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ABSTRACT 

The field of digital image processing is continually evolving. Nowadays, there is a 
significant increase in the level of interest in image morphology, neural networks, full-
color image processing, image data compression and image recognition. This work deals 
with image recognition with the application of face recognition. 

Some people think that face recognition is an easy task for computer system as for 
humans, but in reality most of the face recognition systems can’t achieve a complete 
reliable performance because there are many factors affect on the process of recognition 
like: large variations in facial approach, head size and orientation, and change in 
environmental conditions, all these factors makes face recognition one of the fundamental 
problems in pattern analysis, other factors that impact the performance are the accuracy 
of face location stage and the number of actual face recognition techniques used in each 
system. So face recognition from still and video images is emerging as an active research 
area with numerous commercial and law enforcement application. 

This research identifies two techniques for face features extraction based on two 
different multiresolution analysis tools; the first called Curvelet transform while the 
second is waveatom transform. The resultant features are inputted to train via two famous 
classifiers; one of them is the artificial neural network (ANN) and the other is hidden 
Markov model (HMM).  

Experiments are carried out on two well-known datasets; AT&T dataset consists of 
400 images corresponding to 40 people, and Essex Grimace dataset consists of 360 
images corresponding to 18 people. Experimental results show the strength of both 
curvelets and waveatom features. On one hand, waveatom features obtained the highest 
accuracy rate of 99% and 100% with HMM classifier, and 98% and 100% with ANN 
classifier, for AT&T and Essex Grimace datasets, respectively. On the other hand, two 
levels Curvelet features achieved accuracy rate of 98% and 100% with HMM classifier, 
and 97% and 100% with ANN classifier, for AT&T and Essex Grimace datasets, 
respectively. 

A comparative study for waveatom with wavelet-based, curvelet-based, and 
traditional Principal Component Analysis (PCA) techniques is also presented. The 
proposed techniques supersede all of them. And shows the robustness of feature 
extraction methods used against included and occluded effects. Also, indicates the 
potential of HMM over ANN, as they are classifiers. 
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CHAPTER 1  
INTRODUCTION 

There are many ways that humans can identify each other, and so is for machines. 

There are many different identification technologies available, many of which have been 

in commercial use for years. The most common verification and identification methods 

nowadays are Password/PIN (Known as Personal Identification Number) systems. The 

problem with that or other similar techniques is that they are not unique and is possible 

for someone to forget, loose or even have it stolen. In order to overcome these problems 

they have developed considerable interest in “biometrics” identification systems, which 

use pattern recognition techniques to identify people using their characteristics. Some of 

these methods are fingerprints and face recognition. 

A face recognition system can be used in buildings or specific area security, a face 

recognizer could be used at the frontal entrance for automatic access control, and they 

could be used to enhance the security of user authentication in ATMs by recognizing 

faces as well as requiring passwords. Also, these systems can be used in the human or 

computer interface arena workstations with cameras would be able to recognize users, 

perhaps automatically loading the user environment when he/she sits in the front of the 

machine. 

A face recognition system must operate under a variety of conditions, such as varying 

illuminations and facial expressions; it must be able to handle non-frontal facial images 

of both males and females of different ages and races.  

Before face recognition is performed, face detection must take place, so the system 

should determine whether or not there is a face in a given image, once complete this 

process, face region should be isolated from the scene for the face recognition. The face 

detection and face extraction are often performed simultaneously. Finally, the 

classification of the face will take place. 

Face recognition can be done in both a still images and video images. Different 

approaches of face recognition for still images can be categorized into two main groups 

such as Geometrical approach and Pictorial approach.  
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In recent years, multiresolution analysis tools, especially wavelets, had been found 

useful for analyzing the content of images; this leads to use these tools in areas like image 

processing, pattern recognition and computer vision. Following wavelets, other 

multiresolution tools were developed like contourlets, ridgelets etc. Curvelet transform is 

a recent addition to this list of multiscale transforms while the most modern one is called 

Waveatom Transform. Waveatom transform used in image processing in the field of 

image denoising, and the results obtained are the best one when compared to the state of 

art [1]. 

The whole system of face recognition consist of three main phases, these are: 

preprocessing, feature extraction, and the classification phases.  

1.1 The Problem Statement 

The goal of this work is to find the best feature extraction, which performs the 

smallest feature vector length and gives the highest performance. The features set is 

obtained using Curvelet transform and Waveatom transform. Artificial Neural Network 

(ANN) and Hidden Markov Model (HMM) are trained using these features. AT&T as an 

example of still images, and Essex Grimace as video images are used for training and 

testing. The aim is to answer the following questions:  

1. Can Curvelet transform stand alone as feature extraction or not? 

2. How long feature vector length obtained using Curvelet transform? 

3. Can Waveatom transform used in face recognition? 

4. How long feature vector length obtained using Waveatom transform? 

5. Which is the most suitable method to extract feature from a face image; Curvelet 

or Waveatom? 

6. Does ANN give good accuracy with feature vectors obtained using Curvelet and 

Waveatom Transforms?  

7. Does HMM give good accuracy with feature vectors? 

8. Which work better as classifier ANN or HMM?       
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1.2 Literature Review 

The subject of face recognition is as old as computer vision, both because of its 

practical importance and the theoretical interest from scientists, in spite of the fact that 

other methods of identification (such as fingerprints, or iris scans) can be more accurate. 

Face recognition always remains a major focus of research because of its non-

invasive nature and because people’s primary method of person identification. Since the 

start of that field of technology there were two main approaches: 

• Geometrical approach. 

• Pictorial approach.  

The geometrical approach uses the spatial configuration of facial features. That means 

that the main geometrical features of the face such as the eyes, nose, and mouth are first 

located and then faces are classified on the basis of various geometrical distances and 

angles between features. On the other hand, the pictorial approach is using the templates 

of the major facial features and entire face to perform recognition on frontal views of 

faces.  

Perhaps eigenfaces is the most famous early technique used in face recognition 

systems. Any human face can be presented by linear combination of eigenface images. 

Eigenfaces is asset of eigenvectors derived from the covariance matrix of a high 

dimensional vector that represent possible faces of humans. Eigenfaces have advantages 

over other techniques available, such as the system’s speed. The eigenfaces method 

presented by Turk and Pentland (1991) [2] have found the principal components of a face 

image. 

Unfortunately, these eigenfaces are sensitive to variety in position and scale. For the 

system to work well, the faces need to be seen from a frontal view under similar lighting. 

To overcome this problem they suggest using a multi-resolution method in which faces 

are compared to eigenfaces of varying sizes to compute the best match. Turk  and 

Pentland’s  paper  was  very  seminal  in  the  field  of  face  recognition  and  their 

method is still quite popular due to its ease of implementation [3]. 

Researchers have starting using Wavelet coefficients as features for face recognition 

in the last years [4, 5, 6, 7, 8]. The simplest application of using Wavelet in face 

recognition can be found in [4]. The face image undergoes 2 levels Wavelet transform, 
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the approximate Wavelet coefficients are used in HMM classifier for recognition. In [5] 

solved the complexity of PCA training time by using Wavelet packet decomposition, and 

then used approximated and details coefficients to calculate PCA. Researchers in [6] the 

face image was inputted into 2 levels Discrete Wavelet Transform (DWT) system. The 

approximated coefficients projected using PCA into eigenface space; Support Vector 

Machines (SVM) classifier trained using these PCA for recognition. In [7] Wavelet 

frequency subbands were searched to found that is insensitive to expression differences 

and illumination variants ones on faces. The horizontal Wavelet components were found 

to be a very good feature in face recognition and yielding the highest performance rates. 

Researchers in [8] tried to measure the discriminability of Wavelet package 

decomposition with depth 2. They modified a Local Discriminant Coordinates (LDC) by 

using dilation invariant entropy and Maximum Postiriori (MAP) logistic model. 

Beyond Wavelet, Gabor transform were used to extract features [9, 10, 11, 12, 13, 

14]. The face image decomposed using Gabor transform in [9, 10, 11]. In [9] the 

dimensionality of Gabor feature vectors was reduced using Enhanced Fisher linear 

discriminant model (EFM). Nearest neighbor classifier were used for recognition. Where 

in [10] the dimensionalities of Gabor feature vectors was reduced using PCA followed by 

ICA. Researchers in [11] applied AdaBoosted algorithm to Gabor features and solved the 

imbalance between the amount of the positive samples and that of negative samples by 

re-sampling scheme. In [12] facial feature points were localized by Active Appearance 

Model (AAM) and refined the localization by Gabor jet similarity, next Gabor feature 

vectors extracted at all facial points. In [13] researchers not only applied Gabor transform 

but also Discrete Cosine Transform (DCT) to face images. A Radial Basis Function 

(RBF) based neural network was trained using Gabor coefficients and DCT coefficients. 

As next step to improve the processing speed they enhanced the edge and used non-

uniform down sampling to reduce the dimensionality of Gabor coefficients. In [14] multi-

scale Harris-Laplace detector was used to evaluate the interest points. Gabor transform 

was used to extract feature vectors at interest points. 

Curvelet transform becomes a very popular multi-resolution transform after 

implementing its second generation. In face recognition, Curvelet transform seems to be 

promising [15, 16, 17, 18, 19, 20, 21]. The beginning was in [15]. The face images were 
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quantized from 256 to 16 and 4 gray scale resolutions, the quantized images were 

decomposed using Curvelet transform. Three SVMs were trained using Curvelet 

coefficients and the decision was made by simple majority voting. In [16] the face image 

undergoes Curvelet transform. PCA was performed on the approximated coefficients. K-

Nearest Neighbor classifier was employed to perform the classification task. In [17] as 

preprocessing step researchers converted face images from 8 bit into 4 bit and 2 bit 

representations. Curvelet transform was performed to extract feature vectors from these 

representations, and then the approximated components were used to train different 

SVMs. Researchers in [18] addressed the problem of identifying faces when the training 

face database contains one face image of each person. The Curvelet approximated 

coefficients was framed as a minimization problem. The original image and the 

reconstructed images of the non-linear approximations were used to generate the training 

set. A comparative study amongst Wavelet and Curvelet was found in [19]. In [20] the 

Curvelet sub-bands were divided into small sub-blocks. Means, variance and entropy 

were calculated from these sub-blocks as statistical measures. Feature vector was 

constructed by concatenated each block measure. Local discriminant analyses (LDA) was 

carried out on feature vectors and the city-block distance was used for classification. 

Researcher in [21] decomposed a face image using Curvelet transform at scale 4. Next 

Least Square Support Vector Machine (LS-SVM) was trained using Curvelet features. 

The results in [17, 18, 19, 20, 21] have showed Curvelet based schemes were better 

than wavelet based recognition schemes. The results also showed improvement over the 

previous approach [15]. 

1.3  Objective and outlines of the Thesis 

This thesis introduces new proposed method to extract effective features for face 

recognition, and it implements many feature extraction techniques to feed several types 

of classifiers, these procedures will be produced many combined systems for face 

recognition; therefore, the comparative study is necessary to determine the best one. 

The present work was organized as following:  

Chapter 2 introduces the proposed Feature Extraction methods based on Curvelet and 

Waveatom representation of face images. Curvelet theory was presented. Properties of 

Waveatom as a multiresolution transform were discussed beside its theory. 
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Chapter 3 overviews the Classification technique used. Hidden Markov model 

principles were introduced. This chapter gives short summary for the algorithms which 

HMM depends on such as Expectation Maximization algorithm and Vetribi algorithm.   

Chapter 4 talks about the proposed system and its architecture. It explains the how the 

feature is obtained and used to train both of ANN and HMM. The topology of ANN and 

HMM was discussed.  

Performance of this method is examined on two different standard face databases 

with different characteristics. Simulation results and their comparisons to well-known 

face recognition methods are presented in chapter 5.  

In chapter 6, concluding remarks are stated.  Future works, which may follow this 

study, are also presented.  
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CHAPTER 2 

FEATURE EXTRACTION TECHNIQUES. 

Feature extraction is the most important step for any face recognition system. In 

reality, using local features is a mature approach to face recognition problem.  Feature 

based methods are based on finding local areas on a face and representing corresponding 

information in an efficient way. So, choosing feature locations and the corresponding 

values  are  extremely  critical  for  the  performance  of  a  recognition  system. Due to 

this fact, scientists look for another answer to face recognition problem. The idea of this 

answer comes from how human vision system perceives both local feature and whole 

face. Physiological found simple cells, in human visual cortex, that are selectively tuned 

to orientation as well as to spatial frequency.  It appears that Multiresolution transforms 

could be the response of these cells. 

The word ‘transform’ means ‘change’. An ‘image transform’ refers to an alternate 

way of representing an image. Generally an image is represented in the spatial domain by 

pixels, but there are alternate representations, the most popular being the frequency 

domain representation obtained by the Fourier transform. Particularly, the Fourier 

transform of an image is not very suitable to the field of object recognition. Other 

transforms like Wavelets, Curvelets and Waveatom provide alternative image 

representations (other than pixels or frequency). These transforms represent images in 

such a way that recognition is facilitated.  

2.1 Digital Curvelet Transform 

Curvelets was proposed by E. Candes and D. Donoho (2000) [22]. The idea of 

Curvelets is to represent a curve as a superposition of functions of various lengths and 

widths obeying the scaling parabolic law: 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ ≅ (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ) ². Figure 2.1 shows the 

Curvelet frequency tilling which called Second Dyadic Decomposition (SDD). The 

length of the localizing windows (colored blue) is doubled at every other dyadic subband. 

Curvelet Transform in continues domain was defined by using coronae and rotations, see 

Figure 2.1 (a). The discrete input data was defined on a Cartesian grid, so to able to 

define Curvelet transform in the discrete domain, concentric squares and shears should be 
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used instead of concentric circles and rotations see Figure 2.1 (b).The frequency plain is 

partitioned into radial (circles and squares) and angular ( rotations and shears) divisions. 

Different scales are obtained by radial division; the smallest scale defines the finest 

resolution while the largest scale defines the coarsest resolution. Angular division divides 

each scale into different orientation; the maximum number of orientations was found at 

the finest resolution and the lesser number of orientations was found at coarsest 

resolution.  

Curvelets are designed to represent edges and other singularities along curves much 

more efficiently than the traditional Wavelet transform which good at representing point 

singularities. Figure 2.2 shows edge representation by both Wavelets and Curvelet 

Transforms. It can be noticed, it would take many Wavelet coefficients to accurately 

represent such a curve while Curvelet needs small number of coefficients; wavelet needs 

three, six, and twelve coefficients, while Curvelet needs one, two, and four coefficients, 

in the largest, middle, and smallest scale respectively.  

To explain how the Curvelet basis elements align with edges in an image and how 

this alignment affects the coefficients of the corresponding transform. Figure 2.2 

pictorially depicts the alignment. The first box shows the original image. In the second 

box, the band-passed image (image at a certain resolution) is shown. Finally in the third 

box the alignment of the Curvelet basis elements with a small section of the edge is 

shown and will now be briefly explained.  

 
Figure 2.1: Curvelet Frequency Tiling (a): Continuous Domain.  

 (b): Discrete Domain 
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Figure 2.2: Edge Representations 

The transform coefficients are inner products of the original image and basis 

elements. Figure 2.3 show that when a basis element ‘c’ is aligned with an edge, the 

corresponding coefficient in the transform domain has a high value (c). Whereas if the 

basis element such as ‘a’ or ‘b’ is misaligned, the corresponding transform coefficient is 

nearly zero. Thus, the values of the transform coefficients provide an estimate of the 

‘edginess’ of the image at a particular scale and orientation. 

Practically, Curvelet Transform is multi-scale geometrical transform in which units 

are indexed by their position, scale and orientation. To define it in continues domain, 

suppose we work in the space R2 with special variable 𝑥𝑥, frequency variable 𝜔𝜔 and polar 

coordinates 𝑟𝑟, 𝜃𝜃 in the frequency domain. Define two smooth, non-negative and real 

valued window functions: the first one is  𝑊𝑊(𝑟𝑟)  called radial window, and the second 

one is 𝑉𝑉 (𝑡𝑡) called angular window. The function 𝑊𝑊(𝑟𝑟) takes positive real arguments and 

is supported on 𝑟𝑟 ∈  [1/2, 2]. The function 𝑉𝑉 (𝑡𝑡) takes real arguments and is supported 

on 𝑡𝑡 ∈  [−1, 1]. These windows should obey the admissibility conditions: 

� 𝑊𝑊2(2𝑗𝑗 𝑟𝑟)
∞

𝑗𝑗=−∞

= 1  ,    𝑟𝑟 > 0                                                                                     (2.1) 

 

� 𝑉𝑉2(𝑡𝑡 − 𝑙𝑙)
∞

𝑗𝑗=−∞

= 1  ,   𝑡𝑡 ∈ 𝐑𝐑                                                                                        (2.1) 

For each 𝑗𝑗, introduce the frequency window 𝑈𝑈𝑗𝑗  defined in the Fourier domain by: 
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𝑈𝑈𝑗𝑗 (𝑟𝑟,𝜃𝜃) =  2−3𝑗𝑗 4⁄  𝑊𝑊�2−𝑗𝑗 𝑟𝑟�𝑉𝑉 �
2⌊𝑗𝑗 2⁄ ⌋𝜃𝜃

2𝜋𝜋
� , ⌊𝑗𝑗 2⁄ ⌋ 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 

𝑗𝑗
2

            (2.3) 

Thus the support of 𝑈𝑈𝑗𝑗  is a polar ”wedge“ defined by the support of W and V at given 
scale. 

 
Figure 2.3: Curvelet Alignments 

A waveform 𝜑𝜑𝑗𝑗 (𝑥𝑥) can defined by letting 𝜑𝜑�𝑗𝑗 (𝜔𝜔)  =  𝑈𝑈𝑗𝑗 (𝜔𝜔). The Curvelet 

transform can be defined as a function of 𝑥𝑥 =  (𝑥𝑥1, 𝑥𝑥2) at scale 2−𝑗𝑗  , orientation 𝜃𝜃𝑡𝑡  where 

𝜃𝜃𝑡𝑡 = 2𝜋𝜋. 2⌊𝑗𝑗 2⁄ ⌋. 𝑙𝑙 , 𝑙𝑙 = 0,1, … , 0 <  𝜃𝜃𝑡𝑡 < 2𝜋𝜋, and position 𝑥𝑥𝑘𝑘
(𝑗𝑗 ,𝑙𝑙) =  Rθt � k1. 2−j , k2. 2−

j
2�  

where 𝑘𝑘 =  (k1, k2) is the shift parameter by: 

𝜑𝜑𝑗𝑗 ,𝑙𝑙 ,𝑘𝑘(𝑥𝑥) =  𝜑𝜑𝑗𝑗 �Rθt �𝑥𝑥 − 𝑥𝑥𝑘𝑘
(𝑗𝑗 ,𝑙𝑙)��                                                                                       (2.4) 

So the coefficients of the continous Curvelet are given by: 

𝑐𝑐𝑗𝑗 ,𝑙𝑙 ,𝑘𝑘  ∶=  〈𝑓𝑓,𝜑𝜑𝑗𝑗 ,𝑙𝑙 ,𝑘𝑘〉 =  � 𝑓𝑓
ℝ2

 (𝑥𝑥) 𝜑𝜑𝑗𝑗 ,𝑙𝑙 ,𝑘𝑘(𝑥𝑥)����������   𝑑𝑑𝑑𝑑                                                              (2.5) 

Based on Plancherel’s Theory, 

𝑐𝑐𝑗𝑗 ,𝑙𝑙 ,𝑘𝑘  ∶=  
1

2𝜋𝜋2  � 𝑓𝑓
ℝ2

 (𝜔𝜔) 𝜑𝜑𝑗𝑗 ,𝑙𝑙 ,𝑘𝑘(𝑥𝑥)����������   𝑑𝑑𝑑𝑑                                                                         (2.6) 

𝑐𝑐𝑗𝑗 ,𝑙𝑙 ,𝑘𝑘  ∶= 
1

2𝜋𝜋2 � 𝑓𝑓
ℝ2

 (𝜔𝜔) 𝑈𝑈𝑗𝑗 �Rθt𝜔𝜔�𝑒𝑒
𝑗𝑗  〈𝑥𝑥𝑘𝑘

(𝑗𝑗 ,𝑙𝑙),𝜔𝜔〉   𝑑𝑑𝑑𝑑                                                       (2.7) 
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If the input 𝑓𝑓 [𝑥𝑥1, 𝑥𝑥2] (0 ≤ 𝑥𝑥1  , 𝑥𝑥2 < 𝑛𝑛) in the spatial Cartesian is an image, then the 

discrete form of the continuous Curvelet transform can be expressed as the following: 

𝑐𝑐𝑗𝑗 ,𝑙𝑙 ,𝑘𝑘
𝐷𝐷 ∶=  � 𝑓𝑓 [𝑥𝑥1, 𝑥𝑥2] 𝜑𝜑𝑗𝑗 ,𝑙𝑙 ,𝑘𝑘

𝐷𝐷 [𝑥𝑥1, 𝑥𝑥2]����������������
0≤𝑥𝑥1 , 𝑥𝑥2<𝑛𝑛

                                                                   (2.8) 

There is two generations of Curvelet transform. The first generation defines Curvelet 

between Wavelet and multiscale Ridgelet. The digital Curvelet transform is obtained by 

the implementation of three steps [22]: 

1. Sub-band decomposition: The object 𝑓𝑓[𝑡𝑡1 , 𝑡𝑡2], and 𝑡𝑡1 ≥ 0 , 𝑡𝑡2 ≤ 𝑛𝑛, is 

decomposed into sub-bands with wavelet transform to obtain 𝑓𝑓[𝑛𝑛1 ,𝑛𝑛2] .  
2. Smooth partitioning: each sub-band is smoothly windowed in to “squares” of an 

appropriate scale of side-length 2−j. The side-length of these windows is doubled 

at every other dyadic sub-band.  

3. Renormalization: each resulting square is renormalized to unit length and of width 

2−j. 

4. Ridgelet analysis: Each square is decomposed by Ridgelet transform.   

In the second generation, two different implementations of Curvelet were founded: 

The first digital transformation is based on Unequally Spaced Fast Fourier Transform 

(USFFT), while the second is based on the wrapping of specially selected Fourier 

samples. The two implementations essentially differ by the choice of spatial grid used to 

translate Curvelets at each scale and angle. Where, a tilted grid mostly aligned with the 

axes of the window which leads to the USFFT. On the other hand, a grid aligned with the 

input Cartesian grid which leads to the wrapping-based. Both digital transformations 

having the same output, but the Wrapping Algorithm gives a more intuitive algorithm and 

faster computation time [23]. Because of this, Curvelet via wrapping will be used for this 

work. 

If we have the object g[t1,t2], t1≥ 0, t2< n as Cartesian array and ĝ [n1,n2] to denote its 

2D Discrete Fourier Transform, then the architecture of Curvelets via wrapping is as 

follows: 

1. 2D Fast Fourier Transform (FFT) is applied to g[t1,t2] to obtain Fourier samples 

ĝ[n1,n2]. 
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2. For each scale j and angle l, the product Ữj,l [n1,n2] ĝ[n1,n2] is formed, where Ữj,l 

[n1,n2] is the discrete localizing window (Figure 2.4 (a)). 

3. This product is wrapped around the origin to obtain ğj,l[n1,n2] = W(Ữ j,l ĝ) [n1,n2]; 

where the range for n1,n2 is now 0≤ n1<L1,j and 0≤ n2<L2,j; L1,j≈2j and L2,j ≈ 2j/2 

are constants (Figure 2.4 (b)). 

4. Inverse 2D FFT is applied to each ğj,l, hence creating the discrete Curvelet 

coefficients. 

 
Figure 2.4: Discrete Localizing Window (a): before Wrapping  

(b): after Wrapping 

In spite of good capturing edges and curves, the Curvelet problem is that it is over 

complete and its redundancy still high (7.2 in 2D and 24 in 3D). 

2.2 Waveatom Transform 

Waveatom was presented by Demanety and Ying [24], it is a new member in the 

family of oriented, multiscale transforms for image processing and numerical analysis. 

Waveatoms come either as an orthonormal basis or a tight frame of directional wave 

packets, and are particularly well suited for representing oscillatory patterns in images. 

They also provide a sparse representation of wave equations, hence the name wave 

atoms. 
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2.2.1 Waveatom Transform Properties 

To be a Multiresolution image transforms, five properties should be satisfied:  

1. Multiresolution: The transform should allow images to be successively 

approximated, from coarse to fine resolutions. 

2. Localization: The basis elements of the transforms should be localized in both the 

spatial and the frequency domains. 

3. Critical sampling: For some applications (e.g., compression), the transforms 

should form a basis, or a frame with small redundancy.  

4. Directionality: The transform should contain basis elements oriented at a variety 

of direction. 

5. Anisotropy:  When a physical property changes with direction, that property is 

said anisotropy. For image transforms, anisotropicity means that the basis 

elements of the transforms should not be circular (similar in all directions) but 

may be elliptical (more along the major axis and less along the minor axis); the 

circular basis repeats itself many times and this does not the case of elliptical one.  

The core of the Waveatom transform [24] is displayed in Figure 2.5. On the right of 

Figure 2.5, the frequency plane is divided into wedges. The wedge is formed by 

partitioning the frequency plane into radial and angular divisions. The radial divisions 

(concentric circles) are for band-passing the image at different resolution/scales. The 

angular divisions divide each band-passed image into different angles. To consider each 

wedge, the band-passed image should be analyzed at scale j and angle θ. 

The second property of the wish-list requires the transform to be localized both in the 

frequency and the spatial domain. However, a signal that is perfectly localized in one 

domain is spread out in the other. So, one can only expect the transform to be 

approximately localized in both domains. The image on the right of Figure 2.5 shows 

how the frequency plane is divided into wedges. If a wedge has an abrupt boundary in the 

frequency domain, it will be spread in the spatial domain. To avoid that, the boundary of 

the wedge is tapered as shown in Figure 2.6. The dotted line shows an abrupt wedge 

boundary, the continuous lines show the actual wedge boundary which is tapered off. 

This smooth tapering allows for localization in both the frequency and spatial domains. 
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From Figure 2.5, once the scale and the angle are defined, the wedge is identified. 

The wedge is inverted to the spatial domain (left side of Figure 2.5) by Inverse Fourier 

transform. The inverse Fourier transform of the wedge are the Waveatoms corresponding 

to the wedge at particular scale and angle. The Waveatoms are periodic and repeated 

infinitely. In Figure 2.5 they are shown as ellipses, the centers of the ellipses are shown 

as dots. 

Figure 2.8 shows a wedge (in the frequency domain) on the right, and a Waveatom 

(in spatial domain) corresponding to the wedge on the left. As we can see, the Waveatom 

is not exactly an ellipse as depicted in Figure 2.5.  It is elongated in one direction and 

wave-like in the other but its effective support is elliptical as shown in the left of Figure 

2.5 and 2.7. The relationship between the length of major and minor axes of the ellipse 

follows a parabolic scaling law, i.e. major axis length ≈ (minor axis length) 2. However, 

the values of the Waveatom coefficients are determined by how much the Waveatom and 

the actual image are aligned. 

What sets them apart from other transform architectures like Wavelets or Curvelets; 

Waveatoms have a sharp frequency localization that cannot be achieved using wavelet 

packets and offer a significantly sparser expansion for oscillatory functions than wavelets 

and Curvelets. Waveatoms capture the coherence of patterns across and along oscillations 

whereas Curvelets capture coherence along oscillations only. Waveatoms precisely 

interpolate between Gaboratoms and wavelets means that the period of oscillations of 

each wave packet is related to the size of essential support by parabolic scaling i.e. 

wavelength ~ (diameter)2, which is known as the scaling law [25]. 

 

http://www.wavelet.org/�
http://www.curvelet.org/�
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Figure 2.5: Waveatom Transform in Spatial Space (left) and in Frequency (right) 

 

 
Figure 2.6: Boundary of Wedge 

 

 
Figure 2.7: Waveatom at Increasing Finer Scale. Waveatom in Spatial Domain (left) and it’s 

Frequency Domain (right) 
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2.2.2 Waveatom Theory 

Suppose 𝑗𝑗, 𝑙𝑙,𝑘𝑘 are integer valued where 𝑗𝑗 is the cutoff in scale, 𝑘𝑘 is the cutoff in space 

and 𝑙𝑙 labels the different wedges within each scale. Now consider a one-dimensional 

family of wave packets 𝜑𝜑𝑙𝑙 ,𝑘𝑘
𝑗𝑗  (𝑥𝑥), 𝑗𝑗 ≥ 0, 𝑙𝑙 ≥ 0,𝑘𝑘 ∈ Κ , centered in frequency around 

±𝜔𝜔𝑗𝑗 ,𝑙𝑙 =  ±𝜋𝜋2𝑗𝑗 𝑙𝑙  with 𝑐𝑐12𝑗𝑗 ≤ 𝑙𝑙 ≤ 𝑐𝑐22𝑗𝑗  where 𝑐𝑐1 < 𝑐𝑐2 are positive constants, and 

centered in space around 𝑥𝑥𝑗𝑗 ,𝑘𝑘 =  2−𝑗𝑗 𝑘𝑘 . One-dimensional version of the parabolic scaling 

states that the support of each bump of 𝜑𝜑𝑙𝑙 ,𝑘𝑘
𝑗𝑗  (𝜔𝜔)  is of length 𝑂𝑂(2𝑗𝑗 ) while 𝜔𝜔𝑗𝑗 ,𝑙𝑙 = 𝑂𝑂(22𝑗𝑗 ). 

Starting with Villemoes wavelets 𝜑𝜑�𝑙𝑙0 (𝜔𝜔) in frequency plane,  

𝜑𝜑�𝑙𝑙0 (𝜔𝜔) =  𝑒𝑒−𝑗𝑗  𝜔𝜔 2⁄  �𝑒𝑒𝑗𝑗𝛼𝛼𝑙𝑙  𝑔𝑔 �𝜖𝜖𝑙𝑙 �𝜔𝜔 –  𝜋𝜋(𝑙𝑙 + 1 2⁄ )�� + 𝑒𝑒−𝑗𝑗𝛼𝛼𝑙𝑙  𝑔𝑔 �𝜖𝜖𝑙𝑙+1�𝜔𝜔 +  𝜋𝜋(𝑙𝑙 + 1 2⁄ )�� �                  (2.9)  

Where 𝛼𝛼𝑙𝑙 =  𝜋𝜋 2 ⁄ (𝑙𝑙 + 1 2⁄ ) ,  𝜖𝜖𝑙𝑙 =  (−1)𝑙𝑙  and { 𝜑𝜑𝑙𝑙(𝑡𝑡 − 𝑘𝑘)} form an orthonormal basis of 

𝐿𝐿2(ℝ). 

Dyadic dilates and translates of 𝜑𝜑�𝑙𝑙0  on the frequency axes are combined and basis 

functions, written as: 

𝜑𝜑𝑙𝑙 ,𝑘𝑘
𝑗𝑗  (𝑥𝑥) =  𝜑𝜑𝑙𝑙

𝑗𝑗 �𝑥𝑥 − 2−𝑗𝑗 𝑘𝑘� = 2𝑗𝑗 2⁄ 𝜑𝜑𝑙𝑙𝑜𝑜�2𝑗𝑗 𝑥𝑥 − 𝑘𝑘�                                                            (2.10) 

The transform 𝑊𝑊𝑊𝑊 ∶  𝐿𝐿2(ℝ) → 𝑙𝑙2(ℤ) maps a function 𝑢𝑢 onto a sequence of waveatom 

coefficients, and by Plancherel’s theorem: 

𝑐𝑐𝑗𝑗 ,𝑙𝑙 ,𝑘𝑘 =  �𝑢𝑢(𝑥𝑥)
∞

−∞

𝜑𝜑𝑙𝑙 ,𝑘𝑘
𝑗𝑗  (𝑥𝑥)𝑑𝑑𝑑𝑑 =  

1
2𝜋𝜋

� 𝑒𝑒−𝑖𝑖2−𝑗𝑗𝑘𝑘𝑘𝑘𝜑𝜑�𝑙𝑙
𝑗𝑗  (𝜔𝜔)

∞

−∞

 𝑢𝑢�(𝜔𝜔)𝑑𝑑𝑑𝑑                            (2.11) 

 

If the function u is discretized at xn = nh, h=1/K, n =1....K , then with a small truncation 

error (2.9) is modified as: 

𝐶𝐶𝑗𝑗 ,𝑙𝑙 ,𝑘𝑘
𝐷𝐷 =  � 𝑒𝑒𝑖𝑖2−𝑗𝑗𝑘𝑘𝑘𝑘𝜑𝜑�𝑙𝑙

𝑗𝑗  (𝑘𝑘)
𝑛𝑛=2𝜋𝜋(−K/2+1:1:K/2)

𝑢𝑢�(𝑘𝑘)                                                           (2.12) 

 

A simple wrapping trick is used for the implementation of discrete wavelet packets 

and the steps involved are: 
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1. Perform an FFT of size K on the samples of (𝑛𝑛) . 

2. For each pair (𝑗𝑗, 𝑙𝑙) wrap the product 𝜑𝜑�𝑙𝑙
𝑗𝑗 𝑢𝑢�  by periodically inside the interval 

[−2j π , 2j π] then perform inverse FFT of size 2𝑗𝑗  of the result to obtain 𝐶𝐶𝑗𝑗 ,𝑙𝑙 ,𝑘𝑘
𝐷𝐷 . 

3. Repeat step 2 for all pairs( 𝑗𝑗, 𝑙𝑙) . 

 

The positive and negative frequency components represented by: 

𝜑𝜑�𝑙𝑙 ,𝑘𝑘
𝑗𝑗  (𝜔𝜔) = 𝜑𝜑�𝑙𝑙 ,𝑘𝑘+  (𝜔𝜔) + 𝜑𝜑�𝑙𝑙 ,𝑘𝑘−  (𝜔𝜔)                                                                                        (2.13) 

Hilbert transform 𝐻𝐻𝜑𝜑�𝑙𝑙 ,𝑘𝑘
𝑗𝑗  (𝜔𝜔) of eq. (2.11) represents an orthonormal basis 𝐿𝐿2(ℝ) and is 

obtained through a linear combination of positive and negative frequency bumps 

weighted by i and –i respectively. 

𝐻𝐻 𝜑𝜑� 𝑙𝑙 ,𝑘𝑘
𝑗𝑗  (𝜔𝜔) = −𝑖𝑖𝜑𝜑�𝑙𝑙 ,𝑘𝑘+  (𝜔𝜔) + 𝑖𝑖𝜑𝜑�𝑙𝑙 ,𝑘𝑘−  (𝜔𝜔)                                                                             (2.14) 

To extend Waveatom to be 2D, let 𝜇𝜇 = (𝑗𝑗, 𝐥𝐥,𝐤𝐤), where 𝐥𝐥 = (𝑙𝑙1, 𝑙𝑙2) and 𝐤𝐤 = (𝑘𝑘1,𝑘𝑘2), 

so from equation 2.8. 

𝜑𝜑𝜇𝜇+ (𝑥𝑥1, 𝑥𝑥2) =  𝜑𝜑𝑙𝑙1
𝑗𝑗 �𝑥𝑥1 − 2−𝑗𝑗 𝑘𝑘1�𝜑𝜑𝑙𝑙2

𝑗𝑗 �𝑥𝑥2 − 2−𝑗𝑗 𝑘𝑘2�                                                        (2.15) 

Hilbert transform was used to define the dual orthonormal basis,  

𝜑𝜑𝜇𝜇− (𝑥𝑥1, 𝑥𝑥2) = 𝐻𝐻 𝜑𝜑𝑙𝑙1
𝑗𝑗 �𝑥𝑥1 − 2−𝑗𝑗 𝑘𝑘1� 𝐻𝐻𝜑𝜑𝑙𝑙2

𝑗𝑗 �𝑥𝑥2 − 2−𝑗𝑗 𝑘𝑘2�                                                (2.16) 

Now the bases function problem is that they oscillate in two directions instead of one in 𝑥𝑥 

space. To solve this problem we combine the primal and dual (Hilbert-transformed) basis.  

𝜑𝜑𝜇𝜇
(1) =  

𝜑𝜑𝜇𝜇+ + 𝜑𝜑𝜇𝜇−

2
    ,𝜑𝜑𝜇𝜇

(2) =  
𝜑𝜑𝜇𝜇+ − 𝜑𝜑𝜇𝜇−

2
                                                                         (2.17) 

By now, basis functions have two bumps in the frequency plane and they are 

symmetric with respect to the origin, so we get purely directional wave atom. 𝜑𝜑𝜇𝜇
(1) and 

𝜑𝜑𝜇𝜇
(2)form the wave atom frame. 

The discretization of wave atoms closely follows the strategy of frequency sampling 

and wrapping used for curvelets [26]. 
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CHAPTER 3  
HIDDEN MARKOV MODEL 

Although there has been several modeling techniques for face identification, this 

section focus only on one approach that view a human face as a time series sequence 

represented by a Markovian process. 

3.1 Hidden Markov Model Principles 

In spite of studied in the late 1960s, statistical methods of Markov source or hidden 

Markov modeling have become increasingly popular in the last decade.  

Hidden Markov Models (HMM) are a set of statistical models used to characterize the 

statistical properties of a signal. HMM consist of two interrelated processes: 

a. An unobservable Markov chain with limited number of status in the model, the 

observation symbol probability matrix B, a state transition probability matrix A, 

and initial state distribution Π. 

b. A set of Probability Density Functions (PDF) associated with each state. 

Using these notations, a HMM is defined as the triplet λ = (A, B, Π). The states in 

HMM are hidden and only emitting symbols are observed.  

Let 𝑁𝑁 is the number of states, and the state at time 𝑡𝑡 is given by 𝑞𝑞𝑡𝑡  ,1 <  𝑡𝑡 <  𝑇𝑇, 

where 𝑇𝑇 is the length of the observation sequence. Then the initial state distribution Π 

=  {𝜋𝜋𝑖𝑖},𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜋𝜋𝑖𝑖  =  𝑝𝑝{𝑞𝑞𝑖𝑖  =  𝑖𝑖},1 <  𝑖𝑖 <  𝑁𝑁.  Now the state transition probability 

matrix becomes 𝐴𝐴 = {𝑎𝑎𝑖𝑖𝑖𝑖 } , where 𝑎𝑎𝑖𝑖𝑖𝑖  =  𝑝𝑝{𝑞𝑞𝑡𝑡+1  =  𝑗𝑗 | 𝑞𝑞𝑡𝑡  =  𝑖𝑖}, 1 <  𝑖𝑖, 𝑗𝑗 <  𝑁𝑁 , 0 <

 𝑎𝑎𝑖𝑖𝑖𝑖  < 1, 𝑎𝑎𝑎𝑎𝑎𝑎 ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1 = 1. finally the observation symbol probability matrix 𝐵𝐵 =

{𝑏𝑏𝑗𝑗 (𝑜𝑜𝑡𝑡)} is approximated by the weighted sum of M Gaussian distributions where 

𝑏𝑏𝑗𝑗 (𝑜𝑜𝑡𝑡) =  ∑ 𝑐𝑐𝑗𝑗 ,𝑚𝑚
𝑀𝑀
𝑚𝑚=1  𝑁𝑁(𝜇𝜇𝑗𝑗 ,𝑚𝑚 ,𝜎𝜎𝑗𝑗 ,𝑚𝑚 , 𝑜𝑜𝑡𝑡) where 𝑁𝑁(𝜇𝜇𝑗𝑗 ,𝑚𝑚 ,𝜎𝜎𝑗𝑗 ,𝑚𝑚 , 𝑜𝑜𝑡𝑡) is a Gaussian pdf mean 

vector 𝜇𝜇𝑗𝑗 ,𝑚𝑚  and covariance matrix 𝜎𝜎𝑗𝑗 ,𝑚𝑚 , 𝑐𝑐𝑗𝑗 ,𝑚𝑚  is weighted coefficients for the mth mixture 

in state 𝑗𝑗 with constraints 𝑐𝑐𝑗𝑗 ,𝑚𝑚  ≥  0, 1 <  𝑗𝑗 < 𝑁𝑁 , 1 <  𝑚𝑚 <  𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎   ∑ 𝑐𝑐𝑗𝑗 ,𝑚𝑚
𝑀𝑀
𝑚𝑚=1 = 1.    

HMMs are typically used to address three unique problems [27]: 

1. Evaluation: Given a model λ and a sequence of observations O, how one could 

efficiently compute P (O| λ).  

2. Decoding: Given a model λ and a sequence of observations O, what is the hidden 

state sequence q* most likely to have produced O, i.e., q* = arg maxq [P (q| λ, O)]. 
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3. Parameter estimation: Given an observation sequence O, what model λ is most 

likely to have produced O.  

The first problem is typically used for pattern recognition tasks; a number of distinct 

HMMs used to generate the probability of an observation sequence, each of which 

corresponds to a class of pattern. The pattern is classified as belonging to the same class 

as the HMM which produces the highest probability. The second problem can be used to 

find the optimal state sequence in the application or to learn about the structure of a 

model. The last problem is referred to as training, because the model’s parameters are 

adjusted until some convergence criterion is reached. Typically, a number of observation 

sequences are used to train a model. 

In deeply manner, in the first process, each state j has an associated observation 

probability distribution bj(ot) which determines the probability of generating observation 

ot at time t and each pair of states i and j has an associated transition probability aij . 

Figure 3.3 shows an example of this process where the six state model moves through the 

state sequence X = 1; 2; 2; 3; 4; 4; 5; 6 in order to generate the sequence o1 to o6 [28]. 

 

 
Figure 3.1: A Simple HMM 

The observation probability is represented by a mixture Gaussian density.  The 

mathematical form of an m component Gaussian mixture for D dimensional input vectors 

is,  

𝑝𝑝⟨x|M⟩ = � �𝑎𝑎𝑛𝑛
1

(2π)D /2| ∑n|1/2�
𝑚𝑚

𝑛𝑛=1
e�− 12 (x− μ)T ∑ (x− μn )−1

n �                                           (3.1)     
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Where 𝑝𝑝⟨x|M⟩ is the likelihood of x given the mixture model, M. The mixture model 

consists of a weighted sum over m unimodal Gaussian densities each parameterized by 

the mean vectors, μn, and covariance matrices, σn. The coefficients, an, are the mixture 

weights, which are constrained to be positive and must sum to one. The parameters of a 

Gaussian mixture model, an, μn and σn 
for n=1…m may be estimated using maximum 

likelihood criterion via the iterative Expectation-Maximizations (EM) algorithm. In 

general, fewer than ten iterations of the EM algorithm will provide sufficient parameter 

convergence [29]. 

In the second process, each state acts as PDF with its own parameters. The Gaussian 

mixture (GM) modeling is commonly used for each state, where each state has its own 

GM. When a feature vector enters a state, the PDF of that vector is performed according 

to the GM model of that state.  

3.2 Parameters Estimation 

HMM initializes mean and variance of each GM by using Baum-Welch formulae, 

then used EM algorithm to re-estimate more accurate parameters.  

To go deep, the training observation vectors 𝑜𝑜𝑡𝑡  were assigned to all states. Using 

Baum-Welch formulae, calculate mean μn and variance σn of state n (equations 3.2 and 

3.3). 

𝜇̂𝜇𝑛𝑛 =  ∑  𝐿𝐿𝑛𝑛 (𝑡𝑡) 𝑜𝑜𝑡𝑡𝑇𝑇
𝑡𝑡=1
∑ 𝐿𝐿𝑛𝑛 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

                                                                                                                        (3.2)   

σ�𝑛𝑛 =  
∑  𝐿𝐿𝑛𝑛(𝑡𝑡)(𝑜𝑜𝑡𝑡 −  𝜇̂𝜇𝑗𝑗 )(𝑜𝑜𝑡𝑡 −  𝜇̂𝜇𝑗𝑗 )′𝑇𝑇
𝑡𝑡=1

∑ 𝐿𝐿𝑛𝑛(𝑡𝑡)𝑇𝑇
𝑡𝑡=1

                                                                             (3.3) 

Where (𝑜𝑜𝑡𝑡 −  𝜇̂𝜇𝑗𝑗 )′  is the transpose of (𝑜𝑜𝑡𝑡 −  𝜇̂𝜇𝑗𝑗 ), and 𝐿𝐿𝑛𝑛(𝑡𝑡) is the probability of being in 

state n at time t. forward-backward algorithm was used to calculate 𝐿𝐿𝑛𝑛(𝑡𝑡). Suppose 𝛼𝛼𝑛𝑛(𝑡𝑡) 

is the joint probability of observing the first 𝑡𝑡 vectors and being in state 𝑛𝑛 at time 𝑡𝑡, for 

such a model M and N state, 

𝛼𝛼𝑛𝑛(𝑡𝑡) = 𝑃𝑃(𝑜𝑜1, … … , 𝑜𝑜𝑡𝑡 , 𝑥𝑥(𝑡𝑡) = 𝑛𝑛|𝑀𝑀�)                                                                                      (3.4) 

By induction, we have, 

𝑃𝑃(𝑂𝑂|𝑀𝑀�) = �𝛼𝛼𝑛𝑛(𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

                                                                                                                  (3.5) 
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The backward probability 𝛽𝛽𝑛𝑛(𝑡𝑡) , 

𝛽𝛽𝑛𝑛(𝑡𝑡) = 𝑃𝑃(𝑜𝑜𝑡𝑡+1, … … , 𝑜𝑜𝑇𝑇 , 𝑥𝑥(𝑡𝑡) = 𝑛𝑛,𝑀𝑀)                                                                                 (3.4) 

Once again inductively we have, 

𝛽𝛽𝑛𝑛(𝑡𝑡) =  ∑ 𝛼𝛼𝑛𝑛𝑛𝑛 𝑏𝑏𝑗𝑗 (𝑜𝑜𝑡𝑡+1)𝛽𝛽𝑗𝑗 (𝑡𝑡 + 1)𝑁𝑁−1
𝑗𝑗=2                                                                                     (3.5)   

By now, 

𝐿𝐿𝑛𝑛(𝑡𝑡) =  1
𝑃𝑃�  𝛼𝛼𝑛𝑛(𝑡𝑡) 𝛽𝛽𝑛𝑛(𝑡𝑡)    ,           𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃 = 𝑃𝑃(𝑂𝑂|𝑀𝑀�)                                                   (3.6)  

After parameters initialization, HMM uses viterbi algorithm to find the best path 

given such a sequence. To do so, the EM algorithm was used to re-estimate mean and 

variance. The EM algorithm is an iterative procedure to compute the Maximum 

Likelihood (ML) estimate in the presence of missing or hidden data. Each iteration of the 

EM algorithm alternates between performing two processes:  

1. The expectation step (E-step).  

2. The maximization step (M-step).  

In E-step, the missing data are estimated given the observed data and current estimate 

of the model parameters. This is achieved using the conditional expectation, explaining 

the choice of terminology. In the M-step, the likelihood function is maximized under the 

assumption that the missing data are known. The estimates of the missing data from the 

E-step are used in instead of the actual missing data. Convergence is assured since the 

algorithm is guaranteed to increase the likelihood during the iterations. However, the 

great advantage of the algorithm is that its convergence is smooth. 

The Maximum likelihood Gaussian mixture model, to estimate probability density 

function 𝑝𝑝⟨x|M⟩. It was estimated by the mean log likelihood over the sequence, 

X={X1…XN}, 

𝑆𝑆(𝑋𝑋) = log  P⟨X|M⟩ =
1
𝑁𝑁
� log  P⟨Xn|M⟩
𝑚𝑚

𝑛𝑛=1

                                                                           (3.7) 

Suggest that the states are already trained. In Figure 3.3 the observation sequence had 

6 frames; states and frames were represented by vertical and horizontal dimensions, 

respectively.  Dots and arcs represent the log observation probability and log transition 

probability, respectively. The log probability of any path is the summation of all log 
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probabilities (observation and transitions) were contained on that path, the best time-

alignment of the frames is obtained, and this is so-called Viterbi algorithm.  

In recognition stage, preferably, the decision depend on the maximum score path in 

the model, which is obtained by the viterbi algorithm. At each node in the viterbi trellis, 

only the best path leading to this node is kept and the rest are dropped. This continues 

until all frames are done. Thus at each node to select one path and one score is recorded.  

3.3 HMM Applications 
Neither the theory of HMM nor its application in the field of recognition is new. 

Hidden Markov Models have been successfully used for speech recognition where data is 

essentially one dimensional. Extension to a fully connected two dimensional HMM has 

been shown to be computationally very complex.  

HMM seems to be a promising method that works well for images with variation in 

different lighting, facial expression, and orientation. The system being modeled is 

assumed to be a Markov process with unknown parameters, and the goal is to find hidden 

parameters from the observable parameters. Each state in HMM has a probability 

distribution over the possible output whereas each state in a regular Markov model is 

observable. 
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CHAPTER 4 

SYSTEM DESIGN 

The project contains three main stages: preprocessing stage followed by feature 

extraction stage and the classification stage. MatlabR2008a were used to implement this 

project. Three datasets used for testing; AT&T and Essex Grimace datasets. 

Preprocessing was applied to the datasets. In Feature Extraction stage, the images are 

decomposed by two levels Curvelet and Waveatom Transform.  

4.1 Preprocessing Stage 

As preprocessing, first Color images of Essex Grimace database are converted to gray 

scale images using equation 4.1. Let R, G, B be red, green, blue value of colored image,   

𝑔𝑔𝑔𝑔𝑔𝑔𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 0.2989 × 𝑅𝑅 + 0.587 × 𝐺𝐺 + 0.114 × 𝐵𝐵                                                                  (4.1) 

 For each dataset, all face images are quantized into 8 gray levels. The intensity image 

was scaled and rounds produce an equivalent indexed image. Then cropped face region 

and resized it into 120×120.  

4.2 Feature Extraction Stage 

The most important property of multiscale transforms, in the recognition task, is the 

sparsity. Features choice will be no longer critical task, if we use the sparsity of the 

transform in correct way. The important here is answering two questions: the first 

question is if the number of features is large or not. The second one is if the sparse 

representation was calculated in correct manner or not.  

Sparsest representation has discriminant nature, from all subsets of features; it selects 

the most representative subset and most compactly expressed the input image and rejects 

all other less compact representations.   

The underlying texture structure was zoomed on and out by the analysis of 

multiresolution transforms, therefore, the extracted texture does not affected by the size 

of neighboring pixels. 

The multiscale transforms theory yields to two important points; the role of feature 

extraction and the difficulty due to occlusion. Feature extraction role of Curvelet and 

Waveatom transforms was covered on chapter two. The occlusion difficulty will be 

covered in the next section, when talking about the classifier.  
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The feature extraction stage was implemented using two modern multiresolution 

transform; the first is the Curvelet transform and the second is the Waveatom transform. 

CurveLab-2.1.2 Matlab package [30] was used to yield Curvelet feature vectors. 

Waveatom feature vectors were outperformed using WaveAtom-1.1.1 matlab package 

[31].  

4.2.1 Curvelet based Feature Extraction  
 In order to extract feature vectors, the images are decomposed into its approximate 

and detailed components using two levels of Curvelet transform. These sub-images thus 

obtained are called curvefaces. These curvefaces greatly reduces the dimensionality of 

the original image. Thereafter only the approximate components are selected to perform 

further computations, as they account for maximum variance. Thus, a representative and 

efficient feature set is produced. Figure 4.1 shows the Curvelet coefficients of a face from 

ORL dataset decomposed at scale = 2 and angle = 8. The image in the first row is the 

original image. The coarse scale (low frequency) is first image in the second row, which 

so-called approximate coefficients. The other images are finest scale which so-called 

detail coefficients.    

The face images, belongs to ORL and Essex Grimace dataset, are decomposed using 

Curvelet transform at scale = 3 and angle = 8. Thus 25 components are produced, 

including 1 approximate and 24 detailed sub-band. The resolution of the approximate 

subband is reduced to 42 x 37 and 42 x 42 for images of ORL and Essex Grimace 

respectively. To further reduce the dimensionality, Curvelet transform, at scale = 3 and 

angle = 8, was applied once again on these approximate components only. The resolution 

of the approximated subband became 13x15 and 15x15 for images of ORL and Essex 

Grimace respectively as shown in Figure 4.2. A total of 195 features of Curvelet sub-

images are produced. 

4.2.2 Waveatom based Feature Extraction 
Waveatom decomposition is used for sparse representation of face images since they 

belong to a category of images that oscillate smoothly in varying directions. Firstly, 

discrete 2D Waveatom decomposition is applied to the original face image; to efficiently 

capture coherence patterns along and across the oscillations. Figure 4.3 shows the 

Waveatom coefficients of a face from ORL dataset decomposed at different scales. The 



25 
 

highest coefficients value is inserted first in the coefficients array within each scale; the 

array sorted descending. The upside right block shows the coefficients at scale three, 

actually the number of feature vector is 8 x 8 features. The down side left block shows 

scale four coefficients, coefficients array length 50 x 50 coefficients. The block in the 

downside right shows scale five coefficients which is 120 x 120 coefficients.  

  

 
Figure 4.1: Curvelet Coefficients (Approximated and Details) 

 
Figure 4.2: Sample Images of Curvelet Transform 
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Figure 4.3: Coefficients of Waveatom Transform at Different Scales 

To study the marginal statistics of the Waveatom coefficients of images, looking to 

Figure 4.4 to note that, the histograms of two orientations at two successive scales of a 

face image (two following scale). The distributions are characterized by a very sharp 

peak at zero amplitude and extended tails to both sides of the peak (leptokurtic). This 

leptokurtic behavior is observed on all histograms of all orientations and scales of all 

images in our test set. This implies that the Waveatom transform is very sparse, as the 

majority of coefficients have amplitudes close to zero. The kurtoses of these distributions 

are higher than the Gaussian value of 3. Where the Kurtoses are defined as the fourth 

central moment divided by the square of the variance as follows: 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =
E[(x − x�)4]

σ4                                                                                                     (2.18) 

Thus, the marginal distributions of images in Waveatom domain are highly non- 

Gaussian. 

From all discussions and characteristics that viewed in this chapter, the Curvelet 

transform and Waveatom transform are used in this thesis as novel techniques for 

features extraction, as will be discussed later. 
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Figure 4.4: Marginal Distributions 

4.3 Classification Stage 

Before going in to the identification task, In order to be able to compare the feature 

vectors obtained from Curvelet and Waveatom transforms, they were needed to put into 

the same scale. Therefore, a normalization of these values using the Gaussian model 

based Z-score normalization method was performed. The following formula was used for 

normalization: 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑧𝑧−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −  𝜇𝜇

𝜎𝜎
                                                                               (4.2) 

Where 𝜇𝜇 and 𝜎𝜎  are the mean and standard deviation for such a row. This normalization 

maps the score onto a common scale and removes the dependencies of the scores too.  

The classification is performed by HMM. Many efforts spend to utilize the HMM 

technique to the classification task. In particular, a new application of the well-known 

HMM, which is implemented in HMMall matlab toolbox [32].  
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4.3.1 Artificial Neural Network 

Neural networks are composed of simple elements operating in parallel. The neuron 

model shown in Figure 4.5 is the one that widely used in artificial neural networks. 

 
Figure 4.5: Artificial Neurons 

The neuron given in this figure has N input, denoted as x1, x2…xN. Each line 

connecting these inputs to the neuron is assigned a weight, which is denoted as w1, w2…. 

wN 
respectively. The threshold in artificial neuron is usually represented by Ф and the 

activation is given by the formula: 

𝑎𝑎 = Ф + � wj 

𝑛𝑛

𝑗𝑗=1
 xj                                                                                                          (4.3)                                      

Both of the inputs and weights are real values. If Ф is positive, it is usually referred as 

bias. Due to its mathematical convenience (+) sign is used in the activation formula. 

Sometimes, the threshold is combined into the summation part by assuming an imaginary 

input x0 
= +1 and a connection weight w0 = Ф.  Equation 4.4, which is vector notation, 

used to update the neuron. 

𝐴𝐴 = 𝑊𝑊𝑇𝑇  +  Ф                                                                                                                     (4.4) 

Function implementations can be done by adjusting the weights and the threshold of 

the neuron. Furthermore, by connecting the outputs of some neurons as inputs to the 

others, neural network will be established, and any function can be implemented by these 

networks. The last layer of neurons is called the output layer and the layers between the 

input and output layer are called the hidden layers. The input layer is made up of special 

input neurons, transmitting only the applied external input to their outputs.  
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The architecture of artificial neural network used in this thesis is a multi layer 

perceptron with steepest descent back-propagation training algorithm with adaptive 

learning rate. Figure 4.6 shows the architecture of a typical Back-propagation neural 

network. It contains from three layers; input layer, one hidden layer, and output layer. 

Tansigmoid transfer function was used in the hidden layer. Linear transfer function was 

used in the output layer. 

 
Figure 4.6: Back-propagation Neural Network 

Back-propagation algorithm is used as the training method of the designed artificial 

neural network. The back-propagation algorithm includes the following steps: 

1. Initialize weights and biases to small random numbers. 

2. Present a training data to neural network and calculate the output by propagating 

the input forward through the network used. 

3. Propagate the sensitivities backward through the network: 

𝑆𝑆𝑀𝑀 = −2 𝐹̇𝐹𝑀𝑀(𝑛𝑛𝑀𝑀)(𝑡𝑡 − 𝑎𝑎)                                                                                   (4.5)                

𝑆𝑆𝑚𝑚 = 𝐹̇𝐹𝑚𝑚(𝑛𝑛𝑚𝑚)(𝑊𝑊𝑚𝑚𝑚𝑚 )𝑇𝑇𝑆𝑆𝑚𝑚+1     for m =  M − 1, … . , 2, 1                           (4.6)    

Where  

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡𝑓𝑓
̇𝑚𝑚 (𝑛𝑛1

𝑚𝑚) 0 …     0
0 𝑓𝑓̇𝑚𝑚(𝑛𝑛2

𝑚𝑚 ) …      0
⋮
0

⋮
0

           ⋮
       … 𝑓𝑓̇𝑚𝑚 (𝑛𝑛𝑗𝑗𝑚𝑚

𝑚𝑚 )⎦
⎥
⎥
⎥
⎤
                                               (4.7)                                     

𝑓𝑓̇𝑚𝑚  �𝑛𝑛𝑗𝑗𝑚𝑚� =
𝜕𝜕  𝑓𝑓𝑚𝑚 (𝑛𝑛𝑗𝑗

𝑚𝑚 )

𝜕𝜕  𝑛𝑛𝑗𝑗
𝑚𝑚                                                                                               (4.8)                                                     
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4. Calculate weight and bias updates 

∆𝑊𝑊𝑚𝑚  (𝑘𝑘) = −𝛼𝛼 𝑠𝑠𝑚𝑚 (𝑎𝑎𝑚𝑚−1)𝑇𝑇                                                                                 (4.9)                               

∆𝑏𝑏𝑚𝑚  (𝑘𝑘) = −𝛼𝛼 𝑠𝑠𝑚𝑚                                                                                                   (4.10)                                             

5. Update the weights and biases 

𝑊𝑊𝑚𝑚   (k+1) = 𝑊𝑊𝑚𝑚   (k) + ∆𝑊𝑊𝑚𝑚   (k)                                                                      (4.11) 

𝑏𝑏𝑚𝑚   (k+1) = 𝑏𝑏𝑚𝑚   (k) + ∆𝑏𝑏𝑚𝑚   (k)                                                                            (4.12)  

6. Repeat steps 2-5 until convergence.  

4.3.2 HMM for Face Recognition 

In this section, the goal is to build HMM model assigned to the different faces 

contained in the training sets. One HMM is built for each subject; the training process is 

performed using the Baum–Welch algorithm. Each feature vector is modeled by 

continuous left-to-right HMMs. Each HMM state generates a mixture of Gaussian 

densities. The number of states and the number of densities per state that are appropriate 

to model each class depend on the amount of training data available for that class. 

In the feature extraction phase of HMM model, each individual in the dataset is 

represented by a HMM face model. First, the HMM is initialized. The image is 

segmented from top to bottom. Each segment is fixed-size 2D window that belongs to 

some predefined facial regions as shown in Figure 4.7. In other words, extract the 

observation vector sequences from the entire face image. Each observation sequences a 

multidimensional vector. Each state is assigned one and only one facial region. Actually, 

facial regions are all clusters of vectors that are formed using k-means algorithm. Then 

the image data within a region is modeled by a multivariate Gaussian distribution. Next, 

model parameters are re-estimated by a process called E-M procedure to maximize the 

model probability until convergence. In other words, one state is responsible for 

characterizing the observation vectors of human foreheads, and another state is 

responsible for characterizing the observation vectors of human eyes.   

In the training phase, HMM builds a model for each person in the database. Each 

HMM is trained with different face images of the same person. Each parameter of this 
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model will be trained through two levels Curvelet feature vectors and Waveatom feature 

vectors.  

The HMM testing phase consists of partitioning each test image into blocks and 

assigning a facial region to each of them. K-means clustering algorithm has the 

responsibility to perform this phase; k is the number of selected facial region. This 

sequence of blocks with their facial regions was used to express a face image. Now, the 

recognition phase will be performed by founding the model within the training sets that 

maximizes the likelihood of a tested face image.    

 
Figure 4.7: HMM observation vector 

HMM chooses the Maximum Likelihood model (𝑀𝑀𝑀𝑀) using the Maximum Likelihood 

criterion as follows: 

𝑀𝑀𝑀𝑀 =
1
𝑁𝑁

 log 𝑝𝑝(𝑋𝑋|𝜃𝜃𝑚𝑚𝑚𝑚 �)                                                                                                            (4.13) 

Where 𝑋𝑋 is the dataset and 𝜃𝜃𝑚𝑚𝑚𝑚  is maximum likelihood estimate parameters. HMM 

likelihood increases with the number of parameters in the model. The shortcoming of ML 

criterion is that there is no penalty to prevent the number of model parameters from 

increasing. On the other side, maximum likelihood estimation methods two attractive 

points; the first point is that they have good convergence properties as the number of 

training samples increases. The second point is that maximum likelihood estimation often 

can be found simply. 
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HMM is good to deal with noisy or distorted data but it tends towered outputting high 

probability not for the proper class data, but for out-class data too. So HMM discriminant 

is reduced. 

To overcome this problem, it’s needed to build enclosed models (out-class) for each 

class using included and occluded data. The procedure as follows: first of all, HMM 

standard model was trained using in-class data. Second, standard models recognition 

results are used to defined the confusion sets data. Again, HMM standard model was 

trained using out-class data. Finally, for each class, the final model (𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓  ) was 

calculated using the following equation: 

𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓 = 1
𝑁𝑁

 log𝑝𝑝(𝑋𝑋|𝜃𝜃𝑚𝑚𝑚𝑚 �) −  1
𝑁𝑁′

 log 𝑝𝑝(𝑋𝑋′ |𝜃𝜃′𝑚𝑚𝑚𝑚 �) =   𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 −  𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜                              (4.14)    

Where 𝜃𝜃𝑚𝑚𝑚𝑚  𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃′𝑚𝑚𝑚𝑚 , 𝑋𝑋 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋′  and 𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁′ ,  are the maximum likelihood estimate 

of parameters for in-class and out-class, in-class and out-class training data sets, and 

number for in-class and out-class training data sets respectively. 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖  and 𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜   are in-

class model and out-class model respectively. 

   

4.4 Summary 

The procedure can be summarized as follows: 

1. Preprocessing Stage 

I. Convert colored images into gray scale, each face image, crop the face 

region, quantize into 8 gray levels, and resize it. 

II. Original data set will be in-class data sets. 
III. Add inclusions and occlusions to original data sets to define out-class sets. 

2. Feature Extraction Stage 

I. Two levels Curvelet decomposition applied to all face images, 

approximated coefficients will be the feature vector. 

II. Decompose all face images using Waveatom transform, coefficients at 

scale three will be the feature vector. 

3. Classification Stage 

I. Part A 

Train ANN using both ORL and Essex Grimace data sets. 

II. Part B 
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Train HMM using both ORL and Essex Grimace data sets. 

III. Part C 
Using in-classes data sets, train HMM  
Using out-classes data sets, train HMM  
Compute 𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓  using equation 4.14 

End. 
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CHAPTER 5 
SIMULATION RESULTS 
 

This chapter talks about the Experimental results obtained and how it obtained, 

discusses it in deep, and compares it to show the benefit to use the proposed method. 

5.1 Data Collection   

Experiments were carried out using three datasets from different sources: ORL 

(AT&T) database, Essex Grimace database and Yale database, both sets are used to 

implement different Algorithms to recognize the human face. 

ORL (AT&T) database [33] contains distinct face images sets for 40 persons with 

dimension of 92×112, and each set consists of 10 different images for the same person. 

For some persons, images were taken at different times varying the lighting, facial 

expression (open / closed eyes, smiling / not smiling) and facial details (glasses / no 

glasses). All the images were taken against a dark homogeneous background with the 

faces in an upright, frontal position (with tolerance for some side movement). Sample 

images of this dataset are shown in Figure 5.1. 

 
Figure 5.1: Sample Images from ORL database 

Essex Grimace database [34] contains sequence face images for 18 persons each one 

has 20 images (180×200), all images taken with a fixed camera for male and female. 

During the sequence, the subject moves his/her head and makes grimaces which get more 

extreme towards the end of the sequence. Images are taken against a plain background, 

with very little variation in illumination. Sample images of this database are shown in 

Figure 5.2. For the purposes of the experiments carried out, the Essex faces were 

converted to grayscale prior to training.  

Experiments were carried out using Matlab R2008a on 2 Due CPU, 2.27 GHz laptop 

processor, and 2 GB RAM.  

First of all, the preprocessing is performed on all face images and for all datasets.  
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Figure 5.2: Sample Images from Essex Grimace Database 

First of all, the preprocessing is performed on all face images and for all datasets. In 

order to build a confusion datasets; inclusion data sets were built by add gray level to face 

image in different parts of faces while occlusion data sets were built by cropping different 

parts of faces. Bellow, Figure 5.3 shows samples of out-class image from ORL and Yale 

datasets. Indeed, for each dataset, each person has two enclosed data classes; the first 

class is included data class which contains four included face images and six normal face 

images, the second class is occluded data class which contains four occluded face images 

and six normal face images.  

 
Figure 5.3: Out-class Image Samples 

In order to assess the efficiency of the proposed technique described in the previous 

chapter, a series of experiments were carried out using all databases separately. 

Therefore, with AT&T database, six images were used for training and four images for 

testing during each run. When using the Essex 95 database, nine images were used for 

training and eleven images for testing during each run. One HMM model was trained for 

each individual in the database.  
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After feature extraction take place, it’s time to perform the identification task. The 

classification is performed by two different techniques; the first is gradient descent back-

propagation neural network with adaptive learning rate, while the second is HMM. 

5.2 Neural Network for Face Recognition 
Neural networks have been widely used in many pattern recognition problems, such 

as optical character recognition, and object recognition. Since face detection can be 

treated as a two class pattern recognition problem, various neural network architectures 

have been proposed. The advantage of using neural networks for face detection is the 

feasibility of training a system. This feasibility used to capture the complex class 

conditional density of face patterns. However, one drawback is that the network 

architecture has to be extensively tuned (number of layers, number of nodes, learning 

rates, etc.) to get exceptional performance. 

The aim of initial experiments was to investigate the efficiency of using both of two 

levels Curvelet transform and Waveatom transform for extract features with gradient 

descent backpropagation ANN based face recognition task. 

The gradient descent with momentum training function was used to update weight 

and bias values. Tan sigmoid transfer function and linear transfer function were used in 

hidden layers and output layer respectively. The number of hidden layer and the number 

of nodes in each layer are varied to obtain the optimal back-propagation neural network 

topology for highest performance with both 2-level Curvelet Transform and Waveatom 

Transform. As shown in Figures 5.4 and 5.5, the number of hidden layer and the number 

of nodes in each one are important parameter to improve the recognition rate (success 

rate).  

From Figure 5.4 (a) for both ORL and Essex Grimace data sets, when the ANN 

topology has one hidden layer; starting with 20 nodes in the first hidden layer and 

increased them to be 80 nodes. It can be seen that the curves in Figure 5.4 (a) is a linear 

piecewise curves. The success rate obtained was 87% and 88% for ORL and Essex 

Grimace databases respectively using 20 nodes in the first hidden layer. With 30 nodes, 

the success rate increased to become 89% for ORL database and 90% for Essex Grimace 

database.  With 40 nodes, the success rate increased to become 91% for ORL database 

and 95% for Essex Grimace database. Once again it increased to be 97% and 100% for 
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ORL and Essex Grimace databases respectively. The success rate decreased to 93% and 

97% for ORL and Essex Grimace databases respectively using 60 nodes in the first 

hidden layer. With 70 nodes the success rate was 90% for ORL database and 96% for 

Essex Grimace database. With 80 nodes it decreased to 89% and 94% for ORL and Essex 

Grimace databases. 

From Figure 5.4 (b) for both ORL and Essex Grimace data sets, when the ANN 

topology has two hidden layers; the number of nodes is 50 nodes in the first hidden layer. 

The number of nodes will be varied to found the optimum number of nodes for the 

second hidden layer. Beginning with 20 nodes in the second hidden layer and increased 

them to be 80 nodes. It can be seen that the curves in Figure 5.3 (b) is a linear piecewise 

curves. The success rate obtained was 85% for ORL and Essex Grimace databases. using 

20 nodes in the first hidden layer. With 30 nodes, the success rate increased to become 

87% for ORL database and 88% for Essex Grimace database.  With 40 nodes, the success 

rate increased to become 90% for ORL database and 92% for Essex Grimace database. 

Once again it increased to be 95% and 98% for ORL and Essex Grimace databases 

respectively. The success rate decreased to 92% and 95% for ORL and Essex Grimace 

databases respectively using 60 nodes in the first hidden layer. With 70 nodes the success 

rate was 90% for ORL database and 93% for Essex Grimace database. With 80 nodes it 

decreased to 88% and 91% for ORL and Essex Grimace databases. 

The success classification rate increased with increasing nodes till 50 nodes then 

decrement again. The best recognition rate with 2-level Curvelet Transform achieved 

97% at 50 nodes in the first hidden layer.  

On Waveatom side, number of nodes and numbers of hidden layer were varied to 

obtain the best neural network topology. Beginning with one hidden layer contained 10 

nodes; the success rate was 90% and 98% for AT&T and Essex Grimace database. 

Piecewise linear incremental success rate function was shown in Figure 5.5 (a) till 

reaches 20 nodes in the first hidden layer. With 15 nodes, the success rate increased to 

become 94% for ORL database and 99% for Essex Grimace database. Once again it 

increased with 20 nodes to 98% and 100% for ORL and Essex Grimace databases 

respectively. The success rate decreased to 98% and still 100% for ORL and Essex 

Grimace databases respectively using 30 nodes in the first hidden layer. With 40 nodes 
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the success rate was 94% for ORL database and 98% for Essex Grimace database. With 

50 nodes it decreased to 88% and 98% for ORL and Essex Grimace databases. 

 

(a) 

 
(b) 

Figure 5.4: Results obtained from Optimizing ANN for 2-Level Curvelet Transform, (a): 
optimizing 1st layer, (b): optimizing 2nd layer 

Now the topology would be consisted from 20 nodes in the first hidden layer and 

numbers of nodes in the second layer will be varied starting with 10 nodes till 50 nodes. 

As can be seen from Figure 5.5 (b), with 10 nodes the success rate was 87% and 96% for 
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AT&T and Essex Grimace database respectively. The success rate was 93% for ORL 

database and 98% for Essex Grimace database with 15 nodes. Once again it increased 

with 20 nodes to 91% and 100% for ORL and Essex Grimace databases respectively. The 

success rate decreased to 87% and 98% for ORL and Essex Grimace databases 

respectively using 30 nodes in the first hidden layer. With 40 nodes the success rate was 

90% for ORL database and 97% for Essex Grimace database. With 50 nodes it decreased 

to 85% and 94% for ORL and Essex Grimace databases.  

The best recognition rate with Waveatom Transform achieved 98% at 20 nodes in the 

first layer while the success rate was 93% at 15 nodes in the second layer for ORL 

database.  

Clearly, the ANN topology should contain one hidden layer with 50 and 20 nodes to 

get the highest performance by using 2-level Curvelet and Waveatom Transforms 

respectively for ORL dataset. The same results are obtained for Essex Grimace dataset. 

The comparison between the two databases that used is not fair for many reasons: each 

database has different size, ORL database are gray images while Essex Grimace data are 

colored images, and ORL data was captured by photographic camera while Essex 

Grimace was obtained using video camera. 

In order to show the robustness of the system, the system was tested using face 

images from outside training data sets. The reject rate was 1.5% with Waveatom based 

ANN and 2.75% with two levels Curvelet based ANN.   

5.3 Hidden Markov Model 

The next set of experiments was designed to investigate the efficiency of using both 

of two levels Curvelet transform and Waveatom transform for extract features with HMM 

based face recognition task. The approximated Curvelet coefficients which of size equal 

to 15 × 15, were used as feature vector. Scale three Waveatom coefficients which of size 

equal to 8 × 8, were used as feature vector. A model which contains five states as 

discussed in the previous chapter. 
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(a) 

 

(b) 
Figure 5.5: Results obtained from Optimizing ANN for Waveatom Transform, (a): 

optimizing 1st layer, (b): optimizing 2nd layer 

A varied window Waveatom feature vector is used by using five states and 

optimizing both of feature vector length and the number of Gaussians densities per state. 

Figure 5.6 shows the classification success rate for varying Gaussian densities per state 

and several vector lengths for ORL (AT&T) and Essex Grimace databases, respectively. 

In the case of using HMM with 2 levels Curvelet Transform, one would resize feature 
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vector to be 12 x 12 and 24 x 24 for AT&T and Essex Grimace respectively; to could 

divide the observation vector to different lengths. Figure 5.7 shows the classification 

error rate for varying Gaussian densities per state and several vector lengths for ORL 

(AT&T) and Essex Grimace databases, respectively. 

The curves in Figure 5.6 and Figure 5.7 consist of piecewise continuous lines 

increasing inside the interval [1,3[ of Gaussian densities per state for ORL (AT&T) and 

Essex Grimace databases of faces, respectively. Whereas it becomes decreasing inside 

the interval [3,4[ of Gaussian densities per state for ORL database. In the other side, it 

seems constants for Essex Grimace dataset in the last interval. The curves becomes 

increasing again in the interval [4,5[ of Gaussian densities per state for both ORL and 

Essex Grimace dataset, respectively. Again, the curves become decreasing inside the 

interval [6,8[ of Gaussian densities per state for both datasets. 

Empirically, Figure 5.6 yields that the best result for success rate by using Waveatom 

features were obtained using a certain values of several parameters, such as: 5 states in 

each HMMs, 6 Gaussian densities per each state, and a length of 8 x 2 window size as an 

observation vectors. These HMM parameters was produced a classification rate of 99% 

and 100% for ORL (AT&T) and Essex Grimace databases of faces, respectively.     

In fact, Figure 5.7 summarizes the following: using 5 states in HMM, the best result 

for success rate when using 2 levels Curvelet features was 98% with AT&T faces and 

100% with Essex faces. These results were obtained with a length of 24 x 3 and 12 x 3 

window size for feature vectors, for both Essex Grimace and AT&T respectively, (and 6 

Gaussian densities per each state). 

In order to show the robustness of the system, the system was tested using face 

images from outside training data sets. The reject rate was 1% with Waveatom based 

HMM and 2% with two levels Curvelet based HMM.   
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(a) 

 

 

(b) 
Figure 5.6: The Classification Success Rate Obtained when using Waveatom Features for 
Varying Gaussian Densities per State and Several Vector Lengths: (a) For Essex Grimace 

database of faces (b) For ORL (from AT&T) databases of faces 
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(a) 

 
(b) 

Figure 5.7: The Classification Success Rate Obtained when using 2 Levels Curvelet 
Features for Varying Gaussian Densities per State and Several Vector Lengths: (a) For 

Essex Grimace database of faces (b) For ORL (from AT&T) databases of faces  

5.4 Comparative Study  

In the previous two sections, different results have been presented. In order to show 

the capability of the proposed method one has compared it against the most popular 

existing techniques. A 3-level wavelet decomposition using ‘Haar’ wavelet was 

performed for wavelet based PCA technique. The best highest 50 eigenvectors were 

selected for both Curvelet and wavelet based PCA. 
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Figure 5.8 summarizes the results of the comparative study. It shows the recognition 

success rate of three different methods, and compares the results with the ANN results 

obtained in this thesis. These methods are two levels Curvelet Transform and Waveatom 

Transform. Both of them used as feature extraction techniques. The classification 

technique was the gradient descent backpropagation ANN. The results show that the 

proposal methods have the highest Recognition Rate. For two levels Curvelet features, 

the success rate was 97% and 100% for ORL (AT&T) and Essex Grimace databases of 

faces, respectively. In the other side, Waveatom features have the highest success rate. 

The success rate was 98% and 100% for ORL (AT&T) and Essex Grimace databases of 

faces, respectively. These results was against 93%, 94%, 96% when using eigenfaces 

features, Wavelet+PCA features and Curvelet+PCA features, respectively, for ORL 

(AT&T) database of faces. And it was 70%, 98%, 100% when using eigenfaces features, 

Wavelet+PCA features and Curvelet+PCA features, respectively, for Essex Grimace 

database of faces. 

Figure 5.9 compares the recognition rate obtained of three different methods against 

the rate obtained when use HMM classifier. Feature extraction obtained by both tow level 

Curvelet Transform and Waveatom Transform. The classification technique was HMM. 

The results show that Waveatom features have the highest recognition rate once again. 

For two levels Curvelet features, the success rate was 98% and 100% for ORL (AT&T) 

and Essex Grimace databases of faces, respectively. In the other side, Waveatom features 

have the highest success rate. The success rate was 99% and 100% for ORL (AT&T) and 

Essex Grimace databases of faces, respectively. These results was against 93%, 95%, 

96% when using eigenfaces features, Wavelet+PCA features and Curvelet+PCA features, 

respectively, for ORL (AT&T) database of faces. And it was 75%, 98%, 100% when 

using eigenfaces features, Wavelet+PCA features and Curvelet+PCA features, 

respectively, for Essex Grimace database of faces. 

Backing to Figure 5.8 and 5.9, one note that both of the proposal methods for feature 

Extraction supersede the state of art in this era, and viewed as promised way for more 

studying. Actually either use the HMM classifier or the ANN classifier, Waveatom 

features achieve the highest success rate, behind it the features obtained from two levels 

Curvelet Transform.    
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Figure 5.8: Comparative Studies for ANN 

 
Figure 5.9: Comparative Studies for HMM 

 

5.5 Time Requirements  

In addition to identification accuracy, an important factor in face recognition system 

is time requirements for whole system stages.  

For Feature Extraction process, Figure 5.10 shows the time requirements per one face 

image. Wavelet face + PCA feature extraction time was 0.2698 seconds and 0.177401 

seconds for AT&T database and Essex Grimace database respectively. This time is 

increased when using the first generation Curvelet + PCA to become 0.194903 seconds 

for AT&T database and 0.311185 seconds for Essex Grimace data base, since the high 
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redundancy which suffers from. The time application was 0.1887 seconds for AT&T data 

base and 0.2388 seconds for Essex Grimace with two levels second generation Curvelet 

transform. Waveatom feature Extraction time was 0.12623 seconds for AT&T database 

and 0.168477 seconds for Essex Grimace data base.  

  In particular, two levels Curvelet seems to be faster than all of Wavelet + PCA and 

Curvelet + PCA. Actually, Waveatom transform is the fastest one of all multiresolution 

transforms.  

For Classification task, two times should be measured; the first is training phase time 

and the later is testing phase time. In training both ANN and HMM classifier, the time 

application is measured and summarized in Figure 5.11 and 5.12, respectively.  

As can be seen from Figure 5.11, Wavelet face + PCA ANN training time was 221 

minutes and 71 minutes for AT&T database and Essex Grimace database respectively. 

The training time is increased when using the first generation Curvelet + PCA to become 

194 minutes for AT&T database and 67 minutes for Essex Grimace data base. The time 

application was 123 minutes for AT&T data base and 39 minutes for Essex Grimace with 

two levels second generation Curvelet transform. Waveatom feature Extraction time was 

55 minutes for AT&T database and 26 minutes for Essex Grimace data base. 

 
Figure 5.10: Feature Extraction’s Time Requirements 
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Figure 5.11: Time Requirements in Training ANN 

As can be noted from Figure 5.12, Wavelet face + PCA HMM training time was 30 

minutes and 17 minutes for AT&T database and Essex Grimace database respectively. 

The training time is increased when using the first generation Curvelet + PCA to become 

28 minutes for AT&T database and 13 minutes for Essex Grimace data base. The time 

application was 23 minutes for AT&T data base and 10 minutes for Essex Grimace with 

two levels second generation Curvelet transform. Waveatom feature Extraction time was 

16 minutes for AT&T database and 7 minutes for Essex Grimace data base. 

In reality, the time needed to train HMM is less that needed to Train ANN. Notably; 

Waveatom based HMM is the fastest in training stage.  

 
Figure 5.12: Time Requirements in Training HMM 
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Figure 5.13 and 5.14 summarizes the testing phase required time using ANN and 

HMM respectively. 

As can be seen from Figure 5.13, Wavelet face + PCA ANN testing time was 0.06 

seconds and 0.08 seconds for AT&T database and Essex Grimace database respectively. 

The testing time is increased when using the first generation Curvelet + PCA to become 

0.06 seconds for AT&T database and 0.085 seconds for Essex Grimace data base. The 

time application was 0.054 seconds for AT&T data base and 0.164 seconds for Essex 

Grimace with two levels second generation Curvelet transform. Waveatom feature 

Extraction time was 0.053 seconds for AT&T database and 0.06 seconds for Essex 

Grimace data base. 

As can be seen from Figure 5.14, Wavelet face + PCA HMM testing time was 

0.018218 seconds and 0.126939 seconds for AT&T database and Essex Grimace 

database respectively. The testing time is increased when using the first generation 

Curvelet + PCA to become 0.020292 seconds for AT&T database and 0.028779 seconds 

for Essex Grimace data base. The time needed was 0.032938 seconds for AT&T data 

base and 0.02953 seconds for Essex Grimace with two levels second generation Curvelet 

transform. Waveatom feature Extraction time was 0.019093 seconds for AT&T database 

and 0.018434 seconds for Essex Grimace data base. 

Again, HMM look like to be faster than ANN. For another time, Waveatom based 

HMM is the fastest in testing stage. 

 
Figure 5.13: Time Requirements in Testing ANN 
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Figure 5.14: Time Requirements in Testing HMM 

5.6 Enclosed Model Selection Criteria  

The purpose of the next set of experiments was to show the effect of enclosed data 
sets on the accuracy recognition rate. The recognition accuracy of Curvelet and 
Waveatom features was presented in Figure 5.15. Figure 5.15 (a) listed the results 
obtained for Curvelet features based HMM. It can be seen the very substantial dropping 
in performance due to included and occluded data sets. In reality, with AT&T dataset the 
accuracy decreased of 13% and 19% for included and occluded data sets respectively. 
Also, for Essex Grimace, the accuracy decreased of 23% and 29% for included and 
occluded data sets respectively.  

Figure 5.15 (b) viewed the results obtained for Waveatom features based standard 
SHMM. It can notice that exist of huge decreasing in accurate rate due to inclusion and 
occlusion data sets. In reality, with AT&T dataset the accuracy rate decreased from 98% 
to 88% and 83% for included and occluded data sets respectively. Also, for Essex 
Grimace, the accuracy rate decreased from 100% to 81% and 77% for included and 
occluded data sets respectively. 

The following set of experiments was performed to show the benefit of using 

enclosed model selection criterion (EMC) HMM for face recognition. Where appropriate, 

the parameters were still the same as for HMM (such as block size). The experiments 

were carried out in both the Curvelet domain and Waveatom domain. The recognition 

accuracy is presented in Figure 5.16 for included data sets. On the side of occluded data 

sets, the recognition accuracy is presented in Figure 5.17. As can be seen from the tables, 
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the use of enclosed model selection criterion HMM the increases recognition accuracy in 

all cases tested.  

 

(a) 

 
(b) 

Figure 5.15: Comparison of HMM identification accuracy (%) using both normal and 
enclosed datasets (a): Curvelet features (b): Waveatom features 

 
Figure 5.16 (a) reported the accuracy rate when tested using AT&T database. For 

Curvelet features, the accuracy rate increased from 78% for HMM to 86% for EMC-

HMM. The incorrect match rate for EMC is near 13% lower than HMM model. On the 
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Waveatom side, the performance increased to from 87% for HMM versus 89% for EMC-

HMM. There is an evident decreasing of about 12% in the rate of false classification. 

Figure 5.16 (b) illustrated the accuracy rate for Essex Grimace database when used 

for testing. On the Curvelet side, the accuracy rate increased from 76% when HMM was 

used up to 79% when EMC-HMM used. On Waveatom side, the accuracy rate increased 

from 81% when using HMM up to 83% when using EMC-HMM model. 

 
(a) 

 

(b) 
Figure 5.16: Comparison of inclusion identification accuracy (%) using HMM and EMC-

HMM (a): On AT&T database (b): On Essex Grimace 
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Figure 5.17 (a) reported the accuracy rate when tested using AT&T database. For 

Curvelet features, the accuracy rate increased from 78% for HMM to 81% for EMC-

HMM. The incorrect match rate for EMC is near 10% lower than HMM model. On the 

Waveatom side, the performance increased to from 83% for HMM versus 85% for EMC-

HMM. There is an evident decreasing of about 10% in the rate of false classification. 

Figure 5.17 (b) illustrated the accuracy rate for Essex Grimace database when used 

for testing. On the Curvelet side, the accuracy rate increased from 71% when HMM was 

used up to 74% when EMC-HMM used. On Waveatom side, the accuracy rate increased 

from 77% when using HMM up to 79% when using EMC-HMM model. 

 
(a) 

 
(b) 

Figure 5.17: Comparison of occlusion identification accuracy (%) using HMM and EMC-
HMM (a): On AT&T database (b): On Essex Grimace 
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CHAPTER 6 
CONCLUSION  

The problem intended here is to solve face recognition. During the past few years, 

face recognition has received significant attentions. The most cleared two reasons are the 

wide range of commercial and law enforcement applications, and the availability of 

feasible technologies after more than three decades of research.  

Face recognition systems are affected by many factors like: face position and 

orientation, lighting conditions, and illumination variations. Face recognition can be 

applied for both a still images and video images. Many approaches of face recognition 

can be listed, starting with PCA, Fisherface, and continuing to reach Multiresolution 

transforms. These transforms found to be useful for analyzing the content of images and 

extracting feature from it. The most famous one is the Wavelet Transform. Many 

multiresolution transforms like Contourlets, Ridgelets follow.  But actually the most 

modern one is named Waveatom Transform.       

The aim behind this thesis was to find the best feature extraction method, that work 

well with the best classification technique, to recognize faces and to classify them in 

correct manner. Feature Extraction obtained by using two different novel techniques; the 

first using two levels Curvelet Transform, and the second one using Waveatom 

Transform. Also, two classification techniques used to obtain the performance rate. These 

are ANN and HMM.  

Two well-known databases indicate the potential of these proposed methods; AT&T 

dataset and Essex Grimace dataset. Both of feature extraction techniques have been found 

to be robust against extreme expression variation as it works efficiently on Essex 

database. The subjects in this dataset make grimaces, which form edges in the facial 

images and both transforms (Curvelet and Waveatom) captures this crucial edge 

information. The proposed methods also seem to work well for ORL database, which 

show significant variety in illumination and facial details. These feature extraction 

techniques were coupled with two different classification techniques. The classification 

techniques were the gradient descent backpropagation ANN and HMM.  

From the comparative study, it was evident that both feature extraction techniques 

(two levels Curvelet features and Waveatom features) completely outperformed standard 
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eigenface technique; it also superseded both Wavelet based PCA scheme and Curvelet 

based PCA scheme. The results indicated that Curvelet transform stood alone as an 

effective solution to face recognition problem in future. It promises that Waveatom 

Transform could be new platform in the face recognition field. On the other side, 

comparative study shows the strongest of HMM over ANN; as they were classifiers. 

Thus, Waveatom based HMM showed the highest performance rate against other 

methods when compared to the state of art. Also the enclosed model selection criterion 

gives acceptable accuracy improvement with included and occluded data sets. 

As future work, I propose using another classification technique like SVM with 

suitable voter. In the side of HMM study the using of Confusion Model Selection 

Criterion (CMC) instead of using the Maximum Likelihood Criterion (ML). In the side of 

Waveatom and Curvelet, one could study using them in other field of image processing 

such as compression, encryption, denoising, and segmentation.  
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 مستوى في كبيرة زيادة ظهرت حيث. مستمرة بصورة يتطور الرقمية الصور معالجة مجال إن
 الألوان، كاملة صور أو الرمادي التدريج ذات الصور هذه كانت سواءاً  الصور، وتشكيل بمعالجة الاهتمام

 التعرف مجال وكذلك أنواعها بشتى الصور بيانات ضغط الصور، بمعالجة المتزايد الإهتمام هذا طال كما
 .الوجه صور على التعرف تطبيق مع الصورة تمييز مجال يتناول العمل هذا فإن لذلك و .الصور على

 فعلياً  ولكن ، للبشر كما الكمبيوتر لنظام سهلة مهمة هو الوجه على التعرف ان يعتقدون الناس بعض
 تؤثر كثيرة عوامل هناك لأن به موثوق كامل أداء تحقق أن يمكن لا الوجه صورة على التعرف نظم معظم
 في التغييرات وكذلك وإتجاهه، الرأس وحجم الوجوه، أشكال في الكبيرة الإختلافات : مثل التمييز عملية على

 تحليل مجال في الأساسية المشاكل من واحدة الوجه على التعرف تجعل العوامل هذه كل البيئية، الظروف
 الوجه على التعرف تقنيات وعدد الوجه والدقة كموقع الأداء على تؤثر قد أخرى عوامل وهناك. الأنماط
 مجالات من يعتبر أوالفيديو الثابتة سواءاً  الوجه صور على التعرف إن. نظام كل في المستخدمة الفعلية
. وقانونياً  تجارياً  المدعومة التطبيقات من الكثير مع النشطة البحث

 أنواع من نوعين الى إستناداً  الوجه ميزات استخراج تقنيات من حديثتين تقنيتين البحث هذا يدرس
-موجة تحويل هو والثاني  (Curvelet)المنحنى-مصغر تحويل يدعى الأول النوع النتائج، متعدد التحليل

 أحدها المصنفات، انواع من اثنين طريق عن الناتجة الميزات واختبار تدريب ويتم). Waveatom (الذرة
 تم ما على بناءاً  ).HMM (المخفي ماركوف نموذج هو والآخر ،)ANN (الاصطناعية العصبية الشبكة هو

 بتحويل ومقارنتها الذرة موجة تحويل لاستخدام الأولى الخطوات من البحث هذا يعتبر أبحاث، من نشره
. الوجه صور على التعرف مجال في وخصوصا الأنماط، على التعرف مجال في المنحنى-مصغر

وقد أجريت التجارب في هذا البحث على مجموعتين من البيانات المعروفة عالمياً في هذا المجال، 
شخصاً  40صورة وجه موزعة على  400 وتتكون هذه المجموعة من (AT&T)بيانات من شركة 

), Essex Grimace(بالتساوي، أما المجموعة الثانية من البيانات يطلق عليها بيانات الوجوه المتجهمة 
وقد . شخصا 18صورة تمثل  360وتستخدم في الكثير من أبحاث نظم التعرف على الوجوه، وتتكون من 

الذرة، وقد لوحظ أن السمات -المنحنى وتحويل موجة-اظهرت النتائج قوة وخصائص كل من تحويل مصغر
٪ مع مصنف نموذج  100٪ و  99الذرة أعطت أعلى نسب تعرف -التي تم الحصول عليها من تحويل موجة

٪ مع مصنف  الشبكات العصبية الإصطناعية، وذلك لكل من  100٪ و  98ماركوف المخفي، ونسب تعرف 
 و مجموعة بيانات الوجوه المتجهمة، على التوالي، ومن ناحية أخرى، أظهر AT&Tمجموعة بيانات 

٪ مع مصنف نموذج  100٪ و  98تحقيق معدل دقة ) Wavelet(إستخدام مستويين من تحويل المويجة 
٪ مع مصنف الشبكات العصبية الإصطناعية، وذلك لكل من مجموعة  100٪ و  97ماركوف المخفي، و 

 . و مجموعة بيانات الوجوه المتجهمة، على التواليAT&Tبيانات 

 المنحنى-مصغر تحويل تقنيات من كلٍ  مع الذرة-موجة تحويلإستخدام  دراسة قورنت نتائج كما
 البحث في المقترحة تقنياتال أن وجد وقد). PCA (التقليدية الرئيسية المكونات وتحليل ، المويجة وتحويل
 وإختلاف  التشويش وجود رغم السمات لإستخراج قدرتها على برهنت. غيرها من أفضل نتائج أعطت

 العصبية الشبكات مصنف مقابل المخفي ماركوف مصنف فعالية إلى النتائج أشارت أيضا. الوجه تفاصيل
 .الإصطناعية
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