
Copyright © 2012 IUG. The 4th International Engineering Conference –Towards engineering of 21st century

1

PIPELINED DATA PARALLEL MODEL OF ADVANCED
ENCRYPTION STANDARD ALGORITHM

Mohammed A. Mikki

Professor, Computer Eng. Dept., IUG, Palestine, mmikki@iugaza.edu.ps

ABSTRACT:

The Advanced Encryption Standard (AES) was officially adopted in 2002 as the new
encryption standard algorithm. AES specifies a FIPS-approved cryptographic algorithm
that can be used to protect electronic data. It is a symmetric block cipher that can
encrypt and decrypt information. This paper develops a pipelined data parallel model of
AES. The parallelism in the algorithm is two dimensional. The first dimension is AES
enter-stage (pipelining) and the second dimension is data parallelism. Pipelining
parallelism exploits the availability of several processes to execute different stages of
different data blocks in parallel. The data parallelism exploits data independence among
data blocks to implement data level parallelism. The parallel implementation of AES
decreases the time needed for encryption and decryption processes. We use the ECB
mode in encryption/decryption algorithm in our parallel implementation of AES to
implement the parallelization at data level where data blocks are encrypted and
decrypted in parallel. We also develop an MPI-based algorithm to be used with a cluster
of workstations (COW). We validate the approach by simulating the model with various
input parameters (input data file size, number of processes, communication/computation
operation execution time, etc.) and measuring the corresponding performance.
Performance metrics include speedup, communication to computation ratio and
efficiency. Results show that performance obtained by the developed model is superior
to parallel implementations of AES which include only data parallelism or pipelining.

KEYWORDS: Advanced encryption standard, cipher, transformation, performance,
speedup.

I. INTRODUCTION

Advanced Encryption Standard (AES) [1][2] was selected by the National Institute of
Standards and Technology (NIST) as a new encryption standard to replace the Data
Encryption Standard (DES) in 2000. AES algorithm is a symmetric block cipher that
processes data blocks of 128 bits. The data is operated by 10, 12 or 14 rounds of
transformations with key length of 128, 192 or 256 bits. A lot of hardware
implementations of AES algorithm have already been proposed. They can be classified
into two types: high speed designs and low- cost designs.

Hardware implementation of AES uses a data input length of 128 bits with a key length
of 128 bits. A block of data is placed into a 16-byte array, and proceeds through 10
rounds of encryption. Basic operations include byte substitutions, independent row byte

mailto:mmikki@iugaza.edu.ps�

Copyright © 2012 IUG. The 4th International Engineering Conference –Towards engineering of 21st century

2

shifts, column Galois field multiplications, and key additions. AES can encrypt one
block (128 bits) of data at a time. However, there are a lot of applications that need to
encrypt the data blocks in parallel form such as Data Authentication Algorithm and
Whirlpool, etc. Implementing AES in hardware is a complex design, and has a higher
cost. Fig. 1 shows how a plaintext can be encrypted using the encryption algorithm of
AES cipher to produce the ciphertext and how we can get the same plaintext from the
ciphertext using the decryption algorithm of AES.Gaza Strip is 360km2 with a high
density population of about 4,118 persons/km2 [2], so Gaza Strip represents one of the
most densely populated areas in Middle East. As the population in Gaza Strip increases
(population growth rate 3.349%/year [3]), the consumption of water and energy will
increase; leading to significant rise in unacceptable levels of air pollution, and the defect
in water supply and energy sources will increase; leading to severe economical crisis
that will result in a significant rise in the probability of an outbreak of warfare.

This paper develops a pipelined data parallel model of AES. The parallelism in the
algorithm is two dimensional. The first dimension is AES enter-stage (pipelining) and
the second dimension is data parallelism. Pipelining parallelism exploits the
availability of several processes to execute different stages of different data blocks in
parallel. The data parallelism exploits data independence among data blocks to
implement data level parallelism. We use the ECB mode in encryption/decryption
algorithm in our parallel implementation of AES to implement the parallelization at
data level where data blocks are encrypted and decrypted in parallel. We also develop
an MPI-based algorithm to be used with a cluster of workstations (COW).

The rest of the paper is organized as follows: Section II presents the related work.
Section III presents an overview of AES Architecture. Section IV presents the pipelined
data parallel model of AES approach developed in this paper. Section V presents
experimental results. Finally, section VI concludes the paper.

Figure 2: AES architecture

plain-
text

plain-
text

secret
key

decrypt-
ion

Same
secret key

Cipher-
text

Cipher-
text

User 1 User 2

Encrypt-
ion

network

Figure 1: Symmetric key encryption

and decryption using AES

Copyright © 2012 IUG. The 4th International Engineering Conference –Towards engineering of 21st century

3

II. OVERVIEW OF AES ARCHITECTURE
AES is a new encryption standard to replace the existing Data Encryption Standard
(DES), which has been in place for more than two decades. See Fig. 1 for the AES
block cipher. AES cipher is a “Block Cipher” with multiple options for its block and
key sizes [3]. The NIST approved AES is a subset of these options; the block size is
fixed at 128-bits, but the key may be either 128, 192 or 256-bits in length. Internally, in
common with many block ciphers, AES consists of a complex non-linear core function
[4], which is iterated multiple times on the incoming plaintext data block. The number
of times this iteration is needed (the number of rounds required), depends on the
selected key size. For 128-bit key AES, there are 10 rounds. The round function is
slightly different for the final round, and an initial pre-processing function is also
required at the start. Each round of AES requires a unique 128-bit Roundkey to be fed
in to the complex round function. This series of 128-bit Roundkeys are generated from
the supplied 128-bit, 192-bit or 256-bit AES key using a specified key expansion
algorithm. This expansion yields exactly the right number of Roundkeys to feed the
single pre-process step and the multiple rounds [5]. Fig. 2 shows the architecture of the
AES block cipher. The internal complex round function for encryption is effectively
inverted for use in the decryptor. The Roundkeys are identical, but are required in
reverse order [1]. The inverse round function for decryption is significantly more
complex than that for encryption, and so an AES decryptor will always be both bigger
and slower in hardware than its matching AES encryptor [2].

Fig. 3 shows the AES rounds and their key sizes. AES uses several rounds in which
each round is made of several stages [6]. Fig. 4 shows the structure of each round where
a data block is transformed from one stage to another. To provide security, AES uses
four types of transformations: substitution (SubBytes), permutation, mixing, and key-
adding.

Modes of operation have been devised to encipher text of any size using AES. AES may
use any of Electronic Codebook mode (ECB), Cipher Block Chaining (CBC) or Counter
(CTR) [7] modes of operation. In CBC mode, AES encrypts data by splitting it up into
128-bit blocks, and putting each block in turn directly through the algorithm [8][9].

Figure 3: AES rounds

Figure 4: Round structure in AES

Copyright © 2012 IUG. The 4th International Engineering Conference –Towards engineering of 21st century

4

III. PROPOSED PIPELINED DATA PARALLEL MODEL OF AES
APPROACH
In this section we present the pipelined data parallel model of the AES approach. We
also develop an MPI-based algorithm to be used with a cluster of workstations (COW).
The parallelism is two dimensional. The first dimension is AES enter-stage
(pipelining/intra-pipeline parallelism) and the second dimension is at data level (data-
level parallelism). Data level parallelism is an inter-pipeline level parallelism. The
parallel implementation of AES decreases the time needed for encryption and
decryption processes. Fig. 5 shows the proposed pipelined data parallel model of AES
approach. It implements the AES architecture shown in Fig. 2 but in parallel.

A. Data Parallelism

The proposed approach exploits data independence among data blocks to implement
data level parallelism. In data level parallelism data is divided into N blocks which are
encrypted/decrypted in parallel. To implement the software parallelization of AES we
choose the ECB mode of the AES because ECB uses one block at a time with no
feedback, no preserved state for previous block are needed, and repetitive plaintext
blocks produce repeated cipher blocks. In Fig. 5, data parallelism is implemented by
scattering the data to k pipelines (processor). Hence, each pipeline executes the same
tasks but on different data (Single Instruction Multiple Data – SIMD parallel
architecture).

Figure 5: The proposed pipelined data parallel model of AES approach

More rounds needed

Gather k
N/k

plaintexts

More rounds needed

Scatter N
plaintexts

to k
processes

Pre-round
transformation

All rounds
completed Shift

Rows
Substitute

Bytes

Add
Round
Key

Mix
Columns

More rounds needed

Pre-round
transformatio

All rounds
completed

Shift
Rows

Substitute
Bytes

Add
Round
Key

Mix
Columns

Pre-round
transformatio

All rounds
completed Shift

Rows
Substitute

Bytes

Add
Round
Key

Mix
Columns

input plain-
text data

file

encrypted
data file Pipeline 1

Pipeline 2

Pipeline k

.

.

.

Copyright © 2012 IUG. The 4th International Engineering Conference –Towards engineering of 21st century

5

B. Pipelining

Pipelining parallelism exploits the availability of several processes to execute different
stages of different data blocks in parallel. Fig. 5 (the proposed approach) shows k 5-
stage pipelines. The stages of the pipeline are:
 Pre-round transformation (initializes the rounds)
 Substitute Bytes (the first AES transformation)
 Shift Rows (the second AES transformation)
 Mix columns (the third AES transformation)
 Add round key (the fourth AES transformation)

Each stage in each pipeline processes a plaintext and forwards the result to the next
stage. The last stage checks if the plain text has been processed the required number of
rounds. If the plaintext has been processed the required number of rounds then it is
done. Otherwise, the plaintext is fed back to the second stage. The pipeline is simulated
using processes. Each stage in the pipeline is one process in the cluster of workstations.
As the figure shows, each pipeline processes N/k plaintexts. The first pipeline
processes the first N/k plaintexts, the second pipeline processes the second N/k
plaintexts, etc. where N is the total number of plaintexts to be encrypted/decrypted.

C. Performance Evaluation of the Proposed Model.

In order to evaluate the performance of the proposed parallel architecture of AES, the
following assumptions are made:

- number of plaintexts is N
- number of rounds is NR
- time to scatter one plaintext from a process to a process is Tscatter
- time to gather a plaintext by a process from a process is Tgather
- time of pre-round transformation is Tpre
- time for one round is Tround

Then the sequential time of AES is:
T1 = N*Tpre + N*NR*Tround (1)

The parallel time of the algorithm (assuming all pipeline stages take the same time) is:
Tpar = (m + k)*Tscatter + (N*Tpre / k) + N*NR*Tround / (4*k) +

(m + k)*Tgather (2)
where m is the size of the message sent/received by the scatter/gather operations
to/from each pipeline. Here m = N/k.

In Equation 2, the term (m + k)*Tscatter represents the time needed to scatter N
plaintexts by a process to all processes. The first stage of each pipeline receives N/k
plaintexts. The cost of scatter operation is proportional to the size of the message
(measured by the number of plaintexts, N). Similarly, the term (m + k)*Tgather

Copyright © 2012 IUG. The 4th International Engineering Conference –Towards engineering of 21st century

6

represents the time needed to gather N plaintexts by a process from all processes. The
last stage of each pipeline sends N/k plaintexts. The cost of the gather operation is
proportional to the size of the message (measured by the number of plaintexts, N).
Equation 2 assumes that all the last four stages of the pipeline take the same tame.

The speedup (for very large N >> k) is:

Sp = T1/Tpar = 4*k (3)
This is an ideal speedup, i.e., when the sequential part of the program is negligible
compared to the parallel part. In this case, the program is perfectly parallel. The
speedup in case of using one single pipeline (k=1) is:
Sp = 4 (4)

The efficiency (for very large N >> k) is:
Ep = Sp/p = 1 (5)
Where p is the number of processor in the parallel machine. Here p = 5k since each
pipeline has 5 stages and we have k pipelines.

The communication to computation overhead is:
Tcomm/comp = ((m+k)*Tscatter+ (m+k)*Tgather) / ((N*Tpre / k) +
 N*NR*Tround/(4*k)) (6)

D. MPI-based Algorithm of the Pipelined Data Parallel Model of AES

Algorithm 1 shows the MPI-based algorithm of the proposed pipelined data parallel
model of AES. The algorithm takes the data file to be encrypted “data_file” as input
and outputs the encrypted data file “encrypted_data_file”. Step 1 of the algorithm
partitions the data file into N 128-bit plaintexts (data blocks). Step 2 configures the
cluster of workstations into a pipelined data parallel architecture as shown in Fig. 5,
i.e., k pipelines with 5-stages each. Each process of the architecture is identified as
process (i,j) where i is the pipeline index and j is the stage index in that pipeline. Step 3
scatters (distributes) the N plaintexts to the k pipelines. Each pipeline is assigned N/k
plaintexts. In step 4 each pipeline encrypts its assigned plaintexts in a pipelined
fashion. The while loop at step 4.2 implements the encryption of the assigned N/k
plaintexts the required number of rounds (required number of rounds). Step 4.2.1
ensures that each stage of the pipeline executes its assigned task. The first stage (pre-
round transformation stage) reads a plaintext from its input buffer, does a pre-round
transformation to the plaintext, and then sends the plaintext to the input buffer of the
next stage. Each of stages 2, 3, 4, and 5 reads a plaintext from its input buffer, executes
its corresponding transformation to the plaintext, and then sends the plaintext to the
next stage. Stage 5 checks if the plaintext has been processed the required number of
rounds. If so, the plaintext is stored in the output buffer of the stage. Otherwise, the
plaintext is sent to the second stage. Finally, step 5 of the algorithm gathers all
encrypted plaintexts from the output buffers of the fifth stage of all pipelines into the
encrypted data file.

Copyright © 2012 IUG. The 4th International Engineering Conference –Towards engineering of 21st century

7

Algorithm Encrypt (Input: File: data_file,
 Output: File: encrypted_data_file)
Begin
1. Partition data_file into N 128 bit plaintexts (data blocks);
2. Create k pipelines (each pipeline is 5 stages);
3. // Scatter the N plaintexts to K pipelines, input buffer of pre-round
 // transformation stage receives N/k plaintexts
 process (0,0) sends N/k blocks to process (i,0) where 0< i < k;
4. // All pipelines encrypt k plaintexts in parallel
 Parallel for pipeline i where 0< i < k
 4.1 number of processed rounds = 0;
 4.2 while (pre-round transformation stage input buffer is not empty &&
 number of processed rounds != required number of rounds)
 4.2.1 parallel case (pipeline stage){
 pre-round transformation stage:
 read a k plaintext from pre-round transformation stage input buffer;
 do pre-round transformation to the plaintext;
 Send the plaintext to Substitute Bytes stage input buffer;
 Substitute Bytes stage:
 Receive a plaintext from pre-round transformation stage;
 Do substitute bytes transformation to the plaintext;
 Send the plaintext to Shift Rows stage input buffer;
 Shift Rows stage:
 Receive a plaintext from Substitute Bytes stage;
 Do Shift Rows transformation to the plaintext;
 Send the plaintext to Mix Columns stage input buffer;
 Mix Columns Stage:
 Receive a plaintext from Shift Rows stage;
 Do Mix Columns transformation to the plaintext;
 Send the plaintext to Add Round Key stage input buffer;
 Add Round Key Stage:
 Receive a plaintext from Substitute Bytes stage;
 Do Shift Rows transformation to the plaintext;
 if (number of processed rounds != required number of rounds)
 Send the plaintext to Mix Columns stage input buffer
 else
 Store plaintext in output buffer of Add Round Key Stage
 } // end parallel case
5. // Gather N plaintexts from k processes into encrypted_data_file
 Process (i,4) sends N/k blocks to process (0,0) where 0< i < k
End algorithm

Algorithm 1: MPI-based algorithm of the pipelined data parallel model of AES

IV. PERFORMANCE MEASUREMENTS
In this section we measure the performance of the proposed model using the
performance metrics and their corresponding equations discussed in section III.C. We
vary various input parameters including:

- input data file size (number of plaintexts (N))
- number of created pipelines (k)
- cost of various communication/computation operations (Tscatter, Tgather, Tpre,

Tround)
- number of rounds (NR)

Copyright © 2012 IUG. The 4th International Engineering Conference –Towards engineering of 21st century

8

We measure the performance of the parallel model and compare it with the
performance of using a single processor. Performance metrics which are used include
speedup, efficiency, and communication to computation time ratio.

The first measurement studies the effect of varying the input file size (number of
plaintexts N) on the speedup for different number of pipelines (k). We use the values of
different input parameters and communication and computation operations costs as
shown in Table 1. In Table 1, both Tscatter and Tgather are 1 unit of time each. This value
is comparable to the cost of the first stage of the pipeline. This case is reasonable for
simulating networks of workstations (NOW) clusters with fast communication systems.
Fig. 6 shows the results. As the results show, speedup increases as number of plaintexts
increase. This is a result to an increased available data parallelism in the application. In
addition, speedup in very low compared to the theoretical speedup (5k) for small N.
This is due to not enough data parallelism in the application which leads to some of the
pipelines being idle. Also, for very large values of N, speedup reaches a maximum
value (upper bound value of speedup) that is not exceeded even if we increase N. This
is due to the fast that the maximum theoretical speedup is 5k. But due to
communication overhead, the proposed architecture does not reach this value.

Table 1: Value settings of input
parameters used in first, third and

fifth experiments
Input parameter Value
Tscatter 1
Tgather 1
Tpre 1
Tround 10
NR 10

Table 2: Value settings of input
parameters used in second, fourth and

sixth experiments
Input parameter Value
Tscatter 10
Tgather 10
Tpre 1
Tround 10
NR 10

Figure 6: Speedup as a function of
number of plaintexts for high speed

communication COWs

Sp

N

Figure 7: Speedup as a function of
number of plaintexts for low speed
communication COWs

Sp

N

Copyright © 2012 IUG. The 4th International Engineering Conference –Towards engineering of 21st century

9

The second measurement is similar to the first measurement. But we increased the cost
of communication to be significantly large compared to cost of transformations (both
Tscatter and Tgather are 10 units of time each). This case is reasonable for simulating
networks of clusters (NOW) with slow communication systems. The measurement
studies the effect of varying the input file size (number of plaintexts N) on the speedup
for different number of pipelines (k). We use the values of different input parameters
and communication and computation operations costs as shown in Table 2. Fig. 7
shows the results. The results show same conclusions reached in the first measurement.
In addition, results show that the speedup is less than the speedup of first measurement.
This is due to increased communication overhead. This increase is due to the high
latency in communication operations as reflected by the large values of Tscatter and
Tgather . There is no communication overhead in case of a single processor system. In
parallel systems, the parallel time increases as the communication overhead increases
which leads to a decreases in the speedup.

The third measurement studies the effect of varying the input file size (number of
plaintexts N) on the efficiency for different number of pipelines (k). We use the values
of different input parameters and communication and computation operations costs as
shown in Table 1. This case is reasonable for simulating networks of workstations
(NOW) clusters with fast communication systems. Fig. 8 shows the results. As the
results show, efficiency increases as N increases. This is due to the increase in speedup
as N increases as explained in the first experiment. In addition, for small N, efficiency
increases as number of pipelines decreases for the same value of N. This is due to the
smaller utilization of pipelines due to the lack of data parallelism. For large values of N,
efficiency is approximately same for different values of K for same N. This is due to
the full utilization of pipelines due to the increased availability of data parallelism.

The fourth measurement studies the effect of varying the input file size (number of
plaintexts N) on the efficiency for different number of pipelines (k). We use the values
of different input parameters and communication and computation operations costs as
shown in Table 2. This case is reasonable for simulating networks of workstations

Figure 8: Efficiency as a function of
number of plaintexts for high speed

communication COWs

Efficiency

N

Figure 9: Efficiency as a function of
number of plaintexts for low speed

communication COWs

N

Efficiency

Copyright © 2012 IUG. The 4th International Engineering Conference –Towards engineering of 21st century

10

(NOW) clusters with slow communication systems. Fig. 9 shows the results. The
results show same conclusions reached in the first measurement. In addition, results
show that the efficiency is less than the efficiency of third measurement. This is due to
the smaller speedup in case of low speed communication networks of workstations
clusters than speedup in case of high speed communication networks of workstations
clusters where efficiency = speedup/number of processors.

The fifth measurement studies the effect of varying the input file size (number of
plaintexts N) on the communication to computation ratio for different number of
pipelines (k). We use the values of different input parameters and communication and
computation operations costs as shown in Table 1. This case is reasonable for
simulating networks of workstations (NOW) clusters with fast communication systems.
Fig. 10 shows the results. As the results show, communication to computation ratio
decreases as N increases. Both communication and computation times increase as N
increases. But computation increases faster than communication. Communication
increases with a factor of (K/ N + k) while computation increases with a factor of
max(N/k , N*NR/4k). Also, communication to computation ratio is higher for larger
values of k for same N. This is due to more data parallelism availability in case of
smaller K. For small N there is not enough computations to be assigned to pipelines.
As N increases the difference in communication to computation ratio for different
values of k becomes less significant. This is due to increased available data parallelism
for larger values of N which is used by the increased number of pipelines.

The sixth measurement studies the effect of varying the input file size (number of
plaintexts N) on the communication to computation ratio for different number of
pipelines (k). We use the values of different input parameters and communication and
computation operations costs as shown in Table 2. This case is reasonable for
simulating networks of workstations (NOW) clusters with slow communication
systems. Fig. 11 shows the results. The results show same conclusions reached in the
first measurement. In addition, communication to computation ratio in this
measurement is higher than that in the fifth measurement. This is a straight forward
result of the increased communication overhead in slower communication systems of

Figure ۱۱: Communication to

computation ratio as a function of
number of plaintexts for low speed

communication COWs

N

Comm. To comp.
ratio

Figure ۱۰: Communication to

computation ratio as a function of
number of plaintexts for high speed

communication COWs

Comm. To comp.
ratio

N

Copyright © 2012 IUG. The 4th International Engineering Conference –Towards engineering of 21st century

11

networks of workstations (NOW) clusters than communication overhead in faster
communication systems of networks of workstations (NOW) clusters.

The last measurement studies the effect of varying the cost of Tscatter and Tgather
(speed of the communication network of the network of workstations) on the speedup
for different number of pipelines (k). We use the values of different input parameters
and communication and computation operations costs as shown in Table 3. Fig. 12
shows the results. As the results show, speedup decreases as the speed of
communication systems in networks of workstations (NOW) clusters decreases (cost of
Tscatter and Tgather increases). This is due to increased communication overhead when
cost of Tscatter and Tgather increases. In addition, speedup of smaller k is smaller than
speedup of larger k for same values of Tscatter and Tgather. As Tscatter and Tgather
increase, the difference in speedup for different values of K becomes less significant.

1.

V. CONCLUSION
This paper developed a pipelined data parallel model of AES. The parallelism in the
algorithm is two dimensional. The first dimension is AES enter-stage (pipelining) and
the second dimension is data parallelism. The model used the ECB mode in
encryption/decryption algorithm to implement the parallelization at data level. The
paper also developed an MPI-based pipelined data parallel model of AES algorithm to
be used with a cluster of workstations (COW).

We measured the performance of the proposed model by simulating the model with
various input parameters (input data file size, number of processes,
communication/computation operation execution time, etc.) and measuring the
corresponding performance. Performance metrics included speedup, communication to
computation ratio and efficiency. Results show that performance obtained by the
developed model is superior to parallel implementations of AES which include only
data parallelism or pipelining.

Table 3: Value settings of input
parameters used in last

experiment
Variable Value
Tpre 1
Tround 10
N 500000
NR 10

Figure ۱۲: Speedup as a function of cost of

Tscatter and Tgather

Tscatter & Tgather

Sp

Copyright © 2012 IUG. The 4th International Engineering Conference –Towards engineering of 21st century

12

VI. REFERENCES

[1] Advanced encryption standard, National Institute of Standards and Technology Std.,
Nov. 2001.

[2] Elbirt J., Yip W., Chetwynd B., and Paar C.: An FPGA-based performance
evaluation of the AES block cipher candidate algorithm finalists, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, Vol. 9, No. 4, pp. 545–557, Aug.
2001.

[3] Advanced Encryption Standard (AES), Federal information processing standards
publication 197, Nov. 26, 2001.

[4] Chodowiec P., Khuon P., and Gaj K.: Fast implementations of secret-key block
ciphers using mixed inner- and outer-round pipelining, Proceedings of the 2001
ACM/SIGDA ninth international symposium on field programmable gate arrays, pp.
94-102.

[5] Alam M., Badawy W., and Jullienn G.: A Novel pipelined threads architecture for
AES encryption algorithm, Proceedings of the IEEE international conference on
application-specific systems, architectures, and processors, 2002.

[6] Rodriguez-Henriquez, Saqib N., and Diaz-Perez A.: A 4.2 Gbit/s single-chip FPGA
implementation of AES algorithm, Electronics letters, Jul. 2003, pp. 1115- 1116.

[7] Rijmen V.: Efficient implementation of the Rijndael S-box. [Online]. Available at:
www.esat.kuleuven.ac.be/∼rijmen/rijndael/sbox.pdf

[8] Jarvinen K., Tommiska M., and Skytta J.: A Fully pipelined memoryless 17.8 Gbps
AES-128 encryptor, Proceedings of the 2003 ACM/SIGDA eleventh international
symposium on field programmable gate arrays, pp. 207-215.

[9] Specification for the Advanced Encryption Standard (AES), Federal Information
Processing Standards Publication 197, Nov. 26, 2001.

ACKNOWLEDGMENT
This research was partially funded by the deanery of scientific research at the Islamic
University of Gaza in Gaza, Palestine.

	I. Introduction
	II. Overview of AES Architecture
	III. Proposed pipelined Data parallel Model of AES Approach
	A. Data Parallelism
	B. Pipelining
	C. Performance Evaluation of the Proposed Model.
	D. MPI-based Algorithm of the Pipelined Data Parallel Model of AES

	IV. Performance Measurements
	V. Conclusion
	VI. References
	Acknowledgment

