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Abstract 
 

Text classification has become one of the most important techniques in text mining. 

It is the process of classifying documents into predefined categories or classes based on 

their content. A number of machine learning algorithms have been introduced to deal 

with automatic text classification. One of the common classification algorithms is the  

k-Nearest Neighbor (k-NN) which is known to be one of the best classifiers applied for 

different languages including Arabic language and it is included in numerous 

experiments as a basis for comparison. Furthermore, it is a simple classification 

algorithm and very easy to implement since it does not require a training phase that 

most classification algorithms must have. However, the k-NN algorithm is of low 

efficiency because it requires a large amount of computational power for evaluating      

a measure of the similarity between a test document and every training document and 

for sorting the similarities. Such a drawback makes it unsuitable to handle a large 

volume of text documents with high dimensionality and in particular in the Arabic 

language.  

In our research, we propose to develop a parallel classifier for large-scale Arabic 

text that achieves the enhanced level of speedup, scalability, and accuracy.                 

The proposed parallel classifier is based on the sequential k-NN algorithm. We test the 

parallel classifier using the Open Source Arabic Corpus (OSAC) which is the largest 

freely public Arabic corpus of text documents. We study the performance of the parallel 

classifier on a multicomputer cluster that consists of 14 computers. We report both 

timing and classification results. These results indicate that the proposed parallel 

classifier has very good speedup and scalability and is capable of handling large 

documents collections. Also, classification results show that the proposed classifier has 

achieved accuracy, precision, recall, and F-measure with higher than 95%. 

Keywords: Arabic text classification, k-NN algorithm, Parallel classifier, Parallel 

and distributed computing, Multicomputer cluster. 
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 الملخص

 النطاق ةواسع ةالعربي وصعالي الأداء لمنص متوازيمُصنف  :عنوان البحث

، في مجال التنقيب في البيانات النصييةالمستخدمة  أصبح تصنيف النصوص أحد أىم التقنيات
 عتمادبالا بقا  مسف محددة صنيف المستندات إلى أصناف تصنيف النصوص عمى أنو عممية تعر  وي  

وأحيد  ،لمتعاميل ميت تصينيف النصيوص الآليةالعدييد مين خوارزمييات تعمييم مت د  عمى محتواىا، وقد ق  
فات لمختمف المغات بميا صن  ف كأحد أفضل الم  عر  والتي ت   (k-NN)خوارزمية  يىىذه الخوارزميات 

فيييي عييةوة عمييى ذليي ،  .لممقارنييةعديييدة كأسيياس فييي تجييارب  او يييتم تضييميني المغيية العربيييةذليي   فييي
 التيي تحتاجيييا اليتعممحتياج مرحميية ا لا تلمت بيييل لكونيي وسييمة جيدا   عتبير خوارزميية تصينيف بسييي ةت

ذات كفييا ة منخفضيية لأنيييا  (k-NN) ، فخوارزميييةمييت ذليي . الأخيير معظييم خوارزميييات التصيينيف 
د الذي سييتم تصينيفو والمسيتندات لحساب التشابو بين المستن الحسابيةال اقة كمية كبيرة من تت مب 

لمعالجية  ةغيير مناسيب االعياقل يجعميي مثيل ىيذا .وكذل  فيي ترتييب ىيذه التشيابيات في عينة التدريب
 وخصوصيا  وتصنيف الحجم الكبير من الوثياقل النصيية والتيي تحتيوي عميى حجيم كبيير مين الكمميات 

 .في المغة العربية

 ةواسع ةالعربيوص متوازي عالي الأدا  لمنص فصن  م   في ىذا البحث قمنا باقتراح ت وير
   ح يعتمد عمى ف المتوازي المقتر  صن  الم  . ن من الأدا  والدقةحس  الن ال والذي يحقل المستو  الم  

 العربيةالبيانات النصية  مجموعةح باستخدام ف المقتر  صن  ختبار الم  اوقد تم ، (k-NN) خوارزمية
(OSAC) دراسة وتم  فرة بشكل متاح،عربية من الوثاقل النصية المتو  والتي تعتبر أكبر مجموعة

. ، وقمنا بتوثيل نتاقج الأدا  والتصنيفجياز كمبيوتر عشر   المتوازي عمى أربعة  لمم صن ف الأدا  
مجموعة كبيرة المتوازي لأدا  عالي وقدرتو عمى معالجة وتصنيف أظيرت النتاقج امتة  الم صن ف 

 حقل نتاقج تصنيفالم صن ف  ن ناحية أخر ، أظيرت نتاقج التصنيف بأنم .من الوثاقل النصية
عمى من تصل إلى أ( accuracy, precision, recall, and F-measure) من حيث عالية

59%. 

المتييييوازي، ، الم صيييين ف k-NNتصيييينيف النصييييوص العربييييية، خوارزمييييية  :الكممااااام الميتاحيااااة
 .اسوب المتعددةأجيزة الح ،والموزعة الحوسبة المتوازية
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Chapter 1 Introduction 

 

1.1 Overview 

Text mining, sometimes alternately referred to as text data mining, roughly 

equivalent to text analytics, refers to the process of deriving high-quality information 

from text. High-quality information is typically derived through the devising of 

patterns and trends through means such as statistical pattern learning. Text mining 

usually involves the process of structuring the input text (usually parsing, along with 

the addition of some derived linguistic features and the removal of others, and 

subsequent insertion into a database), deriving patterns within the structured data, 

and finally evaluation and interpretation of the output as shown in Figure 1.1. Text 

mining is well motivated, due to the fact that much of the world's data can be found 

in text form (newspaper articles, emails, literature, web pages, etc.) Typical text 

mining tasks include text classification, text clustering, concept/entity extraction, 

sentiment analysis, and document summarization [16, 22].  

 

 

 

Figure 1.1: Text Mining Process. 

Automatic text classification (also known as text categorization or topic spotting) 

is the task of assigning documents to one or more predefined categories based on 

their content. This task, which falls at the crossroads of information retrieval and 

machine learning, has witnessed a booming interest in the last years from researchers 

and developers alike [16, 22]. Automatic text classification has been used in many 

applications such as real time sorting of files into folder hierarchies, topic 
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identifications, automatic meta-data organization, documents' organization for 

databases and web pages [44, 45, 53]. 

The main consecutive phases of building a text classification system involve 

compiling and labeling text documents in corpus, selecting a set of features to represent 

text documents in a defined set classes or categories (structuring text data), and finally 

choosing a suitable classifier to be trained and tested using the compiled corpus    

(Figure 1.2).  

 

 

  

Figure 1.2: Building Text Classification System Process. 

The constructed classifier system then can be used to classify new (unlabeled) text 

documents. It is shown in Figure 1.3. 

 

 

Figure 1.3: Classifying New Text Documents Using Text Classification System. 

Many algorithms have been used for text classification for different languages 

including Arabic language such as k-NN [3, 13, 52], Naïve Bayes (NB) [13, 14, 29], 

Support Vector Machines (SVM) [13, 24], and Decision Tree [4, 13, 39]. 
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Most serial text classification algorithms, like the k-NN algorithm, take a large 

amount of running times especially when the volume of text documents available for 

analysis is big. The huge amount of text documents with high dimensionality (i.e. the 

features or attributes and in this case they are the words that occur in documents) and 

in particular in the Arabic language which has a rich nature and very complex 

morphology requires a large amount of computational power for classification. 

To be more precise, we mean by large-scale Arabic text; the large number of text 

documents that are represented as records (thousands of documents) and the large 

number of words that are represented as features or attributes in the vector space 

model after preprocessing the text (thousands of features) [30].  

The k-NN algorithm becomes a standard within the field of text classification for 

different languages and is included in numerous experiments as a basis for 

comparison. It has been in use since the early stages of text classification research, 

and is one of the best classifiers within the field [32, 45]. Furthermore, it is a simple 

classification algorithm and very easy to implement since it does not require              

a training phase that most classification algorithms must have. However, the k-NN 

algorithm is of low efficiency because it requires a large amount of computational 

power for evaluating a measure of the similarity between a test document and every 

training document and for sorting the similarities. Such a drawback makes it 

unsuitable to handle a large volume of text documents with high dimensionality and 

in particular in the Arabic language which has a rich nature and very complex 

morphology and for some applications where classification efficiency is crucial   

such as online text classification, in which the classifier has to respond to a lot of 

documents arriving simultaneously in stream format. Since text data rapidly increase 

on the Internet, the scalability of the algorithm is required to handle such massive 

data. 

Parallel and distributed computing is an interesting technique for scaling up the 

algorithms. It presents a natural and promising method to deal with the problem of 

efficient classification in large-scale Arabic text collection. 
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The current trend in parallel and distributed computing is clustering.                   

In clustering, powerful low cost workstations are linked through fast communication 

interfaces to achieve high performance computing. Recent increases in 

communication speeds, microprocessor clock speeds, and availability of message 

passing libraries make cluster based computing appealing in terms of both high 

performance computing and cost effectiveness. Parallel and distributed computing on 

clustered systems is a viable and attractive proposition due to the high 

communication speeds of modern networks [19].  

The Message Passing Interface (MPI) approach is considered to be one of the 

most mature methods currently used in parallel programming mainly due to the 

relative simplicity of using the method by writing a set of library functions or an 

Application Program Interface (API) callable from C, or C++ Programs. MPI was 

designed for high performance on both massively parallel machines and clusters 

[31]. 

1.2 Problem Statement 

Most serial text classification algorithms, like the k-NN algorithm, take a large 

amount of running times especially when the volume of text documents available for 

analysis is big. The huge amount of text documents with high dimensionality and in 

particular in the Arabic language which has a rich nature and very complex 

morphology require a large amount of computational power for classification. 

The problem of this research is how to develop a parallel classifier for large-scale 

Arabic text that achieves the enhanced level of speedup, scalability, and accuracy. 

1.3 Objectives 

1.3.1 Main Objective 

The main objective of this research is to develop a parallel classifier for        

large-scale Arabic text that achieves the enhanced level of speedup, scalability, and 

accuracy. The proposed parallel classifier is based on the sequential k-NN algorithm. 
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1.3.2 Specific Objectives 

The specific objectives of this research are: 

 Determining the largest freely public Arabic corpus of text documents with 

various domains.  

 Investigating the most suitable text preprocessing techniques such as 

stemming and term pruning methods and term weighting schemes. 

 Determining the most suitable data decomposition and task mapping 

techniques for the proposed parallel classifier.  

 Designing the parallel classifier model. 

 Implementing the sequential k-NN algorithm as well as the proposed parallel 

classifier. 

 Applying the implemented sequential k-NN algorithm as well as the proposed 

parallel classifier on the largest freely public Arabic corpus of text 

documents. 

 Evaluating the proposed parallel classifier using different performance 

metrics for parallel systems such as execution time, speedup, efficiency, and 

parallel overhead. 

 Evaluating the obtained classification results using different classification 

measures such as accuracy, precision, recall, and F-measure. 

1.4 Importance of the Thesis  

 The proposed parallel classifier can be applied to various domains. 

 This classifier is suitable for applications where the classification efficiency 

is crucial such as online text classification, in which the classifier has to 

respond to a lot of documents arriving simultaneously in stream format. 
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 Solve the problem of low efficiency for the sequential k-NN algorithm due to 

the large amount of computational power. 

 The proposed parallel classifier can be used to efficiently and accurately 

categorize a large volume of Arabic text with high dimensionality. 

 More support for the Arabic language in the technology area as our Islam 

encourages us to support it. 

1.5 Scope and Limitations 

The outcome of this research will be a parallel classifier for large-scale Arabic 

text that achieves the enhanced level of speedup, scalability, and accuracy. The work 

is applied with some limitations and assumptions such as: 

 We will use a freely public Arabic corpus for text documents collection and 

the Non-free Arabic corpora are not considered. 

 We will apply the text preprocessing techniques using the open source 

machine learning tool RapidMiner and the text preprocessing step will not be 

covered by the parallel classifier.  

 The proposed parallel classifier is depend on the sequential k-NN algorithm.  

 We will conduct our experiments on a set of processors and their own 

exclusive memory (multicomputer cluster). This platform is programmed 

using send and receive primitives. Libraries such as MPI provide such 

primitives. 

 The maximum number of the used processors will be subject to the 

experiment. 
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1.6 Research Methodology 

We follow a research methodology that consists of the following steps: 

 Conducting a Survey: This include reviewing the recent literature closely 

related to the thesis problem statement and the research question. After 

analyzing the existing methods, identifying the drawbacks or the lack of 

existing approaches, we formulate the strategies and solutions and how to 

overcome the drawbacks. 

 Text Data Collection: We will determine the largest freely public Arabic 

corpus of text documents with various domains.  

 Text Preprocessing: Some preprocessing in the Arabic text corpus will be 

performed. It includes tokenizing strings to words, normalizing the tokenized 

words, applying stopwords removal, applying the suitable term stemming and 

pruning methods as a feature reduction techniques, and finally applying the 

suitable term weighting scheme to enhance text document representation      

as feature vector. We use the open source machine learning tool RapidMiner 

for text preprocessing.  

 Design the Parallel Classifier Model: The model is a way of structuring      

a parallel classifier by selecting the most suitable decomposition and mapping 

techniques and applying the appropriate strategy to minimize interactions 

[19].  

 Implement the Sequential k-NN Algorithm as well as the Proposed 

Parallel Classifier: We will implement the sequential k-NN algorithm using 

C++ programming language to serve as a baseline when we compare it with 

the proposed parallel classifier. We will implement the proposed parallel 

classifier using C++ programming language and the MPI library                   

on a multicomputer cluster. We will apply the implemented sequential k-NN 

algorithm as well as the proposed parallel classifier on the largest freely 

public Arabic corpus of text documents. 
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 Analysis and Discussion: The proposed parallel classifier will be evaluated 

using different performance metrics for parallel systems such as execution 

time, parallel overhead, speedup, and efficiency which determines the 

scalability. Also, the obtained classification results will be evaluated using 

different classification measures such as accuracy, precision, recall, and       

F-measure which are generally accepted ways of measuring systems' success 

in this field. 

1.7 Outline of the Thesis 

The rest of the thesis is organized as follows: Chapter 2 is an overview of parallel 

computing. Chapter 3 reviews related works. Chapter 4 describes the proposed 

parallel Arabic text classifier. Chapter 5 presents the experiments and the results. 

Finally, Chapter 6 presents the conclusions and future directions. 
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Chapter 2 Overview of Parallel 

Computing 
 

 

This chapter presents an overview of parallel computing; the motivation for 

parallel computing, types of parallel computers, methods of parallelism, 

interconnection schemes of parallel computing systems, software environments for 

parallel programming, the master-slave programming paradigm, the problems in 

developing parallel algorithms for distributed environment, and finally the 

performance metrics for parallel systems. 

2.1   Definition: Parallel Computing 

Parallel computing is the simultaneous execution of the same task on multiple 

processors in order to obtain faster results. It puts the emphasis on generating large 

computing power by employing multiple processing entities simultaneously for         

a single computation task. These multiple processing entities can be a multiprocessor 

system, which consists of multiple processors in a single machine connected by bus, 

or a multicomputer system, which consists of several independent computers 

interconnected by telecommunication networks or computer networks [54].  

2.2   Motivation of Parallel Computing 

The main purpose of doing parallel computing is to solve problems faster or to 

solve larger problems.  

Parallel computing is widely used to reduce the computation time for complex 

tasks. Many industrial and scientific research and practice involve complex        

large-scale computation, which without parallel computers would take years and 

even tens of years to compute. It is more than desirable to have the results available 

as soon as possible, and for many applications, late results often imply useless results 

[54]. 
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As predicted by Moore's Law [34], the computing capability of single processor 

has experienced exponential increase. This has been shown in incredible 

advancement in microcomputers in the last few decades. Performance of a today 

desktop PC costing a few hundred dollars can easily surpass that of million-dollar 

parallel supercomputer built in the 1960s. It might be argued that parallel computer 

will phase out with this increase of single chip processing capability. However, three 

main factors have been pushing parallel computing technology into further 

development.  

First, although some commentators have speculated that sooner or later serial 

computers will meet or exceed any conceivable need for computation, this is only 

true for some problems. There are others where exponential increases in processing 

power are matched or exceeded by exponential increases in complexity as the 

problem size increases. There are also new problems arising to challenge the extreme 

computing capacity. Parallel computers are still the widely used and often only 

solutions to tackle these problems [54]. 

Second, at least with current technologies, the exponential increase in serial 

computer performance cannot continue for ever, because of physical limitations to 

the integration density of chips. In fact, the foreseeable physical limitations will be 

reached soon and there is already a sign of slow down in pace of single chip 

performance growth. Further improvement in performance will rely more on 

architecture innovation, including parallel processing. Intel and AMD have already 

incorporated multicore architectures in their latest offering [47].  

Finally, generating the same computing power, single-processor machine will 

always be much more expensive than parallel computer. The cost of single CPU 

grows faster than linearly with speed. With recent technology, hardware of parallel 

computers are easy to build with off-the-shelf components and processors, reducing 

the development time and cost. It is also much easier to scale the processing power 

with parallel computers. Most recent technology even supports to use old computers 

and shared components to be part of parallel machine and further reduces the cost. 
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With the further decrease in development cost of parallel computing software, the 

only impediment to fast adoption of parallel computing will be eliminated [54]. 

2.3   Types of Parallel Computers 

Parallel computers can be roughly classified according to the level at which the 

hardware supports parallelism. 

2.3.1 A Multi-Core Processor 

A multi-core processor is a single computing component with two or more 

independent actual central processing units, called cores, which are the units that 

read and execute program instructions. The instructions are ordinary CPU 

instructions such as add, move data, and branch, but the multiple cores can run 

multiple instructions at the same time, increasing overall speed for programs 

amenable to parallel computing. Manufacturers typically integrate the cores onto      

a single integrated circuit die known as a Chip Multiprocessor (CMP), or onto 

multiple dies in a single chip package [15]. A generic dual-core processor is shown 

in    Figure 2.1. 

 

 
 

Figure 2.1: A Generic Dual-Core Processor [15]. 

Processors were originally developed with only one core. A dual-core processor 

has two cores, a quad-core processor contains four cores, a hexa-core processor 

contains six cores, an octa-core processor contains eight cores. A multi-core 

processor implements multiprocessing in a single physical package.                   
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Multi-core processors are widely used across many application domains including 

general-purpose, embedded, network, Digital Signal Processing (DSP), and graphics 

[15]. 

2.3.2 A Shared Memory Multiprocessor  

A shared memory multiprocessor is a computer system with multiple identical 

processors that share memory and connect via a bus. It involves a multiprocessor 

computer hardware architecture where two or more identical processors are 

connected to a single shared main memory and are controlled by a single OS 

instance. Most common multiprocessor systems today use an Symmetric 

Multiprocessing (SMP) architecture [8]. A shared memory multiprocessor system    

is shown in Figure 2.2.  

A shared memory multiprocessor systems are tightly coupled systems with a pool 

of homogeneous processors running independently, each processor executing 

different programs and working on different data and with capability of sharing 

common resources (memory, I/O device and so on) and connected using a system 

bus [8]. 

 

  

 

Figure 2.2: A Shared Memory Multiprocessor System [8]. 
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2.3.3 Cluster Computing 

The current trend in parallel and distributed computing is clustering. In 

clustering, powerful low cost workstations are linked through fast communication 

interfaces to achieve high performance parallel computing. Recent increases in 

communication speeds, microprocessor clock speeds, and availability of message 

passing libraries make cluster based computing appealing in terms of both high 

performance computing and cost effectiveness. Parallel and distributed computing on 

clustered systems is a viable and attractive proposition due to the high 

communication speeds of modern networks. Computer cluster is now the mainstream 

architecture of modern parallel machines [19]. 

The components of a cluster are usually connected to each other through fast 

local area networks, each computer running its own instance of an operating system. 

Computer clusters emerged as a result of convergence of a number of computing 

trends including the availability of low cost microprocessors, high speed networks, 

and software for high performance distributed computing [51]. The typical 

architecture of a cluster is shown in Figure 2.3.  

 

 

Figure 2.3: The Typical Cluster Computer Architecture [7]. 
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Attributes of Clusters 

 Computer clusters may be configured for different purposes ranging from 

general purpose business needs such as web-service support,                         

to computation-intensive scientific calculations [10]. 

 Load-balancing clusters are configurations in which cluster-nodes share 

computational workload to provide better overall performance [46]. 

 High-availability clusters  improve the availability of the cluster approach. 

They operate by having redundant nodes, which are then used to provide 

service when system components fail. High-availability cluster 

implementations attempt to use redundancy of cluster components to 

eliminate single points of failure [46]. 

Our research mainly rely on a computer cluster for computing power.  

2.4   Methods of Parallelism 

For compute-intensive applications, parallelization is an obvious means for 

improving performance and achieving scalability. A variety of techniques may be 

used to distribute the workload involved in data mining over multiple processors. 

Two major classes of parallel implementations are distinguished; task parallelism 

and data parallelism. 

With task parallelism each processor has or needs access to the entire database 

and multiple operations are executed concurrently. With data parallelism the 

database is portioned among the processors and the same operation is executed in 

multiple partitions at the same time. From a data mining viewpoint, data parallelism 

has several main advantages over task parallelism. A lot of previously written serial 

code can be reused in a data parallel fashion. This simplifies programming and leads 

to a development time significantly smaller than one associated with task parallel 

programming. In most applications, the amount of data can increase arbitrarily fast, 

while the number of lines of code typically increases at a much slower rate. To put it 

in simple terms, the more the data is available, the more opportunity to exploit data 

http://en.wikipedia.org/wiki/Load_balancing_(computing)
http://en.wikipedia.org/wiki/High-availability_cluster
http://en.wikipedia.org/wiki/Node_(networking)
http://en.wikipedia.org/wiki/Single_point_of_failure
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parallelism [19]. Figure 2.4 shows that the dataset itself can be shared (in shared 

memory architecture), partially or totally replicated, or portioned among the 

available nodes (in distributed memory architecture). 

 

 

Figure 2.4: Data Partitioning Methods.  

Data partitioning comes in two flavors. A partitioning based on records will 

assign non-overlapping sets of records to each of the processors. Alternatively,                     

a partitioning of attributes will assign sets of attributes to each of the processors [19]. 

2.5  Interconnection Schemes of Parallel Computing Systems  

High-performance parallel computers, especially those able to scale to thousands 

of processors, have been using sophisticated interconnection schemes. Here we cover 

the major interconnection schemes listed in Figure 2.5 in brief.  

 

 

Figure 2.5: Illustrations of Simple Interconnection Schemes [54]. 
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Figure 2.5(A) illustrates the line scheme, which is the simplest connection 

scheme. In this illustration, circle represents a computing node and line represents 

direct communication channel between nodes. Computing nodes are arranged on and 

connected with a single line. However, communication between any two              

non-neighbor nodes needs the help of other nodes; the fault at any node will make 

the whole system break. This scheme is simple and low-cost, but will not be able to 

generate high performance or reliability; and as system scales, the performance 

degrades rapidly [19]. Figure 2.5(C) illustrates the ring scheme, which is                 

an enhanced line topology, with an extra connection between the two ends of the 

line. However, basic characteristics are still the same [19]. 

The other extreme is probably the fully-connected topology, in which there is      

a direct connection between any two computing nodes. Fully-connected topology is 

shown in Figure 2.5(B). The corresponding graph representation has an edge 

between any two vertices, and distance between any two vertices is 1 , and it 

generates the minimal communication latency. This scheme will generate the highest 

performance possible, but due to the complexity and thus cost, it can hardly be 

scalable with larger scale, although performance will not degrade at all [19]. 

Similar to fully-connected network, bus network, illustrated in Figure 2.5(E), has 

direct connection between any two nodes. In fact, bus topology shares the same 

logical graph representation with fully-connected topology. The connection between 

any pair of nodes is not dedicated but shared: interconnection is implemented via      

a shared bus. This reduces the complexity significantly. This single shared bus 

prevents more than one pair of nodes to carry out point-to-point communication.    

As a result, the system does not scale very well [19]. 

An intuitive improvement on bus network is to change the bus to eliminate the 

constraint that only two nodes can communicate at any time. The result is the star 

network, where a communication switch node is added to replace the shared bus,     

as shown in Figure 2.5(D) [19]. 

For computer clusters, most are built with a star structured interconnection 

network around a central switch.  
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There are other types of more sophisticated topology schemes, such as tree, 

mesh, and hypercube, which are widely used in parallel computers with thousands of 

processors or more. These schemes often scale better to larger scale network with 

good performance. Readers are advised to [9] for more information about this. 

2.6   Software Environments for Parallel Programming 

Parallel programming is a complex task. In order to reduce this complexity, 

different programming models are abstracted, with each providing tools such as 

special-purpose compilers, libraries and frameworks to simplify programming task. 

These tools hide many details about parallel execution, such as message transfer and 

routing, task allocation and migration, and platform differences. Higher-level 

programming model will even have commonly-used algorithms pre-implemented in 

the bounded libraries [35]. Our research is based on message passing programming 

model and specifically on MPI standards and MPICH library.  

2.6.1 Message Passing Interface and MPICH  

MPI, is the most widely-used message passing standard. The basic functions are 

defined by the MPI standard [33], and with many implementations targeting almost 

all distributed memory architectures, it is the de facto industrial standard for message 

passing programming. There are two main standards that make up MPI, MPI-1 and 

MPI-2. Most basic functionality is provided in the MPI-1 standard, with more 

advanced features defined in the MPI-2 standard. One of the key objectives of the 

MPI standard is to provide portability between different parallel machines. 

Therefore, MPI defines its own data types which are used for data transfers which are 

then mapped to specific machine data types by the MPI library implementation, 

which should ensure that programs do not have to be  rewritten to use different 

computing hardware [31]. 

Basically, MPI provides two types of communication operations. Point-to-point 

operations which allow any two processes to exchange information via MPI_Send 

(for sending), MPI_Recv (for receiving) and their variants. Collective operations are 
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provided so that a set of processes, known as a communicator, can share and dispatch 

data through broadcast and reduction operations [31]. 

When an MPI program runs, the user will explicitly specify the number of 

parallel processes and how the processes are mapped to physical processors.           

On startup, each processor starts one or more processes to execute the same program 

body. Each parallel process will be assigned a rank, which serves as the identity of 

the process, and which will also cause processes to carry out different computation 

despite their common program body. During the execution, processes carry their own 

computation, without synchronization with other processes unless they encounter an 

explicit synchronization command. Processes communicate with each other using 

point-to-point or collective communication primitives, using process rank to address 

the recipient or sender if it is required. The whole parallel program exits when all the 

parallel processes have finished. Although there is no requirement on how the 

computation result is generated, in many cases a head process, usually the one with 

rank 0, will collect the results from participating processes and assemble the final 

outcome [31]. 

The two major implementations of MPI standards are MPICH [20] developed by 

Argonne National Laboratory and LAM by Ohio Supercomputing Center and 

Indiana University. Our research is heavily based on MPICH2. MPICH2 is a new 

implementation of MPI by the MPICH team. In addition to features of its 

predecessor, including the portability advantage, MPICH2 includes partial 

implementation of MPI-2 functions, including one-side communication, dynamic 

process creation, and expand MPI-IO functionality [31]. 

2.7   Master-Slave Programming Paradigm  

The master-slave paradigm is the main programming paradigm used in 

parallel programs. Master-slave approach is used for task that can be partitioned 

into several independent subtasks, which can be carried out separately and 

probably (but not necessarily) in parallel without any inter-subtask 

communication [19].  
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Figure 2.6: Master-Slave Paradigm [54]. 

The master-slave paradigm is depicted in Figure 2.6. The master node, 

usually denoted as node 0, is in charge of farming out work load to workers. 

Several workers work on workloads assigned by the master node. When a worker 

finished its current work load, it reports the result back to the master if necessary 

and triggers the master to send additional work load to the worker. As long as the 

task can be partitioned into sufficiently small segments, this approach will 

produce small amounts of idle time for the worker nodes [19].  

The master-slave paradigm is very robust to program. All tasks control is 

done by one processor, the master. The user should not be burdened with the 

difficult issue of how to distribute algorithm control information to the various 

processors. Moreover, the typical parallel programming hurdles of load balancing 

circumvented. Having a central point of control facilitates the collection of          

a job‟s statistics. Furthermore, a surprising number of sequential approaches to 

large-scale problems can be mapped naturally to the master-worker paradigm 

[17].  

Programs with centralized control are easily able to adapt to a dynamic and 

heterogeneous computing environment. If additional processors become 

available during the course of the computation, they simply become workers and 

are given portions of the computation to perform. Having centralized control also 
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eases the burden of adapting to a heterogeneous environment, since only the 

master need be concerned with the matchmaking process of assigning tasks to 

resources making the best use of the resource characteristics [17]. 

Our research is based on the master-slave programming paradigm in which 

the master processor generates the work  and allocates it to the worker 

processors. 

2.8   Problems in Developing Parallel Algorithms for Distributed 

Environment 

There are several problems in developing parallel algorithms for a distributed 

environment with data mining which is being considered in this research work.  

These are [19]: 

 Data Distribution: One of the benefits of parallel and distributed data 

mining is that each node can potentially work with a reduced-size subset of 

the total database. A parallel algorithm in distributed environment must 

effectively distribute data to allow each node to make independent progress 

with its incomplete view of the entire database. 

 I/O Minimization: Even with good data distribution, parallel data mining 

algorithms must strive to minimize the amount of I/O they perform to the 

database. 

 Load Balancing: To maximize the efficiency of parallelism, each 

workstation must have approximately the same amount of work to do. 

Although a good initial data distribution can help provide load-balancing. 

 Avoiding Duplication: Ideally, no workstation should do redundant work 

(work already performed by another node). 

 Minimizing Communication: An ideal parallel data mining algorithm 

allows all workstations to operate asynchronously, without having to stall 

frequently for global barriers or for communication delays. 
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 Maximizing Locality: As in all performance programming,                     

high-performance parallel data mining algorithms must be designed to reap 

the full performance potential of hardware. This involves maximizing locality 

for good cache behavior, utilizing as much of the machine's memory 

bandwidth as possible, etc. 

Achieving all of the above goals in one algorithm is nearly impossible, as there 

are tradeoffs between several of the above points. Existing algorithms for parallel 

data mining attempt to achieve an optimal balance between these factors. 

2.9   Performance Metrics for Parallel Systems 

In order to demonstrate the effectiveness of parallel processing for a problem on 

some platform, several concepts have been defined. These concepts will be used in 

later chapters to evaluate the effectiveness of parallel programs. These include serial 

runtime, parallel runtime, parallel overhead, speedup, and efficiency.  

2.9.1 Serial Runtime 

The serial runtime of a program is the time elapsed between the beginning and 

the end of its execution on a sequential computer. The serial runtime is denoted by TS 

[19]. 

2.9.2 Parallel Runtime 

The parallel runtime is the time that elapses from the moment the first processor 

starts to the moment the last processor finishes execution. The parallel runtime is 

denoted by TP [19]. 

2.9.3 Total Parallel Overhead 

The parallel overhead is the total time spent by all processors combined in non 

useful work [19]. The overhead function (To) is given by: 

To = (p TP - TS) / TS  (2.1) 
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where p is the number of processors, TS is the serial runtime, and TP is the parallel 

runtime.  

2.9.4 Speedup 

The speedup is the ratio of the time taken to solve a problem on a single 

processor to the time required to solve the same problem on a parallel computer with 

p identical processing elements [19]. This is shown as:  

S = TS / TP  (2.2) 

where S is the speedup achieved with p processors, TS is the serial runtime, and TP is 

the parallel runtime.  

A typical speedup curve for a fixed size problem is shown in Figure 2.7. As the 

number of processors increases, speedup also increases until a saturation point is 

reached. Beyond this point, adding more processors will not bring further 

performance gain. This is the combined result of reduced computation on 

participating node, and increased duplicate computation and synchronization and 

communication overhead [19].  

 

Figure 2.7: Typical speedup curve [54]. 
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2.9.5 Efficiency 

The efficiency is a measure of the fraction of time for which a processing 

element is usefully employed [19]. It is given by: 

E = S / p  (2.3) 

where E is the efficiency, S is the speedup achieved with p processors, and p is the 

number of processors.  

It measures how much speedup is brought per additional processor. Based on the 

typical speedup curve shown in Figure 2.7, it is evident that typically efficiency will 

be decreased upon increase in the number of processors. Efficiency can be as low as 

0 and as high as 1 [19].  

2.9.6 Scalability  

The concept of scalability cannot be computed but evaluated. A parallel system is 

said to be scalable when the efficiency can be kept constant as the number of 

processing elements is increased, provided that the problem size is increased [19]. 

2.10 Summary 

In this chapter, we presented an overview of parallel computing; the main 

purpose of doing parallel computing, the classification of parallel computers 

according to the level at which the hardware supports parallelism, the techniques that 

used to distribute the workload in parallel programs, the major interconnection 

schemes of parallel computing systems, the message passing programming model for 

parallel programs, the master-slave paradigm which is the main programming 

paradigm used in parallel programs, the problems in developing parallel algorithms 

for distributed environment, and finally we described the performance metrics for 

parallel systems that evaluate the effectiveness of parallel programs.  

A review of existing works closely related to the thesis will be discussed in the 

next chapter.  



24 

 

Chapter 3 Related Works 

 

This chapter presents a review of existing works closely related to the thesis and 

identifies the drawbacks of existing approaches. 

In order to improve the efficiency of sequential classification algorithms for text 

classification, some researches have been conducted in this area and they can be 

classified into three categories: 

3.1 Enhancing the Efficiency of Sequential Classification 

Algorithms with Feature Selection, Reduction and Pruning 

Strategies 

Al-Shalabi et. al [3], applied k-NN on Arabic text, they used Term Frequency 

Inverse Document Frequency (TF-IDF) as a weighting scheme for feature selection 

and got accuracy of 95%. They also applied stemming as feature reduction 

technique. They collected a corpus from newspapers (Al-Jazeera, An-Nahar, Al-

Hayat, Al-Ahram, and Ad-Dostor) and from Arabic Agriculture Organization 

website. The corpus consists of 627 documents belonging to one of six categories 

(politics 111, economic 179, sport 96, health and medicine 114, health and cancer 27, 

and agriculture 100). They preprocessed the corpus by applying stop words removal 

and light stemming. The feature selection and reduction strategies can decrease the 

computation complexity, reduce the dimensionality, and improve the accuracy rate of 

classification. However, the size of the used corpus is small and this approach could 

not do well in the case of reducing computation complexity for large volume of text 

documents with high number of features and in particular in the Arabic language 

which has a rich nature and very complex morphology. 
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Duwairi et. al [11], compared three dimensionality reduction techniques; 

stemming, light stemming, and word cluster. Stemming reduces words to their stems. 

Light stemming removes common affixes from words without reducing them to their 

stems. Word clusters group synonymous words into clusters and each cluster is 

represented by a single word. The purpose of employing the previous methods is to 

reduce the size of documents vectors without affecting the accuracy of the classifiers. 

They used k-NN to perform the comparison. The comparison metric includes size of 

documents vectors, classification time, and accuracy (in terms of precision and 

recall). They used Term Frequency (TF) as a weighting scheme for feature selection. 

They collected 15,000 documents belonging to one of three categories (sport, 

economic, education). Each category has 5,000 documents. They split the corpus; 

9,000 documents for training and 6,000 documents for testing. Several experiments 

were carried out using four different representations of the same corpus: the first 

version uses stem-vectors, the second uses light stem-vectors, the third uses word 

clusters, and the fourth uses the original words (without any transformation) as 

representatives of documents. In terms of vector sizes and classification time, the 

stemmed vectors consumed the smallest size and the least time necessary to classify 

a testing dataset that consists of 6,000 documents. The light stemmed vectors 

superseded the other three representations in terms of classification accuracy. The 

feature selection and reduction strategies can decrease the computation complexity, 

reduce the dimensionality, and improve the accuracy rate of classification. However, 

this approach could not do well in the case of reducing computation complexity for 

text documents with high number of distinct words and in particular in the Arabic 

language which has a rich nature and very complex morphology. Also, this approach 

reduces the features but what is the solution in the case of large volume of text 

documents which increase the computation complexity. 

Guan and Zhou [18], proposed a training-corpus pruning based approach to 

speedup the k-NN algorithm. It depends on the removal of the noisy and superfluous 

documents in training corpuses, which leads to substantial classification efficiency 

improvement. They used clustering-based feature selection method that treating each 

training class as a distinctive cluster, then using a genetic algorithm to select a subset 
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of documents features. They used Apte corpus; the number of documents sample is 

5773 in ten categories, 2447 documents prepared for testing. The pruning strategy 

can reduce the size of training corpus significantly, decrease the computation 

complexity, but it can damage the classification quality of k-NN for text 

classification, any removal of training documents may aggravate the sparseness of 

the text corpus, which leads to a degradation of the k-NN classifier. 

3.2 Enhancing the Efficiency of Sequential Classification 

Algorithms by Combination with Other Algorithms 

Buana et. al [6], proposed a method that combines traditional k-NN algorithm 

and k-Means clustering algorithm. They used TF-IDF as the weighting scheme for 

feature selection. They group all the training samples of each category by k-Means 

algorithm, and take all the cluster centers as the new training samples, the modified 

training samples are used for classification with the k-NN algorithm. The results 

show that the combination of the proposed algorithm in this study has a percentage 

accuracy reached 87%, an average value of f-measure evaluation= 0.8029 with the 

best k-values= 5 and the computation takes 55 second for one document. Buana 

collected corpus from news website www.detik.com and www.kompas.com. The 

number of documents sample is 802 with 5915 terms and 6 categories that are, 

General News, Business Economics, Education and Science, Health, Sports, and 

Technology. 60 documents prepared for testing, each category of 10 documents. 

Tan [48], proposed a binary k-NN for text classification. He employed the 

information gain as the feature selection method. They combine the centroid-based 

classifier with the k-NN classifier. He compute a centroid vectors to represent the 

documents of each class. For each test document, he first select some neighboring 

classes as candidate categories by calculating the similarity between the test 

document and centroid vectors; he then use the k-NN decision rule to find the most 

similar category among the candidate categories. The results show that the binary    

k-NN takes much less CPU time, without loss of classification accuracy. Tan used 

two English corpora: the 20Newsgroup and the OHMUSED. The 20Newsgroup 

http://www.kompas.com/
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dataset contains approximately 20,000 documents and The OHMUSED dataset 

contains approximately 11,162 documents in ten categories. 

The combination of  traditional k-NN algorithm and clustering  algorithm can 

reduce the time complexity of traditional k-NN algorithm. However, The clustering 

algorithm can take a large amount of time for clustering the training samples 

especially in the case of the large volume of text documents. 

3.3 Enhancing the Efficiency of Sequential Classification 

Algorithms with Parallel Computing 

Ruoming  et. al [37], proposed a parallel learning algorithm. The parallel 

algorithm is based on the k-NN algorithm. They evaluated the parallel 

implementation on a multiprocessor with shared memory that connect multiple 

processors to a single memory system. Each training sample is processed by one 

processor. After processing the sample, the processor determines if the list of            

k current nearest neighbors should be updated to include this sample. They used        

a full-replication scheme to avoid the race conditions. They experimented with a 800 

MB main memory resident dataset. The reduction object in this algorithm‟s parallel 

implementation is the list of k-nearest neighbors, the value of k used in their 

experiments was 2000. The speedup results were suitable up to four processors. 

However, sharing memory in this way can easily lead to a performance bottleneck 

and the scalability of the processors is limited. 

Lianga et. al [30], proposed a parallel learning algorithm. The parallel algorithm 

is based on the k-NN algorithm. They evaluated the parallel implementation on 

Compute Unified Device Architecture (CUDA) enabled Graphics Processing Unit 

(GPU). The advantage of this method is the highly parallelizable architecture of the 

GPU. Recent development in GPUs has enabled inexpensive high performance 

computing for general-purpose applications. Due to GPU's tremendous computing 

capability, it has emerged as the co-processor of the Central Processing Unit (CPU) 

to achieve a high overall throughput. CUDA programming model provides the 

programmers adequate C language like APls to better exploit the parallel power of 

the GPU and manipulate it. At the hardware level, CUDA-enabled GPU is a set of 
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Single Instruction Stream, Multiple Data Stream (SIMD) processors with 8 stream 

processors. They used synthetic data generated by MATLAB for the purpose of 

evaluation where the number of data objects is 262144 records. Their experiment 

showed good scalability on data objects. CUK-NN presented up to 15.2 speedup. The 

result shows that CUk-NN is suitable for large scale dataset. However, since SIMD 

processors are specially designed, they tend to be expensive and have long design 

cycles and the scalability of the processors is limited.  

Zufrin [55], proposed a parallel decision tree, it is a distributed-memory,      

data-parallel algorithm, it splits the training records horizontally in equal-sized 

blocks, among the processors. It follows a master-slave paradigm, where the master 

builds the tree, and finds the best split points. The slaves are responsible for sending 

class frequency statistics to the master. For categorical attributes, each processor 

gathers local class frequencies, and forwards them to the master. For numeric 

attributes, each processor sorts the local values, finds class frequencies for split 

points, and exchanges these with all other slaves. Each slave can then calculate the 

best local split point, which is sent to the master, who then selects the best global 

split point. This work supports our approach in terms of using multicomputer cluster 

which is a viable and attractive method due to the high communication speeds of 

modern networks. 

Tekiner et. al [49], proposed a parallel learning algorithm for part of speech 

tagging. The parallel algorithm is based on the Maximum Entropy algorithm. They 

used Genia which is a sequential POS tagger as a baseline for comparison. Genia is 

built with maximum entropy and it is specifically tuned for biomedical text. They 

implemented a parallel version of genia tagger application and performance has been 

compared. The focus has been particularly on scalability of the application. Scaling 

up to 96 processors has been achieved and a hundred thousand abstracts have been 

processed in less than 5 minutes, whereas serial processing would take around          

8 hours. The parallel implementation of genia tagger is done using MPI library. They 

used two datasets; the first dataset is Medline which is a collection of Medline 

abstracts contain around 1.7 billion words, another dataset contains 1 Million 

abstracts. This work supports our approach in terms of using multicomputer cluster 
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which is a viable and attractive method due to the high communication speeds of 

modern networks.  

Kruengkrai and Jaruskulchai [27], proposed a parallel algorithm for text 

classification task. The parallel algorithm is based on the Expectation Maximization 

(EM) algorithm and the NB classifier. One drawback of the NB classifier is that it 

requires a large set of the labeled training documents for learning accurately. The 

cost of labeling documents is expensive, while unlabeled documents are commonly 

available. By applying the EM algorithm, they can use the unlabeled documents to 

augment the available labeled documents in the training process. They parallelized 

the algorithm by using the idea of data parallel computation. They evaluated the 

parallel implementation on a large Linux PC cluster called PIRUN Cluster.           

The experimental results on the efficiency indicate that the parallel algorithm has 

good speed up characteristics when the problem sizes are scaled up. They used the 20 

Newsgroups data set. It contains approximately 20,000 documents. This work 

supports our approach in terms of using multicomputer cluster which is a viable and 

attractive method due to the high communication speeds of modern networks. 

3.4 Summary 

In this chapter, we presented a review of existing works closely related to the 

thesis and identifies the drawbacks of existing approaches, we classified the methods 

to improve the efficiency of sequential classification algorithms into three categories: 

The first category includes using the feature selection, reduction and pruning 

strategies that decrease the computation complexity, reduce the dimensionality, and 

improve the accuracy rate of classification. However, the size of the used corpora is 

small and this strategies could not do well in the case of reducing computation 

complexity for a large volume of text documents with high number of features and in 

particular in the Arabic language which has a rich nature and very complex 

morphology. The pruning strategy can reduce the size of training corpus 

significantly, decrease the computation complexity, but it can damage the 

classification quality of k-NN for text classification. The second category includes 

combination with other algorithms such as clustering  algorithm that reduce the time 
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complexity of traditional k-NN algorithm. However, The clustering algorithm can 

take a large amount of time for clustering the training samples especially in the case 

of the large volume of text documents. The third category includes using the parallel 

computing to improve the efficiency of sequential k-NN algorithm, their platform 

comprises a multiprocessors with shared memory that connect multiple processors to 

a single memory system. However, sharing memory in this way can easily lead to     

a performance bottleneck and the scalability of the processors is limited.  

In this research, we intend to develop a parallel classifier for large-scale Arabic 

text that achieves the enhanced level of speedup, scalability, and accuracy.            

The proposed parallel classifier is based on the sequential k-NN algorithm. Our 

platform comprises a set of processors and their own exclusive memory 

(multicomputer cluster) which is a viable and attractive method due to the high 

communication speeds of modern networks, this platform is programmed using send 

and receive primitives, libraries such MPI provide such primitives. 

In the next chapter, we will present the sequential k-NN algorithm and describe 

the text data collection and preprocessing stages. 
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Chapter 4 The Sequential k-NN 

Algorithm and Text Preprocessing  
 

In this chapter we present the sequential k-NN algorithm which is  the base of the 

proposed parallel classifier and describe the text data collection and preprocessing 

stages. Text preprocessing is the important stage in text classification and it includes 

many steps including feature reduction using morphological analysis techniques, and 

term weighting. 

4.1   The Sequential k-NN Algorithm 

The k-NN algorithm [21]: was first described in the early 1950. It is based on 

learning by analogy, that is, by comparing a given test tuple with training tuples that 

are similar to it. The training tuples are described by n attributes. Each tuple 

represents a point in an n-dimensional space. In this way, all of the training tuples are 

stored in an n-dimensional pattern space. When given an unknown tuple, a k-NN 

classifier searches the pattern space for the k training tuples that are closest to the 

unknown tuple. These k training tuples are the k nearest neighbors of the unknown 

tuple. Closeness is defined in terms of a distance metric, such as Euclidean distance. 

The Euclidean distance between two points or tuples, X=(x1,x2,…,xn) and 

Y=(y1,y2,…,yn) is: 

 

 

             (4.1) 

 

Figure 4.1 shows that the test sample (circle) should be classified either to the 

first class of squares or to the second class of triangles. If k = 3 it is classified to the 

second class because there are 2 triangles and only 1 square inside the inner circle.   

If k = 5 it is classified to first class (3 squares vs. 2 triangles inside the outer circle). 
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Figure 4.1: Example of k-NN Classification [26]. 

The sequential k-NN algorithm is briefly described as follows [21]: 

 Determine parameter k = number of nearest neighbors. 

 Calculate the distance between the query-instance and all the training 

samples.  

 Sort the distance and determine nearest neighbors based on the k-th 

minimum distance. 

 Gather the category of the nearest neighbors. 

 Use simple majority of the category of nearest neighbors as the prediction 

value of the query instance. 

The time complexity of the k-NN algorithm is O(nm), where n is the number of 

tested samples to classify and m is the number of training samples in the training set, 

because for each unknown sample the similarity with each training sample is 

calculated. On the other hand, the space complexity of the k-NN algorithm is O(m), 

because the whole training set is stored. 
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The pseudo code of the sequential k-NN algorithm is shown in Algorithm 4.1. 

Algorithm 4.1: The k-NN Algorithm [36]. 

 

 

 

 

1 

2 

3 

4 

Input: Training set D = {( x1 , y1), . . . , (xn, yn)}. 

           x′ new instance to be classified. 

Output: predicted class label y′ for x′. 

ALGORITHM 

FOR each labeled instance (xi, yi ) calculate d(xi , x′) from equation (4.1) 

Order d(xi , x′) from lowest to highest, (i = 1, . . . , n). 

Select the k nearest instances to x′: Dx′. 

Output y′ that is the most frequent class in Dx′. 

 

4.2  Text Data Collection and Preprocessing 

4.2.1 Text Data Collection 

We use the largest freely public Arabic corpus of text documents which is called 

OSAC from [38] to perform our experimentations. The OSAC corpus is available 

publically at [41]. 

4.2.2 Text Preprocessing 

Arabic Language is the 5th widely used language in the world. It is spoken by 

more than 422 million people as a first language and by 250 million as a second 

language. Arabic has 3 forms; Classical Arabic (CA), Modern Standard Arabic 

(MSA), and Dialectal Arabic (DA). CA includes classical historical liturgical text, 

MSA includes news media and formal speech, and DA includes predominantly 

spoken vernaculars and has no written standards. Arabic alphabet consists of the 

following 28 letters أ، ب، ت، ث، ج، ح، خ، د، ذ، ر، ز، س، ش، ص، ض، ط، ظ، ع، غ، ف، ق، ك، )

 .The orientation of writing in Arabic is from right to left [5]  .(ل، م، ن، ه، و، ي
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One of widely used methods for text mining presentations is viewing text as             

a Bag Of Tokens (BOT) (words, n-grams). Under that model we can already classify 

text. These are quite useful for mining and managing large volumes of text. 

However, there is a potential to do much more. The BOT approach loses a lot of 

information contained in text, such as word order, sentence structure, and context. 

These are precisely the features that humans use to interpret text. Natural Language 

Processing (NLP) attempts to understand document completely (at the level of          

a human reader). General NLP has proven to be too difficult. The reason that NLP in 

general is so difficult is that text is highly ambiguous. Natural Language is meant for 

human consumption and often contains ambiguities under the assumption that 

humans will be able to develop context and interpret the intended meaning              

[1, 2, 3, 23]. 

Some preprocessing in the OSAC corpus is performed. It includes tokenizing 

string to words, normalizing the tokenized words, applying stopwords removal, 

applying the suitable term stemming and pruning methods as a feature reduction 

techniques, and finally applying the suitable term weighting scheme to enhance text 

document representation as feature vector. We use the open source machine learning 

tool RapidMiner for text preprocessing. See Appendix B for more information. 

1. String Tokenization 

It is the process of breaking a stream of text up into words, phrases, symbols, or 

other meaningful elements called tokens. The list of tokens becomes input for further 

processing such text mining [50]. 

2. Stopwords Removal 

Stopwords are terms that are too frequent in the text. These terms are 

insignificant. So, removing them reduces the space of the items significantly. There 

is no definite list of stop words which all NLP tools incorporate. Not all NLP tools 

use a stoplist. Some tools specifically avoid using them to support phrase searching 

[16, 22]. 
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Typically, a default list of English stop words includes "the", "a", "of", "since", 

etc., i.e., words that are used in the respective language very frequently, but 

communicate very little unique information about the contents of the document. 

For Arabic, stopwords list includes punctuations (?, !, …), pronouns                    

(… ) adverbs ,( ،هموووو  ،التوووو  ،الوووو ي ،هوووو  ،هوووو  ... ،بوووو ه ،تحوووو  ،فوووو ق ), days of week                        

( ... ،الاثنو ه، الأحوو  ،السوت  ), month of year ( ... ،موو رس ،فت ايو  ،ينوو ي   ). Stopwords list are 

removed because they do not help determining document topic and to reduce 

features. 

3. Morphological Analysis Techniques (Stemming and Light Stemming)  

In linguistics, morphology is the identification, analysis and description of the 

structure of morphemes and other units of meaning in a language like words, affixes, 

and parts of speech [16, 22]. 

For Arabic Language, there are two different morphological analysis techniques; 

stemming and light stemming.  

Stemming is the process for reducing inflected (or sometimes derived) words to 

their stem, base or root form – generally a written word form. Stemming would 

reduce the Arabic words (المكتتو،، الك تو ، الكتو ب) which mean (the library), (the writer), 

and (the book) respectively, to one stem ( كت ), which means (write) [16, 22].  

Stemming algorithm by Khoja [25] is one of the well known Arabic stemmers. 

Khoja„s stemmer removes the longest suffix and the longest prefix. It then matches 

the remaining word with verbal and noun patterns, to extract the root. The stemmer 

makes use of several linguistic data files such as a list of all diacritic characters, 

punctuation characters, definite article, and stopwords. The steps of Khoja Arabic 

stemmer is described in Algorithm 4.2. 

Light stemming, in contrast, removes common affixes from words without 

reducing them to their stems.  

The main idea for using light stemming is that many word variants do not have 

similar meanings or semantics. However, these word variants are generated from the 
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same root. Thus, root extraction algorithms affect the meanings of words. Light 

stemming aims to enhance the classification performance while retaining the words 

meanings. It removes some defined prefixes and suffixes from the word instead of 

extracting the original root [11, 12]. 

Algorithm 4.2: Arabic Stemming Algorithm Steps [25]. 

1 

2 

3 

4 

5 

6 

7 

 

 

 

8 

9 

10 

Remove diacritics. 

Remove stopwords, punctuation, and numbers. 

Remove definite article ( ال ). 

Remove inseparable conjunction ( و ). 

Remove suffixes. 

Remove prefixes. 

Match result against a list of patterns. 

     - If a match is found, extract the characters in the pattern  

representing the root. 

     - Match the extracted root against a list known "valid" roots. 

Replace weak letters واي with و. 

Replace all occurrences of Hamza ئ ء ؤ with ا. 

Two letter roots are checked to see if they should contain a double 

character. If so, the character is added to the root. 

 

Formally speaking, the aforementioned Arabic words (المكتتو،، الك تو ، الكتو ب) which 

mean (the library), (the writer), and (the book) respectively, belong to one stem    

 despite they have different meanings. Thus, the stemming approach reduces ( كتو )

their semantics. The light stemming approach, on the other hand, maps the word 

 which means (book), and stems the word ( كتو ب) which means (the book) to ( الكتو ب)

 which means (writer). Another example ( ك تو ) which means (the writer) to ( الك تو )
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for light stemming is the words ( هيالمسو ف  ،المسو ف ون ) which mapped to word ( مسو ف ). 

Light stemming keeps the words' meanings unaffected. Algorithm 4.3 shows the 

steps of Arabic light stemming. A light stemmer [28] is a standard Arabic light 

stemmer. 

Algorithm 4.3: Arabic Light Stemming Algorithm Steps [28]. 

1 

 

 

 

 

 

2 

 

3 

Normalize word: 

     - Remove diacritics. 

     - Replace آ أ إ with ا. 

     - Replace ة with ه. 

     - Replace ى with ي. 

Stem prefixes: 

     - Remove prefixes: ال، وال، بال، كال، فال، لل، و. 

Stem suffixes: 

     - Remove suffixes: ها، ان، ات، ون، ين، ية، ه، ي. 

 

4. Term Pruning 

It is the process of eliminating the words that its count is less or greater than        

a specific threshold [40]. 

5. Vector Space Model (VSM) and Term Weighting Schemes 

The aim of term weighting schemes is to enhance text document representation 

as feature vector. Popular term weighting schemes are: 

 Binary Term Occurrences (BTO): which indicates absence or presence of  

a word with Booleans 0 or 1 respectively. 

 Term Frequency (TF): the ratio between the number of  occurrences of  

term t in the document d and the number of all terms in the document d. 
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 Term Occurrences (TO) : the number of  occurrences of term t in the 

document d. 

 Term Frequency-Inverse Document Frequency (TF-IDF): the TF-IDF is  

a weight often used in information retrieval and text mining. This weight is   

a statistical measure used to evaluate how important a word is to a document 

in a collection or corpus. Term frequency tf(t, d) is the number that the term t 

occurred in the document d. Document frequency df(t) is number of 

documents in which the term t occurs at least once [16, 22, 23, 42, 43]. The 

inverse document frequency can be calculated from document frequency 

using the formula:  

log(num of Docs/num of Docs with word i)   (4.2) 

A reasonable measure of term importance may then be obtained by using the 

product of the term frequency and the inverse document frequency (tf * idf). 

4.3  Summary 

In this chapter, we presented and described the sequential k-NN algorithm which 

is  the base for the proposed parallel classifier, and described the text data collection 

and preprocessing stages. Text preprocessing is the important stage in text 

classification and it includes many steps including feature reduction using 

morphological analysis techniques, and term weighting.  

In the next chapter, we will provide a detailed description about the proposed 

parallel classifier. 
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Chapter 5 The Proposed Parallel 

Classifier  
 

In this chapter we present and describe the proposed parallel classifier model 

including the decomposition and mapping techniques, the steps of the proposed 

parallel classifier and the appropriate strategies to minimize overheads. The proposed 

parallel classifier will be described using algorithms and flowcharts.  

The parallel classifier model is a way of structuring a parallel classifier by 

selecting the most suitable decomposition and mapping techniques and applying the 

appropriate strategies to minimize overheads. 

5.1 Decomposition Technique 

The first step in developing a parallel algorithm is to decompose the problem 

into tasks that can be executed concurrently by identifying the data on which 

computations are performed, then partition this data across various tasks.  

The task performs the computations with its part of the data. In our classifier, 

the input training data partitioning is the natural decomposition technique 

because the output (the computed distances) is not clearly known a-priori. It 

divides the data set equally according to the number of worker processors by 

sending a one data partition for each of them. See section 2.4 for more 

information. 

Figure 5.1 shows a decomposition based on a partitioning of the input 

training data. Each of the two tasks computes the distances of the new test 

document in its respective subset of training data. The two sets of distances, 

which are the independent outputs of the two tasks, represent intermediate 

results. Combining the intermediate results yields the final result. 
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Figure 5.1: Partitioning the Training Data Among the Processors. 

5.2 Mapping Technique 

Once a problem has been decomposed into concurrent tasks, these must be 

mapped to processors (that can be executed on a parallel platform).  
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In our classifier, we use the static mapping technique that distribute the tasks 

among processes prior to the execution of the program. 

The scheme for this static mapping is mapping based on data partitioning 

because our data represented in a two-dimensional array. So, the most suitable 

scheme used for distributing the two-dimensional array among processes is the 

row-wise 1-D block array distribution that distribute the array and assign uniform 

contiguous portions of the array to different processes. See section 2.4 for more 

information. 

According to the previous selected decomposition and mapping techniques, 

the suitable parallel model is the master-slave model in which the master 

processor divides the input training data equally according to the number of 

worker processors and sending a one data partition for each of them with the new 

document to be classified. See section 2.7 for more information. 

Since the most time consuming in the k-NN algorithm taken by the 

calculation of  the distance between the query-instance and all the training 

samples, and the sorting of the distances to determine nearest neighbors based on 

the k-th minimum distance. Our classifier takes into consideration these two 

factors by partitioning the work of distances computation and sorting  among 

several worker processors. 

The time complexity of the proposed parallel classifier is O(nm/p), where n is the 

number of tested documents to classify and m is the number of training documents in 

the training set, because each processor calculates the similarities between each 

sample and its m/p training documents. On the other hand, the space complexity of 

the proposed parallel classifier is O(m/p), because the whole training set is scattered 

among the p processors. Thus, the proposed parallel classifier has space scalability. 

The pseudo code of the proposed parallel classifier is shown in Algorithm 5.1. 

 

 



42 

 

    Algorithm 5.1: The Proposed Parallel Classifier. 

 

 

 

 

1 
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v 

vi 

vii 

Input: Training set D = {( x1 , y1), . . . , (xn, yn)}. 

           x′ new document to be classified. 

Output: predicted class label y′ for x′. 

ALGORITHM 

The master processor divides D equally among worker  

processors and sends a one partition for each of them. 

While True: 

     If processor = master: 

         Load x′. 

         Send x′ to the worker processors. 

         Receive Dx′ from the worker processors and put the        

         combined k-th ordered lists in LDx′. 

         Order LDx′ from lowest to highest.  

         Output y′ that is the most frequent class in LDx′. 

     Else:  

         Receive x′ from the master processor. 

         FOR each labeled instance (xi, yi ) calculate d(xi , x′) from  

         equation (4.1). 

         Order d(xi , x′) from lowest to highest, (i = 1, . . . , n). 

         Select the k nearest instances to x′: Dx′. 

         Send Dx′ to the master processor. 
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Figure 5.2 exhibits the flow chart of the proposed parallel classifier. 

 

 

 

Figure 5.2: The Flow Chart of the Proposed Parallel Classifier. 
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As we see from Figure 5.2, The master-slave paradigm is the programming 

paradigm used in this parallel program. The master processor divides the input 

training data equally according to the number of worker processors and sending        

a one data partition for each of them with the new document to be classified. Each 

worker processor receives its data partition and the new document to be classified, 

calculates the distance between the new document and all the training samples, sorts 

the distances, determines the nearest neighbors based on the k-th minimum distance 

locally, and sends the k-th ordered list to the master which include the k-th distances 

and classes. The master processor receives from each worker the k-th ordered list and 

combining them in a k-th master list. Finally, the master processor sorts the k-th 

master list elements in ascending order, selects the k-th top elements, and selects the 

most frequent class in the k-th top elements as the predicted class for the new 

document. 

5.3 Applying the Appropriate Strategies to Minimize Overheads  

We apply several strategies to minimize overheads in our proposed parallel 

classifier. These are:  

 Load Balancing: To maximize the efficiency of parallelism, each processor  

have approximately the same amount of input training data to do. This good 

initial data distribution can help provide load-balancing. 

 Avoiding Duplication: In our parallel classifier, no processor do redundant 

work performed by another processor. 

 Using The Master-Slave Programming Paradigm: The master-slave 

paradigm is the main programming paradigm used in our parallel classifier 

that allow  the subtasks to carried out separately in parallel without any   

inter-subtask communication and this approach will produce small amounts 

of idle time for the worker processors. 

 Overlapping Computations with Interactions:  The amount of time that the 

master processor spend waiting for results to arrive from worker processors 

can be reduced, by doing some useful computations during this waiting time. 
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In our parallel classifier we keeping 1 input training data partition for local 

processing by the master processor. 

5.4 Summary 

In this chapter, we presented and described our proposed parallel classifier using 

the algorithms and flowcharts, and described the parallel classifier model including 

the decomposition and mapping techniques, the steps of the proposed parallel 

classifier and the appropriate strategies to minimize overheads.  

In the next chapter, we will present and discuss the experiments carried out to 

evaluate our proposed classifier.  
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Chapter 6 Experimental Results 

and Evaluation 
 

This chapter discusses the experimental results to provide evidence that our 

parallel classifier design can improve both the computational efficiency and the 

quality of classification. The chapter includes three sections: Section 6.1 presents the 

corpus used in our experimentation and gives insight into the main characteristics of 

it. Section 6.2 describes the experimental environment. Finally, in Section 6.3, we 

present and discuss the experimental results and make a comparison with related 

approaches. 

6.1 The Corpus 

We use the OSAC corpus which is the largest freely public Arabic corpus of text 

documents to perform our experimentations. 

The OSAC Arabic corpus collected from multiple websites as presented in   

Table 6.1, the corpus includes 22,428 text documents. Each text document belongs to 

1 of 10 categories (Economics, History, Entertainments, Education and Family, 

Religious and Fatwas, Sports, Heath, Astronomy, Low, Stories, and Cooking 

Recipes). The corpus contains about 18,183,511 (18M) words and 449,600 district 

keywords after stopwords removal. 

We generate all text representations for OSAC corpus to evaluate the obtained 

classification results using different classification measures such as accuracy, 

precision, recall, and F-measure which are generally accepted ways of measuring 

systems' success in this field. See Appendix B for more information. 

 

 

 



47 

 

Table 6.1: The OSAC Corpus. 

Category 
Number of text 

documents 
Sources 

Economic 3102 

bbcarabic.com – cnnarabic.com – 

aljazeera.net- khaleej.com – 

banquecentrale.gov.sy 

History 3233 

 – www.hkam.net – moqatel.com تاريخ الحكام

 تاريخ الإسلام – altareekh.com التاريخ

islamichistory.net 

Education and 

family 
3608 

 نصائح للسعادة الأسرية – saaid.net صيد الفوائد 

naseh.net – المربي almurabbi.com 

Religious and 

Fatwas 
3171 

CCA corpus – EASC corpus – moqatel.com – 

صيد الفوائد  – islamic-fatwa.com شبكة الفتاوى الشرعية 

 saaid.net 

Sport 2419 
bbcarabic.com – cnnarabic.com – 

khaleej.com 

Health 2296 

 – dr-ashraf.com – CCA corpus العيادة الالكترونية 

EASC corpus – W corpus – صحة الطفل kids.jo – 

 arabaltmed.com العلاج البديل العربي 

Astronomy 557 

 الكون نت – arabstronomy.com الفلك العربي

alkawn.net –  بوابة الفلك المغربية 

bawabatalfalak.com –  موسوعة النابلسي  الفلك -

nabulsi.com – www.alkoon.alnomrosi.net 

Low 944 
الليبي  القانون lawoflibya.com – قانون كوم 

qnoun.com 

Stories 726 
CCA corpus –  قصص الأطفال kids.jo –   صيد الفوائد

said.net 

Cooking Recipes 2372 aklaat.com – fatafeat.com 

Total 22,428  

http://www.hkam.net/
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The generated text representations for OSAC corpus are: 

 Light stemming + percentual term pruning (min threshold = 3%,                      

max threshold = 30%)  + TF-IDF. 

 Light stemming + percentual term pruning (min threshold = 3%,                      

max threshold = 30%)  + TF. 

 Light stemming + percentual term pruning (min threshold = 3%,                    

max threshold = 30%)  + TO. 

 Light stemming + percentual term pruning (min threshold = 3%,                    

max threshold = 30%) + BTO. 

 Stemming + percentual term pruning (min threshold = 3%,                                   

max threshold = 30%)  + TF-IDF. 

 Stemming + percentual term pruning (min threshold = 3%,                             

max threshold = 30%)  + TF. 

 Stemming + percentual term pruning (min threshold = 3%,                             

max threshold = 30%)  + TO.  

 Stemming + percentual term pruning (min threshold = 3%,                             

max threshold = 30%)  + BTO. 

We have described these text representations in more details in section 4.2. 

6.2 Experimental Setup 

This section describes the experimental environment for evaluating our proposed 

approach.  

We implemented the sequential k-NN algorithm using C++ programming 

language to serve as a baseline when we compare it with the proposed parallel 

classifier to give a fair comparison. We implemented the proposed parallel classifier 

using C++ programming language and the MPI library on a multicomputer cluster. 

See Appendix A for more information. 
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The target platform for our experiments is a cluster of computers and their own 

exclusive memory connected through local area network with speed 10/100 Mbps. 

The cluster consists of 14 node, all nodes have the same specifications; Intel(R) 

Core(TM) i3-2120 CPU @ 3.30 GHz, 4.00 GB RAM, 320 GB hard disk drive. The 

sequential k-NN algorithm and the proposed parallel classifier have been 

implemented on Windows 7 operating system, and we have used the parallel 

message passing software MPICHI2 that offers small latencies and high bandwidths.  

6.3 Experimental Results and Discussion 

This section summarizes and discusses the results of the numerous experiments 

that have been conducted. 

6.3.1 Discussion of the Parallel Classifier Results 

We used the largest text representation for OSAC corpus which is                     

(Light stemming + percentual term pruning (min threshold = 3%, max threshold       

= 30%)  + TF-IDF), (22,428 documents that are represented as records and 2114 

words that are represented as attributes) to evaluate the proposed parallel classifier 

using different performance metrics for parallel systems such as execution time, 

parallel overhead, speedup, and efficiency which determines the scalability. 

For evaluation purposes, we split the largest generated text representation for 

OSAC corpus into two parts; 50% of the corpus for training (11214 documents) and 

the remaining 50% for testing (11214 documents) using stratified sampling which 

keep class distributions remains the same after splitting. Then we convert these text 

data parts into two text files with .txt format in order to read it by the classifier. We 

used the open source machine learning tool RapidMiner for this purpose. We 

splitting the corpus in this way to achieve higher classification results and to evaluate 

the performance of the parallel classifier. 

We have executed the parallel classifier varying the number of processors from   

2 to 14, also we varied the number of tested documents to observe the effects of 

different problem sizes on the performance. Three sets were used with the number of 

tested documents 2803, 5607, and 11214 documents. 
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The execution time in seconds is recorded in Table 6.2. 

Table 6.2: The Execution Time of the Sequential and Parallel Classifiers. 

As we note from Table 6.2, the sequential version takes more time than the 

parallel version. In the parallel version; the execution time decreases when the 

number of processors increases. However, the parallel implementation achieves        

a good execution time compared to sequential one. Figure 6.1 shows the curves of 

execution time for the classifiers on the OSAC corpus. The time curve decreases 

from 1 processor until using 14 processors.  

Several observations can be made by analyzing the results in Figure 6.1. First, the 

sequential k-NN algorithm spent a lot of time classifying the text documents. 

Second, the proposed parallel classifier clearly reduce the sequential time. Notice 

that the sequential k-NN algorithm takes about 1 hour to classify this collection, 

while the proposed parallel classifier reduces this time to 6 minutes on 14 processors. 

                

Problem Size  

No. of Processors 

2803 

Documents 

5607  

Documents 

11214  

Documents 

Sequential  k-NN 870.97 1755.41 3586.70 

Parallel 

Classifier 

2-Processors 484.07 960.99 1914.20 

4-Processors 256.75 510.75 997.95 

6-Processors 176.53 344.50 679.53 

8-Processors 148.94 288.69 566.34 

10-Processors 132.44 252.34 496.38 

12-Processors 117.49 222.18 435.61 

14-Processors 107.25 204.22 398.64 
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Figure 6.1: The Curves of Execution Time for the Two Classifiers. 
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Also, we compute the speedup which gained from this parallelization.             

The speedup is recorded in Table 6.3. Figure 6.2 demonstrates the relative speedup. 

Table 6.3: The Relative Speedup of the Proposed Parallel Classifier. 

 

The speedup curves increase linearly in some cases. For example, on the largest 

tested set (11214 documents), it achieves the relative speedups of 1.87, 3.59, 6.33, 

and 9.00 on 2, 4, 8, and 14 processors, respectively. When it accesses to a smaller set 

of tested documents, the speedup curves tend to drop from the linear curve. The 

classifier achieves the relative speedups of 1.83, 3.44, 6.08, and 8.60 on 2, 4, 8, and 

14 processors, respectively. The smallest tested documents sizes give the same trend. 

If we increase the number of processors further, the speedup curves tend to 

significantly drop from the linear curve. For a given problem instant, the relative 

speedups saturates as the number of processors is increased due to increased 

overheads. This is a normal situation when the problem size is fixed as the number of 

processors increases. However, it can be solved by scaling the problem size.          

For example, in Figure 6.2, the speedups for three sets on 4 processors improve from 

3.39 to 3.59, on 8 processors improve from 5.85 to 6.33, and on 14 processors 

                Problem Size  

 

No. of Processors 

2803 

Documents 

5607  

Documents 

11214  

Documents 

2-Processors 1.80 1.83 1.87 

4-Processors 3.39 3.44 3.59 

6-Processors 4.93 5.10 5.28 

8-Processors 5.85 6.08 6.33 

10-Processors 6.58 6.96 7.23 

12-Processors 7.41 7.90 8.23 

14-Processors 8.12 8.60 9.00 
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improve from 8.12 to 9.00. It can be seen that our parallel classifier yields better 

performance for the larger data sets. 
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Figure 6.2: The Relative Speedup Curves of the Proposed Parallel Classifier. 
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From the speedup we can compute the efficiency. The efficiency values are 

recorded in Table 6.4. Figure 6.3 illustrates the efficiency curves. 

Table 6.4: The Efficiency of the Proposed Parallel Classifier. 

 

As we note from Table 6.4, The value of efficiency is between zero and one.   

We note that the efficiency decrease as the number of processing elements is 

increased for a given problem size and this is common to all parallel programs due to 

increased overheads.  

Also, we note that the efficiency of the parallel classifier increases if the problem 

size is increased (from 2803 documents to 11214 documents) while keeping the 

number of processing elements constant. 

It can be seen that our parallel classifier is a scalable parallel system because the 

efficiency can be kept constant as the number of processing elements is increased, 

provided that the problem size is increased (from 2803 documents to 11214 

documents). 

                Problem Size  

 

No. of Processors 

2803 

Documents 

5607  

Documents 

11214  

Documents 

2-Processors 0.90 0.91 0.94 

4-Processors 0.85 0.86 0.90 

6-Processors 0.82 0.85 0.88 

8-Processors 0.73 0.76 0.79 

10-Processors 0.66 0.70 0.72 

12-Processors 0.62 0.66 0.69 

14-Processors 0.58 0.61 0.64 
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Figure 6.3: The Efficiency Curves of the Proposed Parallel Classifier. 
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Also, we compute the parallel overhead. The parallel overhead values are 

recorded in Table 6.5. Figure 6.4 illustrates the parallel overhead curves. 

Table 6.5: The Parallel Overhead of the Proposed Parallel Classifier. 

 

As we note from Table 6.5, the parallel overhead of the parallel classifier 

increases as we increase the number of processing elements for a given problem size. 

This is a normal situation when the problem size is fixed as the number of processors 

increases. However, it can be solved by scaling the problem size. we note that the 

parallel classifier has a parallel overhead that decreases as the data set increases 

(from 2803 documents to 11214 documents). It can be seen that our parallel classifier 

yields better performance for the larger data sets. 

  

                Problem Size  

 

No. of Processors 

2803 

Documents 

5607  

Documents 

11214  

Documents 

2-Processors 0.11 0.09 0.07 

4-Processors 0.18 0.16 0.11 

6-Processors 0.22 0.18 0.14 

8-Processors 0.37 0.32 0.26 

10-Processors 0.52 0.44 0.38 

12-Processors 0.62 0.52 0.46 

14-Processors 0.72 0.63 0.56 
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Figure 6.4: The Parallel Overhead Curves of the Proposed Parallel Classifier. 
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6.3.2 Comparison with Related Approaches 

We now compare our work with related approaches along nine criteria which are 

the most common criteria. The comparison between our work and the related 

approaches is summarized in Table 6.6. The nine criteria we use are:                        

1) The language. 2) The size of dataset. 3) The type of dataset. 4) the number of 

processors. 5) The speedup. 6) The parallel platform. 7) The programming model.   

8) The processor speed, and 9) The memory size. 

Research efforts have focused on shared memory parallelization of the k-NN 

algorithm. Ruoming  et. al [37], proposed a parallel learning algorithm. The parallel 

algorithm is based on the k-NN algorithm. They evaluated the parallel 

implementation on a multiprocessor with shared memory that connect multiple 

processors to a single memory system. They experimented with a 800 MB main 

memory resident dataset. The reduction object in this algorithm‟s parallel 

implementation is the list of k-nearest neighbors. The speedup results was suitable up 

to four processors. However, sharing memory in this way can easily lead to               

a performance bottleneck and the scalability of the processors is limited. Their 

Experiments are performed on a shared memory machine with 4 (1 GHz) processors 

and 1 GB of memory.   

Our work is significantly different, because on the largest tested set (11214 

documents), the parallel classifier achieved the relative speedup of 9.00 on 14 

processors. It is a scalable parallel system because the efficiency can be kept constant 

as the number of processing elements is increased, provided that the problem size is 

increased (from 2803 documents to 11214 documents). We implemented our 

proposed algorithm with C++ language ,our dataset containing (22428 * 2114) value, 

the size of the dataset is 241 MB. The target platform for our experiments is a cluster 

of computers and their own exclusive memory connected through a fast local area 

network. The cluster consists of 14 nodes, all nodes have the same specifications; 

Intel(R) Core(TM) i3-2120 CPU @ 3.30 GHz, 4.00 GB RAM. 
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Table 6.6: The Comparison Between Our Work and Related approaches. 

Criteria Our Experiment Their Experiment 

Language C++ C++ 

The Size of Dataset 

(22428 * 2114) value, 

241 MB 
800 MB 

The Type of  Dataset 

The OSAC Arabic 

corpus 

Synthetic two 

dimensional dataset 

Number of processors 

2,4,6,8,10,12,14 

processors  2,3,4 processors 

The Speedup 

1.87, 3.59, 6.33, and 

9.00 on 2, 4, 8, and 14 

processors 

1.75, 2.22, and 2.24 

on 2, 3, and 4 

processors 

The Parallel Platform 
A multicomputer cluster 

A shared memory 

multiprocessor 

The Programming 

Model MPI OpenMP 

The Processor Speed 3.30 GHz 1 GHz 

The Memory Size 4 GB 1 GB 

 

 

 

 

 

 

 

 

 

 

6.3.3 Discussion of the Classification Results 

To ensure that the classifier works well with the tested documents, we also 

examined the quality of the classification. we split all generated text representations 

of OSAC corpus (we have described these text representations in section 6.1) into 

two parts; 50% of the corpus for training (11214 documents) and the remaining 50% 

for testing (11214 documents) using stratified sampling which keep class 
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distributions remains the same after splitting. Then we convert these text data parts 

into two text files with .txt format in order to read it by the classifier. We used the 

open source machine learning tool RapidMiner for this purpose. We splitting the 

corpus in this way to achieve higher classification results. 

For the purpose of evaluating the classification results, we use confusion matrices 

that are the primary source of performance measurement for the classification 

problem. Each column of the confusion matrix represents the instances in an actual 

class, while each row represents the instances in a predicted class as shown in    

Table 6.7. 

Table 6.7: Simple Confusion Matrix 

 True Class 

Positive Negative 

Predicted 

Class 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

 True Positive (TP): refer to the number of positive instances that correctly 

labeled the classifier [21]. 

 True Negative (TN): refer to number of negative instances that correctly 

labeled the classifier [21].  

 False Positive (FP): refer to the number of negative instances that were 

incorrectly labeled the classifier [21]. 

 False Negative (FN): refer to number of positive instances that were 

incorrectly labeled the classifier [21]. 

  
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We have evaluated the obtained classification results using different 

classification measures such as accuracy (Eq. 6.1), precision (Eq. 6.2),                

recall (Eq. 6.3), and F-measure (Eq. 6.4) which are generally accepted ways of 

measuring systems' success in this field. 

 Accuracy: refer the percentage of test set instances that are correctly 

classified by the classifier [21].  

Overall Accuracy =( TP+TN ) / ( TP+TN+FP+FN )    (6.1) 

 Precision: refer to the percentage of predicted documents for the given 

topic that are correctly classified [21].  

Precision = TP / ( TP+FP )    (6.2) 

 Recall: refer to the percentage of the total documents for the given topic that 

are correctly classified [21]. 

Recall = TP / ( TP+FN )     (6.3) 

 F-measure: it is a standard statistical measure that is used to measure the 

performance of a classifier system. The f-measure is an average parameter 

based on precision and recall [21]. 

F-measure = 2*Precision*Recall / ( Precision + Recall ) (6.4) 

In our experiments, we computed the accuracy, precision, recall, and F-measure 

for all generated text representations of OSAC corpus (we have described these text 

representations in section 6.1). The average classification results are recorded in 

Table 6.8. 

The morphological analysis (stemming, light stemming), term pruning and term 

weighting schemes (TF-IDF, TF, TO, BTO) have obvious impact on the classifier  

performance as shown in Figure 6.5. 

The Figure emphasizes that light stemming and TF representation with k=10 has 

the best classification results, this is because light stemming is more proper than 
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stemming from linguistics and semantic view point and keeps the words meanings 

unaffected. 

The Figure also emphasizes that the classifier is very sensitive to term weighting 

schemes because it depends on distance function to determine the nearest neighbors. 

For example, the BTO weighting scheme has the worst classification results because 

the text representation is 0 or 1.  

 Table 6.8: The Classification Results for All Text Representations of OSAC. 

 

 

When we recorded the performance for each class of the ten categories for the 

best text representation (light stemming + TF) that achieved the best classification 

results, we got the results as in Table 6.9.  

               Performance  

Measures     

Text  

Representations 

Accuracy Precision Recall F-Measure 

light stemming + TF-IDF 96.12 95.89 95.36 95.62 

light stemming + TF 96.35 96.18 95.36 95.77 

light stemming + TO 92.77 93.58 92.20 92.88 

light stemming + BTO 77.80 91.55 79.56 85.13 

Stemming + TF-IDF 93.10 91.91 92.35 92.13 

Stemming + TF 93.83 93.09 92.99 93.04 

Stemming + TO 89.60 89.12 88.98 89.05 

Stemming + BTO 77.45 89.16 78.93 83.73 



63 

 

0

10

20

30

40

50

60

70

80

90

100

Accuracy Precision Recall F-Measure

A
v

e
ra

g
e

 o
f 

M
e

a
s

u
rm

e
n

ts

light stemming+TF-IDF

light stemming+TF

light stemming+TO

light stemming+BTO

stemming+TF-IDF

stemming+TF

stemming+TO

stemming+BTO

 
 

Figure 6.5: The Classification Results for All Text Representations of OSAC. 

Table 6.9: The Classification Results for Light Stemming + TF. 

               Performance  Measures     

Category 
Precision Recall F-Measure 

Education and Family  93.33 94.68 94.00 

History 93.10 96.91 94.97 

Stories 91.33 81.27 86.01 

Sport  98.19 98.92 98.55 

Low 95.71 94.49 95.10 

Astronomy  97.14 97.84 97.49 

Cooking Recipes 99.24 99.58 99.41 

Religious and Fatwas 99.16 96.28 97.70 

Health 96.95 96.86 96.90 

Economic 97.66 96.78 97.22 
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Figure 6.6 shows the classification results for the best text representation of 

OSAC corpus (light stemming + TF) in each of the domain category.                  

From Figure 6.6 we can see that the best performance is recorded in Cooking 

Recipes domain that because Cooking Recipes has limited space of words that are 

limited and cleared comparing to other domains. Also, it shows that Stories has 

lowest performance may be that also because Stories have a large space domain. 
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Figure 6.6: The Classification Results for Light Stemming + TF. 
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Chapter 7 Conclusion and Future 

Works  
 

7.1  Conclusion 

Text classification has become one of the most important techniques in text 

mining. One of the common classification algorithms is the k-NN which is known to 

be one of the best classifiers applied for different languages including Arabic 

language. However, the k-NN algorithm is of low efficiency because it requires        

a large amount of computational power for evaluating a measure of the similarity 

between a test document and every training document and for sorting the similarities. 

Such a drawback makes it unsuitable to handle a large volume of text documents 

with high dimensionality and in particular in the Arabic language.  

In this thesis, a parallel classifier for large-scale Arabic text has been introduced. 

The proposed parallel classifier is based on the sequential k-NN algorithm. 

Five stages are involved in the approach: determine the large text collection, 

preprocess the text in this collection, design the proposed parallel classifier model, 

implement the sequential k-NN algorithm as well as the proposed parallel classifier, 

and conduct the experiments. 

We tested the parallel classifier using the OSAC corpus which is the largest 

freely public Arabic corpus of text documents.  

We experimented the parallel classifier on a multicomputer cluster that consists 

of 14 computers. The experimental results on the performance indicate that the 

parallel classifier design has very good speedup characteristics when the problem 

sizes are scaled up. Also, classification results show that the proposed classifier has 

achieved accuracy, precision, recall, and F-measure with higher than 95%. 
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Finally, The proposed parallel classifier can be used efficiently and accurately to 

categorize a large volume of Arabic text with high dimensionality and solved the 

problem of low efficiency for the sequential k-NN algorithm. It is suitable for 

applications where the classification efficiency is crucial such as online text 

classification, in which the classifier has to respond to a lot of documents arriving 

simultaneously in stream format. 

7.2  Future Works 

There are several directions for improvement and future investigation. Our work 

can be extended to cover larger computer clusters and text corpora to assess the 

performance of our parallel implementation. Additionally, we can apply this parallel 

classifier to various application domains such as weather data, internet traffic,        

log files, medical information, among others to check its generalization. We will also 

extend our work to cover a popular distributed programming paradigms                 

like MapReduce in a cloud environment. 

We believe that our results are encouraging and show that managed code can 

deliver high performance classifiers. In the future we will investigate further 

algorithms and apply them to interesting applications.  
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Appendix A 
 

Parts of the Classifiers Source Code 

Figure A.1 to A.6 display parts of the source code used to implement the 

classifiers. 

 

Figure A.1: Calculate the Distance and Sort the Distances. 
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Figure A.2: Determine the Nearest Neighbors and Determine the Majority Class. 

 

Figure A.3: The Quick Sort Function. 
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Figure A.4: Initializing MPI and Defining Communicator 

  

Figure A.5: The Essential Work for the Master Processor. 
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The master processor divides the training data equally according to the number of 

worker processors and sending a one data partition for each of them with new 

document to be classified and receives from each worker the k-th ordered list and 

combining them in a k-th master list. 

 

Figure A.6: The Essential Work for the Worker Processors. 
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The worker processors receives its data partition with new document to be 

classified and calculates the distance between the new test document and all the 

training samples in its data partition, sorts the distance and determine nearest 

neighbors based on the k-th minimum distance locally. Then sends the k-th ordered 

list to the master processor which include the k-th distances and classes.  
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Appendix B 

 

The Text Preprocessing Using RapidMiner 

We used the open source machine learning tool RapidMiner for text 

preprocessing for the OSAC corpus including tokenizing string to words, 

normalizing the tokenized words, applying stopwords removal, applying the term 

stemming and pruning methods as a feature reduction techniques, and finally 

applying the term weighting schemes to enhance text document representation         

as feature vector. Figure B.1 depicts the whole process of applying the text 

preprocessing methods in the OSAC corpus. 

 

 

Figure B.1: The Process of Applying the Text Preprocessing in the OSAC Corpus. 
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Table B.1 to B.8 display parts of the generated text representations for OSAC corpus. 

Table B.1: Part of  the Light Stemming + TF-IDF Text Representation (22428 Record and 2114 Attribute). 
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Table B.2: Part of  the Light Stemming + TF Text Representation (22428 Record and 2114 Attribute). 
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Table B.3: Part of  the Light Stemming + TO Text Representation (22428 Record and 2114 Attribute). 
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Table B.4: Part of  the Light Stemming + BTO Text Representation (22428 Record and 2114 Attribute). 
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Table B.5: Part of  the Stemming + TF-IDF Text Representation (22428 Record and 1295 Attribute). 
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Table B.6: Part of the Stemming + TF Text Representation (22428 Record and 1295 Attribute). 
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Table B.7: Part of  the Stemming + TO Text Representation (22428 Record and 1295 Attribute). 
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Table B.8: Part of  the Stemming + BTO Text Representation (22428 Record and 1295 Attribute). 
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We splitted the generated text representations for OSAC corpus into two parts; 

50% of the corpus for training (11214 document) and the remaining 50% for testing 

(11214 document) using stratified sampling which keep class distributions remains 

the same after splitting. Then we convert these text data parts into two text files   

with .txt format in order to read it by the classifier. Figure B.2 depicts the whole 

process of splitting the generated text representations for OSAC corpus. 

 

Figure B.2: The Process of Splitting the Text Representations for OSAC Corpus. 
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Appendix C 

 

Tools and Programs 

Special tools and programs are used to complete the implementation of the 

sequential and parallel classifiers and the text preprocessing of the OSAC corpus: 

 RapidMiner 5: we used the open source machine learning tool 

RapidMiner for text preprocessing for the OSAC corpus including 

tokenizing string to words, normalizing the tokenized words, applying 

stopwords removal, applying the term stemming and pruning methods as a 

feature reduction techniques, and finally applying the term weighting 

schemes to enhance text document representation as feature vector.  

 Microsoft Visual Studio .Net 2008: this is the program that help us to 

develop, build, compile, validate and execute our sequential and parallel 

classifiers using C++ programming language. 

 MPICHI2 Software: it is a new implementation of MPI. The parallel 

implementation of the classifier is done using MPI for achieving portable 

code. 

 Microsoft Office Excel 2010: it is used to calculate and analyze the results. 

 

 

  

 


