

The Islamic University of Gaza

Deanery of Post Graduate Studies

Faculty of Information Technology

Information Technology Department

A High Performance Parallel

Classifier for Large-Scale Arabic Text

Submitted by:

Mohammed M. Abu Tair

Supervised by:

Eng. Dr. Rebhi S. Baraka
(Assistant Professor of Computer Science)

 A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master in Information Technology

Palestine, Gaza

March 2013 – 1434 H

I

II

Abstract

Text classification has become one of the most important techniques in text mining.

It is the process of classifying documents into predefined categories or classes based on

their content. A number of machine learning algorithms have been introduced to deal

with automatic text classification. One of the common classification algorithms is the

k-Nearest Neighbor (k-NN) which is known to be one of the best classifiers applied for

different languages including Arabic language and it is included in numerous

experiments as a basis for comparison. Furthermore, it is a simple classification

algorithm and very easy to implement since it does not require a training phase that

most classification algorithms must have. However, the k-NN algorithm is of low

efficiency because it requires a large amount of computational power for evaluating

a measure of the similarity between a test document and every training document and

for sorting the similarities. Such a drawback makes it unsuitable to handle a large

volume of text documents with high dimensionality and in particular in the Arabic

language.

In our research, we propose to develop a parallel classifier for large-scale Arabic

text that achieves the enhanced level of speedup, scalability, and accuracy.

The proposed parallel classifier is based on the sequential k-NN algorithm. We test the

parallel classifier using the Open Source Arabic Corpus (OSAC) which is the largest

freely public Arabic corpus of text documents. We study the performance of the parallel

classifier on a multicomputer cluster that consists of 14 computers. We report both

timing and classification results. These results indicate that the proposed parallel

classifier has very good speedup and scalability and is capable of handling large

documents collections. Also, classification results show that the proposed classifier has

achieved accuracy, precision, recall, and F-measure with higher than 95%.

Keywords: Arabic text classification, k-NN algorithm, Parallel classifier, Parallel

and distributed computing, Multicomputer cluster.

III

 الملخص

 النطاق ةواسع ةالعربي وصعالي الأداء لمنص متوازيمُصنف :عنوان البحث

، في مجال التنقيب في البيانات النصييةالمستخدمة أصبح تصنيف النصوص أحد أىم التقنيات
 عتمادبالا بقا مسف محددة صنيف المستندات إلى أصناف تصنيف النصوص عمى أنو عممية تعر وي

وأحيد ،لمتعاميل ميت تصينيف النصيوص الآليةالعدييد مين خوارزمييات تعمييم مت د عمى محتواىا، وقد ق
فات لمختمف المغات بميا صن ف كأحد أفضل الم عر والتي ت (k-NN)خوارزمية يىىذه الخوارزميات

فيييي عييةوة عمييى ذليي ، .لممقارنييةعديييدة كأسيياس فييي تجييارب او يييتم تضييميني المغيية العربيييةذليي فييي
 التيي تحتاجيييا اليتعممحتياج مرحميية ا لا تلمت بيييل لكونيي وسييمة جيدا عتبير خوارزميية تصينيف بسييي ةت

ذات كفييا ة منخفضيية لأنيييا (k-NN) ، فخوارزميييةمييت ذليي . الأخيير معظييم خوارزميييات التصيينيف
د الذي سييتم تصينيفو والمسيتندات لحساب التشابو بين المستن الحسابيةال اقة كمية كبيرة من تت مب

لمعالجية ةغيير مناسيب االعياقل يجعميي مثيل ىيذا .وكذل فيي ترتييب ىيذه التشيابيات في عينة التدريب
 وخصوصيا وتصنيف الحجم الكبير من الوثياقل النصيية والتيي تحتيوي عميى حجيم كبيير مين الكمميات

 .في المغة العربية

 ةواسع ةالعربيوص متوازي عالي الأدا لمنص فصن م في ىذا البحث قمنا باقتراح ت وير
 ح يعتمد عمى ف المتوازي المقتر صن الم . ن من الأدا والدقةحس الن ال والذي يحقل المستو الم

 العربيةالبيانات النصية مجموعةح باستخدام ف المقتر صن ختبار الم اوقد تم ، (k-NN) خوارزمية
(OSAC) دراسة وتم فرة بشكل متاح،عربية من الوثاقل النصية المتو والتي تعتبر أكبر مجموعة

. ، وقمنا بتوثيل نتاقج الأدا والتصنيفجياز كمبيوتر عشر المتوازي عمى أربعة لمم صن ف الأدا
مجموعة كبيرة المتوازي لأدا عالي وقدرتو عمى معالجة وتصنيف أظيرت النتاقج امتة الم صن ف

 حقل نتاقج تصنيفالم صن ف ن ناحية أخر ، أظيرت نتاقج التصنيف بأنم .من الوثاقل النصية
عمى من تصل إلى أ(accuracy, precision, recall, and F-measure) من حيث عالية

59%.

المتييييوازي، ، الم صيييين ف k-NNتصيييينيف النصييييوص العربييييية، خوارزمييييية :الكممااااام الميتاحيااااة
 .اسوب المتعددةأجيزة الح ،والموزعة الحوسبة المتوازية

IV

Dedication

To the memory of my father

To my beloved mother

To whom I love

V

Acknowledgments

It is my pleasure to express my gratitude to all the people who contributed, in whatever

manner, to the success of this work.

First of all, I thank Allah for giving me the strength and ability to complete this thesis.

Many thanks and sincere gratefulness goes to my supervisor Eng. Dr. Rebhi S. Baraka,

without his help, guidance, and continuous follow-up; this research would never have

been.

Also I would like to extend my thanks to the academic staff of the Faculty of Information

Technology at the Islamic University-Gaza who helped me during my Master's study

and taught me different courses.

Special thanks for Prof. Mohammad A. Mikki and Dr. Iyad M. Alagha for their valuable

guide and comments.

Last but not least, I am greatly indebted to my family for their love and support.

Mohammed M. Abu Tair

March, 2013

VI

Table of Contents

Abstract ... II

 III .. الملخص

Dedication .. IV

Acknowledgments ... V

Table of Contents ... VI

List of Figures ... X

List of Tables ... XII

List of Algorithms ... XIII

List of Abbreviations .. XIV

Chapter 1: Introduction .. 1

 1.1 Overview .. 1

 1.2 Problem Statement .. 4

 1.3 Objectives ... 4

 1.3.1 Main Objective ... 4

 1.3.2 Specific Objectives ... 5

 1.4 Importance of the Thesis .. 5

 1.5 Scope and Limitations ... 6

 1.6 Research Methodology .. 7

 1.7 Outline of the Thesis ... 8

VII

Chapter 2: Overview of Parallel Computing ... 9

 2.1 Definition: Parallel Computing .. 9

 2.2 Motivation of Parallel Computing .. 9

 2.3 Types of Parallel Computers .. 11

 2.3.1 A Multi-Core Processor .. 11

 2.3.2 A Shared Memory Multiprocessor ... 12

 2.3.3 Cluster Computing .. 13

 2.4 Methods of Parallelism ... 14

 2.5 Interconnection Schemes of Parallel Computing Systems 15

 2.6 Software Environments for Parallel Programming .. 17

 2.6.1 Message Passing Interface and MPICH ... 17

 2.7 Master-Slave Programming Paradigm .. 18

 2.8 Problems in Developing Parallel Algorithms for Distributed Environment 20

 2.9 Performance Metrics for Parallel Systems ... 21

 2.9.1 Serial Runtime ... 21

 2.9.2 Parallel Runtime .. 21

 2.9.3 Total Parallel Overhead ... 21

 2.9.4 Speedup ... 22

 2.9.5 Efficiency ... 23

 2.9.6 Scalability .. 23

 2.10 Summary ... 23

VIII

Chapter 3: Related Works ... 24

 3.1 Enhancing the Efficiency of Sequential Classification Algorithms

 With Feature Selection, Reduction and Pruning Strategies 24

 3.2 Enhancing the Efficiency of Sequential Classification Algorithms by

 Combination with Other Algorithms .. 26

 3.3 Enhancing the Efficiency of Sequential Classification Algorithms with

 Parallel Computing ... 27

 3.4 Summary ... 29

Chapter 4: The Sequential k-NN Algorithm and Text Preprocessing 31

 4.1 The Sequential k-NN Algorithm .. 31

 4.2 Text Data Collection and Preprocessing .. 33

 4.2.1 Text Data Collection .. 33

 4.2.2 Text Preprocessing .. 33

 4.3 Summary ... 38

Chapter 5: The Proposed Parallel Classifier ... 39

 5.1 Decomposition Technique .. 39

 5.2 Mapping Technique .. 40

 5.3 Applying the Appropriate Strategies to Minimize Overheads 44

 5.4 Summary ... 45

Chapter 6: Experimental Results and Evaluation ... 46

 6.1 The Corpus ... 46

 6.2 Experimental Setup .. 48

IX

 6.3 Experimental Results and Discussion .. 49

 6.3.1 Discussion of the Parallel Classifier Results .. 49

 6.3.2 Comparison with Related Approaches ... 58

 6.3.3 Discussion of the Classification Results .. 59

Chapter 7: Conclusion and Future Works ... 65

 7.1 Conclusion .. 65

 7.2 Future Works .. 66

References... 67

Appendix A: Parts of the Classifiers Source Code .. 73

Appendix B: The Text Preprocessing Using RapidMiner 78

Appendix C: Tools and Programs ... 88

X

List of Figures

Figure 1.1: Text Mining Process .. 1

Figure 1.2: Building Text Classification System Process .. 2

Figure 1.3: Classifying New Text Documents Using Text Classification System 2

Figure 2.1: A Generic Dual-Core Processor ... 11

Figure 2.2: A Shared Memory Multiprocessor System ... 12

Figure 2.3: The Typical Cluster Computer Architecture ... 13

Figure 2.4: Data Partitioning Methods .. 15

Figure 2.5: Illustrations of Simple Interconnection Schemes 15

Figure 2.6: Master-Slave Paradigm .. 19

Figure 2.7: Typical Speedup Curve ... 22

Figure 4.1: Example of k-NN Classification .. 32

Figure 5.1: Partitioning the Training Data Among the Processors 40

Figure 5.2: The Flow Chart of the Proposed Parallel Classifier 43

Figure 6.1: The Curves of Execution Time for the Two Classifiers 51

Figure 6.2: The Relative Speedup Curves of the Proposed Parallel Classifier 53

Figure 6.3: The Efficiency Curves of the Proposed Parallel Classifier 55

Figure 6.4: The Parallel Overhead Curves of the Proposed Parallel Classifier 57

Figure 6.5: The Classification Results for All Text Representations of OSAC 63

Figure 6.6: The Classification Results for Light Stemming + TF 64

XI

Figure A.1: Calculate the Distance and Sort the Distances 73

Figure A.2: Determine the Nearest Neighbors and Determine the Majority Class ... 74

Figure A.3: The Quick Sort Function ... 74

Figure A.4: Initializing MPI and Defining Communicator 75

Figure A.5: The Essential Work for the Master Processor .. 75

Figure A.6: The Essential Work for the Worker Processors 76

Figure B.1: The Process of Applying the Text Preprocessing in the OSAC Corpus . 78

Figure B.2: The Process of Splitting the Text Representations for OSAC Corpus 87

XII

List of Tables

Table 6.1: The OSAC Corpus ... 47

Table 6.2: The Execution Time of the Sequential and Parallel Classifiers 50

Table 6.3: The Relative Speedup of the Proposed Parallel Classifier 52

Table 6.4: The Efficiency of the Proposed Parallel Classifier.................................... 54

Table 6.5: The Parallel Overhead of the Proposed Parallel Classifier 56

Table 6.6: The Comparison Between Our Work and Related Approaches 59

Table 6.7: Simple Confusion Matrix .. 60

Table 6.8: The Classification Results for All Text Representations of OSAC 62

Table 6.9: The Classification Results for Light Stemming + TF 63

Table B.1: Part of the Light Stemming + TF-IDF Text Representation 79

Table B.2: Part of the Light Stemming + TF Text Representation 80

Table B.3: Part of the Light Stemming + TO Text Representation 81

Table B.4: Part of the Light Stemming + BTO Text Representation 82

Table B.5: Part of the Stemming + TF-IDF Text Representation 83

Table B.6: Part of the Stemming + TF Text Representation 84

Table B.7: Part of the Stemming + TO Text Representation 85

Table B.8: Part of the Stemming + BTO Text Representation 86

XIII

List of Algorithms

Algorithm 4.1: The k-NN Algorithm ... 33

Algorithm 4.2: Arabic Stemming Algorithm Steps ... 36

Algorithm 4.3: Arabic Light Stemming Algorithm Steps .. 37

Algorithm 5.1: The Proposed Parallel Classifier ... 42

XIV

List of Abbreviations

API

Application Program Interface

BTO Binary Term Occurrences

BOT Bag Of Tokens

CA Classical Arabic

CMP Chip Multiprocessor

CUDA Compute Unified Device Architecture

DA Dialectal Arabic

DSP Digital Signal Processing

EM Expectation Maximization

FN False Negative

FP False Positive

GPU Graphics Processing Unit

k-NN k-Nearest Neighbor

MPI Message Passing Interface

MSA Modern Standard Arabic

NB Naïve Bayes

NLP Natural Language Processing

OSAC Open Source Arabic Corpus

SIMD Single Instruction Stream, Multiple Data Stream

http://en.wikipedia.org/wiki/Digital_signal_processing

XV

SMP Symmetric Multiprocessing

SVM Support Vector Machines

TF-IDF Term Frequency - Inverse Document Frequency

TF Term Frequency

TN True Negative

TO Term Occurrences

TP True Positive

VSM Vector Space Model

1

Chapter 1 Introduction

1.1 Overview

Text mining, sometimes alternately referred to as text data mining, roughly

equivalent to text analytics, refers to the process of deriving high-quality information

from text. High-quality information is typically derived through the devising of

patterns and trends through means such as statistical pattern learning. Text mining

usually involves the process of structuring the input text (usually parsing, along with

the addition of some derived linguistic features and the removal of others, and

subsequent insertion into a database), deriving patterns within the structured data,

and finally evaluation and interpretation of the output as shown in Figure 1.1. Text

mining is well motivated, due to the fact that much of the world's data can be found

in text form (newspaper articles, emails, literature, web pages, etc.) Typical text

mining tasks include text classification, text clustering, concept/entity extraction,

sentiment analysis, and document summarization [16, 22].

Figure 1.1: Text Mining Process.

Automatic text classification (also known as text categorization or topic spotting)

is the task of assigning documents to one or more predefined categories based on

their content. This task, which falls at the crossroads of information retrieval and

machine learning, has witnessed a booming interest in the last years from researchers

and developers alike [16, 22]. Automatic text classification has been used in many

applications such as real time sorting of files into folder hierarchies, topic

Structuring the

input text

Deriving

patterns within

the structured

data

Evaluation and

interpretation of

the output

2

identifications, automatic meta-data organization, documents' organization for

databases and web pages [44, 45, 53].

The main consecutive phases of building a text classification system involve

compiling and labeling text documents in corpus, selecting a set of features to represent

text documents in a defined set classes or categories (structuring text data), and finally

choosing a suitable classifier to be trained and tested using the compiled corpus

(Figure 1.2).

Figure 1.2: Building Text Classification System Process.

The constructed classifier system then can be used to classify new (unlabeled) text

documents. It is shown in Figure 1.3.

Figure 1.3: Classifying New Text Documents Using Text Classification System.

Many algorithms have been used for text classification for different languages

including Arabic language such as k-NN [3, 13, 52], Naïve Bayes (NB) [13, 14, 29],

Support Vector Machines (SVM) [13, 24], and Decision Tree [4, 13, 39].

Compile and

label text

documents in

corpora

Select a set of

features to

represent text

documents in

the defined

classes

Choose

suitable

classifier to be

trained and

tested using

the compiled

corpora

Classification

system

New text docs

Sports

Business

Education

Sports

Business

Education

…. ….

 Science

3

Most serial text classification algorithms, like the k-NN algorithm, take a large

amount of running times especially when the volume of text documents available for

analysis is big. The huge amount of text documents with high dimensionality (i.e. the

features or attributes and in this case they are the words that occur in documents) and

in particular in the Arabic language which has a rich nature and very complex

morphology requires a large amount of computational power for classification.

To be more precise, we mean by large-scale Arabic text; the large number of text

documents that are represented as records (thousands of documents) and the large

number of words that are represented as features or attributes in the vector space

model after preprocessing the text (thousands of features) [30].

The k-NN algorithm becomes a standard within the field of text classification for

different languages and is included in numerous experiments as a basis for

comparison. It has been in use since the early stages of text classification research,

and is one of the best classifiers within the field [32, 45]. Furthermore, it is a simple

classification algorithm and very easy to implement since it does not require

a training phase that most classification algorithms must have. However, the k-NN

algorithm is of low efficiency because it requires a large amount of computational

power for evaluating a measure of the similarity between a test document and every

training document and for sorting the similarities. Such a drawback makes it

unsuitable to handle a large volume of text documents with high dimensionality and

in particular in the Arabic language which has a rich nature and very complex

morphology and for some applications where classification efficiency is crucial

such as online text classification, in which the classifier has to respond to a lot of

documents arriving simultaneously in stream format. Since text data rapidly increase

on the Internet, the scalability of the algorithm is required to handle such massive

data.

Parallel and distributed computing is an interesting technique for scaling up the

algorithms. It presents a natural and promising method to deal with the problem of

efficient classification in large-scale Arabic text collection.

4

The current trend in parallel and distributed computing is clustering.

In clustering, powerful low cost workstations are linked through fast communication

interfaces to achieve high performance computing. Recent increases in

communication speeds, microprocessor clock speeds, and availability of message

passing libraries make cluster based computing appealing in terms of both high

performance computing and cost effectiveness. Parallel and distributed computing on

clustered systems is a viable and attractive proposition due to the high

communication speeds of modern networks [19].

The Message Passing Interface (MPI) approach is considered to be one of the

most mature methods currently used in parallel programming mainly due to the

relative simplicity of using the method by writing a set of library functions or an

Application Program Interface (API) callable from C, or C++ Programs. MPI was

designed for high performance on both massively parallel machines and clusters

[31].

1.2 Problem Statement

Most serial text classification algorithms, like the k-NN algorithm, take a large

amount of running times especially when the volume of text documents available for

analysis is big. The huge amount of text documents with high dimensionality and in

particular in the Arabic language which has a rich nature and very complex

morphology require a large amount of computational power for classification.

The problem of this research is how to develop a parallel classifier for large-scale

Arabic text that achieves the enhanced level of speedup, scalability, and accuracy.

1.3 Objectives

1.3.1 Main Objective

The main objective of this research is to develop a parallel classifier for

large-scale Arabic text that achieves the enhanced level of speedup, scalability, and

accuracy. The proposed parallel classifier is based on the sequential k-NN algorithm.

5

1.3.2 Specific Objectives

The specific objectives of this research are:

 Determining the largest freely public Arabic corpus of text documents with

various domains.

 Investigating the most suitable text preprocessing techniques such as

stemming and term pruning methods and term weighting schemes.

 Determining the most suitable data decomposition and task mapping

techniques for the proposed parallel classifier.

 Designing the parallel classifier model.

 Implementing the sequential k-NN algorithm as well as the proposed parallel

classifier.

 Applying the implemented sequential k-NN algorithm as well as the proposed

parallel classifier on the largest freely public Arabic corpus of text

documents.

 Evaluating the proposed parallel classifier using different performance

metrics for parallel systems such as execution time, speedup, efficiency, and

parallel overhead.

 Evaluating the obtained classification results using different classification

measures such as accuracy, precision, recall, and F-measure.

1.4 Importance of the Thesis

 The proposed parallel classifier can be applied to various domains.

 This classifier is suitable for applications where the classification efficiency

is crucial such as online text classification, in which the classifier has to

respond to a lot of documents arriving simultaneously in stream format.

6

 Solve the problem of low efficiency for the sequential k-NN algorithm due to

the large amount of computational power.

 The proposed parallel classifier can be used to efficiently and accurately

categorize a large volume of Arabic text with high dimensionality.

 More support for the Arabic language in the technology area as our Islam

encourages us to support it.

1.5 Scope and Limitations

The outcome of this research will be a parallel classifier for large-scale Arabic

text that achieves the enhanced level of speedup, scalability, and accuracy. The work

is applied with some limitations and assumptions such as:

 We will use a freely public Arabic corpus for text documents collection and

the Non-free Arabic corpora are not considered.

 We will apply the text preprocessing techniques using the open source

machine learning tool RapidMiner and the text preprocessing step will not be

covered by the parallel classifier.

 The proposed parallel classifier is depend on the sequential k-NN algorithm.

 We will conduct our experiments on a set of processors and their own

exclusive memory (multicomputer cluster). This platform is programmed

using send and receive primitives. Libraries such as MPI provide such

primitives.

 The maximum number of the used processors will be subject to the

experiment.

7

1.6 Research Methodology

We follow a research methodology that consists of the following steps:

 Conducting a Survey: This include reviewing the recent literature closely

related to the thesis problem statement and the research question. After

analyzing the existing methods, identifying the drawbacks or the lack of

existing approaches, we formulate the strategies and solutions and how to

overcome the drawbacks.

 Text Data Collection: We will determine the largest freely public Arabic

corpus of text documents with various domains.

 Text Preprocessing: Some preprocessing in the Arabic text corpus will be

performed. It includes tokenizing strings to words, normalizing the tokenized

words, applying stopwords removal, applying the suitable term stemming and

pruning methods as a feature reduction techniques, and finally applying the

suitable term weighting scheme to enhance text document representation

as feature vector. We use the open source machine learning tool RapidMiner

for text preprocessing.

 Design the Parallel Classifier Model: The model is a way of structuring

a parallel classifier by selecting the most suitable decomposition and mapping

techniques and applying the appropriate strategy to minimize interactions

[19].

 Implement the Sequential k-NN Algorithm as well as the Proposed

Parallel Classifier: We will implement the sequential k-NN algorithm using

C++ programming language to serve as a baseline when we compare it with

the proposed parallel classifier. We will implement the proposed parallel

classifier using C++ programming language and the MPI library

on a multicomputer cluster. We will apply the implemented sequential k-NN

algorithm as well as the proposed parallel classifier on the largest freely

public Arabic corpus of text documents.

8

 Analysis and Discussion: The proposed parallel classifier will be evaluated

using different performance metrics for parallel systems such as execution

time, parallel overhead, speedup, and efficiency which determines the

scalability. Also, the obtained classification results will be evaluated using

different classification measures such as accuracy, precision, recall, and

F-measure which are generally accepted ways of measuring systems' success

in this field.

1.7 Outline of the Thesis

The rest of the thesis is organized as follows: Chapter 2 is an overview of parallel

computing. Chapter 3 reviews related works. Chapter 4 describes the proposed

parallel Arabic text classifier. Chapter 5 presents the experiments and the results.

Finally, Chapter 6 presents the conclusions and future directions.

9

Chapter 2 Overview of Parallel

Computing

This chapter presents an overview of parallel computing; the motivation for

parallel computing, types of parallel computers, methods of parallelism,

interconnection schemes of parallel computing systems, software environments for

parallel programming, the master-slave programming paradigm, the problems in

developing parallel algorithms for distributed environment, and finally the

performance metrics for parallel systems.

2.1 Definition: Parallel Computing

Parallel computing is the simultaneous execution of the same task on multiple

processors in order to obtain faster results. It puts the emphasis on generating large

computing power by employing multiple processing entities simultaneously for

a single computation task. These multiple processing entities can be a multiprocessor

system, which consists of multiple processors in a single machine connected by bus,

or a multicomputer system, which consists of several independent computers

interconnected by telecommunication networks or computer networks [54].

2.2 Motivation of Parallel Computing

The main purpose of doing parallel computing is to solve problems faster or to

solve larger problems.

Parallel computing is widely used to reduce the computation time for complex

tasks. Many industrial and scientific research and practice involve complex

large-scale computation, which without parallel computers would take years and

even tens of years to compute. It is more than desirable to have the results available

as soon as possible, and for many applications, late results often imply useless results

[54].

10

As predicted by Moore's Law [34], the computing capability of single processor

has experienced exponential increase. This has been shown in incredible

advancement in microcomputers in the last few decades. Performance of a today

desktop PC costing a few hundred dollars can easily surpass that of million-dollar

parallel supercomputer built in the 1960s. It might be argued that parallel computer

will phase out with this increase of single chip processing capability. However, three

main factors have been pushing parallel computing technology into further

development.

First, although some commentators have speculated that sooner or later serial

computers will meet or exceed any conceivable need for computation, this is only

true for some problems. There are others where exponential increases in processing

power are matched or exceeded by exponential increases in complexity as the

problem size increases. There are also new problems arising to challenge the extreme

computing capacity. Parallel computers are still the widely used and often only

solutions to tackle these problems [54].

Second, at least with current technologies, the exponential increase in serial

computer performance cannot continue for ever, because of physical limitations to

the integration density of chips. In fact, the foreseeable physical limitations will be

reached soon and there is already a sign of slow down in pace of single chip

performance growth. Further improvement in performance will rely more on

architecture innovation, including parallel processing. Intel and AMD have already

incorporated multicore architectures in their latest offering [47].

Finally, generating the same computing power, single-processor machine will

always be much more expensive than parallel computer. The cost of single CPU

grows faster than linearly with speed. With recent technology, hardware of parallel

computers are easy to build with off-the-shelf components and processors, reducing

the development time and cost. It is also much easier to scale the processing power

with parallel computers. Most recent technology even supports to use old computers

and shared components to be part of parallel machine and further reduces the cost.

11

With the further decrease in development cost of parallel computing software, the

only impediment to fast adoption of parallel computing will be eliminated [54].

2.3 Types of Parallel Computers

Parallel computers can be roughly classified according to the level at which the

hardware supports parallelism.

2.3.1 A Multi-Core Processor

A multi-core processor is a single computing component with two or more

independent actual central processing units, called cores, which are the units that

read and execute program instructions. The instructions are ordinary CPU

instructions such as add, move data, and branch, but the multiple cores can run

multiple instructions at the same time, increasing overall speed for programs

amenable to parallel computing. Manufacturers typically integrate the cores onto

a single integrated circuit die known as a Chip Multiprocessor (CMP), or onto

multiple dies in a single chip package [15]. A generic dual-core processor is shown

in Figure 2.1.

Figure 2.1: A Generic Dual-Core Processor [15].

Processors were originally developed with only one core. A dual-core processor

has two cores, a quad-core processor contains four cores, a hexa-core processor

contains six cores, an octa-core processor contains eight cores. A multi-core

processor implements multiprocessing in a single physical package.

CPU Core and L1

Caches

CPU Core and L1

Caches

Bus Interface and L2

Caches

Front side

Back side

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Instruction_(computer_science)
http://en.wikipedia.org/wiki/Instruction_set
http://en.wikipedia.org/wiki/Instruction_set
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Die_(integrated_circuit)
http://en.wikipedia.org/wiki/Chip_carrier
http://en.wikipedia.org/wiki/Multiprocessing

12

Multi-core processors are widely used across many application domains including

general-purpose, embedded, network, Digital Signal Processing (DSP), and graphics

[15].

2.3.2 A Shared Memory Multiprocessor

A shared memory multiprocessor is a computer system with multiple identical

processors that share memory and connect via a bus. It involves a multiprocessor

computer hardware architecture where two or more identical processors are

connected to a single shared main memory and are controlled by a single OS

instance. Most common multiprocessor systems today use an Symmetric

Multiprocessing (SMP) architecture [8]. A shared memory multiprocessor system

is shown in Figure 2.2.

A shared memory multiprocessor systems are tightly coupled systems with a pool

of homogeneous processors running independently, each processor executing

different programs and working on different data and with capability of sharing

common resources (memory, I/O device and so on) and connected using a system

bus [8].

Figure 2.2: A Shared Memory Multiprocessor System [8].

Processor 1

Cache

Processor 2

Cache

Processor 3

Cache

Processor 4

Cache

...

Bus

Main

Memory

Disks

http://en.wikipedia.org/wiki/Embedded_processor
http://en.wikipedia.org/wiki/Network_processor
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Multiprocessor
http://en.wikipedia.org/wiki/Main_memory
http://en.wikipedia.org/wiki/Multiprocessing#Processor_coupling
http://en.wikipedia.org/wiki/System_bus
http://en.wikipedia.org/wiki/System_bus

13

2.3.3 Cluster Computing

The current trend in parallel and distributed computing is clustering. In

clustering, powerful low cost workstations are linked through fast communication

interfaces to achieve high performance parallel computing. Recent increases in

communication speeds, microprocessor clock speeds, and availability of message

passing libraries make cluster based computing appealing in terms of both high

performance computing and cost effectiveness. Parallel and distributed computing on

clustered systems is a viable and attractive proposition due to the high

communication speeds of modern networks. Computer cluster is now the mainstream

architecture of modern parallel machines [19].

The components of a cluster are usually connected to each other through fast

local area networks, each computer running its own instance of an operating system.

Computer clusters emerged as a result of convergence of a number of computing

trends including the availability of low cost microprocessors, high speed networks,

and software for high performance distributed computing [51]. The typical

architecture of a cluster is shown in Figure 2.3.

Figure 2.3: The Typical Cluster Computer Architecture [7].

Processor 1

Memory

Processor 2

Memory

Processor 3

Memory

Processor 4

Memory

...

High Speed Network / Switch

Disks Disks Disks Disks

http://en.wikipedia.org/wiki/Local_area_network
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Distributed_computing

14

Attributes of Clusters

 Computer clusters may be configured for different purposes ranging from

general purpose business needs such as web-service support,

to computation-intensive scientific calculations [10].

 Load-balancing clusters are configurations in which cluster-nodes share

computational workload to provide better overall performance [46].

 High-availability clusters improve the availability of the cluster approach.

They operate by having redundant nodes, which are then used to provide

service when system components fail. High-availability cluster

implementations attempt to use redundancy of cluster components to

eliminate single points of failure [46].

Our research mainly rely on a computer cluster for computing power.

2.4 Methods of Parallelism

For compute-intensive applications, parallelization is an obvious means for

improving performance and achieving scalability. A variety of techniques may be

used to distribute the workload involved in data mining over multiple processors.

Two major classes of parallel implementations are distinguished; task parallelism

and data parallelism.

With task parallelism each processor has or needs access to the entire database

and multiple operations are executed concurrently. With data parallelism the

database is portioned among the processors and the same operation is executed in

multiple partitions at the same time. From a data mining viewpoint, data parallelism

has several main advantages over task parallelism. A lot of previously written serial

code can be reused in a data parallel fashion. This simplifies programming and leads

to a development time significantly smaller than one associated with task parallel

programming. In most applications, the amount of data can increase arbitrarily fast,

while the number of lines of code typically increases at a much slower rate. To put it

in simple terms, the more the data is available, the more opportunity to exploit data

http://en.wikipedia.org/wiki/Load_balancing_(computing)
http://en.wikipedia.org/wiki/High-availability_cluster
http://en.wikipedia.org/wiki/Node_(networking)
http://en.wikipedia.org/wiki/Single_point_of_failure

15

parallelism [19]. Figure 2.4 shows that the dataset itself can be shared (in shared

memory architecture), partially or totally replicated, or portioned among the

available nodes (in distributed memory architecture).

Figure 2.4: Data Partitioning Methods.

Data partitioning comes in two flavors. A partitioning based on records will

assign non-overlapping sets of records to each of the processors. Alternatively,

a partitioning of attributes will assign sets of attributes to each of the processors [19].

2.5 Interconnection Schemes of Parallel Computing Systems

High-performance parallel computers, especially those able to scale to thousands

of processors, have been using sophisticated interconnection schemes. Here we cover

the major interconnection schemes listed in Figure 2.5 in brief.

Figure 2.5: Illustrations of Simple Interconnection Schemes [54].

Data

Partitioned Replicated Shared

Partially Totally

(A) Line

e

(C) Ring (D) Star

(B) Fully Connected

(E) Bus

16

Figure 2.5(A) illustrates the line scheme, which is the simplest connection

scheme. In this illustration, circle represents a computing node and line represents

direct communication channel between nodes. Computing nodes are arranged on and

connected with a single line. However, communication between any two

non-neighbor nodes needs the help of other nodes; the fault at any node will make

the whole system break. This scheme is simple and low-cost, but will not be able to

generate high performance or reliability; and as system scales, the performance

degrades rapidly [19]. Figure 2.5(C) illustrates the ring scheme, which is

an enhanced line topology, with an extra connection between the two ends of the

line. However, basic characteristics are still the same [19].

The other extreme is probably the fully-connected topology, in which there is

a direct connection between any two computing nodes. Fully-connected topology is

shown in Figure 2.5(B). The corresponding graph representation has an edge

between any two vertices, and distance between any two vertices is 1 , and it

generates the minimal communication latency. This scheme will generate the highest

performance possible, but due to the complexity and thus cost, it can hardly be

scalable with larger scale, although performance will not degrade at all [19].

Similar to fully-connected network, bus network, illustrated in Figure 2.5(E), has

direct connection between any two nodes. In fact, bus topology shares the same

logical graph representation with fully-connected topology. The connection between

any pair of nodes is not dedicated but shared: interconnection is implemented via

a shared bus. This reduces the complexity significantly. This single shared bus

prevents more than one pair of nodes to carry out point-to-point communication.

As a result, the system does not scale very well [19].

An intuitive improvement on bus network is to change the bus to eliminate the

constraint that only two nodes can communicate at any time. The result is the star

network, where a communication switch node is added to replace the shared bus,

as shown in Figure 2.5(D) [19].

For computer clusters, most are built with a star structured interconnection

network around a central switch.

17

There are other types of more sophisticated topology schemes, such as tree,

mesh, and hypercube, which are widely used in parallel computers with thousands of

processors or more. These schemes often scale better to larger scale network with

good performance. Readers are advised to [9] for more information about this.

2.6 Software Environments for Parallel Programming

Parallel programming is a complex task. In order to reduce this complexity,

different programming models are abstracted, with each providing tools such as

special-purpose compilers, libraries and frameworks to simplify programming task.

These tools hide many details about parallel execution, such as message transfer and

routing, task allocation and migration, and platform differences. Higher-level

programming model will even have commonly-used algorithms pre-implemented in

the bounded libraries [35]. Our research is based on message passing programming

model and specifically on MPI standards and MPICH library.

2.6.1 Message Passing Interface and MPICH

MPI, is the most widely-used message passing standard. The basic functions are

defined by the MPI standard [33], and with many implementations targeting almost

all distributed memory architectures, it is the de facto industrial standard for message

passing programming. There are two main standards that make up MPI, MPI-1 and

MPI-2. Most basic functionality is provided in the MPI-1 standard, with more

advanced features defined in the MPI-2 standard. One of the key objectives of the

MPI standard is to provide portability between different parallel machines.

Therefore, MPI defines its own data types which are used for data transfers which are

then mapped to specific machine data types by the MPI library implementation,

which should ensure that programs do not have to be rewritten to use different

computing hardware [31].

Basically, MPI provides two types of communication operations. Point-to-point

operations which allow any two processes to exchange information via MPI_Send

(for sending), MPI_Recv (for receiving) and their variants. Collective operations are

18

provided so that a set of processes, known as a communicator, can share and dispatch

data through broadcast and reduction operations [31].

When an MPI program runs, the user will explicitly specify the number of

parallel processes and how the processes are mapped to physical processors.

On startup, each processor starts one or more processes to execute the same program

body. Each parallel process will be assigned a rank, which serves as the identity of

the process, and which will also cause processes to carry out different computation

despite their common program body. During the execution, processes carry their own

computation, without synchronization with other processes unless they encounter an

explicit synchronization command. Processes communicate with each other using

point-to-point or collective communication primitives, using process rank to address

the recipient or sender if it is required. The whole parallel program exits when all the

parallel processes have finished. Although there is no requirement on how the

computation result is generated, in many cases a head process, usually the one with

rank 0, will collect the results from participating processes and assemble the final

outcome [31].

The two major implementations of MPI standards are MPICH [20] developed by

Argonne National Laboratory and LAM by Ohio Supercomputing Center and

Indiana University. Our research is heavily based on MPICH2. MPICH2 is a new

implementation of MPI by the MPICH team. In addition to features of its

predecessor, including the portability advantage, MPICH2 includes partial

implementation of MPI-2 functions, including one-side communication, dynamic

process creation, and expand MPI-IO functionality [31].

2.7 Master-Slave Programming Paradigm

The master-slave paradigm is the main programming paradigm used in

parallel programs. Master-slave approach is used for task that can be partitioned

into several independent subtasks, which can be carried out separately and

probably (but not necessarily) in parallel without any inter-subtask

communication [19].

19

Figure 2.6: Master-Slave Paradigm [54].

The master-slave paradigm is depicted in Figure 2.6. The master node,

usually denoted as node 0, is in charge of farming out work load to workers.

Several workers work on workloads assigned by the master node. When a worker

finished its current work load, it reports the result back to the master if necessary

and triggers the master to send additional work load to the worker. As long as the

task can be partitioned into sufficiently small segments, this approach will

produce small amounts of idle time for the worker nodes [19].

The master-slave paradigm is very robust to program. All tasks control is

done by one processor, the master. The user should not be burdened with the

difficult issue of how to distribute algorithm control information to the various

processors. Moreover, the typical parallel programming hurdles of load balancing

circumvented. Having a central point of control facilitates the collection of

a job‟s statistics. Furthermore, a surprising number of sequential approaches to

large-scale problems can be mapped naturally to the master-worker paradigm

[17].

Programs with centralized control are easily able to adapt to a dynamic and

heterogeneous computing environment. If additional processors become

available during the course of the computation, they simply become workers and

are given portions of the computation to perform. Having centralized control also

20

eases the burden of adapting to a heterogeneous environment, since only the

master need be concerned with the matchmaking process of assigning tasks to

resources making the best use of the resource characteristics [17].

Our research is based on the master-slave programming paradigm in which

the master processor generates the work and allocates it to the worker

processors.

2.8 Problems in Developing Parallel Algorithms for Distributed

Environment

There are several problems in developing parallel algorithms for a distributed

environment with data mining which is being considered in this research work.

These are [19]:

 Data Distribution: One of the benefits of parallel and distributed data

mining is that each node can potentially work with a reduced-size subset of

the total database. A parallel algorithm in distributed environment must

effectively distribute data to allow each node to make independent progress

with its incomplete view of the entire database.

 I/O Minimization: Even with good data distribution, parallel data mining

algorithms must strive to minimize the amount of I/O they perform to the

database.

 Load Balancing: To maximize the efficiency of parallelism, each

workstation must have approximately the same amount of work to do.

Although a good initial data distribution can help provide load-balancing.

 Avoiding Duplication: Ideally, no workstation should do redundant work

(work already performed by another node).

 Minimizing Communication: An ideal parallel data mining algorithm

allows all workstations to operate asynchronously, without having to stall

frequently for global barriers or for communication delays.

21

 Maximizing Locality: As in all performance programming,

high-performance parallel data mining algorithms must be designed to reap

the full performance potential of hardware. This involves maximizing locality

for good cache behavior, utilizing as much of the machine's memory

bandwidth as possible, etc.

Achieving all of the above goals in one algorithm is nearly impossible, as there

are tradeoffs between several of the above points. Existing algorithms for parallel

data mining attempt to achieve an optimal balance between these factors.

2.9 Performance Metrics for Parallel Systems

In order to demonstrate the effectiveness of parallel processing for a problem on

some platform, several concepts have been defined. These concepts will be used in

later chapters to evaluate the effectiveness of parallel programs. These include serial

runtime, parallel runtime, parallel overhead, speedup, and efficiency.

2.9.1 Serial Runtime

The serial runtime of a program is the time elapsed between the beginning and

the end of its execution on a sequential computer. The serial runtime is denoted by TS

[19].

2.9.2 Parallel Runtime

The parallel runtime is the time that elapses from the moment the first processor

starts to the moment the last processor finishes execution. The parallel runtime is

denoted by TP [19].

2.9.3 Total Parallel Overhead

The parallel overhead is the total time spent by all processors combined in non

useful work [19]. The overhead function (To) is given by:

To = (p TP - TS) / TS (2.1)

22

where p is the number of processors, TS is the serial runtime, and TP is the parallel

runtime.

2.9.4 Speedup

The speedup is the ratio of the time taken to solve a problem on a single

processor to the time required to solve the same problem on a parallel computer with

p identical processing elements [19]. This is shown as:

S = TS / TP (2.2)

where S is the speedup achieved with p processors, TS is the serial runtime, and TP is

the parallel runtime.

A typical speedup curve for a fixed size problem is shown in Figure 2.7. As the

number of processors increases, speedup also increases until a saturation point is

reached. Beyond this point, adding more processors will not bring further

performance gain. This is the combined result of reduced computation on

participating node, and increased duplicate computation and synchronization and

communication overhead [19].

Figure 2.7: Typical speedup curve [54].

23

2.9.5 Efficiency

The efficiency is a measure of the fraction of time for which a processing

element is usefully employed [19]. It is given by:

E = S / p (2.3)

where E is the efficiency, S is the speedup achieved with p processors, and p is the

number of processors.

It measures how much speedup is brought per additional processor. Based on the

typical speedup curve shown in Figure 2.7, it is evident that typically efficiency will

be decreased upon increase in the number of processors. Efficiency can be as low as

0 and as high as 1 [19].

2.9.6 Scalability

The concept of scalability cannot be computed but evaluated. A parallel system is

said to be scalable when the efficiency can be kept constant as the number of

processing elements is increased, provided that the problem size is increased [19].

2.10 Summary

In this chapter, we presented an overview of parallel computing; the main

purpose of doing parallel computing, the classification of parallel computers

according to the level at which the hardware supports parallelism, the techniques that

used to distribute the workload in parallel programs, the major interconnection

schemes of parallel computing systems, the message passing programming model for

parallel programs, the master-slave paradigm which is the main programming

paradigm used in parallel programs, the problems in developing parallel algorithms

for distributed environment, and finally we described the performance metrics for

parallel systems that evaluate the effectiveness of parallel programs.

A review of existing works closely related to the thesis will be discussed in the

next chapter.

24

Chapter 3 Related Works

This chapter presents a review of existing works closely related to the thesis and

identifies the drawbacks of existing approaches.

In order to improve the efficiency of sequential classification algorithms for text

classification, some researches have been conducted in this area and they can be

classified into three categories:

3.1 Enhancing the Efficiency of Sequential Classification

Algorithms with Feature Selection, Reduction and Pruning

Strategies

Al-Shalabi et. al [3], applied k-NN on Arabic text, they used Term Frequency

Inverse Document Frequency (TF-IDF) as a weighting scheme for feature selection

and got accuracy of 95%. They also applied stemming as feature reduction

technique. They collected a corpus from newspapers (Al-Jazeera, An-Nahar, Al-

Hayat, Al-Ahram, and Ad-Dostor) and from Arabic Agriculture Organization

website. The corpus consists of 627 documents belonging to one of six categories

(politics 111, economic 179, sport 96, health and medicine 114, health and cancer 27,

and agriculture 100). They preprocessed the corpus by applying stop words removal

and light stemming. The feature selection and reduction strategies can decrease the

computation complexity, reduce the dimensionality, and improve the accuracy rate of

classification. However, the size of the used corpus is small and this approach could

not do well in the case of reducing computation complexity for large volume of text

documents with high number of features and in particular in the Arabic language

which has a rich nature and very complex morphology.

25

Duwairi et. al [11], compared three dimensionality reduction techniques;

stemming, light stemming, and word cluster. Stemming reduces words to their stems.

Light stemming removes common affixes from words without reducing them to their

stems. Word clusters group synonymous words into clusters and each cluster is

represented by a single word. The purpose of employing the previous methods is to

reduce the size of documents vectors without affecting the accuracy of the classifiers.

They used k-NN to perform the comparison. The comparison metric includes size of

documents vectors, classification time, and accuracy (in terms of precision and

recall). They used Term Frequency (TF) as a weighting scheme for feature selection.

They collected 15,000 documents belonging to one of three categories (sport,

economic, education). Each category has 5,000 documents. They split the corpus;

9,000 documents for training and 6,000 documents for testing. Several experiments

were carried out using four different representations of the same corpus: the first

version uses stem-vectors, the second uses light stem-vectors, the third uses word

clusters, and the fourth uses the original words (without any transformation) as

representatives of documents. In terms of vector sizes and classification time, the

stemmed vectors consumed the smallest size and the least time necessary to classify

a testing dataset that consists of 6,000 documents. The light stemmed vectors

superseded the other three representations in terms of classification accuracy. The

feature selection and reduction strategies can decrease the computation complexity,

reduce the dimensionality, and improve the accuracy rate of classification. However,

this approach could not do well in the case of reducing computation complexity for

text documents with high number of distinct words and in particular in the Arabic

language which has a rich nature and very complex morphology. Also, this approach

reduces the features but what is the solution in the case of large volume of text

documents which increase the computation complexity.

Guan and Zhou [18], proposed a training-corpus pruning based approach to

speedup the k-NN algorithm. It depends on the removal of the noisy and superfluous

documents in training corpuses, which leads to substantial classification efficiency

improvement. They used clustering-based feature selection method that treating each

training class as a distinctive cluster, then using a genetic algorithm to select a subset

26

of documents features. They used Apte corpus; the number of documents sample is

5773 in ten categories, 2447 documents prepared for testing. The pruning strategy

can reduce the size of training corpus significantly, decrease the computation

complexity, but it can damage the classification quality of k-NN for text

classification, any removal of training documents may aggravate the sparseness of

the text corpus, which leads to a degradation of the k-NN classifier.

3.2 Enhancing the Efficiency of Sequential Classification

Algorithms by Combination with Other Algorithms

Buana et. al [6], proposed a method that combines traditional k-NN algorithm

and k-Means clustering algorithm. They used TF-IDF as the weighting scheme for

feature selection. They group all the training samples of each category by k-Means

algorithm, and take all the cluster centers as the new training samples, the modified

training samples are used for classification with the k-NN algorithm. The results

show that the combination of the proposed algorithm in this study has a percentage

accuracy reached 87%, an average value of f-measure evaluation= 0.8029 with the

best k-values= 5 and the computation takes 55 second for one document. Buana

collected corpus from news website www.detik.com and www.kompas.com. The

number of documents sample is 802 with 5915 terms and 6 categories that are,

General News, Business Economics, Education and Science, Health, Sports, and

Technology. 60 documents prepared for testing, each category of 10 documents.

Tan [48], proposed a binary k-NN for text classification. He employed the

information gain as the feature selection method. They combine the centroid-based

classifier with the k-NN classifier. He compute a centroid vectors to represent the

documents of each class. For each test document, he first select some neighboring

classes as candidate categories by calculating the similarity between the test

document and centroid vectors; he then use the k-NN decision rule to find the most

similar category among the candidate categories. The results show that the binary

k-NN takes much less CPU time, without loss of classification accuracy. Tan used

two English corpora: the 20Newsgroup and the OHMUSED. The 20Newsgroup

http://www.kompas.com/

27

dataset contains approximately 20,000 documents and The OHMUSED dataset

contains approximately 11,162 documents in ten categories.

The combination of traditional k-NN algorithm and clustering algorithm can

reduce the time complexity of traditional k-NN algorithm. However, The clustering

algorithm can take a large amount of time for clustering the training samples

especially in the case of the large volume of text documents.

3.3 Enhancing the Efficiency of Sequential Classification

Algorithms with Parallel Computing

Ruoming et. al [37], proposed a parallel learning algorithm. The parallel

algorithm is based on the k-NN algorithm. They evaluated the parallel

implementation on a multiprocessor with shared memory that connect multiple

processors to a single memory system. Each training sample is processed by one

processor. After processing the sample, the processor determines if the list of

k current nearest neighbors should be updated to include this sample. They used

a full-replication scheme to avoid the race conditions. They experimented with a 800

MB main memory resident dataset. The reduction object in this algorithm‟s parallel

implementation is the list of k-nearest neighbors, the value of k used in their

experiments was 2000. The speedup results were suitable up to four processors.

However, sharing memory in this way can easily lead to a performance bottleneck

and the scalability of the processors is limited.

Lianga et. al [30], proposed a parallel learning algorithm. The parallel algorithm

is based on the k-NN algorithm. They evaluated the parallel implementation on

Compute Unified Device Architecture (CUDA) enabled Graphics Processing Unit

(GPU). The advantage of this method is the highly parallelizable architecture of the

GPU. Recent development in GPUs has enabled inexpensive high performance

computing for general-purpose applications. Due to GPU's tremendous computing

capability, it has emerged as the co-processor of the Central Processing Unit (CPU)

to achieve a high overall throughput. CUDA programming model provides the

programmers adequate C language like APls to better exploit the parallel power of

the GPU and manipulate it. At the hardware level, CUDA-enabled GPU is a set of

28

Single Instruction Stream, Multiple Data Stream (SIMD) processors with 8 stream

processors. They used synthetic data generated by MATLAB for the purpose of

evaluation where the number of data objects is 262144 records. Their experiment

showed good scalability on data objects. CUK-NN presented up to 15.2 speedup. The

result shows that CUk-NN is suitable for large scale dataset. However, since SIMD

processors are specially designed, they tend to be expensive and have long design

cycles and the scalability of the processors is limited.

Zufrin [55], proposed a parallel decision tree, it is a distributed-memory,

data-parallel algorithm, it splits the training records horizontally in equal-sized

blocks, among the processors. It follows a master-slave paradigm, where the master

builds the tree, and finds the best split points. The slaves are responsible for sending

class frequency statistics to the master. For categorical attributes, each processor

gathers local class frequencies, and forwards them to the master. For numeric

attributes, each processor sorts the local values, finds class frequencies for split

points, and exchanges these with all other slaves. Each slave can then calculate the

best local split point, which is sent to the master, who then selects the best global

split point. This work supports our approach in terms of using multicomputer cluster

which is a viable and attractive method due to the high communication speeds of

modern networks.

Tekiner et. al [49], proposed a parallel learning algorithm for part of speech

tagging. The parallel algorithm is based on the Maximum Entropy algorithm. They

used Genia which is a sequential POS tagger as a baseline for comparison. Genia is

built with maximum entropy and it is specifically tuned for biomedical text. They

implemented a parallel version of genia tagger application and performance has been

compared. The focus has been particularly on scalability of the application. Scaling

up to 96 processors has been achieved and a hundred thousand abstracts have been

processed in less than 5 minutes, whereas serial processing would take around

8 hours. The parallel implementation of genia tagger is done using MPI library. They

used two datasets; the first dataset is Medline which is a collection of Medline

abstracts contain around 1.7 billion words, another dataset contains 1 Million

abstracts. This work supports our approach in terms of using multicomputer cluster

29

which is a viable and attractive method due to the high communication speeds of

modern networks.

Kruengkrai and Jaruskulchai [27], proposed a parallel algorithm for text

classification task. The parallel algorithm is based on the Expectation Maximization

(EM) algorithm and the NB classifier. One drawback of the NB classifier is that it

requires a large set of the labeled training documents for learning accurately. The

cost of labeling documents is expensive, while unlabeled documents are commonly

available. By applying the EM algorithm, they can use the unlabeled documents to

augment the available labeled documents in the training process. They parallelized

the algorithm by using the idea of data parallel computation. They evaluated the

parallel implementation on a large Linux PC cluster called PIRUN Cluster.

The experimental results on the efficiency indicate that the parallel algorithm has

good speed up characteristics when the problem sizes are scaled up. They used the 20

Newsgroups data set. It contains approximately 20,000 documents. This work

supports our approach in terms of using multicomputer cluster which is a viable and

attractive method due to the high communication speeds of modern networks.

3.4 Summary

In this chapter, we presented a review of existing works closely related to the

thesis and identifies the drawbacks of existing approaches, we classified the methods

to improve the efficiency of sequential classification algorithms into three categories:

The first category includes using the feature selection, reduction and pruning

strategies that decrease the computation complexity, reduce the dimensionality, and

improve the accuracy rate of classification. However, the size of the used corpora is

small and this strategies could not do well in the case of reducing computation

complexity for a large volume of text documents with high number of features and in

particular in the Arabic language which has a rich nature and very complex

morphology. The pruning strategy can reduce the size of training corpus

significantly, decrease the computation complexity, but it can damage the

classification quality of k-NN for text classification. The second category includes

combination with other algorithms such as clustering algorithm that reduce the time

30

complexity of traditional k-NN algorithm. However, The clustering algorithm can

take a large amount of time for clustering the training samples especially in the case

of the large volume of text documents. The third category includes using the parallel

computing to improve the efficiency of sequential k-NN algorithm, their platform

comprises a multiprocessors with shared memory that connect multiple processors to

a single memory system. However, sharing memory in this way can easily lead to

a performance bottleneck and the scalability of the processors is limited.

In this research, we intend to develop a parallel classifier for large-scale Arabic

text that achieves the enhanced level of speedup, scalability, and accuracy.

The proposed parallel classifier is based on the sequential k-NN algorithm. Our

platform comprises a set of processors and their own exclusive memory

(multicomputer cluster) which is a viable and attractive method due to the high

communication speeds of modern networks, this platform is programmed using send

and receive primitives, libraries such MPI provide such primitives.

In the next chapter, we will present the sequential k-NN algorithm and describe

the text data collection and preprocessing stages.

31

Chapter 4 The Sequential k-NN

Algorithm and Text Preprocessing

In this chapter we present the sequential k-NN algorithm which is the base of the

proposed parallel classifier and describe the text data collection and preprocessing

stages. Text preprocessing is the important stage in text classification and it includes

many steps including feature reduction using morphological analysis techniques, and

term weighting.

4.1 The Sequential k-NN Algorithm

The k-NN algorithm [21]: was first described in the early 1950. It is based on

learning by analogy, that is, by comparing a given test tuple with training tuples that

are similar to it. The training tuples are described by n attributes. Each tuple

represents a point in an n-dimensional space. In this way, all of the training tuples are

stored in an n-dimensional pattern space. When given an unknown tuple, a k-NN

classifier searches the pattern space for the k training tuples that are closest to the

unknown tuple. These k training tuples are the k nearest neighbors of the unknown

tuple. Closeness is defined in terms of a distance metric, such as Euclidean distance.

The Euclidean distance between two points or tuples, X=(x1,x2,…,xn) and

Y=(y1,y2,…,yn) is:

 (4.1)

Figure 4.1 shows that the test sample (circle) should be classified either to the

first class of squares or to the second class of triangles. If k = 3 it is classified to the

second class because there are 2 triangles and only 1 square inside the inner circle.

If k = 5 it is classified to first class (3 squares vs. 2 triangles inside the outer circle).





n

i

ii yxYXd
1

2)(),(

32

Figure 4.1: Example of k-NN Classification [26].

The sequential k-NN algorithm is briefly described as follows [21]:

 Determine parameter k = number of nearest neighbors.

 Calculate the distance between the query-instance and all the training

samples.

 Sort the distance and determine nearest neighbors based on the k-th

minimum distance.

 Gather the category of the nearest neighbors.

 Use simple majority of the category of nearest neighbors as the prediction

value of the query instance.

The time complexity of the k-NN algorithm is O(nm), where n is the number of

tested samples to classify and m is the number of training samples in the training set,

because for each unknown sample the similarity with each training sample is

calculated. On the other hand, the space complexity of the k-NN algorithm is O(m),

because the whole training set is stored.

33

The pseudo code of the sequential k-NN algorithm is shown in Algorithm 4.1.

Algorithm 4.1: The k-NN Algorithm [36].

1

2

3

4

Input: Training set D = {(x1 , y1), . . . , (xn, yn)}.

 x′ new instance to be classified.

Output: predicted class label y′ for x′.

ALGORITHM

FOR each labeled instance (xi, yi) calculate d(xi , x′) from equation (4.1)

Order d(xi , x′) from lowest to highest, (i = 1, . . . , n).

Select the k nearest instances to x′: Dx′.

Output y′ that is the most frequent class in Dx′.

4.2 Text Data Collection and Preprocessing

4.2.1 Text Data Collection

We use the largest freely public Arabic corpus of text documents which is called

OSAC from [38] to perform our experimentations. The OSAC corpus is available

publically at [41].

4.2.2 Text Preprocessing

Arabic Language is the 5th widely used language in the world. It is spoken by

more than 422 million people as a first language and by 250 million as a second

language. Arabic has 3 forms; Classical Arabic (CA), Modern Standard Arabic

(MSA), and Dialectal Arabic (DA). CA includes classical historical liturgical text,

MSA includes news media and formal speech, and DA includes predominantly

spoken vernaculars and has no written standards. Arabic alphabet consists of the

following 28 letters أ، ب، ت، ث، ج، ح، خ، د، ذ، ر، ز، س، ش، ص، ض، ط، ظ، ع، غ، ف، ق، ك،)

 .The orientation of writing in Arabic is from right to left [5] .(ل، م، ن، ه، و، ي

34

One of widely used methods for text mining presentations is viewing text as

a Bag Of Tokens (BOT) (words, n-grams). Under that model we can already classify

text. These are quite useful for mining and managing large volumes of text.

However, there is a potential to do much more. The BOT approach loses a lot of

information contained in text, such as word order, sentence structure, and context.

These are precisely the features that humans use to interpret text. Natural Language

Processing (NLP) attempts to understand document completely (at the level of

a human reader). General NLP has proven to be too difficult. The reason that NLP in

general is so difficult is that text is highly ambiguous. Natural Language is meant for

human consumption and often contains ambiguities under the assumption that

humans will be able to develop context and interpret the intended meaning

[1, 2, 3, 23].

Some preprocessing in the OSAC corpus is performed. It includes tokenizing

string to words, normalizing the tokenized words, applying stopwords removal,

applying the suitable term stemming and pruning methods as a feature reduction

techniques, and finally applying the suitable term weighting scheme to enhance text

document representation as feature vector. We use the open source machine learning

tool RapidMiner for text preprocessing. See Appendix B for more information.

1. String Tokenization

It is the process of breaking a stream of text up into words, phrases, symbols, or

other meaningful elements called tokens. The list of tokens becomes input for further

processing such text mining [50].

2. Stopwords Removal

Stopwords are terms that are too frequent in the text. These terms are

insignificant. So, removing them reduces the space of the items significantly. There

is no definite list of stop words which all NLP tools incorporate. Not all NLP tools

use a stoplist. Some tools specifically avoid using them to support phrase searching

[16, 22].

35

Typically, a default list of English stop words includes "the", "a", "of", "since",

etc., i.e., words that are used in the respective language very frequently, but

communicate very little unique information about the contents of the document.

For Arabic, stopwords list includes punctuations (?, !, …), pronouns

(…) adverbs ,(،هموووو ،التوووو ،الوووو ي ،هوووو ،هوووو ... ،بوووو ه ،تحوووو ،فوووو ق), days of week

(... ،الاثنو ه، الأحوو ،السوت), month of year (... ،موو رس ،فت ايو ،ينوو ي). Stopwords list are

removed because they do not help determining document topic and to reduce

features.

3. Morphological Analysis Techniques (Stemming and Light Stemming)

In linguistics, morphology is the identification, analysis and description of the

structure of morphemes and other units of meaning in a language like words, affixes,

and parts of speech [16, 22].

For Arabic Language, there are two different morphological analysis techniques;

stemming and light stemming.

Stemming is the process for reducing inflected (or sometimes derived) words to

their stem, base or root form – generally a written word form. Stemming would

reduce the Arabic words (المكتتو،، الك تو ، الكتو ب) which mean (the library), (the writer),

and (the book) respectively, to one stem (كت), which means (write) [16, 22].

Stemming algorithm by Khoja [25] is one of the well known Arabic stemmers.

Khoja„s stemmer removes the longest suffix and the longest prefix. It then matches

the remaining word with verbal and noun patterns, to extract the root. The stemmer

makes use of several linguistic data files such as a list of all diacritic characters,

punctuation characters, definite article, and stopwords. The steps of Khoja Arabic

stemmer is described in Algorithm 4.2.

Light stemming, in contrast, removes common affixes from words without

reducing them to their stems.

The main idea for using light stemming is that many word variants do not have

similar meanings or semantics. However, these word variants are generated from the

36

same root. Thus, root extraction algorithms affect the meanings of words. Light

stemming aims to enhance the classification performance while retaining the words

meanings. It removes some defined prefixes and suffixes from the word instead of

extracting the original root [11, 12].

Algorithm 4.2: Arabic Stemming Algorithm Steps [25].

1

2

3

4

5

6

7

8

9

10

Remove diacritics.

Remove stopwords, punctuation, and numbers.

Remove definite article (ال).

Remove inseparable conjunction (و).

Remove suffixes.

Remove prefixes.

Match result against a list of patterns.

 - If a match is found, extract the characters in the pattern

representing the root.

 - Match the extracted root against a list known "valid" roots.

Replace weak letters واي with و.

Replace all occurrences of Hamza ئ ء ؤ with ا.

Two letter roots are checked to see if they should contain a double

character. If so, the character is added to the root.

Formally speaking, the aforementioned Arabic words (المكتتو،، الك تو ، الكتو ب) which

mean (the library), (the writer), and (the book) respectively, belong to one stem

 despite they have different meanings. Thus, the stemming approach reduces (كتو)

their semantics. The light stemming approach, on the other hand, maps the word

 which means (book), and stems the word (كتو ب) which means (the book) to (الكتو ب)

 which means (writer). Another example (ك تو) which means (the writer) to (الك تو)

37

for light stemming is the words (هيالمسو ف ،المسو ف ون) which mapped to word (مسو ف).

Light stemming keeps the words' meanings unaffected. Algorithm 4.3 shows the

steps of Arabic light stemming. A light stemmer [28] is a standard Arabic light

stemmer.

Algorithm 4.3: Arabic Light Stemming Algorithm Steps [28].

1

2

3

Normalize word:

 - Remove diacritics.

 - Replace آ أ إ with ا.

 - Replace ة with ه.

 - Replace ى with ي.

Stem prefixes:

 - Remove prefixes: ال، وال، بال، كال، فال، لل، و.

Stem suffixes:

 - Remove suffixes: ها، ان، ات، ون، ين، ية، ه، ي.

4. Term Pruning

It is the process of eliminating the words that its count is less or greater than

a specific threshold [40].

5. Vector Space Model (VSM) and Term Weighting Schemes

The aim of term weighting schemes is to enhance text document representation

as feature vector. Popular term weighting schemes are:

 Binary Term Occurrences (BTO): which indicates absence or presence of

a word with Booleans 0 or 1 respectively.

 Term Frequency (TF): the ratio between the number of occurrences of

term t in the document d and the number of all terms in the document d.

38

 Term Occurrences (TO) : the number of occurrences of term t in the

document d.

 Term Frequency-Inverse Document Frequency (TF-IDF): the TF-IDF is

a weight often used in information retrieval and text mining. This weight is

a statistical measure used to evaluate how important a word is to a document

in a collection or corpus. Term frequency tf(t, d) is the number that the term t

occurred in the document d. Document frequency df(t) is number of

documents in which the term t occurs at least once [16, 22, 23, 42, 43]. The

inverse document frequency can be calculated from document frequency

using the formula:

log(num of Docs/num of Docs with word i) (4.2)

A reasonable measure of term importance may then be obtained by using the

product of the term frequency and the inverse document frequency (tf * idf).

4.3 Summary

In this chapter, we presented and described the sequential k-NN algorithm which

is the base for the proposed parallel classifier, and described the text data collection

and preprocessing stages. Text preprocessing is the important stage in text

classification and it includes many steps including feature reduction using

morphological analysis techniques, and term weighting.

In the next chapter, we will provide a detailed description about the proposed

parallel classifier.

39

Chapter 5 The Proposed Parallel

Classifier

In this chapter we present and describe the proposed parallel classifier model

including the decomposition and mapping techniques, the steps of the proposed

parallel classifier and the appropriate strategies to minimize overheads. The proposed

parallel classifier will be described using algorithms and flowcharts.

The parallel classifier model is a way of structuring a parallel classifier by

selecting the most suitable decomposition and mapping techniques and applying the

appropriate strategies to minimize overheads.

5.1 Decomposition Technique

The first step in developing a parallel algorithm is to decompose the problem

into tasks that can be executed concurrently by identifying the data on which

computations are performed, then partition this data across various tasks.

The task performs the computations with its part of the data. In our classifier,

the input training data partitioning is the natural decomposition technique

because the output (the computed distances) is not clearly known a-priori. It

divides the data set equally according to the number of worker processors by

sending a one data partition for each of them. See section 2.4 for more

information.

Figure 5.1 shows a decomposition based on a partitioning of the input

training data. Each of the two tasks computes the distances of the new test

document in its respective subset of training data. The two sets of distances,

which are the independent outputs of the two tasks, represent intermediate

results. Combining the intermediate results yields the final result.

40

Input Training Data Partition

Unlabeled Document

Distances

Task 1

0.015

0.122

0.023

0.016

0.012

0.049

0.017

0.023

Task 2

0.023

0

0.009

0.082

0.021

0.013

0.019

0.042

Figure 5.1: Partitioning the Training Data Among the Processors.

5.2 Mapping Technique

Once a problem has been decomposed into concurrent tasks, these must be

mapped to processors (that can be executed on a parallel platform).

41

In our classifier, we use the static mapping technique that distribute the tasks

among processes prior to the execution of the program.

The scheme for this static mapping is mapping based on data partitioning

because our data represented in a two-dimensional array. So, the most suitable

scheme used for distributing the two-dimensional array among processes is the

row-wise 1-D block array distribution that distribute the array and assign uniform

contiguous portions of the array to different processes. See section 2.4 for more

information.

According to the previous selected decomposition and mapping techniques,

the suitable parallel model is the master-slave model in which the master

processor divides the input training data equally according to the number of

worker processors and sending a one data partition for each of them with the new

document to be classified. See section 2.7 for more information.

Since the most time consuming in the k-NN algorithm taken by the

calculation of the distance between the query-instance and all the training

samples, and the sorting of the distances to determine nearest neighbors based on

the k-th minimum distance. Our classifier takes into consideration these two

factors by partitioning the work of distances computation and sorting among

several worker processors.

The time complexity of the proposed parallel classifier is O(nm/p), where n is the

number of tested documents to classify and m is the number of training documents in

the training set, because each processor calculates the similarities between each

sample and its m/p training documents. On the other hand, the space complexity of

the proposed parallel classifier is O(m/p), because the whole training set is scattered

among the p processors. Thus, the proposed parallel classifier has space scalability.

The pseudo code of the proposed parallel classifier is shown in Algorithm 5.1.

42

 Algorithm 5.1: The Proposed Parallel Classifier.

1

2

a

i

ii

viii

ix

x

b

iii

iv

v

vi

vii

Input: Training set D = {(x1 , y1), . . . , (xn, yn)}.

 x′ new document to be classified.

Output: predicted class label y′ for x′.

ALGORITHM

The master processor divides D equally among worker

processors and sends a one partition for each of them.

While True:

 If processor = master:

 Load x′.

 Send x′ to the worker processors.

 Receive Dx′ from the worker processors and put the

 combined k-th ordered lists in LDx′.

 Order LDx′ from lowest to highest.

 Output y′ that is the most frequent class in LDx′.

 Else:

 Receive x′ from the master processor.

 FOR each labeled instance (xi, yi) calculate d(xi , x′) from

 equation (4.1).

 Order d(xi , x′) from lowest to highest, (i = 1, . . . , n).

 Select the k nearest instances to x′: Dx′.

 Send Dx′ to the master processor.

43

Figure 5.2 exhibits the flow chart of the proposed parallel classifier.

Figure 5.2: The Flow Chart of the Proposed Parallel Classifier.

Yes No

Start

If Master

Send the input training

data partition and the new

document to be classified.

Receive and combine the

k-th ordered lists.

Sort the received lists and

select the most frequent

class as the predicted

class for the new

document.

End

Calculate the distances,

sort the distances, and

determine the k nearest

neighbors.

Receive the input training

data partition and the new

document to be classified.

Send the k-th ordered list.

Wait.

44

As we see from Figure 5.2, The master-slave paradigm is the programming

paradigm used in this parallel program. The master processor divides the input

training data equally according to the number of worker processors and sending

a one data partition for each of them with the new document to be classified. Each

worker processor receives its data partition and the new document to be classified,

calculates the distance between the new document and all the training samples, sorts

the distances, determines the nearest neighbors based on the k-th minimum distance

locally, and sends the k-th ordered list to the master which include the k-th distances

and classes. The master processor receives from each worker the k-th ordered list and

combining them in a k-th master list. Finally, the master processor sorts the k-th

master list elements in ascending order, selects the k-th top elements, and selects the

most frequent class in the k-th top elements as the predicted class for the new

document.

5.3 Applying the Appropriate Strategies to Minimize Overheads

We apply several strategies to minimize overheads in our proposed parallel

classifier. These are:

 Load Balancing: To maximize the efficiency of parallelism, each processor

have approximately the same amount of input training data to do. This good

initial data distribution can help provide load-balancing.

 Avoiding Duplication: In our parallel classifier, no processor do redundant

work performed by another processor.

 Using The Master-Slave Programming Paradigm: The master-slave

paradigm is the main programming paradigm used in our parallel classifier

that allow the subtasks to carried out separately in parallel without any

inter-subtask communication and this approach will produce small amounts

of idle time for the worker processors.

 Overlapping Computations with Interactions: The amount of time that the

master processor spend waiting for results to arrive from worker processors

can be reduced, by doing some useful computations during this waiting time.

45

In our parallel classifier we keeping 1 input training data partition for local

processing by the master processor.

5.4 Summary

In this chapter, we presented and described our proposed parallel classifier using

the algorithms and flowcharts, and described the parallel classifier model including

the decomposition and mapping techniques, the steps of the proposed parallel

classifier and the appropriate strategies to minimize overheads.

In the next chapter, we will present and discuss the experiments carried out to

evaluate our proposed classifier.

46

Chapter 6 Experimental Results

and Evaluation

This chapter discusses the experimental results to provide evidence that our

parallel classifier design can improve both the computational efficiency and the

quality of classification. The chapter includes three sections: Section 6.1 presents the

corpus used in our experimentation and gives insight into the main characteristics of

it. Section 6.2 describes the experimental environment. Finally, in Section 6.3, we

present and discuss the experimental results and make a comparison with related

approaches.

6.1 The Corpus

We use the OSAC corpus which is the largest freely public Arabic corpus of text

documents to perform our experimentations.

The OSAC Arabic corpus collected from multiple websites as presented in

Table 6.1, the corpus includes 22,428 text documents. Each text document belongs to

1 of 10 categories (Economics, History, Entertainments, Education and Family,

Religious and Fatwas, Sports, Heath, Astronomy, Low, Stories, and Cooking

Recipes). The corpus contains about 18,183,511 (18M) words and 449,600 district

keywords after stopwords removal.

We generate all text representations for OSAC corpus to evaluate the obtained

classification results using different classification measures such as accuracy,

precision, recall, and F-measure which are generally accepted ways of measuring

systems' success in this field. See Appendix B for more information.

47

Table 6.1: The OSAC Corpus.

Category
Number of text

documents
Sources

Economic 3102

bbcarabic.com – cnnarabic.com –

aljazeera.net- khaleej.com –

banquecentrale.gov.sy

History 3233

 – www.hkam.net – moqatel.com تاريخ الحكام

 تاريخ الإسلام – altareekh.com التاريخ

islamichistory.net

Education and

family
3608

 نصائح للسعادة الأسرية – saaid.net صيد الفوائد

naseh.net – المربي almurabbi.com

Religious and

Fatwas
3171

CCA corpus – EASC corpus – moqatel.com –

صيد الفوائد – islamic-fatwa.com شبكة الفتاوى الشرعية

 saaid.net

Sport 2419
bbcarabic.com – cnnarabic.com –

khaleej.com

Health 2296

 – dr-ashraf.com – CCA corpus العيادة الالكترونية

EASC corpus – W corpus – صحة الطفل kids.jo –

 arabaltmed.com العلاج البديل العربي

Astronomy 557

 الكون نت – arabstronomy.com الفلك العربي

alkawn.net – بوابة الفلك المغربية

bawabatalfalak.com – موسوعة النابلسي الفلك -

nabulsi.com – www.alkoon.alnomrosi.net

Low 944
الليبي القانون lawoflibya.com – قانون كوم

qnoun.com

Stories 726
CCA corpus – قصص الأطفال kids.jo – صيد الفوائد

said.net

Cooking Recipes 2372 aklaat.com – fatafeat.com

Total 22,428

http://www.hkam.net/

48

The generated text representations for OSAC corpus are:

 Light stemming + percentual term pruning (min threshold = 3%,

max threshold = 30%) + TF-IDF.

 Light stemming + percentual term pruning (min threshold = 3%,

max threshold = 30%) + TF.

 Light stemming + percentual term pruning (min threshold = 3%,

max threshold = 30%) + TO.

 Light stemming + percentual term pruning (min threshold = 3%,

max threshold = 30%) + BTO.

 Stemming + percentual term pruning (min threshold = 3%,

max threshold = 30%) + TF-IDF.

 Stemming + percentual term pruning (min threshold = 3%,

max threshold = 30%) + TF.

 Stemming + percentual term pruning (min threshold = 3%,

max threshold = 30%) + TO.

 Stemming + percentual term pruning (min threshold = 3%,

max threshold = 30%) + BTO.

We have described these text representations in more details in section 4.2.

6.2 Experimental Setup

This section describes the experimental environment for evaluating our proposed

approach.

We implemented the sequential k-NN algorithm using C++ programming

language to serve as a baseline when we compare it with the proposed parallel

classifier to give a fair comparison. We implemented the proposed parallel classifier

using C++ programming language and the MPI library on a multicomputer cluster.

See Appendix A for more information.

49

The target platform for our experiments is a cluster of computers and their own

exclusive memory connected through local area network with speed 10/100 Mbps.

The cluster consists of 14 node, all nodes have the same specifications; Intel(R)

Core(TM) i3-2120 CPU @ 3.30 GHz, 4.00 GB RAM, 320 GB hard disk drive. The

sequential k-NN algorithm and the proposed parallel classifier have been

implemented on Windows 7 operating system, and we have used the parallel

message passing software MPICHI2 that offers small latencies and high bandwidths.

6.3 Experimental Results and Discussion

This section summarizes and discusses the results of the numerous experiments

that have been conducted.

6.3.1 Discussion of the Parallel Classifier Results

We used the largest text representation for OSAC corpus which is

(Light stemming + percentual term pruning (min threshold = 3%, max threshold

= 30%) + TF-IDF), (22,428 documents that are represented as records and 2114

words that are represented as attributes) to evaluate the proposed parallel classifier

using different performance metrics for parallel systems such as execution time,

parallel overhead, speedup, and efficiency which determines the scalability.

For evaluation purposes, we split the largest generated text representation for

OSAC corpus into two parts; 50% of the corpus for training (11214 documents) and

the remaining 50% for testing (11214 documents) using stratified sampling which

keep class distributions remains the same after splitting. Then we convert these text

data parts into two text files with .txt format in order to read it by the classifier. We

used the open source machine learning tool RapidMiner for this purpose. We

splitting the corpus in this way to achieve higher classification results and to evaluate

the performance of the parallel classifier.

We have executed the parallel classifier varying the number of processors from

2 to 14, also we varied the number of tested documents to observe the effects of

different problem sizes on the performance. Three sets were used with the number of

tested documents 2803, 5607, and 11214 documents.

50

The execution time in seconds is recorded in Table 6.2.

Table 6.2: The Execution Time of the Sequential and Parallel Classifiers.

As we note from Table 6.2, the sequential version takes more time than the

parallel version. In the parallel version; the execution time decreases when the

number of processors increases. However, the parallel implementation achieves

a good execution time compared to sequential one. Figure 6.1 shows the curves of

execution time for the classifiers on the OSAC corpus. The time curve decreases

from 1 processor until using 14 processors.

Several observations can be made by analyzing the results in Figure 6.1. First, the

sequential k-NN algorithm spent a lot of time classifying the text documents.

Second, the proposed parallel classifier clearly reduce the sequential time. Notice

that the sequential k-NN algorithm takes about 1 hour to classify this collection,

while the proposed parallel classifier reduces this time to 6 minutes on 14 processors.

Problem Size

No. of Processors

2803

Documents

5607

Documents

11214

Documents

Sequential k-NN 870.97 1755.41 3586.70

Parallel

Classifier

2-Processors 484.07 960.99 1914.20

4-Processors 256.75 510.75 997.95

6-Processors 176.53 344.50 679.53

8-Processors 148.94 288.69 566.34

10-Processors 132.44 252.34 496.38

12-Processors 117.49 222.18 435.61

14-Processors 107.25 204.22 398.64

51

No. of Processors Vs Exection Time

0

400

800

1200

1600

2000

2400

2800

3200

3600

1 2 4 6 8 10 12 14

Ex
e

cu
ti

o
n

 t
im

e
 (

Se
c.

)

2803record

5607record

11214record

Figure 6.1: The Curves of Execution Time for the Two Classifiers.

52

Also, we compute the speedup which gained from this parallelization.

The speedup is recorded in Table 6.3. Figure 6.2 demonstrates the relative speedup.

Table 6.3: The Relative Speedup of the Proposed Parallel Classifier.

The speedup curves increase linearly in some cases. For example, on the largest

tested set (11214 documents), it achieves the relative speedups of 1.87, 3.59, 6.33,

and 9.00 on 2, 4, 8, and 14 processors, respectively. When it accesses to a smaller set

of tested documents, the speedup curves tend to drop from the linear curve. The

classifier achieves the relative speedups of 1.83, 3.44, 6.08, and 8.60 on 2, 4, 8, and

14 processors, respectively. The smallest tested documents sizes give the same trend.

If we increase the number of processors further, the speedup curves tend to

significantly drop from the linear curve. For a given problem instant, the relative

speedups saturates as the number of processors is increased due to increased

overheads. This is a normal situation when the problem size is fixed as the number of

processors increases. However, it can be solved by scaling the problem size.

For example, in Figure 6.2, the speedups for three sets on 4 processors improve from

3.39 to 3.59, on 8 processors improve from 5.85 to 6.33, and on 14 processors

 Problem Size

No. of Processors

2803

Documents

5607

Documents

11214

Documents

2-Processors 1.80 1.83 1.87

4-Processors 3.39 3.44 3.59

6-Processors 4.93 5.10 5.28

8-Processors 5.85 6.08 6.33

10-Processors 6.58 6.96 7.23

12-Processors 7.41 7.90 8.23

14-Processors 8.12 8.60 9.00

53

improve from 8.12 to 9.00. It can be seen that our parallel classifier yields better

performance for the larger data sets.

No. of Processors Vs Speedup

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

2 4 6 8 10 12 14

Sp
e

e
d

u
p 2803record

5607record

11214record

Linear(Ideal)

Figure 6.2: The Relative Speedup Curves of the Proposed Parallel Classifier.

54

From the speedup we can compute the efficiency. The efficiency values are

recorded in Table 6.4. Figure 6.3 illustrates the efficiency curves.

Table 6.4: The Efficiency of the Proposed Parallel Classifier.

As we note from Table 6.4, The value of efficiency is between zero and one.

We note that the efficiency decrease as the number of processing elements is

increased for a given problem size and this is common to all parallel programs due to

increased overheads.

Also, we note that the efficiency of the parallel classifier increases if the problem

size is increased (from 2803 documents to 11214 documents) while keeping the

number of processing elements constant.

It can be seen that our parallel classifier is a scalable parallel system because the

efficiency can be kept constant as the number of processing elements is increased,

provided that the problem size is increased (from 2803 documents to 11214

documents).

 Problem Size

No. of Processors

2803

Documents

5607

Documents

11214

Documents

2-Processors 0.90 0.91 0.94

4-Processors 0.85 0.86 0.90

6-Processors 0.82 0.85 0.88

8-Processors 0.73 0.76 0.79

10-Processors 0.66 0.70 0.72

12-Processors 0.62 0.66 0.69

14-Processors 0.58 0.61 0.64

55

No. of Processors Vs Effeciency

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2 4 6 8 10 12 14

Ef
fe

ci
e

n
cy

2803record

5607record

11214record

Figure 6.3: The Efficiency Curves of the Proposed Parallel Classifier.

56

Also, we compute the parallel overhead. The parallel overhead values are

recorded in Table 6.5. Figure 6.4 illustrates the parallel overhead curves.

Table 6.5: The Parallel Overhead of the Proposed Parallel Classifier.

As we note from Table 6.5, the parallel overhead of the parallel classifier

increases as we increase the number of processing elements for a given problem size.

This is a normal situation when the problem size is fixed as the number of processors

increases. However, it can be solved by scaling the problem size. we note that the

parallel classifier has a parallel overhead that decreases as the data set increases

(from 2803 documents to 11214 documents). It can be seen that our parallel classifier

yields better performance for the larger data sets.

 Problem Size

No. of Processors

2803

Documents

5607

Documents

11214

Documents

2-Processors 0.11 0.09 0.07

4-Processors 0.18 0.16 0.11

6-Processors 0.22 0.18 0.14

8-Processors 0.37 0.32 0.26

10-Processors 0.52 0.44 0.38

12-Processors 0.62 0.52 0.46

14-Processors 0.72 0.63 0.56

57

No. of Processors Vs Overhead

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2 4 6 8 10 12 14

O
ve

rh
e

ad

2803record

5607record

11214record

Figure 6.4: The Parallel Overhead Curves of the Proposed Parallel Classifier.

58

6.3.2 Comparison with Related Approaches

We now compare our work with related approaches along nine criteria which are

the most common criteria. The comparison between our work and the related

approaches is summarized in Table 6.6. The nine criteria we use are:

1) The language. 2) The size of dataset. 3) The type of dataset. 4) the number of

processors. 5) The speedup. 6) The parallel platform. 7) The programming model.

8) The processor speed, and 9) The memory size.

Research efforts have focused on shared memory parallelization of the k-NN

algorithm. Ruoming et. al [37], proposed a parallel learning algorithm. The parallel

algorithm is based on the k-NN algorithm. They evaluated the parallel

implementation on a multiprocessor with shared memory that connect multiple

processors to a single memory system. They experimented with a 800 MB main

memory resident dataset. The reduction object in this algorithm‟s parallel

implementation is the list of k-nearest neighbors. The speedup results was suitable up

to four processors. However, sharing memory in this way can easily lead to

a performance bottleneck and the scalability of the processors is limited. Their

Experiments are performed on a shared memory machine with 4 (1 GHz) processors

and 1 GB of memory.

Our work is significantly different, because on the largest tested set (11214

documents), the parallel classifier achieved the relative speedup of 9.00 on 14

processors. It is a scalable parallel system because the efficiency can be kept constant

as the number of processing elements is increased, provided that the problem size is

increased (from 2803 documents to 11214 documents). We implemented our

proposed algorithm with C++ language ,our dataset containing (22428 * 2114) value,

the size of the dataset is 241 MB. The target platform for our experiments is a cluster

of computers and their own exclusive memory connected through a fast local area

network. The cluster consists of 14 nodes, all nodes have the same specifications;

Intel(R) Core(TM) i3-2120 CPU @ 3.30 GHz, 4.00 GB RAM.

59

Table 6.6: The Comparison Between Our Work and Related approaches.

Criteria Our Experiment Their Experiment

Language C++ C++

The Size of Dataset

(22428 * 2114) value,

241 MB
800 MB

The Type of Dataset

The OSAC Arabic

corpus

Synthetic two

dimensional dataset

Number of processors

2,4,6,8,10,12,14

processors 2,3,4 processors

The Speedup

1.87, 3.59, 6.33, and

9.00 on 2, 4, 8, and 14

processors

1.75, 2.22, and 2.24

on 2, 3, and 4

processors

The Parallel Platform
A multicomputer cluster

A shared memory

multiprocessor

The Programming

Model MPI OpenMP

The Processor Speed 3.30 GHz 1 GHz

The Memory Size 4 GB 1 GB

6.3.3 Discussion of the Classification Results

To ensure that the classifier works well with the tested documents, we also

examined the quality of the classification. we split all generated text representations

of OSAC corpus (we have described these text representations in section 6.1) into

two parts; 50% of the corpus for training (11214 documents) and the remaining 50%

for testing (11214 documents) using stratified sampling which keep class

60

distributions remains the same after splitting. Then we convert these text data parts

into two text files with .txt format in order to read it by the classifier. We used the

open source machine learning tool RapidMiner for this purpose. We splitting the

corpus in this way to achieve higher classification results.

For the purpose of evaluating the classification results, we use confusion matrices

that are the primary source of performance measurement for the classification

problem. Each column of the confusion matrix represents the instances in an actual

class, while each row represents the instances in a predicted class as shown in

Table 6.7.

Table 6.7: Simple Confusion Matrix

 True Class

Positive Negative

Predicted

Class

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

 True Positive (TP): refer to the number of positive instances that correctly

labeled the classifier [21].

 True Negative (TN): refer to number of negative instances that correctly

labeled the classifier [21].

 False Positive (FP): refer to the number of negative instances that were

incorrectly labeled the classifier [21].

 False Negative (FN): refer to number of positive instances that were

incorrectly labeled the classifier [21].



61

We have evaluated the obtained classification results using different

classification measures such as accuracy (Eq. 6.1), precision (Eq. 6.2),

recall (Eq. 6.3), and F-measure (Eq. 6.4) which are generally accepted ways of

measuring systems' success in this field.

 Accuracy: refer the percentage of test set instances that are correctly

classified by the classifier [21].

Overall Accuracy =(TP+TN) / (TP+TN+FP+FN) (6.1)

 Precision: refer to the percentage of predicted documents for the given

topic that are correctly classified [21].

Precision = TP / (TP+FP) (6.2)

 Recall: refer to the percentage of the total documents for the given topic that

are correctly classified [21].

Recall = TP / (TP+FN) (6.3)

 F-measure: it is a standard statistical measure that is used to measure the

performance of a classifier system. The f-measure is an average parameter

based on precision and recall [21].

F-measure = 2*Precision*Recall / (Precision + Recall) (6.4)

In our experiments, we computed the accuracy, precision, recall, and F-measure

for all generated text representations of OSAC corpus (we have described these text

representations in section 6.1). The average classification results are recorded in

Table 6.8.

The morphological analysis (stemming, light stemming), term pruning and term

weighting schemes (TF-IDF, TF, TO, BTO) have obvious impact on the classifier

performance as shown in Figure 6.5.

The Figure emphasizes that light stemming and TF representation with k=10 has

the best classification results, this is because light stemming is more proper than

62

stemming from linguistics and semantic view point and keeps the words meanings

unaffected.

The Figure also emphasizes that the classifier is very sensitive to term weighting

schemes because it depends on distance function to determine the nearest neighbors.

For example, the BTO weighting scheme has the worst classification results because

the text representation is 0 or 1.

 Table 6.8: The Classification Results for All Text Representations of OSAC.

When we recorded the performance for each class of the ten categories for the

best text representation (light stemming + TF) that achieved the best classification

results, we got the results as in Table 6.9.

 Performance

Measures

Text

Representations

Accuracy Precision Recall F-Measure

light stemming + TF-IDF 96.12 95.89 95.36 95.62

light stemming + TF 96.35 96.18 95.36 95.77

light stemming + TO 92.77 93.58 92.20 92.88

light stemming + BTO 77.80 91.55 79.56 85.13

Stemming + TF-IDF 93.10 91.91 92.35 92.13

Stemming + TF 93.83 93.09 92.99 93.04

Stemming + TO 89.60 89.12 88.98 89.05

Stemming + BTO 77.45 89.16 78.93 83.73

63

0

10

20

30

40

50

60

70

80

90

100

Accuracy Precision Recall F-Measure

A
v

e
ra

g
e

 o
f

M
e

a
s

u
rm

e
n

ts

light stemming+TF-IDF

light stemming+TF

light stemming+TO

light stemming+BTO

stemming+TF-IDF

stemming+TF

stemming+TO

stemming+BTO

Figure 6.5: The Classification Results for All Text Representations of OSAC.

Table 6.9: The Classification Results for Light Stemming + TF.

 Performance Measures

Category
Precision Recall F-Measure

Education and Family 93.33 94.68 94.00

History 93.10 96.91 94.97

Stories 91.33 81.27 86.01

Sport 98.19 98.92 98.55

Low 95.71 94.49 95.10

Astronomy 97.14 97.84 97.49

Cooking Recipes 99.24 99.58 99.41

Religious and Fatwas 99.16 96.28 97.70

Health 96.95 96.86 96.90

Economic 97.66 96.78 97.22

64

Figure 6.6 shows the classification results for the best text representation of

OSAC corpus (light stemming + TF) in each of the domain category.

From Figure 6.6 we can see that the best performance is recorded in Cooking

Recipes domain that because Cooking Recipes has limited space of words that are

limited and cleared comparing to other domains. Also, it shows that Stories has

lowest performance may be that also because Stories have a large space domain.

0

10

20

30

40

50

60

70

80

90

100

Precision Recall F-Measure

A
v

e
ra

g
e

 o
f

M
e

a
s

u
rm

e
n

ts

Education and Family ُ

History

Stories

Sport

Low
Astronomy

Cooking Recipes

Religious and Fatwas

Health

Economic

Figure 6.6: The Classification Results for Light Stemming + TF.

65

Chapter 7 Conclusion and Future

Works

7.1 Conclusion

Text classification has become one of the most important techniques in text

mining. One of the common classification algorithms is the k-NN which is known to

be one of the best classifiers applied for different languages including Arabic

language. However, the k-NN algorithm is of low efficiency because it requires

a large amount of computational power for evaluating a measure of the similarity

between a test document and every training document and for sorting the similarities.

Such a drawback makes it unsuitable to handle a large volume of text documents

with high dimensionality and in particular in the Arabic language.

In this thesis, a parallel classifier for large-scale Arabic text has been introduced.

The proposed parallel classifier is based on the sequential k-NN algorithm.

Five stages are involved in the approach: determine the large text collection,

preprocess the text in this collection, design the proposed parallel classifier model,

implement the sequential k-NN algorithm as well as the proposed parallel classifier,

and conduct the experiments.

We tested the parallel classifier using the OSAC corpus which is the largest

freely public Arabic corpus of text documents.

We experimented the parallel classifier on a multicomputer cluster that consists

of 14 computers. The experimental results on the performance indicate that the

parallel classifier design has very good speedup characteristics when the problem

sizes are scaled up. Also, classification results show that the proposed classifier has

achieved accuracy, precision, recall, and F-measure with higher than 95%.

66

Finally, The proposed parallel classifier can be used efficiently and accurately to

categorize a large volume of Arabic text with high dimensionality and solved the

problem of low efficiency for the sequential k-NN algorithm. It is suitable for

applications where the classification efficiency is crucial such as online text

classification, in which the classifier has to respond to a lot of documents arriving

simultaneously in stream format.

7.2 Future Works

There are several directions for improvement and future investigation. Our work

can be extended to cover larger computer clusters and text corpora to assess the

performance of our parallel implementation. Additionally, we can apply this parallel

classifier to various application domains such as weather data, internet traffic,

log files, medical information, among others to check its generalization. We will also

extend our work to cover a popular distributed programming paradigms

like MapReduce in a cloud environment.

We believe that our results are encouraging and show that managed code can

deliver high performance classifiers. In the future we will investigate further

algorithms and apply them to interesting applications.

67

References

[1] Abdelali, A., Cowie, J. and Soliman, H. (2005) „Building a modern standard

corpus‟, Workshop on Computational Modeling of Lexical Acquisition, In the

Split Meeting.

[2] Al-Shalabi, R., Kannan, G. and Al-Serhan, H. (2003) „New approach for

extracting Arabic roots‟, The International Conference on Information

Technology (ACIT 2003) – Conference Proceedings, Egypt.

[3] Al-Shalabi, R., Kannan, G. and Gharaibeh, H. (2006) „Arabic text

categorization using K-NN algorithm‟, The 4th International Multiconference

on Computer and Information Technology (CSIT 2006) – Conference

Proceedings, Amman, Jordan.

[4] Apte, C., Damerau, F. and Weiss, S. (1998) „Text mining with decision rules

and decision trees‟, The Conference on Automated Learning and Discovery

(CONALD 1998) – Conference Proceedings, Pittsburgh, USA, June.

[5] “Arabic language” - Wikipedia, the free encyclopedia, [Online], Available:

http://ar.wikipedia.org/wiki/ ع ب ،_لغ، [19 December 2012].

[6] Buana, P., Jannet, S. and Putra, l. (2012) „Combination of K-Nearest

Neighbor and K-Means based on Term Re-weighting for Classify Indonesian

News‟, International Journal of Computer Applications, vol. 50, no. 11, pp. 37-

42.

[7] Buyya, R. (1999) High Performance Cluster Computing: Architectures and

systems, Prentice Hall.

[8] Croskey, R. Microkernel based OS, [Online], Available:

http://books.google.ps/books?id=kXT6hwzJWWcC&printsec=frontcover&dq=i

nauthor:%22Rodrigo+Carvallo+Croskey%22&hl=ar&sa=X&ei=_HL5UPWUJu

T-4QSm3oAY&ved=0CCsQ6wEwAA [19 November 2012].

[9] Culler, D., Singh, J. and Gupta, A. (1998) Parallel Computer Architecture :

A Hardware/Software Approach, Morgan Kaufmann.

http://ar.wikipedia.org/wiki/لغة_عربية
http://books.google.ps/books?id=kXT6hwzJWWcC&printsec=frontcover&dq=inauthor:%22Rodrigo+Carvallo+Croskey%22&hl=ar&sa=X&ei=_HL5UPWUJuT-4QSm3oAY&ved=0CCsQ6wEwAA
http://books.google.ps/books?id=kXT6hwzJWWcC&printsec=frontcover&dq=inauthor:%22Rodrigo+Carvallo+Croskey%22&hl=ar&sa=X&ei=_HL5UPWUJuT-4QSm3oAY&ved=0CCsQ6wEwAA
http://books.google.ps/books?id=kXT6hwzJWWcC&printsec=frontcover&dq=inauthor:%22Rodrigo+Carvallo+Croskey%22&hl=ar&sa=X&ei=_HL5UPWUJuT-4QSm3oAY&ved=0CCsQ6wEwAA

68

[10] Dayde, M. and Dongarra, J. (2005) High Performance Computing for

Computational Science, VECPAR.

[11] Duwairi, R., Al-Refai, M., Khasawneh, N. (2009) „Feature reduction

techniques for Arabic text categorization‟, Journal of the American Society for

Information Science, vol. 60, no. 11, pp. 2347-2352.

[12] Duwairi, R., Al-Refai, M. and Khasawneh, N. (2007) „Stemming Versus

Light Stemming as Feature Selection Techniques for Arabic Text

Categorization‟, The 4th International Conference of Innovations in Information

Technology (IIT 2007) – Conference Proceedings, pp. 446 – 450.

[13] El-Halees, A. (2008) „A Comparative Study on Arabic Text

Classification‟, Egyptian Computer Science Journal, vol. 30 , no. 2.

[14] El-Kourdi, M., Bensaid, A., and Rachidi, T. (2004) „Automatic Arabic

Document Categorization Based on the Naïve Bayes Algorithm‟, The 20th

international conference on Computational Linguistics – Conference

Proceedings, Geneva, August.

[15] Fasiku, A., Olawale, J. and Jinadu, O. (2012) „A Review of Architectures -

Intel Single Core, Intel Dual Core and AMD Dual Core Processors and the

Benefits‟, International Journal of Engineering and Technology, vol. 2, no. 5,

pp. 809-817.

[16] Feldman, R. and Sanger, J. (2007) The Text Mining Handbook: Advanced

Approaches in Analyzing Unstructured Data, Cambridge University Press.

[17] Goux, E., Kulkarni, S., Linderoth, J. and Yoder, M. (2000) „Master-

Worker: An Enabling Framework for Applications on the Computational Grid‟,

The 9th IEEE International Symposium on High Performance Distributed

Computing (HPDC 2000) – Conference Proceedings, pp. 43-50.

[18] Guan, J. and Zhou, S. (2002) „Pruning training corpus to speed up text

classification‟, The 13th International Conference on Database and Expert

Systems Applications (DEXA 2002) – Conference Proceedings, Aix-en-

Provence, France, September, vol. 2453, pp. 831-840.

69

[19] Grama, A., Gupta, A., Karypis, G. and Kumar, V. (2003) Introduction to

Parallel Computing, 2
nd

 edition, Addison Wesley.

[20] Gropp, W., Lusk, E., Doss, N. and Skjellum, A. (1996) „A high-

performance, portable implementation of the MPI message passing interface

standard‟, Journal of Parallel Computing, vol. 22, no. 6, pp. 789-828.

[21] Han, J. and Kamber, M. (2006) Data Mining: Concepts and Techniques,

2
nd

 edition. The Morgan Kaufmann Series in Data Management Systems, Jim

Gray, Series Editor.

[22] Hill, T. and Lewicki, P. (2007) STATISTICS Methods and Applications,

1
st

 edition, StatSoft, Tulsa, OK.

[23] Jing, L., Huang, H. and Shi, H. (2002) „Improved feature selection approach

TFIDF in text mining‟, The 1st International Conference of machine learning

and cybernetics – Conference Proceedings, Beijing.

[24] Joachims, T. (1998) „Text Categorization with Support Vector Machines:

Learning with Many Relevant Features‟, The 10th European Conference on

Machine Learning (ECML 1998) – Conference Proceedings, London, UK, pp.

137-142.

[25] Khoja, S. and Garside, R. (1999) „Stemming Arabic text‟, Computer

Science Department, Lancaster University, Lancaster, UK.

[26] “k-nearest neighbor algorithm” - Wikipedia, the free encyclopedia,

[Online], Available: http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

[13 November 2012].

[27] Kruengkrai, C. and Jaruskulchai, C. (2002) „A parallel learning algorithm

for text classification‟, The 8th ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD 2002) – Conference Proceedings,

New York, USA, pp. 201-206.

[28] Larkey, L., Ballesteros, L. and Connell, M. (2007) „Light Stemming for

Arabic Information Retrieval‟, Arabic Computational Morphology, book

chapter, Springer.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://dl.acm.org/author_page.cfm?id=81100506234&coll=DL&dl=ACM&trk=0&cfid=118870546&cftoken=95916457
http://dl.acm.org/author_page.cfm?id=81100334545&coll=DL&dl=ACM&trk=0&cfid=118870546&cftoken=95916457

70

[29] Lewis, D. (1998) „Naïve (Bayes) at forty: The Independent Assumption in

Information Retrieval‟, The 10th European Conference on Machine Learning

(ECML 1998) – Conference Proceedings, Berlin, pp. 4–15.

[30] Lianga, S., Liua, Y., Wangb, C., and Jiana, L. (2009) „CUKNN: A parallel

Implementation of k-Nearest Neighbor on Cuda-Enabled GPU‟, The 2009 IEEE

Youth Conference on Information, Computing and Telecommunication

(ICT2009) – Conference Proceedings, pp. 415-418.

[31] MacDonald, N., Minty, E., Harding, T. and Brown, S. Writing Message

Passing Parallel Programs with MPI: A Two Day Course on MPI Usage,

Edinburgh Parallel Computing Centre, The University of Edinburgh.

[32] Manning, D., Raghavan, P. and Schütze, H. (2006) An introduction to

information retrieval, Cambridge, England: Cambridge University Press.

[33] Message Passing Interface Forum (1994) „MPI: A message-passing

interface standard‟.

[34] Moore, G. (1998) „Cramming More Components onto Integrated Circuits‟,

The Proceedings of the IEEE, vol. 86 , no. 1, pp. 82-85.

[35] Nguyen, A. (2011) „Development Of A Framework For Structural

Optimization Using Parallel Computers‟, M.Sc. Dissertation, Department of

Computer Engineering, Ruhr University of Bochum.

[36] Nishida, K. (2008) „Learning and Detecting Concept Drift‟, Ph.D.

Dissertation, Department of Information Science and Technology, Hokkaido

University.

[37] Ruoming, J., Yang, G. and Agrawal, G. (2005) „Shared memory

parallelization of data mining algorithms: Techniques, programming interface

and performance‟, IEEE Transactions on Knowledge and Data Engineering, vol.

17, no .1, pp. 71-89.

[38] Saad, M. and Ashour, W. (2010) „OSAC: Open Source Arabic Corpus‟, The

6th International Conference on Electrical and Electronics Engineering and

71

Computer Science (EEECS 2010) – Conference Proceedings, European

University of Lefke, Cyprus, November 25-26, pp. 1-6.

[39] Saad, M. and Ashour, W. (2010) „Arabic Text Classification Using

Decision Trees‟, The 12th international workshop on computer science and

information technologies (CSIT 2010) – Conference Proceedings, Moscow,

Saint-Petersburg, Russia, vol. 2, pp. 75-79.

[40] Saad, M. (2010) „The Impact of Text Preprocessing and Term Weighting on

Arabic Text Classification‟, M.Sc. Dissertation, Department of Computer

Engineering, The Islamic University-Gaza.

[41] Saad, M. (2010) „Open Source Arabic Language and Text Mining Tools‟,

(2010, August), [Online], Available: http://sourceforge.net/projects/ar-text-

mining [10 August 2012].

[42] Said, D., Wanas, N., Darwish, N. and Hegazy, N. (2009) „A Study of

Arabic Text preprocessing methods for Text Categorization‟, The 2nd

International Conference of on Arabic Language Resources and Tools –

Conference Proceedings, Cairo, Egypt.

[43] Salton, G. and Buckley, C. (1998) „A Study of Arabic Text preprocessing

methods for Text Categorization‟, The Conference of of information processing

& management – Conference Proceedings, vol. 24, no. 5, pp. 513-523.

[44] Sauban, M. and Pfahringer, B. (2003) „Text Categorization Using

Document Profiling‟, The 7th European Conference on Principles and Practice

of Knowledge Discovery in Databases (PKDD 2003) – Conference Proceedings,

Cavtat-Dubrovnik, Croatia, September 22-26, pp. 411-422.

[45] Sebastiani, F. (2002) „Machine learning in automated text categorization‟,

Journal of ACM Computing Surveys (CSUR), vol. 34 , no. 1, pp. 1-47.

[46] Sloan, J. (2004) High Performance Linux Clusters, Nutshell Handbooks

Series.

[47] Sutter, H. (2005) „The free lunch is over: a fundamental turn toward

concurrency in software‟, Dr. Dobb's Journal, vol. 30 , no. 3.

http://sourceforge.net/projects/ar-text-mining
http://sourceforge.net/projects/ar-text-mining
http://rd.springer.com/book/10.1007/b13634

72

[48] Tan, S. (2005) „Binary k-nearest neighbor for text categorization‟, Online

Information Review, vol. 29, no. 4, pp. 391-399.

[49] Tekiner, F., Tsuruoka, Y., Tsujii, J. and Ananiadou, S. (2009) „Highly

Scalable Text Mining – Parallel Tagging Application‟, The 5th International

Conference on Soft Computing, Computing with Words and Perceptions in

System Analysis, Decision and Control (ICSCCW 2009) – Conference

Proceedings, September, pp. 1-4.

[50] “Tokenization” - Wikipedia, the free encyclopedia, [Online], Available:

http://en.wikipedia.org/wiki/Tokenization [19 December 2012].

[51] Tripathy, M. and Tripathy, C. (2013) „A Review on Literature Survey of

Clusters‟, International Journal of Advances in Engineering & Technology,

vol. 5, no. 2, pp. 381-398.

[52] Yang, Y. (1999) „An Evaluation of Statistical Approaches to Text

Categorization‟, Journal of Information Retrieval, vol. 1 , no. 1-2, pp. 69-90.

[53] Yang, Y., Slattery, S. and Ghani, R. (2002) „A Study of approaches to

hypertext Categorization‟, Journal of Intelligent Information Systems, vol. 18,

no. 2-3, pp. 219-241.

[54] Yiqun, C. (2005) „Parallel and Distributed Techniques in Biomedical

Engineering‟, M.Sc. Dissertation, Department of Electrical Computer

Engineering, National University of Singapore.

[55] Zufrin, R. (1995) „Decision trees on parallel processors‟, The International

Joint Conference on Artificial Intelligence (IJCAI 1995) – Conference

Proceedings, Montreal, Canada, August.

http://en.wikipedia.org/wiki/Tokenization
http://rd.springer.com/book/10.1007/b13634

73

Appendix A

Parts of the Classifiers Source Code

Figure A.1 to A.6 display parts of the source code used to implement the

classifiers.

Figure A.1: Calculate the Distance and Sort the Distances.

74

Figure A.2: Determine the Nearest Neighbors and Determine the Majority Class.

Figure A.3: The Quick Sort Function.

75

Figure A.4: Initializing MPI and Defining Communicator

Figure A.5: The Essential Work for the Master Processor.

76

The master processor divides the training data equally according to the number of

worker processors and sending a one data partition for each of them with new

document to be classified and receives from each worker the k-th ordered list and

combining them in a k-th master list.

Figure A.6: The Essential Work for the Worker Processors.

77

The worker processors receives its data partition with new document to be

classified and calculates the distance between the new test document and all the

training samples in its data partition, sorts the distance and determine nearest

neighbors based on the k-th minimum distance locally. Then sends the k-th ordered

list to the master processor which include the k-th distances and classes.

78

Appendix B

The Text Preprocessing Using RapidMiner

We used the open source machine learning tool RapidMiner for text

preprocessing for the OSAC corpus including tokenizing string to words,

normalizing the tokenized words, applying stopwords removal, applying the term

stemming and pruning methods as a feature reduction techniques, and finally

applying the term weighting schemes to enhance text document representation

as feature vector. Figure B.1 depicts the whole process of applying the text

preprocessing methods in the OSAC corpus.

Figure B.1: The Process of Applying the Text Preprocessing in the OSAC Corpus.

79

Table B.1 to B.8 display parts of the generated text representations for OSAC corpus.

Table B.1: Part of the Light Stemming + TF-IDF Text Representation (22428 Record and 2114 Attribute).

80

Table B.2: Part of the Light Stemming + TF Text Representation (22428 Record and 2114 Attribute).

81

Table B.3: Part of the Light Stemming + TO Text Representation (22428 Record and 2114 Attribute).

82

Table B.4: Part of the Light Stemming + BTO Text Representation (22428 Record and 2114 Attribute).

83

Table B.5: Part of the Stemming + TF-IDF Text Representation (22428 Record and 1295 Attribute).

84

Table B.6: Part of the Stemming + TF Text Representation (22428 Record and 1295 Attribute).

85

Table B.7: Part of the Stemming + TO Text Representation (22428 Record and 1295 Attribute).

86

Table B.8: Part of the Stemming + BTO Text Representation (22428 Record and 1295 Attribute).

87

We splitted the generated text representations for OSAC corpus into two parts;

50% of the corpus for training (11214 document) and the remaining 50% for testing

(11214 document) using stratified sampling which keep class distributions remains

the same after splitting. Then we convert these text data parts into two text files

with .txt format in order to read it by the classifier. Figure B.2 depicts the whole

process of splitting the generated text representations for OSAC corpus.

Figure B.2: The Process of Splitting the Text Representations for OSAC Corpus.

88

Appendix C

Tools and Programs

Special tools and programs are used to complete the implementation of the

sequential and parallel classifiers and the text preprocessing of the OSAC corpus:

 RapidMiner 5: we used the open source machine learning tool

RapidMiner for text preprocessing for the OSAC corpus including

tokenizing string to words, normalizing the tokenized words, applying

stopwords removal, applying the term stemming and pruning methods as a

feature reduction techniques, and finally applying the term weighting

schemes to enhance text document representation as feature vector.

 Microsoft Visual Studio .Net 2008: this is the program that help us to

develop, build, compile, validate and execute our sequential and parallel

classifiers using C++ programming language.

 MPICHI2 Software: it is a new implementation of MPI. The parallel

implementation of the classifier is done using MPI for achieving portable

code.

 Microsoft Office Excel 2010: it is used to calculate and analyze the results.

