

23 + 1422 + 13z + 15)* (v — 1)8(23 + 1122 + 10z + 15)12

@3 + 1422 + 13z + 15)12(u — 1)8(23 + 1122 + 10z 4 15)*)

23 4+ 1422 + 132 + 15)5(u — 1)8(23 + 1122 4 10z + 15)11

23 + 1422 + 132 + 15)%(u — 1)8(23 + 1122 4 10z + 15)1°

)
o3 + 1422 + 13z + 15) 1 (u — 1)8(23 + 1122 + 10z 4 15)°)
')
)°)

2% + 1422 + 13z + 15)10(u — 1)8(23 + 1122 + 10z + 15)8

x3 + 1422 + 13z + 15)7(u — 1)3(23 + 1122 + 10z + 15)9)

(
(
(
((=®
((=®
((=®
(=*
(@=* )'®)
((#® + 1422 + 13z + 15)13(u — 1)8 (23 + 1122 + 10z + 15)3)
(@° ')
((=®
(=*
((=*
((=*
((=®
((=®
(=*

o3 + 1422 + 13z + 15)%(u — 1)3(23 + 1122 + 10z + 15)7)
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Chapter 4

Cyclic Codes over the Ring
o+ uks + u2F2 + ...+ uk_lFQ

Among the four rings of four elements, the Galois field F; and more recently the ring of
integers modulo four Z, are the most used in coding theory. Z; -codes are renowned for
producing good nonlinear codes by the Gray map, namely Kerdok, preparata or Goethals
codes. On the other hand, the ring Z, admits a linear Gray map which does not give
good binary codes. Let Rj be the ring Fy 4+ uFy + u?Fy + ... + u* 71, with v* = 0
mod 2, where F;, = {0,1} = Z,.

In [3], Abualrub and Siap studied cyclic codes of an arbitrary length n over Fy + uly =
{0,1,u,u + 1} where u*> = 0 mod 2 and over Fy + uFy + u?Fy = {0, 1,u,u + 1,u* 1 +
u?, 1+ u+u? u+u?} where u> =0 mod 2. In this chapter, we extend these results to
more general rings of the form Iy + uFy + u?Fy + ... + u* "1 F, where v = 0 mod 2.

We give a unique set of generators for these codes as ideals in the ring
Ry, = Ry[x]/ <x” — 1>. Also we study the rank of these codes and give a minimal spanning
set for them.

We show that the results of [3] concerning the codes over the rings Fy + uFy with u? = 0
mod 2 and F, + uF, + v?F, with ©v? = 0 mod 2 are valid for Ry, = Fy + uFy + u?F, +

.+ U E, with «F =0 mod 2.
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4.1 Background

Definition 4.1.1. [3] A free module C' is a module with a basis (a linearly independent

spanning set for C).

Definition 4.1.2. The ring Ry, = Flu]/(u*) = F> + uFy + v*F + ... + " 'Fy is a
commutative chain ring of 2* elements with maximal ideal u Ry, where u* = 0.

Since u is nilpotent with nilpotent index k, we have
R, D uR, D UQRkD D) ukRk:O

Moreover Ryp/uRy = Z, is the residue field and |[u'Ry| = 2|(u'™'Ry)| = 2¥%, i =
01,2, k—1.
Denote Rl = F2 = {O, 1}, RQ = F2 + UFQ, Rg = F2 + UFQ + U2F2, ...etc.

Definition 4.1.3. Let C), be a code of length n over the ring R, = I, + ukFh + u?F5 +
..+ uP E,y with u* = 0 mod 2, we mean an additive submodule of the R—module RY.

A cyclic code of length n over Ry, is an ideal in the ring Ry, = Ry[z]/ <:c” — 1>.

Following Abualrub and Siap [3, p.p. 274], the parameters of an Ry—code C with 4%12*2
code words, where k; refers to the free part and ks refers to non free part (u—multiple
generator of C'), and minimum distance d is denoted by (n,4%12*2 d). Such codes are
often referred to as codes of type {ki,ks}. Similarly the parameters of an R3—code
C with 8¥14%22k3 code words, where k; refers to the free part and ko, ks refer to non
free part (v and «? multiple generators of C'), and minimum distance d is denoted by
(n, 8k14k22k3 d). Such codes are often referred to as codes of type {ky, ko, k3}.

We define the rank of a code C' over Ry of type {ki, ka}, denoted by rank(C'), by the
minimum number of generators of C', and define the free rank of C', denoted by f-rank(C),
by the maximum of the ranks of Ry—free submodules of C'. A code C of type {ki, k2} has
a rank (k; + ko) and a f-rank k.

We define the rank of a code C' over Rj3 of type {ki, ks, k3}, denoted by rank(C'), by the

minimum number of generators of C', and define the free rank of C, denoted by f-rank(C),

62



by the maximum of the ranks of R3—free submodules of C. A code C' of type {ki, k2, k3}
has a rank (k; + ko + k3) and a f-rank k;.

Following the same procedure, we can define the ranks and free ranks of a code C' over
Ry V k> 4.

Notation: We write a for a(z), g for g(z), .. .etc.

4.2 A generator Construction

The structure of cyclic codes over R; depends on cyclic codes over R; ; fori=2,3,... k
and the structure of cyclic codes over Ry depends on cyclic codes over Ry = F.

By following results in [3], let C; be a cyclic code in Ry, = Rg[z]/{z" — 1).

Define v : R, — Ry_1 by 11(a) = a. 1 is a ring homomorphism that can be extended
to a homomorphism ¢, : C} — Ry, = Rk,l[x]/<x” — 1> defined by

¢1(CO +cxr+...+ cn_lx"_l) = ¢1(Co) + ¢1(Cl)$ + ...+ wl(cn_l)xn—l'
ker ¢ = {u"'r(x) : r(z) € Fyfx]}.

Let J; = {r(z) : u*"'r(z) € ker¢y}, Ji is an ideal in Ry, = Rifz]/(a" — 1) =
Fylz]/(a™ — 1) and hence a cyclic code in Fy[z]/{(z" — 1). So J; = (az_1(z)) and
ker 1 = (u*ay_1(x)) with ay_1(z)|(z" — 1) mod 2.

Let Cy be a cyclic code in Ry_q, = Rk_l[w]/<x” — 1>.

Define 1)y : Ri_1 — Ri_o by ¥s(a) = a. 1)y is a ring homomorphism that can be extended
to a homomorphism ¢s : Co — Ry_o[x]/ <x” — 1> defined by

G2(co + 1z + ...+ cu1@™ ) = a(co) + Yaler)T + .+ Yo(cuor)a"

ker ¢y = {u*?r(z) : r(z) € Fylx]}.

Let Jo = {r(z) : u"?r(z) € ker ¢y} is an ideal in R;, = Fp[z]/(2" — 1) and hence a
cyclic code in Fy[z]/(z™ —1). So Jo = (aj—2(x)) and hence ker(¢o) = (uF2a),_»(x)) with
ag_o(z)|(z" — 1) mod 2.
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Let C3 be a cyclic code in Ry_o, = Rk_g[l’]/<$n — 1>.

Define 13 : Ry_o — Ryi_3 by ¥3(a) = a. 13 is a ring homomorphism that can be extended
to a homomorphism ¢3 : C3 — Ry_3[x]/ <x" — 1>. Continue in the same way as above
until we define ¢y, : Ry — Ry = Fy by ¢¥r(a) = a® mod 2. 4 is a ring homomorphism
because (a + b)* = a®> +b? in Ry and in F.

Extend vy, to a homomorphism ¢y, : Cy, — Fylx <$ — 1> R, ,, defined by

Oe(co+ 1w+ ...+ cu1a™ 1) = Prlco) + Yi(er)r + . 4 Yp(cnr)2"

2, 2 2 -1
=cytciz+...+c, 2" mod 2,

where Cy be a cyclic code in Ry, = Rg[x]/<m” — 1>, where Ry = Fy + uF, with v? =0
mod 2.
ker ¢, = {ur(z) : r(z) is a binary polynomial in Fy[z]/(z™ — 1)}
= (uai(z)) with al(m)‘ (z" —1) mod 2.
The image of ¢y is also an ideal and hence a binary cyclic code generated by g(z) with

g(x)’ (x” — 1). So the cyclic code over Ry = F5 + uly would be in the form:

Cy, = (g(z) + up(z),ua;(x)) for some binary polynomial p(z). Note that all(px

because
" -1 |
lg + up]) = ¢ (up

o ( ) =0

= (up%) € ker ¢, = (uay). Also ug € ker ¢y, implies al(x)‘g(x)

Lemma 4.2.1. [3] If C; = <g + up(x ual(az)> over Ry = Fy + uFy with (u* = 0
mod 2), and g(x) = ai(x) with deg g(x) = r, then
Cy = <g(x) + up(x)> and (g + up)‘ (x” — 1) mn Rs.

Proof. Since u(g + up) = ug and g = ay, then Cj, C (g(x) + up(z)).

Also as Cy, = (g(z)+up(z), ua;(z)), then (g(z)+up(z)) C Cy, hence Cy = (g(x)+up(x)).
Now, by applying the division algorithm,

2" — 1 = (g(x) + up(z))q(z) + t(z), where t(z) = 0 or degt(x) < degg(x) = r. Since

64



t(x) € Cy, then ¢(z) = 0. Thus 2" — 1 = (g(z) + up(z))q(z), and hence (g + up)|[(z" — 1)
in RQ. O]

Now since the image of ¢5_; is an ideal in Ry ,, = Ry [x]/<:n” — 1> (where Ry = Fy+ufF,
with u? = 0 mod 2), then Im(¢y_1) = {g(x) + upi (), uai(z)) with a;(z)|g(z)|(z" — 1)
and a;(z)|p:(2) (g(z ). Also, ker(¢x—1) = (u®as(x)) with as(z)|(z" — 1) mod 2. Since
u®a; € ker(¢y_1) = (u’az), then the cyclic code Cj_; over Ry = F» + ukF + u*F, with

u?> =0 mod 2 is

Cr—1 = (g+upi +u’pa, uay + 1, u*as) with aslas|g|(z" — 1), al(:c)‘pl(x)(“?;)l) mod 2,

a2|q1(—1) a2|p1( ) and a2|p2 (x—_l)(x _1) We may assume that deg ps < degas, degq <

degay, degp; < dega; (This is true since if e = (a,b), then e = (a,b+ de) for any d).

Lemma 4.2.2. [3] If Cy_1 = (g-+ups +u’ps, uay +u?qr, uas) over Ry = Fy+uFy+u>F,
with (u®* =0 mod 2), and ay = g, then C_; = <g—|—up1 +u2p2> and (g+up1 +u2p2) ‘(x"—

Proof. Since az = g, then a; = az = g. From Lemma 4.2.1. we get that (g + up)|(x” -1)
in Ry and Cy_1 = <g + upy + u2p2,u2a2>. The rest of the proof is similar to Lemma
4.2.1. H

Lemma 4.2.3. [3] If n is odd, then Cy_1 = (g, uai, uas) = (g + ua; + u’as) over Rj.
Proof. See Lemma 8 in [3] O

Following the same process we find the cyclic code Cj_s over Ry = Fy +uFy +u?Fy +
u3Fy with (u* =0 mod 2). So, since the image of ¢;_» is an ideal in
R, = Rs[z]/(a"—1) (where Ry = Fo+uFy+u?F, withw® = 0 mod 2), then Im(¢y_») =
(g(z)+upi (@) +up2(2), uay (z)+ulq (x), uas(z) ) with aglai|g|(z"—1), ai(x)|p1(z) %)
mod 2, as|qi(x) (%?&?) and ag‘pg(a:)(””;(—;)l) (21 ;1) Also ker(¢y_2) = (ulaz(z)) with
as(z)|(z™ — 1) mod 2.

Since u®as € ker(¢y_2) = (u®as(z)), then the cyclic code Cj_s over
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Ry = Fy +ulFy + u?Fy + u®Fy with (u* =0 mod 2) is
Cr2 = <g + upy + u’ps + ulps, uar + uPq + uPqe, uas + uly, u3a3> with

" —1

aslaz|ai|g| (" — 1) mod 2, ai(z)|p1(z)( ) mod 2,

" —1

g9(x)
" —1
g9(z) )
" —1

ai(x)
e )(

(z" = 1)
ai(x)
(z" = 1)

alte) (o)l

and az(z)|ps(z) (Z=1) (£71) (£-1). Moreover

g9(z) / \az(z)/ \ai(z)

sl () ( ). axlpa(a)(

),
" —1

)

ay(x

degps < degas, degqo < degaz, degly < degas, degps < degas, degq, < degas, degp; <

degay .

Lemma 4.2.4. IfC)_5 = <g+up1 +u?py +ulps, uar +ulq +Fudqe, ulas +ully, u3a3> over
Ry = Fy +ulFy + u?Fy + u?Fy with (u* =0 mod 2), and as = g, then
Ch—2 = (g + up1 + u?ps + u®p3)and (g + upr + u’ps + u3p3)|(x" —1) in Ry.

Proof. Since a3 = g, then a; = ay = a3 = g. From Lemma 3.2 we get that (g + up; +
u?p)|(a™ — 1) in Ry and Cy_o = (g +up1 + u’ps + up3, uay + u’q1 + udqe, ulas). The rest

of the proof is similar to Lemma 4.2.2. O

Lemma 4.2.5. Ifn is odd, then the cyclic code Cy_o over Ry can be written as
Cr-z = <g, ua, u2a2,u3a3> - <9 + uay + u’as + u3a3>.

Proof. Since n is odd, then (z™ — 1) factors uniquely into a product of distinct irreducible

—1 z"—1 z"—1
ai

polynomials. So, gecd (al’T) = gcd (az,m) = gecd (ag,%) = gcd (ag,m) =

g(x
ged (as, %) =1

Since aq |pr (z) (L

g(x)

), then a1|p1. But deg p; < dega;. Hence p; = 0, since a2|q1 (x)(u)

ai(z)

and ag(x)‘pg(x)(%) (%), then 0,2‘(]1 and a2|p2. But deg ¢, < degas
and degp, < degas.

Hence, ps = q; = 0. Similarly p3 = ¢2 = l; = 0. So Ci_s = (g, uar, u’as, u’as).
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Let h = g + ua; + u?ay + uas.

n__ n __ n__ n __ . .
Then, u*h = u?g, xa—21h = & —lulaz and u2%h = leu?’ag € (h). Since n is odd, we

have (%,g) = (’”2;1,@2) = 1. Hence

z"—1
az

1=f zi=1 fog for some polynomials f; and fy, and 1 = m, + moay for some

g
polynomials my and m..

u3a2 == U3G2f1 xngil + u3a2f2g c <h> Also

U az = U agm;

+ udagmoay € <h>
a2

and u?ay = ubmaa3 € Ci_s and hence g € (h). Similarly ua; € (h).

Therefore Cj,_s = (g, uar, u’as, udaz) = (g + ua; + v’as + ulas). O

From all the above discussion, we can construct any cyclic code C over

Ry, by using the same process and induction to get the following theorem:

Theorem 4.2.6. Let Cy be a cyclic code in Ry, = Rk[x]/<x” — 1>, R, = Fy + uFy +
W2 Fy + ...+ uF E, with vf = 0 mod 2.

(1) If n is odd, then Ry, is a principal ideal ring and

C = <g, uaz, u2a2, ... ,ukilak_1> = <g “+ uap + u2a2 + ...+ ukilak_1>

where g(x),a1(x),az(x), ..., a—1(x) are binary polynomials with

ay—1(2)|ar—2(z)| . .. |az(2)|ai (z)|g(x)|(z" = 1) mod 2.

(2) If n is not odd, then

(a) Cv = (g +ups + u’ps + ... + " 'p_1) where g(z), pi(x) are binary polynomials
Vi=1,2,....,k—1 with g(z)|(z" — 1) mod 2, (g + ups + u’ps + ...+ v )| (a" — 1)
in Ry and deg p; < deg p;_1 for all2 <i <k —1. Or,

(b) C1 = (g + upr + u?ps + ... + W ppq,u ay1) where ap_q|g|(z™ — 1) mod 2,

(g +up)|(z™ — 1) in Ry, g(x)|p1(xg?;)l) and ak_l\pl(%), ak_llpg(xgrzgl) (”gn(;)l), ... and

n—1 " —1

ak,llpk,l(i](—x)) e ( ) )(k: — 1,times) and deg pr—1 < deg ay_1. Or,
(c) Cy = <g +upy +wlps 4. FuF T e, uay Fulq + . U e, vPas F Ul L+

W s, uF T 2ag g + uF T, ukilak_1> with ak_l‘ak_2| e ‘az‘al‘g|(x" —1) mod 2,
ak72’p1(xngil)a gt (%)7 e 7ak71‘pk71(xngil) e (922:21)

Moreover deg pr_1 < deg a_1,...,deg t; < deg ax_1,... and deg p1 < deg ap_».
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4.3 Ranks and Minimal Spanning Sets for Cyclic Codes
over R}

Theorem 4.3.1. [3] Let C be a cyclic code of even length n over Ry = Fy + uFy with
u? =0 mod 2.

1) If C = (g(x) + up(z)) with deg g(z) = r and (g(z) + up(z))|(z" — 1), then C is a
free module with rank(C') = n — r and basis

6= {g+up@), wg(e) +up(e),...,a" " (g(w) +up(x)) } , and |C] = 47
(2) If C = (g9(z) +up(z), ua(z)) with deg g(x) =r, deg a(x)=t, then C' has rank(C) =
n —t and a mimimal spanning set given by
v = {9(@) + up(@), 2(g(x) + up(@)) + ...+ 2" (g(x) + up()), ualz), wua(z), ...
x“tflua(x)}, and |C| = 22",

Proof. (1)Let C be a cyclic code of even length n over Ry = Fy+uF, with u> =0 mod 2.
Suppose 2" — 1 = (g + up)(h + up) over Ry. Let c¢(z) € C = (g(z) + up(z)), then
c(x) = (g(x) + up(zx)) f(x) for some polynomial f(z).

If f(x) has a degree less than or equal n — r — 1, then we are done, otherwise by division

algorithm there exist two polynomials ¢(z), s(x) such that f(x) = (ji;;)q(x) + s(z),

where s(z) =0 or degs(z) <n—r — 1.

Now, (g(z) +up(2)) f(z) = (9(z) + up(2)) (55 e a(®) + s(@)) = (9(x) + up(z))s(z).
Since deg s(z) < n —r — 1, then [ spans C. Now we only need to show that (3 is linearly
independent. Let g(z) = 1+ g1z + ...+ 2" and p(x) = po + p1z + ... + pz’. Suppose
(9() + up(@))co + 2(g(x) + up(@))er + ... + 2" (g(x) + up(x))enrr = 0.
Comparing coefficients in the above equation we get that

(1 4 upg)co = 0 (constant coefficient).

Since (1 4 upp) is a unit, then ¢y = 0.

Hence z(g(x) + up(x))ey + ... + 2" Hg(x) + up(x))en_r_q = 0.

Again comparing coefficient we get that

(1 4+ upg)cy = 0 (coefficient of x).
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This implies that ¢; = 0. Similarly we get that ¢; = 0 for all ¢ = 0,1,...,n —r — 1.
Therefore (3 is linearly independent and hence a basis for C.
(2) Suppose C = (g(z) + up(z), ua(z)) with deg g(z) = r, dega(z) =t. Since the lowest
degree polynomial in C'is ua(z), then it is suffices to show that
X spans 7y = {9(9«") +up(x), 2(g(x) +up(@)),..., 2" (g(x) + up(x)), ua(z), zua(z),

. ,x"_t_lua(x)}.
Similarly it suffices to show that uz"'a(x) € span(y).
ur"ta(z) = u(g(x) + up(z)) + um(x) where um(x) is a polynomial in C' of degree less
than 7. Since any polynomial in C' must have degree greater than or equal to dega(x) = t,

= lya(x).

then t < degm(z) < r. Hence um(z) = apua(x) + ayzua(x) + ... + a1
Hence, y is a generating set. By comparing coefficients as in (1) there is no elements in

X is a linear combination of the others. Therefore y is a minimal generating set. ]

By following the same process, we find the rank and the minimal spanning set for any
cyclic code over the ring R; for i = 2,3,... k.
To do this, let us consider the cyclic code C_5 of even length n over the ring
Ry = Fy +uFy + u?Fy + v?F, with u* =0 mod 2.
(1) If Cre = <g + upy + ulpy + u3p3> as in Lemma 4.2.4, deg g(z) = r, then Cy_5 is a
free module with rank(Cy_2) = n — r and basis

3= {(9+UP1+u2p2+u3p3), r(gtupr+u’patuips), . . ., w"’T’l(g+uP1+u2pz+u3p3)}.
(2) If Cp_g = <9 + upy + u?ps + ulps, uar + uPq + udqe, utas + uily, u3a3>,
where ag‘ag‘al‘g’(x” — 1) mod 2 with deg g(x) =,
deg ai(z) = s, deg asx(x) =t and deg asz(x) = b, then Ck_s has rank(Cy_3) = n—band a
minimal spanning set given by
X = {(g + upy + uPpy + uPps), x(g+ upy + uPps +uPps), ..., g+ upr + uPpy +

r=s=uay +ulq +utq), (uay+

u?ps), (uay +uqr +ul), x(uay +ulq +u’q), ..., «
W), w(uPagtu’ly), ..., 2T (wPagtul), (Was(x)), z(uPas(x)), ..., xt‘b‘l(ugas(l’))}-
(3) If Ch—a = (g +up1 + u’ps + u®ps, uPaz) where deg g(z) =r, deg as(x) = t, then Cj_»

has rank(Cy_2) = n — ¢t and a minimal spanning set given by
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I'= {(9 +upy + ulps +ups), x(g+upy +ulpy+uips), ..., 2N g +up) +upy +
u’ps), ulas, zuag,. .. ,x’ﬂ*t”u:"ag}.
Continue in the same way as above to get the following Theorem which is a generalization

of the results in [3].

Theorem 4.3.2. Let C; be a cyclic code of even length n over

Ry = Fy+uFy + u?Fy + ...+ uF'Fy with v* =0 mod 2.

The constraints on the generator polynomials as in Theorem 4.2.6.

(1) If C1 = (g +upr + u’ps + ... + v pp_y) , deg g(x) = r, then Cy is a free module
with rank(Cy) = n —r and basis

p = {(g+up1 +ulpe+. . AU peny), w(gtuprHutpa . AU ), o 2T g+
upy + ups + ...+ Uk*lpk—l)}-

(2) If C1 = <g—|—up1 +uPpe+ . AU gy ua PG+ AP T g, WP U 4+

uF s, ,u’“_Qak_Q—i-uk_ltl?uk_lak_1> with deg g(x) =1, deg ai(x) =rqe, deg az(z) =
T3, ..., deg ax_1 =1k, then Cy has rank(Cy) = n — 1 and a minimal spanning set given
by

X = {(g—l—up1+u2p2—|—. e, 2(gtup +utpat. AU ), L, 2T (g4

up1+u2p2—|—. . .+uk*1pk_1), (ua1+u2q1+. . .—|—uk*1qk_2), x(ual—i—qul—f—. . .+uk*1qk_2), cee
T (e +ut g+ e ), (Was Ul e ), s(WPas WPl 4.+
ubF L 3), o, a2 (P ag+utlh 4 A 3), L uF T a (), suF T a1 (), ..
xrk,_l—rk—luk—lak_l(x)}'

(3) If Cy = <g +upy +ulpy + ...+ ukflpk_l,ukflak_ﬁ with deg g(x) = r,deg ap_1 =1
then Cy has rank(C}) = n —t and a minimal spanning set given by

I = {(g+up1 +ulpyt. . HuF T pe ), a(gtup Fulpa . U py), o, 2T g+

2 k-1 k-1 k-1 —t—1, k-1
upy +ups+...+u pk_l), u T rag_1, TU Cagp_1,...,x" U ak_l}.

Proof. (1) Let C} be a cyclic code of even length over
Ry = Fy +uFy +u?Fy + ... + v 1 F, with v = 0 mod 2. Suppose

" —1= (g +upy +ulpy+ ...+ ukflpk,l) (h +upy +ulpy + ...+ ukflpk,l) overRy,.
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Let ¢(z = (g(z) + up1(z) + u’ps(z) + ... + uF'pp_1(x)), then
c(z) = (g(x) + upi(z) + u?pa(z) + ... + u'pp_1(x)) f(x) for some polynomial f(z).
If deg(f(x) < n—r —1, then we are done, otherwise by division algorithm there exist

two polynomials ¢(x), s(z) such that

" —1
e x)+ s(x
f) <9+Up1+u2p2—|—.,,+uk—1pk_l>q( ) ()

where s(z) = 0 or deg(s(z)) <n—r—1.

Now, (g(:c) + upy(z) + u?pa(z) + ... + uk‘lpkl(x)) f(x)

= <g(m) + upy (l‘) + UQpQ(LE) +.ooF uklpk—l(x)) <g+up1+u2pti_...1+uklpk1Q(x) + S($)>

= (g(:ﬁ) +upy () +ulpa(x) +. . .—|—u’“_1pk1(m)> s(x). Since deg(s(z)) < n—r—1, then 3

spans C7. Now we only need to show that [ is linearly independent. Let g(z) = 1+ g1z +
42", pi(z) =prot+piaxt .. +pudt, pa(x) = peotpeirt. . A’ .., proa(T) =

Pr1,0+Pk-112+ . ..+ pr_1.42. Suppose (g(:l:‘) +upy (z) + upy(x) + .. -+Uk_lpk71(95))00 +

z(g(z) + upr(z) + u’pa(z) +. ..+ i () er 4.+ 2" (g(@) + ups (z) + ulpa(z) +
.o+ ukilpk_l(x))cn_r_l = (. Comparing coefficients in the above equation we get that

(1 +upro+ u?pop+ ... + " pp_19)co = 0 (constant coefficient).

Since (1 -+ upig+ u’pag+ ...+ u 'pr_10) is a unit, then ¢y = 0.

Hence, 2 (g(x) + upy (x) + u’pa(x) + ... + v pea(x))er + ..+ 2" (g(2) + ups (2) +

ups(z) + ...+ U 1 (2)) epyr = 0.

Again comparing coefficients we get that

(1+upro+u?pog+ ...+ u"p_19)cr = 0. (coefficient of x)

This implies that ¢; = 0. Similarly we get that ¢; = 0 for all « = 0,1,...,n —r — 1.

Therefore, (3 is linearly independent and hence a basis for Cj.

(2) Suppose C = <g+up1 +wlpy+. . AUy, ua P+ AU g, P as 0Pl +
R s, uF T gy with deg(g 4 upr + .. 4 uFTippy) = 1, deg(uar 4+ ulgr +
UG ) = 1o, deg(ulay + ully 4.+ uFT L 3) = 13, .., deg(uFTrag ) = 1

k-1

Since the lowest degree polynomial in C is " 'ag_1(z), then it’s suffices to show that y

spans
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V= {(g+up1 +ulpat. . AuF T pry), a(gtup +ulpat. U ), o 2 g+
upl—i—qug—i—. . .—i—uk_lpk_l), (ua1+u2q1+. . .—|—uk_1qk_2), x(ua1+u2q1+. . .—|—uk_1qk_2), ce
gl (ua1 +ulqp 4.+ ukflqk—z), (uay +ully + ... +uF " s), w(uay+udl +. ..+
ubF L 3), o T (gl .+ ub T ), L P e (), auh Ty (), .
x”_rk_luk_lak,l(az)}.

Similarly, it suffices to show that u*~'a"™-1""tq;,_; € spany.

ey () = uF T (g(@) Fupr () Fulpa () +. e pe () +uF T im(z), where
uF~Im(x) is a polynomial in C} of degree less than rp,_;.

Since any polynomial in C; must have degree greater or equal to

deg(uftag_i(z)) = g, then r, < deg(m(x)) < rp_;.

k—1 k 'rk,l—'rk—l k—1

Hence u*'m(z) = aguftay_ () +ayzufag_ 1 (x)+. . 4oy, —r 1 uFlag_q ().
Hence, x is a generating set.

By comparing coefficients as in (1) we get that non of elements in x is a linear combination
of the others. Therefore x is a minimal generating set.

(3) this case is a special case of case (2). So the proof is similar to case (2). O

Definition 4.3.1. [3] Let C' = <g + up(z), ua(x)> be a cyclic code of even length n over
Ry = F5 + uF,. We define C,, = {k’(:c) cuk(x) € C’} in Ry, = Rg[x]/<x" — 1>.

Remark 4.3.1. [3] C, is a cyclic code over Fy = {0,1} = R;.

Proof. Let k(z) € C,, we need to show that zk(z) € C,.
Now since k(z) € C, = uk(z) € C, but C is cyclic code over Ry = zuk(z) € C =
zk(x) € Cy. O

Definition 4.3.2. [3] Let C' = (g + up; + u’p2, uar + uqi, u’az) be a cyclic code of
even length over Ry = F + uF, + u*F, with (v* = 0 mod 2). We define C,2 = {k(z) :
u’k(z) € C} in Ry, = Rsz]/{z" — 1).

Remark 4.3.2. [3] Cy2 is a cyclic code over Ry = {0,1} = F.

Proof. Let k(z) € Cy2, we need to show that xk(x) € Ce.
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Now, since k(z) € Cy2 = uv’k(z) € C, but C is cyclic code over Ry = zu’k(x) € C =
zk(z) € Cpe. O

By following the same process, we define Ci-1 over the ring R; for i =2,3,... k.
So, if i = 4, then we let C' = (g+up; +u’ps + u’ps, uas + vl + udqe, u?as + u?ly, udaz) be
a cyclic code of even length over Ry = Fy + uly + u?Fy + w3 F, with (u* =0 mod 2) =
Cyp = {R(z) : ubk(z) € C} is a cyclic code over Fy.

Hence, we generalize these definitions to more general ring Ry as follows:

Definition 4.3.3. Let C' = <g +up + ... FuF o ua g+ g, ulan +
Wl + A g, uF g + W P ag)

be a cyclic code of even length n over Ry, = Fod-uFy+u’Fo+. . . +ub"1F,y with uf = 0 mod 2.
We define Cye-1 = {k(z) : u¥'k(z) € C'} in Ry,

Remark 4.3.3. Cyre—1 is a cyclic code over Fy = {0, 1}.

Proof. Let k(z) € Cyr-1, we need to show that zk(z) € Cyr-1.
Now, since k(z) € Cyp-1 = u*k(z) € C, but C is cyclic code over Ry, = zu*~'k(z) €
C = zk(z) € Cu-.

Theorem 4.3.3. [5] Let C = (g + up; + u’pa, uay + uqy, u’as).
Then Cy2 = (as(x)) and wy(C) = wy(Cye).

Proof. Since u*as € C, then (as(z)) C C,2. Now given an b(z) € C,z, then u?b(z) € C
and hence there exist polynomials ¢(z), e(z), k(z) € Fylz| such that

u?b(z) = c(x)ulg(x) + e(x)u’ar(z) + k(x)u’az(x). Since az(x)|g(z) and as(z)|a(x), we
have u?b(z) = u?l(x)as(z) for some I(z). So Cy2 C {as(z)) and hence C,2 = (a(x)).
Furthermore, given a codeword I(x) = lo(x) + uli(z) + u?lz(z) € C where
lo(x),l1(x),la(x) € Fylx], since v?l(x) = u’ly(x) € C and wy(u?l(z)) < wy(l(x)) and
u?C' is a subcode of C' with wg(u*C) < wy(C) it is sufficient to focus on the subcode
u?C in order to compute the Hamming weight of C. Since v*C' = (u®as(z)), thus
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According to Theorem 4.3.3,
if €= (g+ up1 + ups + u’ps, uay + u?q + udqe, u?as + wly, uPas) over
Ry = Fy +uly + u?Fy + u®Fy with (u* =0 mod 2).
Then Cys = (as(z)) and wy (C) = wu(Cys).

Continue in the same way as above we have the following theorem:

Theorem 4.3.4. If C = (g +up; + ... + u" 'pp_y,uar + ?qr + ... + " qp_s, uar +
WClh+ . P s, 2ag g + uF T ukilak_1> 18 a cyclic code of even length over
Ry = F> + uFy + v*Fy + ... + u* 7' Fy with v¥ = 0 mod 2. Then Cyri-1r = (ay_1) and
wy(C) = wy(Cur—1).

Proof. Since u*~'a,_, € C, then <ak,1(x)> C Cupr-1. Now given an b(x) € Cyr-1, then

uF~1b(x) € C and hence there exist polynomials c;(z), ca(), ..., ¢;(x) € Fylz] such that
uFo(z) = c(2)uFtg(x) + co(x)uFtay () + cs(x)uFrag(z) + ...+ (@) uFrap 1 (7).
Since ap_1(x)|ar—2(2)|. .. |az(z)]ar(z)|g(z), we have uF~'b(z) = uF"'m(x)ar_1(x) for

some m(z). So C—1 C {ag_1(z)) and hence Cyp-1 = (aj_1(x)).

Further, given a codeword m(z) = mq(xo) +umi(z) + u?ma(z) + ... + v 'my_1(z) € C,
where mq(z), my(x), ma(z), ..., mp_1(z) € Fylx], since u*tm(z) = u*"tmy(z) € C
and wy (uf*~Im(x)) < wy(m(z)) and u*~1C is a subcode of C' with wy (u*~1C) < wy(C)
it is sufficient to focus on the subcode u*~'C' in order to compute the Hamming weight

of C. Since v 'C' = (u*tay_1(x)), thus wy(C) = wy(Cypr). O

4.4 Examples

Example 4.4.1. Cyclic codes of length 5 over Ry = Fy + uFs + u?Fy + u?Fy with u* = 0
mod 2.

Now, 2° —1=(z+1)(a* + 2+ 2>+ 2+ 1) = 192

= The Nonzero cyclic codes of length 5 over R4 with generator polynomials are on the

following table:
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Non zero generator polynomials

(1) (91). (92)

(u), (ugr), (ug)

(u?), (v*g1), (ug2)

(u'), (u’g1), (u'gs)

(g1,u), (92,u), (g1,w%), (g2,u*)

(g1,9%), (g2,u”)

<ugl> U’2>7 <u927 U’2>

<u2917 u3>7 <U’2.g27 U3>

Table 1 : Cyclic codes of length 5 over Ry = Iy 4+ uFy + u*Fy + u’F,

Example 4.4.2. [3| Ifk =2 = Ry = Fy+uFy, letn =38, thena®—1= (z—1)® = [g(x)]®
over Zs.

We will list all free module cyclic codes and all non free module of length 8 over

Ry = 5 + ukFs.

In the case for free module cyclic codes, and due to the classification theorems, we have

the following tables that give all such codes:

Non zero generator polynomial(s) =g=x+1

1

(9),(g+u)

(94 ulco + c12))

(¢* + u(co + a1z + ca?))

(g* + u(co + a1z + o2 + c32%))

<g5 +u(z? 4+ 1)(co + 1 + 02x2)>

(g% +u(z+1)*(co + c12))

<g7 + uco>

Table 2 : Free module cyclic code of length 8 over Ry = F5 + ukF5

To illustrate the cyclic code (g* + u(co + c1z + cox%))
C = (g(x) +up(x)) = g(x) = g° = (z+1)* mod 2,
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p(x) = ¢y + 1 + cor? mod 2 = degp(x) < deg g(x),
g@)} a8 ) since (z + 1)*|(z® — 1),
)

_ 2B
g(z)|p(z )( 1) since 9(1)1 = w = (z+1)°

= (x+1)3 ’(CO + x4 cx?) (T + 1)°.
According to Theorem 4.3.1
deg(g(z) +up(z)) =3 = frank(C) =n—r =8—3=5 and C has a basis given by
B={g+ulco+crz+cr?), v(g* +u(co+az+ca?)), - (¢ +ulco+ iz + cr?))}
and |C| = 4""" = 45 codewords.

Non zero generator polynomial(s) :g=z+1

(u)

(ugt), i=1,2,3,4,5,6

(ug”)

(g%, u), i=1,2,3,4,5,6,7

(9% + uco,ug))

(9% + uco,ug))

(g® +u(co + c1z), ug?)

(g* + uco, ug)

<g4 + u(co + c1ac),ugz>

<g4 4+ u(co + c1z + 62x2),ug3>

(9° + uco, ug)

(g° +ulco + c13),ug?)

(95 + u(co + c1z + c22?),ug®)

(95 + u(z + 1)(co + c12 + c22?), ugt)

(g% + uco, ug)

(9% + u(co + c1@), ug?)

(9°® +ug(co + c1z), ug®)

(g% +ug®(co + c17), ug*)

(9% + ug®(co + 1), ug®)

<g7 + uco,ug>

(97 + ugeo, ug?), (g7 + ugco, ug®), (g7 + ug3co, ug*)

(97 + ug*co,ug®), (g7 + ug®co, ug®)

Table 3 : Non Free module cyclic code of length 8 over Ry = Fa + uFs

To illustrate the generator polynomial <g5 + uco,ug> ;
C' = (g(x) +up(x), ua(z)) = g(z) = ¢° = (x +1)° mod 2, p(x) = co mod 2,
a(r) =g=x+1 mod 2 = dega(z) > degp(x),
a(z)|g(z)|2® =1 mod 2, since (z+1)|(z +1)°|(2® — 1),
a(@)|p(e) (55t) since Tt = £53s = (¢ +1)* mod 2
=z + 1co(z + 1)%.
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Example 4.4.3. If n = 8 over Ry = Fy + uly + u?F, with v =0 mod 2.
P—-1=@-17%= (g(gv))8 over Fy = {0,1}.
The nonzero free/non free module cyclic codes over Rz are on the following tables:

Non zero generator polynomial(s): g=z+1

(1), (g), {g+w), {g+u?)

<g + u(co + clrp)>7 <g +u?(co + clx)>

<g3 4+ u(co + c1x + czx2)>, <g3 + u2(c0 +cix+ czx2)>

<g4 +u(co + c1z + cox? + chg’)>7 <g4 + u2(co + iz + cax? + 63x3)>

(g% + u(@? + 1)(co + c1z + c222)), (° + u?(z? + 1)(co + c1z + c22?))

(95 +u(z + 1)*(co + c12)), (g% +u?(z +1)*(co + c12))

<97 + uc0>» <g7 + U260>

Table 4 : Non zero Free module cyclic codes of length 8 over R3 = Fa + uFs + W’ Fy

Non zero generator polynomial(s): g=z+1

(), (u?)

(ugh), i=1,...,7, (u2g)), i=1,...,7.

(gtu), i=1,2,...,7, {gh,u?), i=1,...,T.

(92 + uco, ug), {92 +uZco,u’g)

(9% +uco,ug)), (g% +u?co,u?g))

(9% +ulco + c12),ug?), (g° +u?(co + c12),u?g?)

(g* +uco,ug), (g* +u’co,u’g)

(g* +ulco + c12),ug?), (g* +u?(co + c12),u’g?)

<g4 +u(co + c1z + CQQCQ),ug?’>7 <g4 +u?(co + crw + c2x?), u293>

(g5 + uco, ug), {g°+uZco,u?g)

<g5 + u(co + c1$),u92>, <g5 +u?(co + cl$),u2g2>

<g5 4+ u(co + c1z + csz),ugS>, <g5 +u?(co + c1x + cax?), u293>

(9° +u(z + 1)(co + 1@ + c222),ug?), (g° +v?(z + 1)(co + 1@ + c2a?),u’g*)

(g% + uco, ug), {g°+uZco,u?g)

<96 + u(co + c1:c),ug2>, <g6 +u?(co + claz),u292>

(9% + ug(co + c12),ug?®), (g®+u2g(co + c1x),u?g>)

(95 + ug?(co + c1z), ug*), (g®+u?g?(co + c1),u?g*)

(9% + ug®(co + c12),ug®) (g® + u?g®(co + c1z),u?g®)

(97 + uco,ug), {97 +uZco,u?g)

(97 + ugco, ug?), {g" +u2gco,ug?)

(97 +ug?co,ug®), (g7 +ug?co,u’g>)

(97 + ug®co,ug?), (g7 + ug®co,u?g*)

{
(97 +ugtco,ug®y, (g7 +ugtco,u’g®)
< 7

(9" + ug®co,ug®), (97 + ug®co, u?g®)

Table 5 : Non Free module cyclic codes of length 8 over Rz = F» + uF> + u’Fy
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Chapter 5

Constacyclic Codes over the Rings

By +uFy and B+ uF + u?Fy

In this chapter, we study the structure of (1 4+ u)—constacyclic codes of even length n
over the ring Fy + uFy, with u* = 0 mod 2. We find a set of generators for each (1 + u)-
constacyclic code and its dual. We study the rank of cyclic codes and find their minimal
spanning sets. We prove that the Gray image of a (1 4+ wu)-constacyclic code is a binary
cyclic code of length 2n. We extend these results that was proved in [2] to the ring
Fy + uF; + v Fy, with u* = 0 mod 2. Examples of (1 4 u), (1 — u?)-constacyclic codes of

even lengths are also studied.

5.1 Classification of (1+u), (1—u?)-Constacyclic Codes

Definition 5.1.1. [2] Consider the ring R = F + uF, = {0,1,u,u + 1}, where u? = 0
mod 2 and S = Fy + uFy + v?*Fy, = {0,1,u,u + 1,u?, 1 +u* 1 + u + v?, u + u?}, where
u? =0 mod 2.

A linear code of length n is a (1 4+ u)—constacyclic if it is invariant under the automor-
phism v which is given by v(cg,c1,...,ch 1) = ((1 +u)cy_1,Co, - - - ,cn_g),where l4+uisa

unit in R.
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A linear code of length n is a (1 — u?)—constacyclic if it is invariant under the automor-
phism ¢ which is given by o(co, c1,. .., cn1) = ((1 — u?)cu1, o, . . ., Cus), where 1 — u?
is a unit in S.

A subset C' of R" is a linear cyclic code if its polynomial representation is an ideal in
M, = S[z]/{z" - 1).

A subset C of R™ is a linear (1 4+ u)—Constacyclic code if its polynomial representation
is an ideal in R, = S[z]/(z" — (1 + u)).

A subset C of S™ is a linear cyclic code if its polynomial representation is an ideal in
T, = S[z]/{z" — 1>.

A subset C of S™ is a linear (1 — u?)—Constacyclic code if its polynomial representation

is an ideal in S, = S[z]/(z" — (1 — u?)).

Definition 5.1.2. [4] Let S = Fy + uFy +u?Fy, = {0, L, u, 1 +u,u?, 1+ v 1+ u+u?, u+
u?} where u® = 0 mod 2. We define the Generalized Lee weight of any non zero element
tin S by

2, ift# u?

4

thL(t) = £ )
R It =u

and the Generalized Lee weight of 0 is 0.
Further the Generalized Lee weight of any non zero n— tuple in S™ is the sum of Gener-

alized Lee weights of its components.

Example 5.1.1. Ifn =38, let v = (1,0,u* 1 4+ u,1,u +u? u?0) € S5

=wtqr(x) = 16.

Definition 5.1.3. [4] The Generalized Lee distance between « and y € R" is defined by
dor(z,y) = wtgr(z — y).

Example 5.1.2. Ifn =4, let v = (0,u, 1 +u,u?) and y = (0,1,u,0) be two vectors in S*
=dgr(r,y) = wter(r —y) = wter(0, 1+ u, 1,u*) = 8.

Notation:We write a for a(x) and (a)q represents a binary cyclic codes in F|x] with

generator a.
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Following results in [3], let R = Fy, + uFy, = {0,1,u,1 + u} with «* = 0 mod 2,
and S = Fy + ulF, + u?F, with 3 = 0 mod 2. Let C be a constacyclic code in S, =
[z]/{z™ — (1 — u?)). Define ¥; : S — R by ¥i(a) = a. ¥ is a ring homomorphism
that can be extended to a homomorphism @ : C' — R, = R[z]/(z" — (1 +u)) defined by
D(cog+er+ ...+ 12" =U(co) + Ui(er)r + ...+ Ui(e, )zt
Ker® = {u?r(z) : r(z) € Zo[z]}. Let J = {r(z) : u*r(z) € ker®} = J is an ideal
in Zp[z] /(2" — 1) and hence a cyclic code in Zy[z]/(z" — 1). So J = (as(z)) and
ker® = (u*as(z)) with as(z)|(z" — 1) mod 2. In order to determine the generators of a
cyclic code in S,,, we need to know the image ® which is a constacyclic code in R,,. Let D
be a constacyclic code in R,, as above, we define Wy : R — Z5 by Vs(a) = a’®> mod 2. Uy
is a ring homomorphism because (a + b)? = a®* +b? in R and in Z, = {O 1} Extend Wy
to a homomorphism ¢ : D — ZQ[x]/<:1;” - 1> defined by p(co + 1z + ... + ¢, 2™ ) =
Uo(co) + Ualcr)r + ...+ WUa(cp1)z" ! = +ciz+ ...+ 12" ! mod 2.
Kerg = {ur(z) : r(z) is a binary polynomial in Zs[z]/(z" — 1)} = (uai(x)) with
ai(x)|(z™ — 1) mod 2. The image of ¢ is also an ideal and hence a binary cyclic code
generated by g(z) with g(z)|(z" — 1). So, C' = (g(x) + up(x), ua;(z)) for some binary
polynomial p(z). Note that a;|(p% ) because go( Lg +up)) = p(up™= _1) = 0 which

implies (

= —1) € kerp = <ua1>. Also ug € kery implies a;(z)|g(x). Now since the
image of ® is an ideal in R,, then Im(®) = (g(z)+up:(z) , ua;(z)) witha; (z)|g(z)|(z" —
1) and a1 (z)|p:(z)( n(x)l). Also ker® = (u?ay(x)) with as(z)|(2z™ — 1) mod 2. Since
u?a; € ker® = (u’ay), then we get the following lemma.

Lemma 5.1.1. [3] If C = (g(z) + up(z), ua, (x)) is a linear-cyclic code in R, and g(z) =
ai(z) with deg(g(z)) =r, then C = (g(z) + up(x)) and (g + up)|(z"™ — 1) in R.

Proof. Since u(g + up) = ug andg = a1, then C C (g(z) + up(z)),

hence C' = (g(z) +up(x)). By the division algorithim, 2" — 1 = (g(z) +up(z)q(z)) +t(z),
where t(x) = 0 or deg t(x) < r. Since t(x) € C then t(z) = 0 and hence (g4 up)|(z™ —1)
in R . ]
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Lemma 5.1.2. [3] If C = (g + ups + u’ps, uas + u’q, u’as) is a linear-cyclic code in S,
and if ay = g, then C = (g + upy + u®p2) and (g + upy + u’ps)|(z™ — 1) in S.

Proof. Since as = g, then a; = ay = g. From Lemma 5.1.1, we get that (g + up)|(z™ — 1)
in R and C' = (g+up; +u?ps, u?az). The rest of the proof is similar to Lemma 5.1.1 . O

Lemma 5.1.3. Let C be a linear-constacyclic code in S, = S[z]/(z™ — (1 — u?), then C
can be written uniquely as C' = (g(x) +up: (x) +u’pa(x), uas (x) + uqi (x), u?as(x) ), where
ai(z), as(z), pi(x), p2(2), qi(z) and g(x) are binary polynomials with as|a;|g|(z" — 1)
mod 2, ai(x)|pi(x )(%) and ay divides ql(x)(%(xl) and po(z) (L ) )(” (%) Moreover
degpy < degas, degqy < degay and degp; < degay.

Proof. Assume that C' = (g(z) + up1(z) + upa(x), uai (z) + v?q (z), v?as(z)) = (h(z)

ums (z) + u?mo(z), ubi (x) + u?ly (), u?by(2)). Since ker® = (u?as(x > = (u®by(x)), then
az(z) = bo(x) and similarly kerp = (uai(z)) = (ubi(z)) implies a;(z) = by ().

Also p(®(C)) = (g(z)) = (h(z)) and hence g(z) = h(z). Since g+up;+u’ps € C = (g+
umy +u*ms, uay +ully, u?ay), then g+up+ups = g+umy+umso+ (uay +u?ly ) o +u*azas

().

Multiplying by u we get u?(p; — m1) = u?ajay. Since deg(pi — my) < deg(p1), then
p1 = my. So equation (1) becomes u?py = u?ma+(uay+u?ly ) +u?asay and u?(pa—ms) =
(uay + u*l)oq + uPazan. So u*(py —me) € C and hence € ker® = (u’as(z)).

But again deg(py —msg) < deg(ag(x)). Thus p; = msy. Similarly, we can show that ¢; = [;

and hence we are done. O

Remark 5.1.1. The above generators a;(z), as(z) and g(z) of C' are divisors of (z" —
1)mod 2 and they are not divisors of (x” —(1- u2)), so for this fact makes the study of

(1 — u*)—constacyclic codes easier to understand.

2L 2L :
Lemma 5.1.4. (2] (z+ (1+u))” = (z+1)" for any integer L.
Proof. (z+ (1+ u))2L =[(z+ 1+ u))Q}L

= [552 +(1+ u)Q}L
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= (:172+1+u2+2u)L
=@ +1)" =[@+17]" = (+1)*". O

Lemma 5.1.5. (z + (1 — u2))2L = (z+ 1)2L for any integer L.

Proof. (z+ (1— u2))2L = |
(2% + (1 —u?)?+22(1 — u2)]L
=(2*+1+u* - 2u2)L
(
(

2+1)" = [@+1)?])" = (z+1)™" 0

Lemma 5.1.6. [2] Let n = 2°m where ged(2,m) = 1. Then u belongs to both ideals
<a:m + 1> and <(.7: + 1)26> m R,.

Proof. In the ring R, = R[z]/(2™ — (1+ u)), we have 2™ — (1 + u) is the zero element, so
u=a"+1=22"+1=(z"+1)* = [(z+ 1) f(2)]”,

(since ™ + 1= (z + 1) f(z) for some f(z) € fao(x))

sou= (z+ 1)26 [f(:z:)}r = (¥ +1) [f(:c)]2e.

Therefore u belongs to both ideals <a:m + 1> and <(x + 1)2€> in R,,. ]

Lemma 5.1.7. Let n = 2°m where ged(2,m) = 1. Then u? belongs to both ideals ((z™ +
1)) and ((z+1)*) in S,.

Proof. Similar to the proof of Lemma 5.1.6 ]

Lemma 5.1.8. [2] If n = 2°, then (1 + (x + 1)ip) is a unit in R, and in S, for any
polynomial p and e > 0.

2ni ko

Proof. Let k = 2n, then [1+ (z + 1)ip]k =1+ (z+ 1)ikpk =1+ (z+1)""pF=1. O

Theorem 5.1.9. [2] Let C' = <g ) + up(x ual(x)> be a (1 + u)—constacyclic code in
R, forn=2°" Then C = (d(z+1)"), where d =1 oru and i < n.

Proof. If g(z) + up(z) = 0, then
C = (uay(z)) with a;(z)|(z" — 1).
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Hence a;(z) = (z —1)", i <n and C = {u(z + 1)*). If g(z) + up(z) # 0, then
g9(z) +up(z) = (x +1)' + (z + 1)"p(2)
= (@ + ' [1+ (z +1)"'p(a)]
= (z + 1)v for some unit v.
Hence we may assume that C' = ((z+1)", u(z+1)7). Since u = (z+1)", then u(z+1)7 €
((z +1)"). Therefor C' = ((z +1)"). O

Theorem 5.1.10. Let C = (g(x) 4+ up:(z) + u’pa(z), u?az(x)) be a (1—u?)—constacyclic
code in S, forn=2° Then C = (d(z +1)") where d =1 or u* and i < 2.

Proof. 1f g(x) + upy(z) + u?p1(z) + u’ps(x) = 0, then
C = (v’as(z)) with a(z)|(z" — 1).

Hence ay(z) = (z—1)", i <nand C = (v*(z+1)"). If g(z) +upi(z) +u’pa(z) # 0, then
9(x) +upi(z) +u’pa(r) = (z + 1) + (z + 1)2ps(2) + (@ + 1)"pa(x)
=(@+ ' [1+ @+ 1) "pi(x) + (z +1)" "pa(a)]
=@+ D1+ (@ +1)2 7 (p(2) + (z +1)2pa(a))]
= (z + 1)v for some unit v.

Hence we may assume that ¢ = ((z + 1), v?(z + 1)7). Since v* = (z + 1)", then
u*(z 4+ 1) € ((x+1)*). Therefor C = ((z +1)"). O

Theorem 5.1.11. [2] Let C = (g(z) + up(z),ua;(z)) be a (1 + u)—constacyclic code in
R, for n =2°m and gcd(2,m) = 1. If p(x) =0, then C = <g(x)> or <ug(a:)>

Proof. Let C = (g(x) + up(z),ua;(z)) be a (1 + u)—constacyclic code in R,. Assume
that p(z) = 0, then C' = (g(z),ua;(x)), where ua;(z) = (2" — 1)a; ().
Since g(z)|(z™ — 1), then ua;(z) € (g(z)). Hence C' = (g(z)) or (ug(x)). O

Theorem 5.1.12. Let C = (g(x) + up: (z) + u’pa(z), u?as(x)) be a (1—u?)—constacyclic
code in S, for n = 2°m and ged(2,m) = 1. If pi(z) = pa(z) = 0, then C = (g(z)) or
(uPg(x)).
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Proof. Let C = (g(z) + upi(z) + u?ps(z), u?az(x)) be a (1 — u?)—constacyclic code in
Syp. Assume that p;(z) = pa(z) = 0, then C' = <g x),ug(x >, where u?ay(z) = (2" —
Das(x). Since g(z)[{(z"—1), then u?as(z) € (g(z)). Hence C = (g(z)) or (vg(z)). O

Lemma 5.1.13. [2 Suppose that C = (f*) is a (1 + u)—constacyclic code in R, for
n = 2°m, ged(2,m) =1 and f|(x™ —1). Then we may assume that k < 2¢T1.

Proof. Since g.c.d. ( e ,fQE) =1, then

sp(a™ — 1) f% + sof? =1,

s(z” — 1) + so f X = £,

s1u+ 592 = f2°. (squaring both sides),

S%fQEH _ f26+1'

This implies (f2°) = (f*"') and hence

<f25+1> — (fk) if 2642 < k< ¢+l

If k=22 + ¢, then

(P2 = () = oy = (527, .
Lemma 5.1.14. Suppose that C' = <fk> is a (1—u?)— constacyclic code in S,, forn = 2°m
ged(2,m) =1 and f|(z™ —1). Then we may assume that k < 2°T1.

Proof. Since (I;{el,fze) =1, then

si(@™ = 1) f* + sof* =1,

si(a™ — 1) 4+ sof X = f2°,

s1u? + sof2" = 2. (squaring both sides),

ST o

This implies (f2) = (f*') and hence

<f2€+1> — (fk) if 2642 < | < e+l

If k = 2°"2 + ¢, then

(I =P = (/) = (1#7). =
Lemma 5.1.15. [2] Suppose C = <fi,ugk> is a (1 4+ u)—constacyclic code in R, for
n = 2°m, wheree >0, f and g divides (z"+1) and gcd(2,m) = 1, then C = <h>, where

h = ged(f7, (z™ + 1)g"%).
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Proof. First, note that u = 2" +1 in R,,. Also note that f and (2" +1)g"* are polynomials
in Zy[z] and hence h = ged(f?, (z" + 1)g*) exists. Second, let h = ged(f, (2™ + 1)g*)
which implies h|f* and h|(z™ + 1)g*, then f and (z" + 1)g* € (h). Hence C C (h).

On the other hand h = af? + B(z™ + 1)g* (properties of ged) for some o, 3 € R[z].
= heC = (h)CC.

Therefor, C' = <h> [

Lemma 5.1.16. Suppose C' = (f,u*¢*) is a (1 — u*)—constacyclic code in S, for n =
2°m, where e > 0, f and g divides (x™ + 1) and ged(2,m) = 1, then C = <h>, where
h=ged(f’, (2" +1)g").

Proof. First, note that u? = 2" +11in S,. Also note that f* and (2" +1)g* are polynomials
in Zy[z] and hence h = ged(f?, (z" + 1)g*) exists. Second, let h = ged(f?, (2™ + 1)g*)
which implies h|f* and h|(z" 4+ 1)g*, then f* and (2" + 1)g* € (h). Hence C' C (h).

On the other hand h = af® + B(z" + 1)g* (properties of ged) for some a, 3 € S[z]
= heC = (h)yCC.

Therefor, C' = <h> O

Theorem 5.1.17. [2] Let C' = (g(z) + up(x), uai(z)) be a (1 + u)—constacyclic code in
R, forn = 2°m and ged(2,m) = 1. Suppose p(x) # 0, then C' = <f{1 2 fﬁ’“>, where

fi, [, -, [ are the monic binary divisors of (x™ — 1) mod 2, and iy, iy, ..., < 2°L

Proof. Suppose p # 0. Consider
e[(Z57) (9(2) + up(2))]
=®[(a" - 1)+ umn(m)1 (2)]

—(ID[u+u m)p }
= 0[u(l+ £ 5p(x))] =0
Hence u(1 + £ p(x)) € ker® = (ua;(z)).

9(x)
So 1+ Z-tp(r) = al()(ﬂf),
g(x) + (2" = 1)p(x) = g(x)ai (v)k(z).
:>g()+up() g() ()k()(Smceu:x”—l)inR.
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Hence C' = (g(z)ai(x)k(z), ua;(z)). But 1+ “c(_)lp(x) = ai(x)k(x).

z).

9@ P

= g(w)ai(r) = uar (v)p(x) + g(x)ar*(x)k(z).

This implies that g(z)ai(z) € Cand C = (g(z)ai(z), ua; (x)).

= 1 =25p(x) + a1 (2)k(
)p(z)
So we may assume that C' = (g{' (2)g%(z) ... g (x),uai(z)), where g;(z)|(z" — 1). Since

(a"—=1) = (a™ - 1) , then each g;(z) = fY(z), where f; is a monic divisor of 2™ + 1
mod 2 and [; < 2¢.

So C' = <f1ml I ufft>, where {fz} are monic coprime divisors of (mm + 1) mod
2. By Lemma 5.1.15, we get that C' = <ff1 2 ..fﬁ’“>, where fsl(:zfm — 1) mod 2 and
i1, g, ... 1y < 20 O

Theorem 5.1.18. Let C = (g(z) + upi (z) + u’pa(z), uaz(x)) be a (1 —u?)—constacyclic
code in S, for n = 2°m and ged(2,m) = 1. Suppose pi(x) and ps(x) # 0, then C =
< e ffr>, where f1, fa, ..., fr are the monic binary divisors of (z"™ — 1) mod 2 and

iy, iy < 26FL

Proof. Suppose p1(x), pa(z) # 0. Concider

e[(95) (9(2) + upi(2) + upa(x))]
=®2" — 1+ ut-l ’)1p1( z) + UL =lpy ()]

9(z)
= P [u? )—i—u”()pg( )]
= ®[u(u+ +u()p2( z))] = 0.
Hence u( + 2 (x) pl( ) e )pg(:r:)) € ker® = (u’ay(x)).
1(z) + p2(x) = ag(x)k(x),

ug(x) + ( 1)p1 +u(x — Dpa(x) = g(z)as(z)k(z).

= ug(z) + upi(z) = g(x)az(z)k(z) (Since v =z" —1 = u(z" —1) =0).
Hence C' = < (z)az(z)k(z), vaz(x)). But u+ £ g(x) Cdp(z) + ut L o 2(2) = as(2)k(2).
= u = pi(x) + um p () + ag(x)k(z).

= ug(z ) 2(90) = w?az(x ) 1(x) + g(w)az®()k(x).

This implies that g(z)as(z) € C and C = (g(x)as(z), u*as(z)).

So we may assume that C' = (gi'(z)g2(z) ... gV (x),u%as(x)), where g;(z)|(z" —1). Since
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(z"—=1) = (a™ - 1)26, then each g;(x) = fY(z), where f; is a monic divisor of ™ + 1

mod 2 and [; < 2°.

So C = < HE N L TR tlt>, where {fz} are monic coprime divisors of (:L‘m + 1) mod
2. By lemma 5.1.16, we get that C' = (f{'f3>... fir), where f;|(z™ — 1) mod 2 and
indg, ... i, < 20t [

5.2 The Dual and the Minimal Spanning Sets of (1 +
u), (1 — u*)-Constacyclic Codes

Lemma 5.2.1. [7 Let C = (g) be a (1 + u)—constacyclic code of length n = 2°m and
ged(2,m) = 1 in R,, where g|(m” — 1) mod 2 and deg g = r. Then C has a minimal

spanning set over R given by

—r—1 -1
B={g,zg,..., 2" " gu,xu,..., 2" u},

and |C‘ = 4T,

Proof. Since u = 2" — 1 in R, and g|(z" — 1) in R,, then u € C.

The rest of the proof is similar to the proof of Theorem 4.2.1 in the previous chapter. [J

Lemma 5.2.2. Let C' = <g> be a (1 — u?)—constacyclic code of length n = 2°m and
ged(2,m) = 1 in S, where g|(:v" — 1) mod 2 and deg g = r. Then C has a minimal

spanning set over S given by

_ n—r—1 r—1 2 2 r—1,2
6={g,zg,...,x gy U, TUy ..., X u,ut Tut, L T u )

and |C| = 8" 7472

Proof. Since u? = 2™ — 1 in Sy, and g|(2" — 1) in S,,, then v* € C.
Let g(x) = 1+ ¢gi(z) + ... 2" and gcg + xgey + ...+ 2" " ge, vy =0= ¢; =0 for

every1=0,1,... ,.n—r—1.
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Now, we show that 3 spans

_ n—r—1 n—1 2 2 n—1,6 2
v=A{g,29,...,x BT TR e VI Vil VS v Tl 1

So we only show that u‘z" € span (7), fori=1,2.

u'a” = u'g(x) + u'm(z) where m(z) is a polynomial in C' of degree less than r, since any
polynomial in C' must have degree greater or equal to zero, then 0 < deg m(x) < r.
Hence u'm(z) = apu’ + cyzu’ + ... + a,_12"'u’. Hence [ is a generating set.

By comparing coefficient as above, we have that non of the elements in 3 is a linear
combination of the others. Therefore  is a minimal generating set for C' and |C| =

8nr4r2r. ]

Lemma 5.2.3. [2] Let C = (ug) be a (1 + u)—constacyclic code of length n = 2°m and
ged(2,m) = 1 in R,, where g|(x” — 1) mod 2 and deg g = r. Then C' has a minimal

spanning set over R given by

B = {ug,uzxg, ..., uz""""g},
and |C| =2,

Proof. Since the binary code generated by g(z) has basis {g, xg,. .. ,x”*’”*lg}, then the

n—r—1

code C' = <ug> has a minimal spanning set 8 = {ug,uxg,...,ux g}, and hence

|C| =2, O

Lemma 5.2.4. Let C = <ug> be a (1 — u?)—constacyclic code of length n = 2°m and
ged(2,m) = 1 in S, where g|(z" — 1) mod 2 and deg g = r. Then C has a minimal

spanning set over S given by

B ={ug,uxg, ... .uz"""g,u’g,uzg, ... w2 g},

and |C" = 4",
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Proof. Since the binary code generated by g(z) has basis {g, xg,..., 2" " lg,ug, uxg, ... ,u:pr*lg},
then the code C' = (ug) has a minimal spanning set § = {ug, uzg, ..., uz""g,u’g,u’zg, ..., v’z g},

and hence }C’| = 4", O

Lemma 5.2.5. Let C = <u2g> be a (1 — u®)—constacyclic code of length n = 2°m and
ged(2,m) = 1 in S, where g|(z" — 1) mod 2 and deg g = r. Then C has a minimal

spanning set over S given by

b= {uZQ, uxyg, . .. ,u%;"”"’lg}.

and |C| =2""".

Proof. Since the binary code generated by ¢(z) has basis {g, xg, ... ,x”_””_lg}, then the

code C' = (u*g) has a minimal spanning set 3 = {u’g, v’zg, ..., u?z"""g}. O

Lemma 5.2.6. [2] Let C = (f{'f3...fi") be a (1 4+ u)—constacyclic code of length
n = 2°m and ged(2,m) = 1 in R,. Suppose for some i; we have 2¢ < i; < 2°t1. Let
C = <fg>, where g is a polynomial of largest degree such that degg = r, deg f =t and
f|g|<:c" — 1> mod 2. Then C' has a minimal spanning set over R spanned by

ﬁ - {fg7xfg> s 7$nir71fgvuf7$uf7- .. ;Zﬂritiluf}
and |C| = 4nr2r .

Proof. Since C' = < f g> and f|g| (:1:'” — 1) mod 2, then the lowest degree polynomial in C'is
uf. Let ¢(x) € C, then ¢(x) = fgh, for some polynomial h € R,. Applying the division
algorithm, we get h = %qjtd, where deg g < r—1,and d=0or degd <n—r —1.
This implies that fgh = fg(%q + d) = fuq + fgd. Note that fgd € spcm(ﬁ).
If deg ¢ < r —1t—1, then fuq € spcm(ﬁ) and hence c¢(x) = fgh € spcm(ﬁ). If
deg g > r —t, then r < deg(fuq) <r4+t—-1l<n+t—-1= deg(m"*’"*lfg).

Hence fuq € span (ﬁ) Therefore 8 spans C'. From the construction of C', we have (3 is

a minimal spanning set and hence ‘C ‘ = 4n-rort, [
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Lemma 5.2.7. Let C = (f{* f3* ... fi) be a (1—u®)—constacyclic code of length n = 2°m
and ged(2,m) = 1in S,,. Suppose for some i; we have 2¢ < i; < 2°T1. Let C' = <fg> where
g is a polynomial of largest degree such that degg = r, deg f =t and f|g|(z"—1) mod 2.

Then C has a minimal spanning set over S spanned by
/6 = {fg?l.fg7 A 7xn7,r71fg7 uf?'z.uf? A 7xrit71uf7 u2f7 "'L‘u2f7 A 7xrit71u2f}'
and |C| = 8" T4t

Proof. Since C' = <fg> and f|g| (m” — 1) mod 2, then the lowest degree polynomial in C' is
u?f. Let ¢(z) € C, then c(x) = fgh, for some polynomial h € S,. Applying the division

algorithm, we get h = mng’lq +d, wheredeg g < r—1,andd=0ordegd <n—r—1.

This implies that fgh = fg(“ =g +d) = fu’q + fgd.

Note that fgd € span(ﬁ). If deg g < r—t—1, then fuq € spcm(ﬁ) and hence

c(x) = fgh € span(ﬁ). If deg g >r —t, then r < deg(fu2q) < r4+t—1l<n+t-—1=
deg (J;"_T_lfg).
Hence fu’q € span (ﬂ) Therefore 3 spans C'. From the construction of C', we have (3 is

a minimal spanning set and hence|C/| = 8"7"4" 2", O

Theorem 5.2.8. [2]
Let C be be a (1 + u)—-constacyclic code in R, where n = 2°m,

ged(2,m) = 1.

(1) If C = {g(z)), then
AC) = (u%) and C+ = (u(Z=1)7).

g

(2) If C = {ug(z)), then
A(C) = (£57) and C+ = ((57)").

g

(3) If C = (f* f3* ... fi) then for some i; and 2¢ < i; < 2°*1, then
AC) = (fF7 0o Y and
O = () (Y (),
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Proof. (1) Since C' = {g(x)), then from Lemma 5.2.1 (u%) C A(O)

and |(u=)| = 4"7deg(”zngfl), but |C||C*H| = 4™, hence C*+ = (u(*=1)*).

9 g

(2) Similarly it follows directly from Lemma 5.2.3 .

(3) Similarly it follows directly from Lemma 5.2.6 .

Theorem 5.2.9. Let C be be a (1 — u?)—constacyclic code in S, where n = 2°m,

ged(2,m) = 1.

(1) If C = {g(z)), then
AC) = (u“ng_l) and C* = (u?*(Z=1)7).

g

(2) If C = {ug(z)), then
AC) = (u%) and C+ = (u(Z=1)7).

g

(3) If C = {u*g(x)),then
A(C) = (57) and C+ = ((%7)7).

g

(4) If C = (fi* f3* ... fir) where for some i; and 2° < i; < 2°T', then
AC) = (FF7 g ) and
O = () (Y (),

: _ z"—1
Proof. (1) Since C' = (g(z)), then from Lemma 5.2.2 (uQT) C A(C)

™1

and ’(UQ%){ _ 8n—deg(u2 g )’ but |C’||CJ_| = 8", hence CL+ = (UQ(%)*)

(2) Since C' = (ug(z)), then from Lemma 5.2.4 (u%) C A(C) and |C] = 477727,
but |C||C*| = 8", hence C* = (u(*1)*).

g

(3) Similarly it follows directly from Lemma 5.2.5 .

(4) Similarly it follows directly from Lemma 5.2.7 .
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5.3 The Gray Map and (1 + u), (1 — u?)-constacyclic
Codes

An element z € S can expressed uniquely as
2 = a+ ur + u’q, where a,r,q € Zs.

Following [4]; The Generalized Gray map v : S™ — Z3™ is defined by

V(21 22, - Z0) = (Q1,@20 - oy 1 B A1, G2 B a2, ... Qo B An, 1 B T1,G2 B T2y, G D
T, (1 P11 Bar,qgaP®ro@as,...,q, D1, D an), where @ is componentwise addition in Zs
and z; = a; +ur; +u?q, 1<i<n.

1 is an isometry from (S™, Generalized Lee distance) to (Z3", Hamming distance). The
polynomial representation of the Generalized Gray map was given in the following way:
Every polynomial z(z) € S[x] of degree less than n can be expressed as z(x) = b(x) +
ut(z) + u*m(x), where b(z), t(x), and m(z) € Z;|x] are polynomials of degree less than
n. Recall that S, = S[z]/(z" — (1 — u?)).

Define the map ¢, : S,, — Z» [93]/<$4“ + 1> by

Vp(2(7)) = b(x)a"™ + t(z) (2" + 1) + m(z)(x** + 1).
1, is the polynomial representation of 1) where ¢ : S — Z3 defined by
Y(a+ur+uq) = (4,9 ©a,q BT, Badr),

Similarly, as above an element 2 € R = F, + uF} can be expressed as z = r + uq where
r and ¢ are in Fy = {0, 1}. The Gray map ¥ : R — F} is defined by
\I/(T + uq) = (q, q® 7’). This map can be extended to v : R" — F" defined by

Y(z1, 22,0 2n) = (@1:Q25 -+ Gy 1 BT, G2 B T2y, G B 1),

where z = (21, 29,...,2,), 2 =7r;i +ug; , 1 < i < n, and @ is a binary addition.
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Example:-

U(1) =01 q=0,r=1
v (0) =00 q=0,r=0
U(u) =11 qgq=1,r=0
V(1 +u)=01 g=1,r=1

It well known that 1 is an isometry from (R", Lee distance) to (Z3", Hamming distance).
The polynomial representation of the Gray map was given in the following way:

Every polynomial z(x) € R[z] of degree less than n can be expressed as z(z) = a(z) +
ub(x), where a(z), b(z) € Zs[x], are polynomials of degree less than n. Recall that
R, = S[z]/(a™ — (1 +u)).

Define the map v, : R,, — Zo[z]/{(2z* 4+ 1) by

Up(z(x)) = a(z)a” + b(x)(«" +1).
1, is the polynomial representation of .

Lemma 5.3.1. [2] Let C = (g) be a (1 + u)—constacyclic code in R,,, where g|(z™ — 1)
mod 2.
Then ¢,(C) = (g), is a cyclic code of Z3"[x].

Proof. Let C = (g) be any (1+u)—constacyclic code in R,, where g|(z"—1) mod 2. From
the definition of v, we have

Up((9)) = ga" € (9),-
Hence ¢,(C) C <g>2 We have 1,(gz") = gz** = g. Hence <g>2 C 9,(C) and 9, (C) =
(9), O
Lemma 5.3.2. Let C = (g) be a (1 — u?)—constacyclic code in S,, where g|(z" — 1)
mod 2.
Then v,(C <g>2 is a cyclic code of Z3"[x].

Proof. Let C' = (g) be any (1—u?)—constacyclic code in S,,, where g|(z"—1) mod 2. From

the definition of v, we have
»((9)) = 92" € (g),.
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Hence ¢,(C) C <g>2. We have 1,(gz") = gz*" = g. Hence <g>2 C ,(C) and ¢, (C) =

<g>2‘ O]

Lemma 5.3.3. 2] Let C = (ug) be a (1 + u)—constacyclic code in R, where g|(z"™ — 1)
mod 2.
Then 1, (C) = (g(a™ 4+ 1)), is a cyclic code of Z3"[x].

Proof. Similar to the proof of Lemma 5.3.1 . [

Lemma 5.3.4. Let C = (ug) be a (1 — u®)—constacyclic code in S, where g|(z" — 1)
mod 2.
Then 1,(C) = (g(a™ 4+ 1)), is a cyclic code of Zy"[x].

Proof. Similar to the proof of Lemma 5.3.2 . ]

Lemma 5.3.5. Let C' = (ug) be a (1 — u*)—constacyclic code in S, where g|(z™ — 1)
mod 2.
Then 1,(C) = (g(a™ 4+ 1)), is a cyclic code of Zy"[x].

Proof. Similar to the proof of Lemma 5.3.2 . [

Lemma 5.3.6. [2] Let C = (f{'f3?...fi") be a (1 + u)—constacyclic code of length
n = 2°m and ged(2,m) = 1 in R,,. Suppose for some i;, we have 2¢ < i; < 2°"1. Then

Yp(C) is a binary cyclic code of length 2n with generator < e f;f’“>2.
Proof. Similar to the proof of Lemma 5.3.1 . [

Lemma 5.3.7. Let C = (f{* f3* ... fi) be a (1—u®)—constacyclic code of length n = 2°m
and ged(2,m) =1 in S,,. Suppose for some i, we have 2° < i; < 21 Then 1,(C) is a

binary cyclic code of length 4n with generator < e fﬁr>2.

Proof. Similar to the proof of Lemma 5.3.2 . O
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5.4 Examples

Example 5.4.1. [2] Let C = (f} fo) where 1° — 1 = f2f3, fi(z) =z + 1, and fo(x) =
? 4+ x + 1. According to Lemma 5.2.6, f(x) = fi(z) and g(z) = f(z) fo(x)

= C=((z+13a*+z+1)=((z+D)(=+1)>*2*+z+1)) =(f(2)g(z))

= deg f =1, deg g=41ier=4,t=1. Hence the generating set of codewords of C
over R is given by: 8= {f3fo, v f3 fo, ufr, vufi, 2?ufi}, and |C] = 4%.23.

Example 5.4.2. 21 — 1= (z + 1)?(2* + 23 + 2?2 + 2 + 1) = fE(2) f3(2)

According to Lemma 5.2.7 , let f(x) =z + 1= fi(x) and g(x) = (z + 1)*(z* + 2> + 2 +
x +1) = fi(z) f2(2).

= deg(g(x)) =6, deg(f(z))=1=r=6,t=1,n—-r—1=3, r—t—1=4.

Since (x4 1)|(z + 1)?(z* + 23 + 22 + x4+ 1)|(2'* = 1)

= flg|(z*® — 1) mod 2 = C = <fg> = <f13f2> Thus the generating set of code words of
C over S is given by:

B={fg.xfg,2%fg, 2 fg,uf, auf, 2*uf, sPuf, s uf, u f, 20 f,2*u? f, 2*u? f, x*u® f }. Thus
|C| = 8%.45.25.

Example 5.4.3. [2] Let C = (ugigsgs) where 2® — 1 = glg3gs, gi(z) =x+1, go(z) =
3+ 2z +1, and g3(x) = 23 + 2% + 1. According to Lemma 5.2.3, g(z) = gig3gs and a
generating set of codewords of C is given by 8 = {ug,uzg,...,uzbg}. Thus |C| = 27 =
128..

Example 5.4.4. 28 —1=(z—1)® in S.

Now, since u?> = 2" — 1 = u?> = 28 — 1. Let g(z) = (z — 1)* = g(2)|[(2® — 1) mod 2 =
Wg= 8 -1)(z—1)=22-1=2"—1 (mod 2* — 1) = C = (2" — 1) = (g(z)).
According to Lemma 5.2.2, deg g=4 =r =4, n—r—1=3, r—1=3. Thus C has a
minimal spanning set over S given by:

G = {:z:,xg,ng,x3g,u,xu,x2u,x3u, ug,xuz,xQUZ,x?’u?}. Thus |C| = 8*.4%.2%.
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Conclusion

In this thesis, we studied cyclic codes of an arbitrary length n over the ring
Fy4+uly +u?Fy + ... +uF'F,, with «* = 0 mod 2. The rank and minimum spanning
of this family of codes are studied as well.
We also studied constacyclic codes of even length n over the ring Fy + ulh + u?F,, with
u? = 0 mod 2. The dual and Gray images of this family of codes are studies as well.
Open problems include the study of constacyclic codes of even length over the ring
F, +uF, + u’*F, + ...+ u*F,, where k is positive, u**' =0 mod p and p is a prime
integer. Also it will be interesting to construct a decoding algorithm for these codes that

works for any length n.
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