
The Islamic University of Gaza

Deanery of Graduate Studies

Faculty of Engineering

Computer Engineering Department

Modern Approach for WEB

Applications Vulnerability Analysis

Rami M. F. Jnena

120090823

Supervisor

Prof. Mohammad A. Mikki

A thesis proposal to partial fulfillment of the requirements for the

degree of Master of Science in Computer Engineering

(2013) 1434H

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Islamic University of Gaza

https://core.ac.uk/display/385930767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ACKNOWLEDGMENT

It is a pleasure to thank the many people who made this thesis possible.

This work would not have been possible without the support from my supervisor Prof.

Dr. Mohammad Mikki under whose guidance, I chose this topic. And I would like to

gratefully acknowledge his supervision that has been abundantly helpful and has assisted

me in numerous ways. I specially thank him for his infinite patience. The discussions I

had with him were invaluable.

My thankfulness also goes to my mother and my father.

I would also like to thank my wife who encouraged me strongly to complete this thesis

and study in spite of the great burdens that I went through.

I want to thank my brothers for their support and patience during my studies and thesis.

I also want to thank my sisters for their support during my studies and thesis. Their

appreciation towards the education has pushed me forward in my studies.

iii

Table of Contents
LIST OF FIGURES .. v

LIST OF TABLES .. vi

ABSTRACT ... vii

ABSTRACT ARABIC ... viii

Chapter1 INTRODUCTION ... 1

1.1. Motivation ... 2

1.2. Attack analysis ... 3

1.3. Penetration Testing ... 4

1.4. Layers of Penetration Testing .. 5

1.5. Methodology at Each Layer in Penetration Testing Methodology 6

1.6. Flaw Hypothesis Methodology .. 7

1.7. Vulnerability Classification .. 7

1.8. Aim of this Thesis ... 8

1.9. Methods Used ... 8

1.10. Our approach ... 9

1.11. Organization of this Thesis .. 9

Chapter 2 VULNERABILITY ANALYSIS.. 10

2.1 Introduction ... 11

2.2 How Vulnerability Assessment Tools Work ... 12

2.3 Web Vulnerability attack Threats .. 14

2.3.1 SQL Injection .. 18

2.3.2 Cross Site Scripting .. 21

2.4 Web Application Vulnerability Scanners .. 24

2.4.1 Web Application Scanners in Academia .. 24

2.4.2 Free/Open-Source Web Application Scanners .. 26

2.4.3 Commercial Web Application Scanners .. 27

Chapter 3 RELATED WORK ... 32

Chapter 4 ... 43

THE PROPOSED APPROACH METHODOLOGY AND DESIGN .. 43

4.1 Introduction ... 44

iv

4.2 Tools used .. 44

4.3 Development Description .. 47

4.3.1 Web application crawling ... 48

4.3.2 Web pages requests with parameters filtering .. 50

4.3.3 SQL Injection ... 52

4.3.4 Cross Site Scripting (XSS) .. 61

Chapter 5 EXPERIMENTAL RESULTS.. 64

5.1 Introduction ... 65

5.2 Test Beds Description .. 66

5.3 Results of our scanner with test beds... 68

5.4 Other Web applications vulnerability scanners ... 71

5.5 Performance evaluation of our scanner with other vulnerability scanners 73

Chapter 6 CONCLUSION AND FUTURE WORK .. 77

REFERENCES .. 79

v

LIST OF FIGURES

Figure 2.1: Top 10 Threads. 25

Figure 4.1: Our Approach Flowchart. 57

Figure 4.2: RAW HTTP request 58

Figure 4.3: GET method 59

Figure 4.4: POST method 59

Figure 4.5: HTTP requests parse result list 60

Figure 4.6: Block Diagram 61

Figure 4.7: Database server error response 62

Figure 4.8: XSS methodology Block Diagram 71

Figure 5.1: Dam vulnerable web application 75

Figure 5.2: Mutillidae vulnerable web application 75

Figure 5.3: SQL injection Results Graph 77

Figure 5.4: Cross Site Scripting (XSS) Results Graph 78

Figure 5.5: Performance test of vulnerability scanners 83

Figure 5.6: false positive rate comparison of vulnerability scanners 84

vi

LIST OF TABLES

Table 2.1: A comparison of the relevant vulnerabilities detected by free/open-source web

application scanners 35

Table 2.2: A comparison of the relevant vulnerabilities detected by evaluation versions

of commercial web application scanners 39

Table 4.1: Common database servers’ errors 64

Table 4.2: Generic errors criteria 64

Table 4.3: MySQL, Microsoft SQL Server, and Oracle error messages 68

Table 5.1: SQL injection Results 77

Table 5.2: Cross Site Scripting (XSS) Results 78

Table 5.3: Features comparison between vulnerability scanners 82

Table 5.4: Performance test of vulnerability scanners 83

Table 5.5: false positive rate comparison of vulnerability scanners 84

vii

ABSTRACT

The numbers of security vulnerabilities that are being found today are much higher in

applications than in operating systems. This means that the attacks aimed at web

applications are exploiting vulnerabilities at the application level and not at the transport

or network level like common attacks from the past. At the same time, quantity and

impact of security vulnerabilities in such applications has grown as well. Many

transactions are performed online with various kinds of web applications. Almost in all of

them user is authenticated before providing access to backend database for storing all the

information. A well-designed injection can provide access to malicious or unauthorized

users and mostly achieved through SQL injection and Cross-site scripting (XSS).

In this thesis we are providing a vulnerability scanning and analyzing tool of various

kinds of SQL injection and Cross Site Scripting (XSS) attacks. Our approach can be used

with any web application not only the known ones. As well as it supports the most

famous Database management servers, namely MS SQL Server, Oracle, and MySQL.

We validate the proposed vulnerability scanner by developing experiments to measure its

performance. We used some performance metrics to measure the performance of the

scanner which include accuracy, false positive rate, and false negative rate. We also

compare the performance results of it with performance of similar tools in the literature.

viii

ABSTRACT ARABIC

عدد الثغرات الأمنية التي يتم العثور عمييا اليوم ىي أعمى بكثير مما كانت عميو في تطبيقات نظم التشغيل. ىذا

غلال نقاط الضعف عمى مستوى التطبيق وليس عمى مستوى يعني أن اليجمات التي تستيدف تطبيقات الويب واست

في الوقت نفسو، نمت كمية وتأثير و من الماضي. أصبحت مثل اليجمات المشتركة ات الحاسوبشبكالنقل أو

يتم تنفيذ العديد من المعاملات عبر الإنترنت مع أنواع وحيث انو . بشكل كبيرتطبيقات ىذه الالثغرات الأمنية في

فانو من مصادقة المستخدم قبل توفير إمكانية الوصول إلى قاعدة البياناتعمما بأنو يتم مختمفة من تطبيقات الويب.

سيوفر الولوج ليذه الانظمة الحصول عمى معمومات ميمة، ان عممية تصميما جيدا مصممخلال نظام حقن ثغرات

 .Cross Site Scripting و SQL Injectionالحقن الاساسية تتم من خلال تقنيتي

في ىذا البحث، قمنا بتصميم وتطوير نظام مسح وكشف لمثغرات الامنية الخاصة بانظمة الويب، يستطيع النظام

بيق الويب . كما وانو غير مقيد بنوع تطCross Site Scripting و SQL Injectionاكتشاف الثغرات من نوعي

 و MS SQL Serverوانما يمكن استخدامو لكافة انظمة الويب. مع الدعم الكامل لاشير انظمة قواعد البيانات

Oracle و MySQL.

يقاييس الاداء الاساسيت نهزا تى ػًم فحص وتقييى نهفكشة انًطشوحت ين خلال تجاسب شايهت نقياس الاداء. تى استخذاو

اننىع ين الانظًت وهي، يقياس انذقت، يقياس يؼذل الايجابيت انكاربت، و يقياس يؼذل انسهبيت انكاربت. كًا وتى يقاسنت

نتائج الاداء يغ ادواث وانظًت يًاثهت.

1

Chapter1

INTRODUCTION

2

1.1. Motivation

A "computer system" is more than hardware and software; it includes the policies,

procedures, and organization under which that hardware and software is used.

Security holes can arise from many areas or combination of these them. This leads no

sense to restrict the study of vulnerabilities to hardware and software problems [67].

When attacker breaks into a computing system, he takes advantage of lapses in

procedures, technology, or management (or some combination of

those factors), permitting unauthorized access or actions. The precise failure of the

controls is termed a vulnerability or security flaw; mistreatment that failure to

violate the security policy is termed exploiting the vulnerability. One who attempts to

exploit the vulnerability is called an attacker [67].

Another more general definition from [68] defines Vulnerability analysis as ―the act

of determining which security holes and vulnerabilities may be applicable to the

target network‖.

Vulnerability analysis, also known as vulnerability assessment [69], ―is a process that

defines, identifies, and classifies the security holes (vulnerabilities) in a computer,

network, or communications infrastructure‖. In addition, vulnerability analysis can

forecast the effectiveness of proposed countermeasures and evaluate their actual

effectiveness after they are put into use.

Vulnerability analysis consists of several steps:

 Define and classify target system.

 Assign relative levels of importance to the target system resources.

 Identify potential threats to each resource.

 Develop or setup a method to deal with the most serious potential problems.

 Define and implement procedures to minimize the consequences if the attack

for the target system resource.

In order to develop reliable and robust web applications, we have to use vulnerability

metrics that let us monitor, analyze, and quantify application behavior under a range

of faults and attacks. In this research we will present a scanning tool for analyzing

3

web applications vulnerability in real time. This scanner lets us quantify how attacks

and faults impact network performance and services, discover attack points, and

examine how critical the web application components behave during an attack or

system fault.

1.2. Attack analysis

Most network attackers overcome the target system with a brute forced traffic to

consume all system resources (such as CPU cycles, memory, network bandwidth, and

packet buffers). These attacks degrade service and can eventually lead to a complete

shutdown.

There are two common types of attacks [72]:

 Server attacks: these attacks include TCP SYN, Smurf IP, ICMP flood, and Ping

of Death attacks. For example, the attacker may make brute force requests to a

victim server with spoofed source IP addresses. Due to TCP/IP protocol stack

vulnerabilities, the victim server cannot complete the connection requests and

wastes all of its system resources. This will result denial of service on the target

attacked system.

 Routing attacks: the main strategy in routing attacks is distributed denial-of-

service (DDoS) attacks which focuses on routers devices. When a router is

compromised, it will forward traffic according to the attackers’ intent. Similar to

server attacks, the attackers aim to consume all router resources, forcing the router

to drop all incoming packets, thus negatively affecting network performance and

behavior.

Vulnerability Analysis researches in networks and internet still in its beginning; this

gives researchers much room for improvements. Several tools, which are based on

modeling network specifications, fault trees, graph models, and performance models,

works on vulnerability analysis by checking logs of systems and monitor performance

metrics [70, and 71].

4

There are three common types of vulnerability analysis techniques [72]:

 Network specifications survivability analysis. This approach injects fault and

intrusion events into a given network specification, and then visualizes the effects

in scenario graphs. This is done by using model checking, Bayesian analysis, and

probabilistic analysis, which provides a multifaceted network view of a desired

service.

 Attack trees. This approach determines which attacks are most feasible and

therefore most likely in a given environment, and quantifies vulnerability by

mapping known attack scenarios into trees. Attack trees assume that all

vulnerability paths are known and can be defined as possible or impossible. This

can change as new attacks are discovered, however, to sudden render a previously

impossible node possible.

 Graph-based network-vulnerability analysis. This approach analyzes risks to

specific network assets and examines the possible consequences of a successful

attack. As input, the analysis system requires a database of common attacks

(broken into atomic steps), specific network configuration and topology

information, and an attacker profile. Nodes identify an attack stage, such as the

machine class the attacker has accessed and the user privilege level he or she was

compromised. Using graph methods lets you identify the attack paths with the

highest probability of success.

1.3. Penetration Testing

A penetration test is ―an authorized attempt to violate specific constraints stated

in the form of a security or integrity policy‖. This method implies a metric for

determining whether the study has succeeded. In addition, it provides a

framework in which to examine those aspects of procedural, operational, and

technological security mechanisms relevant to protecting the particular aspect of

system security in question.

Another study does not have a specific target; instead, the goal is to find some

number of vulnerabilities or to find vulnerabilities within a set period of time. The

5

strength of such a test depends on the proper interpretation of results. Briefly, if

the vulnerabilities are categorized and studied, and if conclusions are drawn as to

the nature of the flaws, then the analysts can draw conclusions about the care

taken in the design and implementation. But a simple list of vulnerabilities,

although helpful in closing those specific holes, contributes far less to the security

of a system.

In practice, penetration testing study is affected by many constraints; resources

and time are the most constraints that affect it. If these constraints arise as aspects

of policy, they improve the test because they make it more realistic.

1.4. Layers of Penetration Testing

Penetration testing is designed to characterize the effectiveness of security

mechanisms and controls to attackers. Attacker’s point of view conducts

penetration test studies, and the environment in which the tests are conducted is

that in which a putative attacker would function. Different attackers, however,

have different environments; for example, insiders have access to the system,

whereas outsiders need to acquire that access. There are two layers for a

penetration testing study, external attacker with access to the system and internal

attacker with access to the system.

1. External attacker with access to the system: in this layer, in order to launch the

attack the testers/attacker have access to the system and can proceed to log in or

to invoke network services available to all hosts on the network. This layer

requires an access account from which the testers can achieve their goal or using a

network service that can give them access to the system. Common forms of attack

at this stage are guessing passwords, looking for unprotected accounts, and

attacking network servers. To provide the desired access an implementation of

flaws in servers are required.

2. Internal attacker with access to the system: in this layer, the testers have an

account on the system and can act as authorized users of the system. The test

typically involves gaining unauthorized privileges or information and, from that,

reaching the goal. At this stage, the testers acquire (or have) a good knowledge of

6

the target system, its design, and its operation. Attacks are developed on the basis

of this knowledge and access.

In some cases, information about specific layers is irrelevant and that layer can be

skipped. For example, penetration tests during design and development skip layer

1 because that layer analyzes site security. A penetration test of a system with a

guest account will usually skip layer 2 because users already have access to the

system. Ultimately, the testers must decide which layers are appropriate.

1.5. Methodology at Each Layer in Penetration Testing Methodology

The penetration testing methodology springs from the Flaw Hypothesis

Methodology. The usefulness of a penetration study comes from the

documentation and conclusions drawn from the study and not from the success or

failure of the attempted penetration. Such a conclusion can only be drawn once

the study is complete and when the study shows poor design, poor

implementation, or poor procedural and management controls. Also important is

the degree of penetration. If an attack obtains information about one user's data, it

may be deemed less successful than one that obtains system privileges because

the latter attack can compromise many user accounts and damage the integrity of

the system.

1.6. Flaw Hypothesis Methodology

The Flaw Hypothesis Methodology was developed at System Development

Corporation and provides a framework for penetration studies [67]. It consists of

five steps, information gathering, flaw hypothesis, flaw testing, flaw

generalization, and flaw elimination.

1. Information gathering. In this step, the testers become familiar with the system's

functioning. They examine the system's design, its implementation, its operating

procedures, and its use. The testers become as familiar with the system as

possible.

7

2. Flaw hypothesis. Drawing on the knowledge gained in the first step and on

knowledge of vulnerabilities in other systems, the testers hypothesize flaws of the

system under study.

3. Flaw testing. The testers test their hypothesized flaws. If a flaw does not exist (or

cannot be exploited), the testers go back to step 2. If the flaw is exploited, they

proceed to the next step.

4. Flaw generalization. Once a flaw has been successfully exploited, the testers

attempt to generalize the vulnerability and find others similar to it. They feed their

new understanding (or new hypothesis) back into step 2 and iterate until the test is

concluded.

5. Flaw elimination. The testers suggest ways to eliminate the flaw or to use

procedural controls to ameliorate it.

1.7. Vulnerability Classification

Security flaws from various perspectives are described by vulnerability

classification frameworks. Some frameworks describe vulnerabilities by

classifying the techniques used to exploit them. Other frameworks characterize

vulnerabilities in terms of the software and hardware components and interfaces

that make up the vulnerability. And others classify vulnerabilities by their nature;

this is done by discovering techniques for finding previously unknown

vulnerabilities.

Vulnerability analysis goal is to develop methodologies that provide the following

abilities:

1. Specify, Design, and implement a computer system without vulnerabilities.

2. Analyze a computer system to detect vulnerabilities.

3. Address any vulnerability introduced during the operation of the computer

system.

4. Detect attempted exploitations of vulnerabilities.

8

1.8. Aim of this Thesis

The main goal of this master thesis is to present a new analyzing tool for main two

web applications vulnerabilities, which are mainly SQL Injection and Cross Site

Scripting (XSS). To achieve this goal, a dynamically generate test requests that are

applied specifically to a given web application will be applied by the analysis tool. By

doing this analysis, our scanning will be apple to detect vulnerabilities of any web

application regardless if it’s for known web application or custom web application.

The analysis tool will conduct two tests; these t101ests will identify the common web

applications vulnerabilities that are SQL Injections and Cross Site Scripting (XSS).

These tests will be applied on web applications input parameters so the tests will be

parameter-based tests.

1.9. Methods Used

To accomplish the proposed solution, the following methods have been used in

sequence:

 Study the basic principles of web applications vulnerability analysis.

 Study and learn the main scripting languages used for implementation of code.

 Review the existing techniques of vulnerability analysis.

 Identify the major and common vulnerabilities on web applications and study

their mechanisms.

 Design a set of related analysis mechanisms and algorithms.

 Demonstrate the validity of the proposed solution to detect vulnerabilities on

different types of web applications.

1.10. Our approach

The new scanning tool has been implemented in Perl scripting language under Linux

environment. The evaluation method used is an automatic exploiting for the detected

vulnerabilities which will verify the existence of vulnerability and minimize the false

positives that may exist by the scanning tool.

9

1.11. Organization of this Thesis

The rest of the thesis is organized as follows; Chapter 2 presents a complete review of

vulnerability analysis with statistics about known vulnerabilities of web applications

and their impact in web developments. A brief review of well-known scanning and

analyzing tools of vulnerabilities with detailed description of most modern tools, as

well as, categories of lately proposed solutions are discussed in chapter 3. Chapter 4

presents a formal description of our design of analysis tool with required parameters,

assumptions, and all prerequisite mechanisms needed to make this comprehensive

work. Validation and evaluation results are provided in chapter 5. The report ends

with conclusion in chapter 6 which summarizes this thesis and gives some hints for

future work on this research subject.

10

Chapter 2

VULNERABILITY

ANALYSIS

11

2.1 Introduction

In computer security, vulnerability is a weakness which allows an attacker to

reduce a system's information assurance.

Vulnerability is the intersection of three elements: a system susceptibility or flaw,

attacker access to the flaw, and attacker capability to exploit the flaw [46]. In

order to exploit vulnerabilities, the attacker must have at least one applicable tool

or technique that can connect to a system weakness security hole.

According to NIST SP 800-37, ―vulnerability analysis and assessment is an

important element of each required activity in the NIST Risk Management

Framework (RMF)‖. This RMF comprises six steps, into each of which

vulnerability analysis and assessment is to be integrated [45]:

 Information System Categorization.

 Security Controls Selection.

 Security Controls Implementation.

 Security Controls Assessments.

 Information Systems Authorization.

 Security Controls Monitoring.

Integration is done by the vulnerability assessment tools, by automating the

detection, identification, measurement, and understanding of vulnerabilities found

in ICT components at various levels of a target ICT system or infrastructure.

Vulnerability is an attribute or characteristic of a component that can be exploited

by either an external or internal agent (hacker or malicious insider) to violate a

security policy of (narrow definition) or cause a deleterious result in (broad

definition) either the component itself, and/or the system or infrastructure of

which it is apart. Such ―deleterious results‖ include unauthorized privilege

escalations or data/resource accesses, sensitive data disclosures or privacy

violations, malicious code insertions, denials of service, etc [45].

12

Such tools are often referred to as vulnerability scanners, because their means of

vulnerability detection is to scan targets (usually network services and nodes, and

the operating systems, databases, and/or Web applications residing on those

nodes) in an attempt to detect known, and in some cases also unknown,

vulnerabilities [45].

Improving the scanning techniques of Web Application scanners will allow them

to achieve better performance and, therefore, increase their credibility. However,

in order to understand and improve web application scanners, the common

vulnerabilities that they aim to detect must be understood first. This chapter is

organized as follows: how are vulnerability assessments tools work will be

discussed in Section 2.1, some of the specific vulnerabilities that web application

scanners attempt to probe for will be discussed in Section 2.2, several of the most

popular and researched web application scanners will be discussed in Section 2.3.

2.2 How Vulnerability Assessment Tools Work

Vulnerability assessment tools generally work by attempting to automate the steps

often employed to exploit vulnerabilities: they begin by performing a ―footprint‖

analysis to determine what network services and/or software programs (including

versions and patch levels) run on the target. The tools then attempt to find

indicators (patterns, attributes) of, or to exploit vulnerabilities known to exist, in

the detected services / software versions, and to report the findings that result.

Caution must be taken when running exploit code against ―live‖ (operational)

targets, because damaging results may occur. For example, targeting a live Web

application with a ―drop tables‖ Standard Query Language (SQL) injection probe

could result in actual data loss. For this reason, some vulnerability assessment

tools are (or are claimed to be) entirely passive. Passive scans, in which no data is

injected by the tool into the target, do nothing but read and collect data. In some

cases, such tools use vulnerability signatures, i.e., patterns or attributes associated

with the likely presence of a known vulnerability, such as lack of a certain patch

for mitigating that vulnerability in a given target. Wholly passive tools are limited

13

in usefulness (compared with tools that are not wholly passive) because they can

only surmise the presence of vulnerabilities based on circumstantial evidence,

rather than testing directly for those vulnerabilities.

Most vulnerability assessment tools implement at least some intrusive ―scanning‖

techniques that involve locating a likely vulnerability (often through passive

scanning), then injecting either random data or simulated attack data into the

―interface‖ created or exposed by that vulnerability, as described above, then

observing what results. Active scanning is a technique traditionally associated

with penetration testing, and like passive scanning, is of limited utility when

performed on its own, as all the injected exploits would be ―blind‖, i.e., they

would be launched at the target without knowing its specific details or

susceptibility to the exploits. For this reason, the majority of vulnerability

assessment tools combine both passive and active scanning; the passive scanning

is used to discover the vulnerabilities that the target is most likely to contain, and

the active scanning is used to verify that those vulnerabilities are, in fact, both

present and exposed as well as exploitable. Determining that vulnerabilities are

exploitable increases the accuracy of the assessment tool by eliminating the false

positives, i.e., the instances in which the scanner detects a pattern or attribute

indicative of a likely vulnerability that which, upon analysis, proves to be either

(1) not present, (2) not exposed, or (3) not exploitable. It is the combination of

passive and active scanning, together with increased automation, which has

rendered automated penetration testing suites more widely useful in vulnerability

assessment.

Most vulnerability assessment tools are capable of scanning a number of network

nodes, including networking and networked devices (switches, routers, firewalls,

printers, etc.), as well as server, desktop, and portable computers. The

vulnerabilities that are identified by these tools may be the result of programming

flaws (e.g., vulnerabilities to buffer overflows, SQL injections, cross site scripting

[XSS], etc.), or implementation flaws and misconfigurations. A smaller subset of

14

tools also provides enough information to enable the user to discover design and

even architecture flaws.

The reason for ―specialization‖ of vulnerability assessment tools, e.g., network

scanners, host scanners, database scanners, Web application scanners, is that to be

effective, the tool needs to have a detailed knowledge of the targets it will scan.

Web application and database vulnerability scanners look for vulnerabilities that

are traditionally ignored by network- or host-level vulnerability scanners [45].

Even custom-developed Web application and/or database application often use

common middleware (e.g., a specific supplier’s Web server, such as Microsoft®

Internet Information Server [IIS] or Apache®), backends (e.g., Oracle® or

PostgreSQL), and technologies (e.g., JavaScript®, SQL) that are known or

considered likely to harbor certain types of vulnerabilities that cannot be

identified via signature based methods used by network- and host-based

vulnerability analysis tools. Instead, Web Application scanners and database

scanners directly analyze the target Web application or database, and attempt to

perform common attacks against it, such as SQL injections, XSS, least privilege

violations, etc [45].

2.3 Web Vulnerability attack Threats

The numbers of security vulnerabilities that are being found today are much

higher in applications than in operating systems. This means that the attacks

aimed at web applications are exploiting vulnerabilities at the application level

and not at the transport or network level like common attacks from the past[48].

The Open Web Application Security Project (OWASP) has put together what is

considered the definitive standard list of top threats to Web applications. It is

called ―The OWASP Top 10 Project‖ and it represents a general consensus on the

major areas of threat by category. The Top 10 threats [Figure 2.1] as they exist

currently are as follows:

15

1. Injection:

Injection flaws, such as SQL, OS, and LDAP injection, occur when

untrusted data is sent to an interpreter as part of a command or query. The

attacker’s hostile data can trick the interpreter into executing unintended

commands or accessing unauthorized data.

2. Cross Site Scripting (XSS):

XSS flaws occur whenever an application takes untrusted data and

sends it to a web browser without proper validation and escaping. XSS

allows attackers to execute scripts in the victim’s browser which can

hijack user sessions, deface web sites, or redirect the user to malicious

sites.

3. Broken Authentication and Session Management:

Application functions related to authentication and session

management are often not implemented correctly, allowing attackers to

compromise passwords, keys, session tokens, or exploit other

implementation flaws to assume other users’ identities.

4. Insecure Direct Object References:

A direct object reference occurs when a developer exposes a

reference to an internal implementation object, such as a file, directory, or

database key. Without an access control check or other protection,

attackers can manipulate these references to access unauthorized data.

5. Cross-Site Request Forgery (CSRF):

A CSRF attack forces a logged-on victim’s browser to send a

forged HTTP request, including the victim’s session cookie and any other

automatically included authentication information, to a vulnerable web

application. This allows the attacker to force the victim’s browser to

16

generate requests the vulnerable application thinks are legitimate requests

from the victim.

6. Security Misconfiguration:

Good security requires having a secure configuration defined and

deployed for the application, frameworks, application server, web server,

database server, and platform. All these settings should be defined,

implemented, and maintained as many are not shipped with secure

defaults. This includes keeping all software up to date, including all code

libraries used by the application.

7. Insecure Cryptographic Storage:

Many web applications do not properly protect sensitive data, such

as credit cards, SSNs, and authentication credentials, with appropriate

encryption or hashing. Attackers may steal or modify such weakly

protected data to conduct identity theft, credit card fraud, or other crimes.

8. Failure to Restrict URL Access:

Many web applications check URL access rights before rendering

protected links and buttons. However, applications need to perform similar

access control checks each time these pages are accessed, or attackers will

be able to forge URLs to access these hidden pages anyway.

9. Insufficient Transport Layer Protection:

Applications frequently fail to authenticate, encrypt, and protect

the confidentiality and integrity of sensitive network traffic. When they

do, they sometimes support weak algorithms, use expired or invalid

certificates, or do not use them correctly.

17

10. Invalidated Redirects and Forwards:

Web applications frequently redirect and forward users to other

pages and websites, and use untrusted data to determine the destination

pages. Without proper validation, attackers can redirect victims to

phishing or malware sites, or use forwards to access unauthorized pages.

Figure 2.1: Top 10 Threats

This list only includes the ten most critical web application risks that exist today,

but other important vulnerabilities exist, including buffer overflow exploits and

malicious file execution (included on the previous version of the OWASP Top 10

for 2007 [47]). Because the total number of web application vulnerabilities that

exist is extremely large, only the most relevant vulnerabilities are implemented

and analyzed in this research. The web application vulnerabilities that are most

relevant to this research include SQL injection, and cross-site scripting (XSS).

Information about these vulnerabilities has been taken from [48].

18

2.3.1 SQL Injection

This section will discuss a brief overview of different kinds of SQL injection

attacks and their defenses. [48] Describes the basic definition and fundamental

information regarding SQL injection techniques.

Attacks

SQL injection occurs when malicious input is passed into a database interpreter

without being properly validated or encoded. In this type of attack the client is

attacking the web server database. The input that the attacker passes into the

interpreter is crafted to be a legitimate SQL statement, but instead of returning the

data that the application’s developer intended, the interpreter now returns the data

requested by the attacker. This type of attack is severe because not only can it

expose all sensitive user and business related data, but it could even go as far as

executing operating system commands or giving an attacker complete control of a

web application. An example of a valid SQL query which displays information

for the user ―Rami‖ is:

SELECT info FROM users WHERE username = 'Rami';

An attacker could use the malicious user name ―' OR 1=1 –‖ to cause the

interpreter to display all of the user information data in the database. The

corresponding SQL query would be:

SELECT info FROM users WHERE username = '' OR 1=1 –

This is one of the simplest types of SQL injection, but works because the leading

single quote causes the query to break out of the single quote delimited data.

Therefore the always true ―OR 1=1‖ is appended to the query, and thus displays

all of the user information data in the database. The double dashes ―–‖ at the end

of the query cause all of the text that would follow it to be commented out,

because ―–‖ is the comment symbol in this SQL language.

19

Adding the comment symbol is necessary in this attack because it nullifies the rest

of the syntax that the web application would normally append to the end of

database query to complete the operation. Therefore, the only query that is being

executed is the attacker’s injected sequence, and not the web applications

expected query.

Even more dangerous attacks are possible against certain SQL versions and

databases as well. An example of this would be if an attacker took advantage of a

web application that implements both regular and administrator users, and

therefore normally logs in users with default roles, but could also log in a user

with administrator roles. If the administrator user has advanced functionality and

has the ability to access all of the web application’s data, then the web application

can be completely compromised if an attacker takes control of the administrator

account. An SQL injection attack could accomplish this if a web application uses

email addresses as user names and associates each user name in the database as

either a regular or an administrator user. In this example the attacker will exploit a

generic ―Change Mailing Address‖ field on a web page and associate an email

address of their choosing to the administrator account. The attacker would enter

the following in the ―Change Mailing Address‖ field on the web page:

'; UPDATE users SET username = 'attacker@email.com' WHERE

username LIKE '%admin%'; –

The semi-colon ―;‖ will end the first query and allow for the attacker’s query to be

executed. This query will cause the email address that the attacker entered to

replace the email address that matches the pattern most like ―admin‖. All that is

necessary to perform this attack is for the attacker to ―guess and check‖ until they

know that the table holding the accounts is in fact ―users‖, and that the field

holding the user names is in fact ―username‖. After this, the user name most

closely matching ―admin‖ will be replaced with the attacker’s email address, but

will continue to have administrative capabilities. Now that the attacker has

replaced the administrator’s email address with his own, he can click the ―Forgot

20

Password‖ button that most user-based web applications provide, and have the

administrator’s password sent to him in the convenient ―Password Reminder‖

email.

The previously mentioned attack is not always easy to execute because it is not

trivial to find out the name of the table and column being used in the SQL

database. This challenge is overcome by using two other types of SQL injection:

blind SQL injection and error-based SQL injection. Blind SQL injection uses a

series of true and false questions to take advantage of the predictability of the

WHERE condition in SQL, since 1=1 will always return true. Therefore, if a

record is returned when using blind SQL injection, the attacker’s injected

condition must have been true. Error-based SQL injection is a specific type of

SQL injection that uses SQL error messages to determine the structure of the

database. SQL injection statements are crafted by the attacker in a way such that

the attacker can use the error responses to systematically unveil table names,

column names, column data types, and even specific data entries [48].

Defenses

The best way to prevent SQL injection is to have all interpreters separate

untrusted data from database queries and to only accept expected input [41, 50].

In order to achieve this, all data originating from a client should have special

characters escaped or sanitized into a valid format, should use an API which

avoids the use of an interpreter entirely, or should use prepared statements and

parameterized interfaces. The ―mysqli->prepare‖ mechanism will create prepared

statements for MySQL in PHP, and the following code sequence will escape all

special characters:

if (!get_magic_quotes_gpc()) {

$safe_string = mysql_real_escape_string($original_string);

}

21

Also, to protect against blind SQL injection and error message based SQL

injection, SQL error reporting should be disabled in conjunction with the other

safety measures mentioned above. In order to disable error reporting for MySQL

the ―@‖ character should precede commands to suppress on-screen error

reporting. These defensive measures should be implemented to mitigate SQL

injection attacks.

2.3.2 Cross Site Scripting

Three of the main types of cross-site scripting (XSS) attacks, as well as some

defensive techniques to protect against them, will be reviewed in this section.

Attacks

XSS occurs when a web application includes malicious code in a web page that is

sent to a client’s browser without proper content validation. In this type of attack

the web page server is attacking the client machine. When the web page is viewed

by the client it will execute the malicious script that the attacker embedded into

the web page. XSS is the most prevalent web application security flaw [47] due in

a large part to its simplicity and resulting severity. Some of the attacks that this

type of vulnerability can result in are the hijacking of a user’s session, the

defacement of websites, the insertion of hostile content, and the redirection of

users’ requests.

Reflective XSS is a type of XSS attack that can occur when a victim follows a

URL which contains malicious scripting that is executed when the web page is

rendered. This is commonly done by sending victims legitimate looking e-mail

messages that contain malicious script in the message’s URL. Once the HTTP

request from the URL is processed, the HTML content is received and displayed

in the victim’s browser, thus executing the malicious script. An example of a

URL containing a reflective XSS attack that would execute some type of

malicious script included the function ―malicious()‖ would be:

http://www.targetsite.com/display.php?user=<script>malicious()</script>

22

Stored XSS is another type of XSS attack. This type of attack occurs when the

malicious script is uploaded into the database back end of a server without input

validation, and is later retrieved by the web application to be embedded into a

web page. This causes every user who visits the infected web page to execute the

malicious script in his or her browser. An example of where this vulnerability can

be found is a web application that uses a comment section to allow users to view

and leave feedback about a product. If an attacker were to leave a comment which

included malicious script, the script would be stored as a comment for that

product in the database, and then executed every time a user clicks to view the

page holding the comments for that product. An example of this type of attack is a

script crafted to steal a user’s cookie and save it in a remote site for exploitation at

a later time so that they can perform actions as if they were the victim (such as

bank transactions, e-mail correspondence, etc...). The following script would

execute such an attack if stored in a web application’s database and then executed

in a client’s web browser:

<script>document.write('<img src=―http://www.attackersite.com'

+document.cookie+'―) </script>

A third type of XSS attack is Document Object Model, or DOM-based, XSS. This

is a different kind of XSS attack because it occurs on the client side when the user

is processing the content, instead of on the server side when the web application is

retrieving information to put in a web page. The Document Object Model is the

standard model that represents HTML and XML content of a web page. The

DOM can be modified in this type of attack to execute a malicious script in the

victim’s browser. An example of this type of attack would be to exploit a web

page that uses some embedded JavaScript in to set the default language for the

client using a variable in the URL. An example of this would be:

http://www.mysite.com/index.html#default=English

23

The malicious script that would exploit this would simply need to replace the

variable ―English‖ in the URL. A URL that shows this type of DOM-based XSS

attack would be:

http://www.mysite.com/index.html#default=<script>malicious()</script>

Because everything after the # in a URL is not sent to the server by the browser,

the malicious script would not be detected by the server even if the server was

performing input validation. Therefore the script would be echoed into the page

(DOM) when the browser renders it, and would result in the attacker’s script

being executed [49].

Defenses

The same rules described above that apply to protecting against SQL injection,

apply to protecting against XSS as well. All user supplied input should be

validated and properly escaped before being included in the output web page [50].

This requires the same escaping technique as before, which in PHP is:

if (!get_magic_quotes_gpc()) {

$safe_string = mysql_real_escape_string($original_string);

}

Also, proper output encoding will ensure that the browser treats the possibly

dangerous content as text, and not as active content that could be executed. The

―htmlentities()‖ and ―htmlspecialchars()‖ functions in PHP will check output to

make sure that it is HTML encoded.

The best way to avoid DOM-based XSS vulnerabilities is to have all client-side

input passed to the server for proper validation. However, if using variables in the

DOM cannot be avoided, then input validation should occur in the script itself. A

check to confirm that the string being written to the HTML page consists of only

alphanumeric characters should be completed so that no scripting characters are

allowed. A downside of this defensive technique is that the security check is

24

viewable in the HTML code to the attackers, and therefore is easily

understandable and attackable [49]. An example of a script which checks that

only alphanumeric characters exist in a string is:

if (original_string.match(/^[a-zA-Z0-9]+$/)) {

document.write(original_string);

}

These defensive techniques, although not infallible due to the mentioned

limitations, will add a level of protection against attacks that aim to exploit XSS

vulnerabilities.

2.4 Web Application Vulnerability Scanners

There are several web application vulnerability scanners that test for popular

vulnerabilities in web servers and web applications. These tools can either be

academic research projects, free/open-source applications, or commercial

software products. Tools are developed in academia by members of universities

who are interested in improving and studying web application vulnerability

scanners, but are generally not available for purchase or commercial use. The

open-source/free tools are available to the public, but are generally not as up-to

date and accurate as the commercial tools. These tools do however, give users the

ability to customize their tool and gain a greater understanding of the security of

their web applications. Commercial tools usually give more comprehensive

results than open-source/free tools, but can cost anywhere from just under

$100.00 to over $6000.00 [8, 50]. Specific web vulnerability scanners from these

three categories that automatically scan for and detect the most common web

application vulnerabilities will be reviewed in this section.

2.4.1 Web Application Scanners in Academia

One of the categories of web application vulnerability scanners includes those

25

that are developed in academia. These scanners are different from free/open-

source and commercial scanners because the researchers who work on them

are continuously evaluating them and also discuss not only where their design

succeeds, but where their design is limited and requires future work. These

scanners are not available for public use, so they cannot be used in this

analysis of web vulnerability scanner limitations, but reviewing the techniques

and methods used by these scanners will help in understanding how other web

application scanners work [48].

Huang et al. developed a web application scanner called WAVES that

attempts to reduce the number of potential side effects of black-box testing

[51, 52]. The auditing process of web application scanners can cause

permanent modifications, or even damage, to the state of the application it is

targeting. This is a drawback that both commercial and open-source/free web

application scanners share, and is why the authors introduced a testing

methodology that would allow for harmless auditing. Their experimental

results found that WAVES was unable to detect any new vulnerability that

were not already detected by a static source code analyzer they had developed.

Also, WAVES was unable to discover all of the vulnerabilities that the static

source code analyzer had found (detected only 80% of the vulnerabilities

found by the static analyzer). The authors believe their tool failed in part

because it did not have complex procedures able to detect all data entry points,

and because it was unable to observe HTML output.

Another academic black-box approach was developed by Antunes and Viera

as described in [53]. Their web vulnerability scanner was used to identify

SQL injection vulnerabilities in 262 publicly available web services. The first

step in their approach was to prepare for the tests by obtaining information

regarding the web service in order to generate the workload (valid web service

calls). The second step was to execute the tests. This was accomplished by

using a workload emulator that acted as a web service consumer, and by using

an attack load generator that automatically generated attacks by injecting them

26

into the workload test calls. The final step in their approach was to analyze the

responses by using a set of well-defined rules which would identify

vulnerabilities and exclude potential false-positives. Their results showed that

they achieved a detection coverage rate of 81% in the scenario where they had

access to the known number of vulnerabilities, and maintained a false-positive

rate of 18% in their optimistic interpretation. These results are better than

those of the commercial tools that the authors analyzed, and suggest that it is

possible to improve the effectiveness of vulnerability scanners [48].

2.4.2 Free/Open-Source Web Application Scanners

Many open-source and free web application scanners are available for black-

box testing and analysis. Some of these applications provide extensive

functionality with the ability to be customized and expanded to meet the needs

of users. Others however do not provide a great deal of usability and have a

limited amount of functionality, and therefore can only test for a few web

application vulnerabilities. Three of the more thorough and robust free/open-

source scanners, Grendel-Scan [54], Wapiti [55], and W3AF [56], will be

reviewed.

Grendel-Scan [54] is an open-source web application security testing tool

which has an automated testing module for detecting common web application

vulnerabilities. It has the ability to find simple web application vulnerabilities,

but its designers state that no automated tool can identify complicated

vulnerabilities, such as logic and design flaws. Grendel-Scan tests for SQL

injection, XSS attacks, and session management vulnerabilities, as well as

other vulnerabilities.

Wapiti [55] is a free web application vulnerability scanner and security

auditor. It performs black-box analysis by scanning the web pages of a web

application in search of scripts and forms where data can be injected. After the

list of scripts and forms is gathered, Wapiti injects payloads to test if the

27

scripts are vulnerable. Wapiti scans for remote file inclusion errors, SQL and

database injections, XSS injections, and other vulnerabilities.

W3AF [56] is exactly what it stands for, a Web Application Attack and Audit

Framework. The goal of the project is to create a framework which can find

and exploit web application vulnerabilities easily. The project’s long term

objectives are for it to become the best open source web application scanner,

and the best open source web application exploitation framework. Also, the

designers want the project to create the biggest community of web application

hackers, combine static code analysis and black box testing into one

framework, and become the NMAP [57] of the web. W3AF incorporates a

great deal of plug-ins into its framework, and is capable of testing for SQL

injection, XSS attacks, buffer overflow, malicious file execution, and session

management vulnerabilities. Table 2.1 provides a comparison of the

vulnerabilities that the free and open source web application scanners search

for.

Vulnerability Type Grendel-Scan Wapiti W3AF

SQL Injection X X X

Cross Site Scripting X X X

Session Management X - -

Malicious File Execution - X X

Buffer Overflow - - X

Table 2.1: A comparison of the relevant vulnerabilities detected by free/open-

source web application scanners.

2.4.3 Commercial Web Application Scanners

Commercial web application scanners are generally licensed to companies or

organizations that wish to test their web applications for vulnerabilities so that

they can fix security holes before they are maliciously exploited. Since a data

breach can result in the loss of personal information of thousands of

28

customers, and the loss of millions of dollars, companies are willing to pay

large sums of money for these applications. These commercial applications

compete against each other for market share, and therefore do not want to

disclose their scanner’s limitations or restrictions. However, an approach to

analyze these limitations and restrictions is proposed in this thesis. Some of

the features of popular commercial web application scanners will be discussed

below [48].

Cenzic [58] sells a web application scanner tool called Hailstorm which

utilizes stateful testing. Stateful testing tools are designed to behave like

human testers by taking what seem to be an application’s insignificant or

disparate weaknesses, and combining them together into serious exploits. The

key benefits that Hailstorm claims are the ability to identify major security

flaws in target applications, to help with internal compliance policies, to avoid

vulnerabilities that lead to downtime, and to assess applications for commonly

known vulnerabilities. Cenzic provides a 7-day free trial of Hailstorm Core

which can detect vulnerabilities including SQL injection, XSS , and session

management.

Acunetix Web Vulnerability Scanner [8] is another black-box tool which

claims in-depth checking for SQL injection, XSS, and other vulnerabilities

with its innovative AcuSensor Technology. This technology is supposed to

quickly find vulnerabilities with a low number of false-positives, pinpoint

where each vulnerability exists in the code, and report the debug information

as well. Acunetix also includes advanced tools to allow penetration testers to

fine tune web application security tests, and has many more features to scan

websites with different scan options and identities. The only vulnerability that

the free edition of the software detects is XSS, but a 30-day trial version of the

product is available that also can detect SQL injection, file execution, session

management, and manual buffer overflow attacks.

29

N-Stalker [59] provides a suite of web security assessment checks to enhance

the overall security of web applications. It is founded on the technology of

Component-oriented Web Application Security Scanning, and allows users to

create their own assessment policies and requirements, enabling them to check

for more than 39,000 signatures and infrastructure security checks.

Vulnerabilities checked for include SQL injection, XSS attacks, buffer

overflows, and session management attacks, but the evaluation edition only

lasts for a 7-day period.

Netsparker [60] is a web application vulnerability scanner developed by

Mavituna Security Ltd. Netsparker is focused on eliminating false-positives,

and uses confirmation and exploitation engines to ensure that false-positives

are not reported. The engines also allow the users to see the actual impact of

the attacks instead of text explanations of what the attack could do. Because of

the techniques Netsparker uses, Mavituna Security claims that it developed

the first false-positive free web application scanner. Netsparker scans for all

types of XSS injection, SQL injection, malicious file execution, and session

management vulnerabilities.

Burp Scanner [61] is a web application vulnerability scanner that is part of

Burp Suite Professional. Burp Suite Professional is the commercial version of

Burp Suite, which is an integrated platform for attacking and testing web

applications. Burp Suite provides a number of tools, including an interception

web proxy, web spider, application intruder, session key analyzer, and data

comparer. The professional version includes Burp Scanner which can operate

in either passive or active mode, or either manual scan or live scan mode. The

vulnerabilities it searches for include SQL injection, XSS injection, and

session management vulnerabilities.

Rational AppScan [62] is licensed by IBM for advanced web application

security scanning. The AppScan tool automates vulnerability assessments and

tests for SQL injection, XSS attacks, buffer overflows, and other common

30

web application vulnerabilities. AppScan can generate advanced remediation

capabilities in order to ease vulnerability remediation, simplify results with

the Results Expert wizard, and test for emerging web technologies. Rational

AppScan provides an unlimited evaluation period for its standard edition;

however, with the evaluation license the software is only capable of testing a

test web site provided by AppScan.

BuyServers Ltd. [63] sells a web vulnerability scanner called Falcove which is

a 2-in-1 scanning and penetration tool, meaning that it not only tries to detect

vulnerabilities, but is capable of exploiting them as well. Falcove utilizes a

crawler feature that checks for web vulnerabilities, audits dynamic content

(password fields, shopping carts), and generates penetration reports that

explain the security level of the tested web site. However, BuyServers Ltd. no

longer supports the trial version of the product that detects SQL injection,

XSS, and file execution attacks.

HP’s WebInspect [64] software provides web application security testing and

assessment for complex web applications. WebInspect claims fast scanning

capabilities, broad security assessment coverage, and accurate web application

security scanning results. HP also believes WebInspect identifies security

vulnerabilities that are undetectable by traditional scanners by using

innovative assessment technologies such as simultaneous crawl and audit, and

on current application scanning. HP WebInspect scans for data detection and

manipulation attacks, session and authentication vulnerabilities, and server

and general HTTP vulnerabilities, but does not currently provide a working

evaluation version of the product.

NT OBJECTives’ NTOSpider [65] is a web application security scanner that

claims to provide automated vulnerability assessment with unprecedented

accuracy and comprehensiveness. NTOSpider identifies application

vulnerabilities and ranks threat priorities, as well as produces graphical

HTML reports. NT OBJECTives’ proprietary S3 Methodology and Data

31

Sleuth intelligence engine are employed for automation and accuracy, and

checks vulnerabilities on a case-by-case basis, which provides context-

sensitive vulnerability checking. NTOSpider checks for SQL injection, XSS

attacks, and session management vulnerabilities, but does not provide a trial

version for evaluation.

Table 2.2 provides a summary of the relevant vulnerabilities that each of the

evaluation versions of the commercial web application scanners detect.

Vulnerability Type Hailstorm N-Stalker Netsparker Acunetix Burp Scanner

SQL Injection X X X X X

Cross Site Scripting X X X X X

Session Management X X X X X

Malicious File Execution - - X X -

Buffer Overflow - X - X -

Table 2.2: A comparison of the relevant vulnerabilities detected by evaluation

versions of commercial web application scanners.

32

Chapter 3

RELATED WORK

33

According to Curphey and Araujo [1], there are eight categories of web application

security Assessment tools: source code analyzers, web application (black box) scanners,

database scanners, binary analysis tools, runtime analysis tools, configuration

management tools, HTTP proxies, and miscellaneous tools. The most common of these

web application assessment tools are source code analyzers and web application scanners.

Source code analyzers generally achieve good vulnerability detection rates, but are only

useful if the web application’s source code is available. On the other hand, web

application vulnerability scanners are the tools which most closely mimic web

application attacks, but have been known to perform rather poorly [3, 17, 44, 52].

There are two main approaches to test web applications for vulnerabilities [5]:

White box testing: consists of the analysis of the source code of the web

application. This can be done manually or by using code analysis tools like Ounce

[6] or Pixy [7]. The problem is that exhaustive source code analysis may be

difficult and cannot find all security flaws because of the complexity of the code.

Black box testing: consists in the analyses of the execution of the application in

search for vulnerabilities. In this approach, also known as penetration testing, the

scanner does not know the internals of the web application and it uses fuzzing

techniques over the web HTTP requests.

In practice, black-box vulnerability scanners are used to discover security problems in

web applications. These tools operate by launching attacks against an application and

observing its response to these attacks. To this end, web server vulnerability scanners

such as Nikto [10] or Nessus [11] dispose of large repositories of known software flaws.

While these tools are valuable components when auditing the security of a web site, they

largely lack the ability to identify a priori unknown instances of vulnerabilities. As a

consequence, there is the need for a scanner that covers a broad range of general classes

of vulnerabilities, without specific knowledge of bugs in particular versions of web

applications [9].

Security testing a Web application or Web site requires careful thought and planning due

to both tool and industry immaturity. Finding the right tools involves several steps,

34

including analyzing the development environment and process, business needs, and the

Web application's complexity. M. Curphey and R. Arawo [1] Describes the different

technology types for analyzing Web applications and Web services for security

vulnerabilities, along with each type's advantages and disadvantages. Their analysis is

based on collective experiences and the lessons we've learned along the way.

Fonseca, J. CISUC proposed a method to evaluate and benchmark automatic web

vulnerability scanners using software fault injection techniques. The most common types

of software faults are injected in the web application code which is then checked by the

scanners. The results are compared by analyzing coverage of vulnerability detection and

false positives. Three leading commercial scanning tools are evaluated and the results

show that in general the coverage is low and the percentage of false positives is very high

[42].

Fonseca, J. CISUC [4] proposed a methodology to inject realistic attacks

in Web applications. The methodology is based on the idea that by injecting

realistic vulnerabilities in a Web application and attacking them automatically we can

assess existing security mechanisms. To provide true to life results, this methodology

relies on field studies of a large number of vulnerabilities in Web applications. The paper

also describes a set of tools implementing the proposed methodology. They allow the

automation of the entire process, including gathering results and analysis. We used these

tools to conduct a set of experiments to demonstrate the feasibility and effectiveness of

the proposed methodology. The experiments include the evaluation of coverage and false

positives of an intrusion detection system for SQL injection and the assessment of the

effectiveness of two Web application vulnerability scanners. Results show that the

injection of vulnerabilities and attacks is an effective way to evaluate security

mechanisms and tools.

Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic [9] developed

SecuBat, a generic and modular web vulnerability scanner that, similar to a port scanner,

automatically analyzes web sites with the aim of finding exploitable SQL injection and

XSS vulnerabilities. Using SecuBat, they were able to find many potentially vulnerable

35

web sites. To verify the accuracy of SecuBat, they picked one hundred interesting web

sites from the potential victim list for further analysis and confirmed exploitable flaws in

the identified web pages. Among thier victims were well-known global companies and a

finance ministry. More than fifty responded to request additional information or to report

that the security hole was closed.

SecuBat vulnerability scanner [9] consists of three main components: First, the crawling

component gathers a set of target web sites. Then, the attack component launches the

configured attacks against these targets. Finally, the analysis component examines the

results returned by the web applications to determine whether an attack was successful.

Scott and Sharp [41] discuss web vulnerabilities such as XSS. They propose to deploy

application-level firewalls that use manual policies to secure web applications. Their

approach would certainly protect applications against a vulnerability scanner such as

SecuBat. However, the problem of their approach is that it is a tedious and error-prone

task to create suitable policies.

Huang et al. [13] present a vulnerability detection tool that automatically executes SQL

injection attacks. As far as SQL injection is concerned, our work is similar to theirs.

However, their scanner is not as comprehensive as our tool because it lacks any detection

mechanisms for XSS vulnerabilities where script code is injected into applications. The

focus of their work, rather, is the detection of application level vulnerabilities that may

allow the attacker to invoke operating-level system calls (e.g., such as opening a file) for

malicious purposes.

There are many commercial web application vulnerability scanners available on the

market that claim to provide functionality similar to our scanner (e.g., Acunetix Web

Vulnerability Scanner [8]). Unfortunately, due to the closed-source nature of these

systems, many of the claims cannot be verified, and an in-depth comparison with our

scanner is difficult. For example, it appears that the cross-site scripting analysis

performed by Acunetix is much simpler than the complete attack scenario presented in

our approach. Also, no working proof-of-concept exploits are generated.

36

AMNESIA is a model-based technique that combines static analysis and runtime

monitoring [15, 14]. In its static phase, AMNESIA uses static analysis to build models of

the different types of queries an application can legally generate at each point of access to

the database. In its dynamic phase, AMNESIA intercepts all queries before they are sent

to the database and checks each query against the statically built models. Queries that

violate the model are identified as SQLIAs and prevented from executing on the

database. In their evaluation, the authors have shown that this technique performs well

against SQLIAs. The primary limitation of this technique is that its success is dependent

on the accuracy of its static analysis for building query models. Certain types of code

obfuscation or query development techniques could make this step less precise and result

in both false positives and false negatives.

SQLGuard [17] and SQLCheck [16] also check queries at runtime to see if they conform

to a model of expected queries. In these approaches, the model is expressed as a grammar

that only accepts legal queries. In SQLGuard, the model is deduced at runtime by

examining the structure of the query before and after the addition of user-input. In

SQLCheck, the model is specified independently by the developer. Both approaches use a

secret key to delimit user input during parsing by the runtime checker, so security of the

approach is dependent on attackers not being able to discover the key. Additionally, the

use of these two approaches requires the developer to either rewrite code to use a special

intermediate library or manually insert special markers into the code where user input is

added to a dynamically generated query.

WebSSARI detects input-validation related errors using information flow analysis [18].

In this approach, static analysis is used to check taint flows against preconditions for

sensitive functions. The analysis detects the points in which preconditions have not been

met and can suggest filters and sanitization functions that can be automatically added to

the application to satisfy these preconditions. The WebSSARI system works by

considering as sanitized input that has passed through a predefined set of filters. In their

evaluation, the authors were able to detect security vulnerabilities in a range of existing

applications. The primary drawbacks of this technique are that it assumes that adequate

preconditions for sensitive functions can be accurately expressed using their typing

37

system and that having input passing through certain types of filters is sufficient to

consider it not tainted. For many types of functions and applications, this assumption is

too strong.

Livshits and Lam [19] use static analysis techniques to detect vulnerabilities in software.

The basic approach is to use information flow techniques to detect when tainted input has

been used to construct an SQL query. These queries are then flagged as SQLIA

vulnerabilities. The authors demonstrate the viability of their technique by using this

approach to find security vulnerabilities in a benchmark suite. The primary limitation of

this approach is that it can detect only known patterns of SQLIAs and, because it uses a

conservative analysis and has limited support for untinting operations, can generate a

relatively high amount of false positives.

Huang and colleagues [19] propose WAVES, a black-box technique for testing Web

applications for SQL injection vulnerabilities. The technique uses a Web crawler to

identify all points in a Web application that can be used to inject SQLIAs. It then builds

attacks that target such points based on a specified list of patterns and attack techniques.

WAVES then monitors the application’s response to the attacks and uses machine

learning techniques to improve its attack methodology. This technique improves over

most penetration-testing techniques by using machine learning approaches to guide its

testing. However, like all black-box and penetration testing techniques, it cannot provide

guarantees of completeness.

Fu et al. suggested a Static Analysis approach to detect SQL Injection Vulnerabilities.

The main aim of SAFELI approach is to identify the SQL Injection attacks during

compile-time. It has a couple of advantages. First, it performs a White-box Static

Analysis and second, it uses a Hybrid-Constraint Solver. On one hand where the given

approach considers the byte-code and deals mainly with strings in case of White-box

Static Analysis, on the other through Hybrid-Constraint Solver, the method implements

an efficient string analysis tool which is able to deal with Boolean, integer and string

variables. Its implementation was done on ASP.NET Web applications and it was able to

detect vulnerabilities that were ignored by the black-box vulnerability scanners. This

38

approach is an efficient approximation mechanism to deal with string constraints.

However, the approach is only dedicated to ASP.NET vulnerabilities [25].

A secured database testing approach has been suggested for web applications by Haixia

and Zhihong. This approach suggested the following methodology:-

I. Detection of potential input points of SQL injection.

II. Automatic generation of test cases.

III. Running the test cases to make an attack on the application to find the

database vulnerability.

The mechanism suggested here is shown to be efficient as it was able to detect the input

points of SQL Injection exactly and on time as per expectation. An analysis on this

technique makes it clear that the approach needs improvement in the development of

attack rule library and detection capability [26].

Ruse et al.’s Approach suggested using automatic test case generation for detection of

SQL injection vulnerabilities. The idea is to create a specific model that deals with SQL

queries automatically. Furthermore this technique also identifies the relation between

sub-queries. This technique is shown to identify the casual set and obtain 85% and 69%

reduction respectively while experimenting on few sample examples. Moreover, no false

positive or false negative were produced and it has been able to detect the root cause of

the injection. Although this approach claimed an apparent efficiency, it has a huge

drawback that this approach has not been tested on real life existing database with real

queries [27].

Thomas et al.’s approach suggested an automated prepared statement generation

algorithm to eliminate vulnerabilities related to SQL Injection. Their research work used

four open source projects namely: (i) Net-trust, (ii) ITrust, (iii) WebGoat, and (iv) Roller.

The experimental results show that, their prepared statement code was able to

successfully replace 94% of the SQL injection vulnerabilities in four open source

projects. The only limitation observed was that the experiment was conducted using only

39

Java with a limited number of projects. Hence, the wide application of the same approach

and tool for different settings still remains an open research issue to investigate [28].

SQL-IDS approach has been suggested by Kemalis and Tzouramanis in [29] and it uses a

novel specification-based methodology for detecting exploitations of SQL injection

vulnerabilities. The method proposed here does query-specific detection which allows the

system to perform concentrated analysis at almost no computational overhead. It also

does not produce any false positives or false negatives. This is a very new approach and

in practice it’s very efficient; however, it is required to conduct more experiments and do

comparison with other detection methods under a flexible and shared environment.

McClure and Krüger suggested a framework SQL DOM (strongly-typed set of classes

with database schema). The existing flaws have been considered closely during access of

relational databases from Object-Oriented Programming Language’s point of view. The

focus lies mainly in identifying hurdles in interacting with databases through Call Level

Interfaces. The solution proposed here is based on SQL DOM object model to handle this

kind of issues by creating a secure surrounding i.e., creation of SQL statement through

object manipulation for communication. When this technique was evaluated qualitatively

it showed many advantages for: testability, readability, maintainability and error

detection at compile. Although this proposal is efficient, there still exists scope of further

improvements with latest and more advanced tools such as CodeSmith [30].

Ali et al.’s approach has been adopted by Ali et al. in which a hash value technique has

been followed to improve user authentication mechanism. Hash values for user name and

password has been used. For testing this kind of framework SQLIPA (SQL Injection

Protector for Authentication) was developed. Hash values for user name and password is

created for the first time user account is created and they stored in the user account table

in a database. The framework requires further improvement in order to minimize the

overhead time which was 1.3 ms even though tested on few sample data. Hence simply

minimizing the overhead time is not sufficient but also to test this framework with large

amount of data is required [31].

40

Su and Wassermann implemented their algorithm with SQLCHECK on a real time

environment. It checks whether the input queries conform to the expected ones defined

by the programmer. A secret key is applied for the user input delimitation. The analysis

of SQLCHECK shows no false positives or false negatives. Also, the overhead runtime

rate is very low and can be implemented directly in many other Web applications using

different languages. Table 3 shows the number of attacks attempted as well as prevented

[32]. It also shows the number of valid uses attempted and allowed, and the mean and

standard deviation of times across all runs of SQLCHECK for the application under

check. It is a very efficient approach; however, once an attacker discovers the key, it

becomes vulnerable. Furthermore, it also needs to be tested with online Web applications

[32, 33].

Dynamic Candidate Evaluations approach has been proposed by Bisht et al. called

CANDID (Candidate evaluation for Discovering Intent Dynamically). It is a Dynamic

Candidate Evaluations technique in which SQL injection is not only detected but also

prevented automatically. Mechanism behind this method is that it dynamically extracts

the query structures from every SQL query location which is intended by the developer.

So, basically it resolves the problem of manually changing the application to produce the

prepared statements. Although tool using this mechanism has been shown to be efficient

in some cases, it failed for many other cases. An example for its failure is when applied at

a wrong level or when an external function is dealt with. Furthermore it also fails in many

cases due to limited capability of this technique [34].

Cross Site Scripting (XSS) vulnerability analysis has many approaches [20], Interpreter-

based Approaches and Syntactical Structure Analysis. Pietraszek, and Berghe use

Interpreter based approach of instrumenting interpreter to track untrusted data at the

character level and to identify vulnerabilities they use context-sensitive string evaluation

at each susceptible sink [21]. This approach is sound and can detect vulnerabilities as

they add security assurance by modifying the interpreter. But approach of modifying

interpreter is not easily applicable to some other web programming languages, such as

Java (i.e., JSP and servlets) [22].

41

On the other hand, A successful inject attack changes the syntactical structure of the

exploited entity, stated by Su, and Wassermann in [22] and they present an approach to

check the syntactic structure of output string to detect malicious payload. Augment the

user input with metadata to track this sub-string from source to sinks. This metadata help

the modified parser to check the syntactical structure of the dynamically generated string

by indicating end and start position of the user given data. If there is any abnormality

then it blocks further process. These processes are quite success while it detect any

injection vulnerabilities other than XSS. Only checking the syntactic structure is not

sufficient to prevent this sort of workflow vulnerabilities that are caused by the

interaction of multiple modules [23].

Gary and Zhendong [24] presented a static analysis for finding XSS vulnerabilities that

directly addresses weak or absent input validation. thier approach combines work on

tainted information flow with string analysis. Proper input validation is difficult largely

because of the many ways to invoke the JavaScript interpreter; they faced the same

obstacle checking for vulnerabilities statically, and they address it by formalizing a policy

based on the W3C recommendation, the Firefox source code, and online tutorials about

closed-source browsers. They provide effective checking algorithms based on thier

policy. And they implemented their approach and provided an extensive evaluation that

finds both known and unknown vulnerabilities in real-world web applications.

A number of black-box testing, fault injection and behavior monitoring to web

applications approaches has been used by Y. Huang, S. Huang, Lin, and Tsai in order to

predict the presence of vulnerabilities [35]. This approach combines user experience

modeling as black-box testing and user-behavior simulation [36]. There are many other

projects where a similar kind of approach has been followed like APPScan [37],

WebInspect[38], and ScanDo [39]. As all these approaches were used to detect errors in

the development life cycle, they might not be able to provide instant web application

protection [40] and they cannot guarantee the detection of all flaws as well [41].

Su and Wassermann in [32] suggested an approach which states that when there is a

successful injection attack there is a change in the syntactical structure of the exploited

42

entity. So, they have presented an approach where syntactic structure of output string is

checked to detect malicious payload. For tracking sub-string from source to sinks they

increased the user input with metadata. The modified parser was helped by this metadata

to check the syntactical structure of the dynamically generated string by indicating start

and end point of the user given input. Moreover the process was blocked if there was a

sign of any abnormality. This approach was found to be quite successful while it detects

any injection vulnerabilities other than XSS. Hence, it is not sufficient to avoid this sort

of workflow vulnerabilities which are result of interaction between multiple modules

[43].

Interpreter-based approach has been suggested by Pietraszek, and Berghe in which there

is use of instrumenting interpreter to track untrusted data at the character level and for

identifying vulnerabilities that use context-sensitive string evaluation at each susceptible

sink [44]. This technique is good and also able to detect vulnerabilities as security

assurance is added by modifying the interpreter, however this approach of modifying

interpreter is not easily feasible to some other famous and widely used web programming

languages, such as Java, Jsp, Servlets [32].

43

Chapter 4

THE PROPOSED

APPROACH

METHODOLOGY

AND DESIGN

44

4.1 Introduction

Many scanners which are considered as web application scanners

identify vulnerabilities that are known in specific pages and applications. For

example, the Content Management Systems (CMS), such as Joomla and

wordpress, have many vulnerabilities for with web scanners contains a

signature for it, but these scanners don’t have signatures for vulnerabilities

that may present in a custom web application built for specific client. In order

to detect and examine these custom vulnerabilities, the web scanner have to

dynamically generate test requests that are applied to the given web

application.

In order to start analyzing vulnerabilities of the web application, the

scanner need to get data from the web application, these data will be the GET

and POST requests with parameters. Getting data from web application is

called crawling; this is very effective technique that can be used to record web

application pages parameters and requests.

Our approach performs tests for two major web applications

vulnerabilities, which are, SQL Injection and Cross Site Scripting (XSS). The

main reason for choosing these vulnerabilities is their criticality and

importance, as they were reported by OWASP as the most vulnerability of

web applications [47].

4.2 Tools used
To implement the vulnerability analysis scanner many tools were used.

This includes, Perl Programming Language, Linux OS: BackTrack 5, and

virtual machine software (VM Ware).

45

4.2.2 Perl Programming Language

Perl Programming language was originally developed by Larry Wall in

1987 as a general-purpose Unix scripting language to make report processing

easier. Since then, it has undergone many changes and revisions. The latest

major stable revision is 5.16, released in May 2012. Perl borrows features

from other programming languages including C, shell scripting (sh), AWK,

and sed. The language provides powerful text processing facilities without the

arbitrary data length limits of many contemporary UNIX tools, facilitating

easy manipulation of text files. Perl gained widespread popularity in the late

1990s as a CGI scripting language, in part due to its parsing abilities. In

addition to CGI, Perl is used for graphics programming, system

administration, network programming, finance, bioinformatics, and other

applications [66].

Perl has many features since The overall structure of Perl derives

broadly from C. Perl is procedural in nature,

with variables, expressions, assignment statements, brace-

delimited blocks, control structures, and subroutines. Perl also takes features

from shell programming. All variables are marked with leading sigils, which

unambiguously identify the data type (for example, scalar, array, hash) of the

variable in context. Importantly, sigils allow variables to be interpolated

directly into strings. Perl has many built-in functions that provide tools often

used in shell programming (although many of these tools are implemented by

programs external to the shell) such as sorting, and calling on system facilities

[66].

Perl is often used as a glue language, tying together systems and

interfaces that were not specifically designed to interoperate, and for "data

munging",[66] that is, converting or processing large amounts of data for tasks

such as creating reports. In fact, these strengths are intimately linked. The

combination makes Perl a popular all-purpose language for system

46

administrators, particularly because short programs can be entered and run on

a single command line.

Perl code can be made portable across Windows and Unix; such code

is often used by suppliers of software (both COTS and bespoke) to simplify

packaging and maintenance of software build- and deployment-scripts.

4.2.3 Linux Operating System (Backtrack Distribution)

BackTrack Distribution is a penetration testing and security auditing

platform with advanced tools to identify, detect, and exploit any

vulnerabilities uncovered in the target network environment. Applying

appropriate testing methodology with defined business objectives and a

scheduled test plan will result in robust penetration testing of your network.

BackTrack is a merger between three different live Linux penetration

testing distributions—IWHAX, WHOPPIX, and Auditor. In its current

version, BackTrack is based on Ubuntu Linux distribution version.

BackTrack contains a number of tools that can be used during your

penetration testing process. The penetration testing tools included in

Backtrack can be categorized into the following:

- Information gathering: This category contains several tools that

can be used to get information regarding a target DNS, routing, e-mail

address, websites, mail server, and so on. This information is gathered from

the available information on the Internet, without touching the target

environment.

- Network mapping: This category contains tools that can be used

to check the live host, fingerprint operating system, application used by the

target, and also do port scanning.

- Vulnerability identification: In this category we can find tools to

scan vulnerabilities (general) and in Cisco devices. It also contains tools to

47

carry out fuzzing and analyze Server Message Block (SMB) and Simple

Network Management Protocol (SNMP).

- Web application analysis: This category contains tools that can

be used in auditing web application.

- Radio network analysis: To audit wireless networks, Bluetooth

and Radio Frequency Identifier (RFID), you can use the tools in this category.

- Penetration: This category contains tools that can be used to

exploit the vulnerabilities found in the target machine.

- Privilege escalation: After exploiting the vulnerabilities and

gaining access to the target machine, we can use tools in this category to

escalate privilege to the highest privilege.

- Maintaining access: Tools in this category will be able to help us

in maintaining access to the target machine.

- Voice over IP (VOIP): To analyze VOIP we can utilize the tools

in this category.

- Digital forensics: In this category we can find several tools that can be

used to do digital forensics such as acquiring hard disk image, carving

files, and analyzing hard disk image.

- Reverse engineering: This category contains tools that can be used to

debug a program or disassemble an executable file.

4.3 Development Description

In this section, our approach details will be described. The main steps of our

approach are described in figure 4.1. First, the scanner will do manual

crawling for the web application pages. Second, it will loop through all log

requests that were recorded by the crawler and filter these requests as they are

GET or POST requests, in this steps the scanner will check for requests

parameters as well. Third, for each parameter of each request the scanner will

perform our main tests which are SQL INJECTION and XSS tests. Fourth, the

scanner will check for web directory listing vulnerability test, which if it’s

48

found the scanner will check for HTTP PUT test. The scanner reports each

transaction of the done tests so it will generate a full report at the end of work

The approach steps can be listed as followed order:

1. Web application crawling.

2. Web pages requests with parameters filtering.

3. SQL Injection test.

4. Cross Site Scripting (XSS) test.

5. Directory listing test.

6. Report Generation.

4.3.1 Web application crawling

The first step that the scanner will do is obtaining data about the target web

application. This process will be called Application crawling. This is very

effective technique that can be used to record web application pages

parameters and requests.

Web Scanner can use web crawling in two ways, automatic web crawling and

manual web crawling. Firstly, Automatic crawling software is a type of bot; In

general, it starts with a list of URLs to visit, called the seeds. As the crawler

visits these URLs, it identifies all the hyperlinks in the page and adds them to

the list of URLs to visit, called the crawl frontier. URLs from the frontier

are recursively visited according to a set of policies. Examples of these

crawlers are: GNU Wget utility, Aspseek, GRUB. Secondly, Manual crawling

which can be done using a local web proxy with manually accepting and

recording web requests. The main benefit of both techniques is to build a list

of web requests for all web application pages and links so they can be passed

to the vulnerability scanner later.

49

Figure 4.1: Our approach flowchart

Even the automatic web crawling is easier and faster, it can’t discover all

application pages for many reasons. Firstly, the crawling software must be

able to parse Web forms and generate logical form submissions to the

application (i.e. web crawler couldn’t submit form with reCAPTCHA field).

Otherwise, the application's business logic prevents the user from reaching

subsequent pages or areas of the application. Secondly, automated web

crawling software follow every link and/or form a given web application

50

presents, they might cause unanticipated events to occur. For example, if a

hyperlink presented to the user allows certain transactions to be processed or

initiated, the agent might inadvertently delete or modify application data or

initiate unanticipated transactions on behalf of a user. For these reasons, most

experienced testers normally prefer the manual crawling technique because it

allows them to achieve a thorough crawl of the application while maintaining

control over the data and pages that are requested during the crawl and

ultimately are used to generate test requests [9].

Our approach will rely on a manual application crawl to discover all testable

pages and requests. In order to complete this task, we will use local proxy

server utility to record all application requests in a log file as manually to

crawl the application.

4.3.2 Web pages requests with parameters filtering

Our scanner works on HTTP (GET, POST) requests and response parameters.

HTTP works through a series of requests from the client and associated server

responses back to the client. Each request is independent and results in a

server response. A typical raw HTTP request is shown in figure 4.2.

Figure 4.2: RAW HTTP request

Our scanner depends on GET and POST methods, in GET method the request

can contain parameters that will be send with the HTTP request. A typical

GET request with parameters in shown in figure 4.3. The request can contain

51

multiple parameter data separated by & mark. Our scanner will parse and use

each one of the parameters to check its vulnerability tests.

Figure 4.3: GET method

The POST method passes the data parameters of the request after all request

headers, as show in figure 4.4. as well as, our scanner will parse these

parameters in order to use it in the vulnerability test.

Figure 4.4: POST method

The scanner will parse all HTTP requests and generate a new list containing

only the type of request (GET, POST), the path of the web page requested,

and the passed parameters of the request. Figure 4.5 shows a sample list

generated by the scanner.

Figure 4.5: HTTP requests parse result list

52

4.3.3 SQL Injection

SQL injection can be present in any front-end application accepting data entry

from a system or user, which is then used to access a database server. In this

section, we will focus on our techniques in identifying and testing of SQL

injection vulnerabilities.

In a Web environment, the Web browser is a client acting as a front end

requesting data from the user and sending it to the remote server which will

create SQL queries using the submitted data. Our main goal at this stage is to

identify anomalies in the server response and determine whether they are

generated by SQL injection vulnerability.

Our two main techniques for testing SQL Injection vulnerabilities are testing

by inference (parameter based) and UNION-Blind injection, figure 4.6

represents the block diagram of SQL Injection proposed methodology.

53

F
ig

u
re

 4
.6

:
B

lo
ck

 D
ia

g
ra

m

54

1- SQL Injection by inference:

Testing for SQL Injection by inference requires three steps:

a. Identify all the data entry on the Web application.

b. Specify the kind of request that might trigger anomalies.

c. Detect anomalies in the response from the server.

Once our scanner identified all the data accepted by the application, it will

modify it and analyze the response from the server. If the web application

is vulnerable its response will include an SQL error that reported directly

from the database server.

Figure 4.7: Database server error response

Figure 4.7 illustrates the scenario of a request from the scanner which

triggers an error on the database. Depending on how the application is

coded, the file returned in step 4 will be constructed and handled as a

result of one of the following:

a. The SQL error is displayed on the page and is visible to the user

from the Web browser.

b. The SQL error is hidden in the source of the Web page for

debugging purposes.

c. Redirection to another page is used when an error is detected.

d. An HTTP error code 500 (Internal Server Error) or HTTP

redirection code 302 is returned.

55

e. The application handles the error properly and simply shows no

results, perhaps displaying a generic error page.

In order to identify the SQL injection vulnerability the scanner needs to

determine the type of response the application is returning. These

responses are categorized into two types, Common database server errors

and Generic error.

Common database servers errors are known as full SQL error and even

they are different from database server to another it’s the easiest way to

determine if the parameters are vulnerability hole to the web application,

Table 4.1 represent different error response messages from database

servers. The scanner will check for error messages returned and search for

common errors in the return error message.

No. Database Server Error Message

1. SQL Server Server Error in '/' Application.

Syntax error converting the nvarchar value

'Microsoft SQL Server 2000 – 8.00.760 (Intel X86)

Dec 17 2002 14:22:05 Copyright (c) 1988-2003

Microsoft Corporation Enterprise Edition on

Windows NT 5.2 (Build 3790:) ' to a column of

data type int.

Description: An unhandled exception occurred

during the execution of the current web request.

Please review the stack trace for more information

about the error and where it originated in the code.

2. MySQL Server Error: You have an error in your SQL syntax;

check the manual that corresponds to your MySQL

server version for the right syntax to use near

''' at line 1

3. Oracle Server Exception Details: System.Data.OleDb.

56

OleDbException: One or more errors occurred

during processing of command.

ORA-00933: SQL command not properly ended

Table 4.1: Common database servers’ errors.

Generic errors returns from web application server are second kind of

errors returned from database server that will be tested by our scanner;

these generic errors are returned instead of known error messages

described in table 4.2 and they may indicate a potential SQL injection

vulnerability. In order to test for generic errors the scanner will inject SQL

code into parameter and analyses server response which will be in many

various forms. These forms categorized into two types, HTTP Code Error

and Different Response size error as in Table 4.2.

Error Type Error Criteria

500 server error 500 status codes returned in the test response,

but not in the original page response.

Generic error message Generic error message (string

including unable to, error, or cannot) returned

in the test response, but not in the original

page response.

Small (length) response Test response was 100 characters or less in

length, and the original page response was

greater than 100 characters in length.

Detailed database error Database error message detected in the test

response, but not in the original page

response.

No error None of the error classification criteria were

met.

Table 4.2: Generic errors criteria

57

2- OR Injection test:

OR 1=1 Injection test is used to determine whether there are additional

injection testing can be performed using the current parameter and its

associated request. In this stage we exploit the SQL code and check if it

can be exploited in order to complete our tests.

Since each query has different coding criteria we have to automate this

exploit, this function inserts several different OR 1=1 test strings in an

attempt to make the application execute a well-formed query. The

generated response from the server will be tested for successful reply so

this will confirm the success of OR test.

The following expression used by our function to complete this exploit

test:

 "1%20OR%20'1'%3D'1'--",

 "1'%20OR%201%3D1--",

 "1\)%20OR%20'1'%3D'1'--",

 "1'\)%20OR%201%3D1--",

 "1\)\)%20OR%20'1'%3D'1'--",

 "1'\)\)%20OR%201%3D1--",

 "1\)\)\)%20OR%20'1'%3D'1'--",

 "1'\)\)\)%20OR%201%3D1--",

 "%20OR%20'1'%3D'1'--",

 "'%20OR%201%3D1--",

 "1'%20OR%20'1'%3D'1",

 "1'%20OR%201%3D1",

 "1%20OR%20'1'%3D'1'",

 "1'\)%20OR%20\('1'%3D'1",

 "1'\)%20OR%20\(1%3D1",

58

 "1\)%20OR%20\('1'%3D'1'",

 "1'\)\)%20OR%20\(\('1'%3D'1",

 "1'\)\)%20OR%20\(\(1%3D1",

 "1\)\)%20OROR%20\(\('1'%3D'1'",

 "1'\)\)\)%20OR%20\(\(\('1'%3D'1",

 "1'\)\)\)%20OR%20\(\(\(1%3D1",

 "1\)\)\)%20OR%20\(\(\('1'%3D'1'"

After making the request to the target server, we check for successful

reply and by gaining this reply we confirm that the server is vulnerable for

applying next tests.

3- UNION-Blind Injection:

If the web application does not respond with error messages from database

server and only respond with developer messages, then SQL injection by

inference can’t be used and our scanner will attempt to blind injection

technique if only we have successfully exploited the server with the OR

test. Blind SQL injection is a type of SQL injection vulnerability where

the attacker can manipulate an SQL statement and the application returns

different values for true and false conditions [book: sql inj].

Our UNION-Blind technique is a merged technique of UNION based

injection technique and BLIND injection technique. Our proposed method

starts with detecting the database server type since each database server

has its own SQL syntax. Secondly, the method starts the BLIND injection

in order to determine the number of columns in the target query as well as

to determine the columns data types in that query. Thirdly, In case our

BLIND technique failed, the UNION technique will start to determine the

number of columns in the target query as well as to determine the columns

data types in that query.

59

In order to start BLIND column count of the target query we have to use

ORDER BY statement. By appending the ORDER BY followed by the

column number into our last stage injection result (OR test) we can count

the number of columns found in the query. By incrementing the ORDER

BY counter value, we will count the columns until we reach an error

response from the server.

After we have determined the number of columns in the target query, we

have to determine the data type of each column. This procedure is

database specific, so we first have to determine the type of our target

database server.

In order to determine the target database server, we have to test for private

information that distinct database servers from each other. This

information can be a default table name that differs from database server

to other, and list of common data types names that also differ in name

from database server to other. As an example, ORACLE database server

use a default table name (ALL_TABLES) table and a common data types

names (CHAR, NUMBER, and DATE). On the other side, MSSQL

database server use a default table name (master.sysdatabases) table and a

common data types names (VARCHAR, INT).

After determining the database server type, we can start our BLIND

columns data type test. This test will be done for each column in the target

query. In order to determine the data type, we iterate through columns

positions in the target query and for each column we loop through a

known data type list until we get a response from the server with no error

reply.

In case our BLIND Injection test failed the scanner will start the UNION

injection test immediately. UNION Injection is based on return error

messages from the server. These error messages are specific for each

server and have to be known in our scanner. This procedure has three main

60

methods, and for each method there are specific error message the scanner

will search for, table 4.3 list each error message for database servers.

Database

server

Error type Error message

Microsoft

SQL

Server

Invalid table in

UNION

Invalid object name.

Incorrect number

of columns in

UNION

All queries in an SQL statement containing a UNION

operator must have an equal number of expressions in their

target lists.

Incorrect data

type in UNION

(three possible

messages)

Error converting data type nvarchar to float or Syntax error

converting the nvarchar value '' to a column of data type

into Operand type clash

MySQL

Server

Invalid table in

UNION

SQLSTATE: 42S02 (ER_BAD_TABLE_ERROR)

Unknown table '%s'

Incorrect number

of columns in

UNION

SQLSTATE: 21000

(ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT)

The used SELECT statements have a different number of

columns

Incorrect data

type in UNION

(three possible

messages)

incorrect date time value in column

incorrect string value in column

incorrect integer value in column

Oracle Invalid table in

UNION (two

possible

messages)

Table or view does not exist or Invalid table name

Incorrect number

of columns in

UNION

Query block has incorrect number of result columns.

Incorrect data

type in UNION

Expression must have same data type as corresponding

expression.

Table 4.3: MySQL, Microsoft SQL Server, and Oracle error messages

First UNION injection test module is to determine if UNION injection is

possible for the current target query, this is done by attempting to run a

UNION query against a nonexistent table and checks to see if its specific

error message is returned. This error message is also used to determine the

type of database server we are exploiting because the error messages differ

depending on the type of server being queried.

61

Second UNION injection test module is to determine whether the UNION

query contains the correct number of columns. Once we attempt to query a

valid table within the UNION query, the database should respond with an

error indicating that our query must have the same number of columns as

the original query. We attempt to brute-force the number of columns in the

original query by continuing to add columns to the UNION query until this

error goes away.

Third UNION injection test module is to determine the appropriate data

type in each column position. Once we have the right number of columns

in our UNION query, the database server should return an error indicating

that the data types in each column must match those in the original query.

Our scanner precedes to brute-force the correct data type combination by

attempting every possible combination of data types within the allotted

number of columns.

At the end, our scanner will report its success or fail results in the current

query request for the whole SQL injection test modules and continue

testing for the XSS vulnerability.

4.3.4 Cross Site Scripting (XSS)

Analyzing cross-site scripting (XSS) vulnerabilities can be a complex and

time consuming task. To speed up the location of XSS vulnerabilities, we

inject a test string containing JavaScript code into every HTTP parameter

request done by our scanner, and then the scanner checks if the injected

string is returned in the HTTP response.

Our scanner tests for XSS vulnerabilities in 2 ways. Simple java script

alert message test request, and encoded java script alert message test

request. XSS figure 4.8 represents the block diagram of XSS proposed

methodology.

62

In simple java script alert message, the scanner simply injects a java script

alert message and reads the reply message from the request, if this reply

was the same as the injected alert message then this page request with its

parameter is marked as vulnerable. The simple alert message is

―<script>alert("XSS")</script>‖.

In encoded java script alert message request, the scanner encodes the

request and reads the reply message from the request, if this reply was the

same as the injected alert message then this page request with its

parameter is marked as vulnerable. There are two reasons for encoding the

injected alert message. A first reason is to Avoid the Intrusion Detection

System (IDS). A Second one is to bypass any filtering mechanism engines

that may filter the normal java script code in the URL request. The

encoded alert messages are divided into normal encoded messages and

fully encoded messages. These messages are as follow:

1- Normal encoded messages:

%3cscript%3ealert('XSS')%3c/script%3e

%3c%53cript%3ealert('XSS')%3c/%53cript%3e

%3c%53cript%3ealert('XSS')%3c%2f%53cript%3e

%3cscript%3ealert('XSS')%3c/script%3e

%3cscript%3ealert('XSS')%3c%2fscript%3e

%3cscript%3ealert(%27XSS%27)%3c%2fscript%3e

%3cscript%3ealert(%27XSS%27)%3c/script%3e

%3cscript%3ealert("XSS")%3c/script%3e

%3c%53cript%3ealert("XSS")%3c/%53cript%3e

%3c%53cript%3ealert("XSS")%3c%2f%53cript%3e

%3cscript%3ealert("XSS")%3c/script%3e

%3cscript%3ealert("XSS")%3c%2fscript%3e

%3cscript%3ealert(%34XSS%34)%3c%2fscript%3e

%3cscript%3ealert(%34XSS%34)%3c/script%3e

2- Fully encoded messages:

?%22%3e%3c%73%63%72%69%70%74%3e%64%6f%63%75%

6d%65%6e%74%2e%63%6f%6f%6b%69%65%3c%2f%73%63%

72%69%70%74%3e

63

?%27%3e%3c%73%63%72%69%70%74%3e%64%6f%63%75%

6d%65%6e%74%2e%63%6f%6f%6b%69%65%3c%2f%73%63%

72%69%70%74%3e

%3e%3c%73%63%72%69%70%74%3e%64%6f%63%75%6d%6

5%6e%74%2e%63%6f%6f%6b%69%65%3c%2f%73%63%72%6

9%70%74%3e

F
ig

u
re

 4
.8

:
X

S
S

 m
et

h
o
d
o
lo

g
y
 B

lo
ck

 D
ia

g
ra

m

64

Chapter 5

EXPERIMENTAL

RESULTS

65

5.1 Introduction

In this chapter we validate the proposed Vulnerability Scanner. In order to do

that we developed experiments to measure the performance of our scanner and

used some performance metrics to measure the performance of it. The

performance metrics used are:

- Accuracy: Accuracy measures the rate of generating correct results. If

there are N vulnerabilities being monitored by the scanner and there are x

of these vulnerabilities for which the scanner predicts correctly if the

path of these packets is hacked or not then:

Accuracy (%) = (x/N)*100%

Accuracy is also defined as the number of vulnerabilities detected by the

system (True Positive) divided by the total number of vulnerabilities

present in the test set.

- False positive rate: This is the rate at which the scanner states that the

HTTP request has vulnerability while in fact the HTTP request has no

vulnerability. If the scanner tests N HTTP request for possible

vulnerabilities. In addition, the scanner detects N1 positive

vulnerabilities that N1 have vulnerabilities out of N HTTP requests. If x

of these N1 are false, then:

False positive rate (%) = (x/N1)*100 %

- False negative rate: This is the rate at which the scanner dose not

detects vulnerability while in fact the HTTP request has vulnerability. If

the scanner test N URL request for possible vulnerabilities. In addition,

the scanner detects N1 negative vulnerabilities that N1 requests have

vulnerabilities out of N HTTP requests. If x of these N1 requests are

false, then:

False negative rate (%) = (x/N1)*100%

66

In order to validate our scanner we compare the performance results of it with

performance of similar tools in the literature. The comparison shows how our

scanner performs compared to other similar tools.

To test our scanner, we used developed test beds. These test beds are common

vulnerable web applications that are built by security developers and tested by

nature for web penetration testing and hacking. These vulnerable web

applications support to be installed and configured under multiple web servers

and multiple database servers. The vulnerabilities on these web applications are

known so we can apply our accuracy, false negative and false positive metrics as

required.

5.2 Test Beds Description

This section describes the used test beds to test our scanner. These test beds

are built in PHP and can be configured with multiple database servers.

1- DVWA (Dam Vulnerable Web Application) [74]- this vulnerable

PHP/MySQL web application is one of the famous web applications

used for or testing your skills in web penetration testing and your

knowledge in manual SQL Injection, XSS, Blind SQL Injection, etc.

DVWA is developed by Ryan Dewhurst a.k.a ethicalhack3r and is part

of RandomStorm Open Source project. Figure 5.1 shows the main page

of the application.

2- Mutillidae [75]- is a free and open source web application for website

penetration testing and hacking which was developed by Adrian

―Irongeek‖ Crenshaw and Jeremy ―webpwnized‖ Druin. It is designed to

be exploitable and vulnerable and ideal for practicing your Web Fu

skills like SQL injection, cross site scripting, HTML injection,

Javascript injection, clickjacking, local file inclusion, authentication

bypass methods, remote code execution and many more based on

OWASP (Open Web Application Security) Top 10 Web Vulnerabilities.

Figure 5.2 shows the main page of this web application.

67

Figure 5.1: Dam vulnerable web application

Figure 5.2: Mutillidae vulnerable web application

3- OWASP InsecureWebApp - is a web application that includes

common web application vulnerabilities. It is a target for automated and

manual penetration testing, source code analysis, vulnerability

assessments and threat modeling.

68

4- Web Security Dojo [76] – is a free open-source self-contained training

environment for Web Application Security penetration testing that

includes tools and vulnerable web applications targets. Some of included

vulnerable targets are OWASP’s WebGoat, Google’s Gruyere, Damn

Vulnerable Web App, Hacme Casino, OWASP InsecureWebApp, and

w3af’s test website.

5.3 Results of our scanner with test beds

In this section we discuss and describe the output results of our scanner for

the selected test beds. Choosing only four test beds for out tests and analysis

was sufficient enough because the selected test beds covers all possible

vulnerabilities implemented in the insecure version of any web application.

In order to start our tests we have configured the web server and

implemented all test beds with their default configurations. This insures that

all implemented vulnerabilities are available for test and no changes on the

database parameters and data were changed.

Second step of testing procedure is to crawl our vulnerable web applications

with our described method in section 4.3. The result of this step will be a list

of all HTTP requests in one log file for each vulnerable web application.

Thirdly, we have started our vulnerability scanner with each log file and

started to get report and results for analysis. After each successful test, the

scanner results were reviewed to determine which vulnerabilities and what

kind of each vulnerability was detected.

Results were classified as false-negatives or false-positives by following the

classification procedure described in section 5.1.

The results obtained from the tests that targeted the test beds for SQL

injection vulnerability are listed in Table 5.1.

69

0

5

10

15

20

25

30

35

40

45

Test bed 1 Test bed 2 Test bed 3 Test bed 4

No. of Detected Vulnerabilities

No. of known Vulnerabilities

False Negative

False Positive

 No. of Detected

Vulnerabilities

No. of known

Vulnerabilities

False

Negative

False

Positive

Test bed 1 18 20 2 1

Test bed 2 34 35 1 2

Test bed 3 36 40 4 1

Test bed 4 15 15 0 1

Total 103 (93.6%) 110 7 (6.4%) 5 (4.8%)

Table 5.1: SQL injection Results

As shown in Table 5.1, our scanner detected 103 SQL injection

vulnerabilities out of 110 known implemented vulnerabilities, so the

corresponding false negative is only 7 vulnerabilities. As well as, the false

positive vulnerabilities of the detected ones were only 5. The overall

detection rate was 93.6 % and the corresponding false negative rate was 6.4

% and the false positive rate was 4.8 %. Figure 5.3 represents the graph of

the corresponding result.

Figure 5.3: SQL injection Results Graph

The results obtained from the tests that targeted the test beds for Cross Site

Scripting (XSS) vulnerability are listed in Table 5.2.

70

0

5

10

15

20

25

30

35

40

45

50

Test bed 1 Test bed 2 Test bed 3 Test bed 4

No. of Detected
Vulnerabilities

No. of known Vulnerabilities

False Negative

False Positive

 No. of Detected

Vulnerabilities

No. of known

Vulnerabilities

False

Negative

False

Positive

Test bed 1 33 35 2 1

Test bed 2 24 25 1 1

Test bed 3 44 45 1 2

Test bed 4 18 20 2 1

Total 119 (95.2%) 125 6 (4.8%) 5 (4.2%)

Table 5.2: Cross Site Scripting (XSS) Results

As shown in Table 5.2, our scanner detected 119 XSS vulnerabilities out of

125 known implemented vulnerabilities, so the corresponding false negative

is only 6 vulnerabilities. As well as, the false positive vulnerabilities of the

detected ones were only 5. The overall detection rate was 95.2 % and the

corresponding false negative rate was 4.8 % and the false positive rate was

4.2 %. Figure 5.4 represents the graph of the corresponding result.

Figure 5.4: Cross Site Scripting (XSS) Results Graph

71

5.4 Other Web applications vulnerability scanners

In this section we describe the other web applications vulnerability scanners

used to compare results with our scanner. These scanners vary from

commercial to open source vulnerability scanners. As well as, these

scanners supports different criteria as some of them has SQL Injection and

XSS scanning ability.

1- Acunetix web vulnerability scanner:

Acunetix scanner [8] divides type of scanning according to the severity

of the type of web attack. It divides in four type’s high, medium, low and

informational severity. Acunetix is used to detect various types of web

vulnerabilities as below.

i) SQL injection.

ii) Cross site scripting.

iii) CGI scripting.

iv) Firewalls and SSL.

v) URL redirection.

SQL injection and Cross site scripting scans are comes under the

high severity type as they are considered most dangerous attacks in

the web security. Other attacks are categorized according to their

severity on the web services.

Although this scanner does little bit extra amount of scanning, it is very

slow as compare to the other tool available in market and slower than our

scanner as well.

2- SQLmap:

Sqlmap [77] is an SQL injection scanner build in Python. The aim of

this tool is to detect SQL injection vulnerabilities and take advantage

of these vulnerabilities on web application. Sqlmap initially detect the

whole loop in the target site and then use variety of option to perform

extensive back-end database management, enumerate users, dump

entire or specific DBMS, retrieve DBMS session user and database, read

72

specific file on the file system etc. SQLmap is bit faster than acunetix

web scanner but still slower than our scanner, and it also make very few

URL injection in to the database as compare to our scanner.

3- Wapiti:

Wapiti [78] is command line based tool build in python and uses a

Python library called lswww. This is the spider library helps to crawl

each page on given web site. Wapiti allows us to inspect the security

of our web site. This tool also used html Tidy lib to clean the html pages

which are not well formatted. This library helps a lot to extract

information from bad-coded html web pages. Basically it does black-box

scan. Wapiti scans the all Web Pages available on the web site and try to

find out scripts and form where it can inject data to check how many

types of attack are possible on selected injection point.

Wapiti can detect SQL injection and XSS (Cross Site Scripting)

injection. Wapiti has one of the best features that it’s able to

differentiate temporary and permanent XSS vulnerabilities.

4- Paros:

Paros [12] is used for web application security assessment. Paros is

written in Java, and people generally used this tool to evaluate the

security of their web sites and the applications that they provide on

web site. It is free of charge, and using Paros’s you can exploit and

modified all HTTP and HTTPS data among client and server along with

form fields and cookies. In brief the functionality of scanner is as below.

According to web site hierarchy server get scan, it checks for

server misconfiguration. They add this feature because some URL

paths can’t be recognized and found by the crawler. The other

automatic scanners are not able to do that. Basically to work this

functionality Paros navigates the site and rebuilds the website hierarchy.

Presently Paros does three types of server configuration checks. HTTP

PUT, Directory index, and obsolete file exist. Paros also provides log

73

file, which is create when all the HTTP request and reply pass through

Paros. In log panel Paros shows back as request and reply format.

5- Pixy:

Pixy [2] is the second tool that is written in Java. Pixy does automatic

scans for PHP 4 for the detection for SQL injection and XSS

attacks. The major disadvantage of Pixy is that it only works for PHP 4

and not for OOPHP 5. Pixy take whole PHP file as an input and produce

a report that shows the possible vulnerability section in that PHP file

along with some additional information to understand attack.

While SQL injection analysis Pixy divides result in three categories:

untainted, weakly tainted, and strongly tainted. It also provide

dependence graph and dependence value. Dependent value is nothing

but the list of points in program on which the value of variables is

depends.

5.5 Performance evaluation of our scanner with other

vulnerability scanners

This section states and describes the comparison in performance and

accuracy between our scanner and the other web vulnerability scanners

described in the above section.

The comparison between scanners has two criteria. First, features

comparisons which are the supported database systems, development

language, and attack types in each scanner. Second, the time required by

each scanner to complete its vulnerability scan test on known number of

vulnerabilities and the total number of detected vulnerabilities of these

known ones.

1- Features comparisons:

Table 5.3 lists the features comparison between vulnerability scanners.

74

Vulnerability

scanner

Supported Database

Systems

Development

language
Attack types

Our scanner
ORACLE, MS SQL

Server, MySQL
Perl SQLi, XSS

Acunetix

ORACLE, MS SQL

Server, MySQL, PSQL,

MS Access

- 5 (section 5.4)

SQLmap
ORACLE, MS SQL

Server, MySQL, PSQL
Python 3 (section 5.4)

Wapiti
ORACLE, MS SQL

Server, MySQL
Python SQLi, XSS

Paros
ORACLE, MS SQL

Server, MySQL
Java SQLi, XSS

Pixy
ORACLE, MS SQL

Server, MySQL
Java SQLi, XSS

Table 5.3: Features comparison between vulnerability scanners.

2- Performance test:

In order to test the time performance between the vulnerability scanners,

we have tested these scanners on known number of vulnerabilities in

vulnerable web application. The number of vulnerabilities was 100

vulnerability that are SQL injection and Cross Site Scripting

vulnerabilities.

In this test, we have counted the number of detected vulnerabilities for

each scanner from these known vulnerabilities in order to calculate its

accuracy in vulnerability detection. Table 5.4 describes this measure

test. Figure 5.5 describes the comparison between these measures and

scanners.

75

0

10

20

30

40

50

60

70

80

90

100

Our
scanner

Acunetix SQLmap Wapiti Paros Pixy

Execution Time

detected vulnerabilities

Vulnerability

scanner

Number of

vulnerabilities

Vulnerabilities

type

Execution

time

(minutes)

Number of

detected

vulnerabilities

Our scanner 100 SQLi, XSS 2m 20sec 95

Acunetix 100 SQLi, XSS 25m 85

SQLmap 100 SQLi, XSS 2m 35sec 90

Wapiti 100 SQLi, XSS 5m 40sec 70

Paros 100 SQLi, XSS 6m 10sec 50

Pixy 100 SQLi, XSS 4m 45

Table 5.4: Performance test of vulnerability scanners

Figure 5.5: Performance test of vulnerability scanners

Table 5.6 lists the false positive rate comparison between vulnerability scanners, as well

as the vulnerabilities detection rate of the same vulnerabilities number described above.

76

0

10

20

30

40

50

60

70

80

90

100

Our
scanner

Acunetix SQLmap Wapiti Paros Pixy

False Positive Rate – FPR (%)

Vulnerabilities detection rate
(%)

Vulnerability scanner
False Positive Rate

– FPR (%)

Vulnerabilities

detection rate (%)

Our scanner 1.1 95

Acunetix 1.8 85

SQLmap 1.4 90

Wapiti 5.2 70

Paros 5.7 50

Pixy 5.8 45

Table 5.5: false positive rate comparison of vulnerability scanners

Figure 5.6: false positive rate comparison of vulnerability scanners

77

Chapter 6

CONCLUSION

AND

FUTURE WORK

78

Conclusion

There are many web applications vulnerability scanners implemented for analyzing and

detecting security holes in web applications. And because security is still one of the most

important issues all across the globe in our thesis we have implemented a complete

approach that scans for the most important vulnerabilities for web applications, namely

SQL Injection and Cross Site Scripting (XSS). Since XSS and SQL injection

vulnerabilities in web applications has huge risk not only for the web applications but

also for users as well. We studied many existing approaches to detect and prevent these

vulnerabilities in an application, giving a brief note on their advantages and

disadvantages. All the approaches followed by different authors’ leads to a very

interesting solution; however some failures are associated with almost each one of them

at some point. Furthermore these scanners don’t support all web applications, many of

them supports only known web applications with known vulnerabilities.

In this thesis we are providing a vulnerability scanning and analyzing tool of various

kinds of SQL injection and Cross Site Scripting (XSS) attacks. Our approach can be used

with any web application not only the known ones. As well as it supports the most

famous Database management servers, namely MS SQL Server, Oracle, and MySQL.

We validate the proposed vulnerability scanner by developing experiments to measure its

performance. We used some performance metrics to measure the performance of the

scanner which include accuracy, false positive rate, and false negative rate. We also

compare the performance results of it with performance of similar tools in the literature.

Future Work

- Develop a GUI for the scanner script, so make it easy for anyone to install and use

the scanner.

- Add full support for all known XSS detection techniques.

- Implement a local proxy module to be included in the scanner work, which will

make a full vulnerability analysis environment.

79

REFERENCES

[1] M. Curphey and R. Arawo. Web application security assessment tools. Security &

 Privacy, IEEE, 4(4):32–41, July-Aug. 2006.

[2] N. Jovanovic, C. Kruegel, and E. Kirda, ―Pixy: A static analysis tool for detecting

web application vulnerabilities (short paper),‖ In 2006 IEEE Symposium on Security

and Privacy, Oakland, CA: May 2006.

[3] E. Fong, R. Gaucher, V. Okun, P. E. Black, and E. Dalci. Building a test suite for web

application scanners. Hawaii International Conference on System Sciences, 0:479,

2008.

[4] Fonseca, J. CISUC, Univ. of Coimbra, Coimbra, Portugal Vieira, M. and Madeira,

H. Vulnerability & attack injection for web applications. Dependable Systems &

Networks, 2009. DSN '09. IEEE/IFIP International Conference on, 93-102, 2009.

[5] M. Vieira, N. Antunes, and H. Madeira. Using Web Security Scanners to Detect

Vulnerabilities in Web Services Using Web Security Scanners to Detect

Vulnerabilities in Web Services. IEEE/IFIP Intl Conf. on Dependable Systems and

Networks, Lisbon, Portugal, June 2009.

[6] Ounce, http://www.ouncelabs.com/

[7] Pixy, http://pixybox.seclab.tuwien.ac.at/pixy/

[8] Acunetix Web Vulnerability Scanner, 2012, http://www.acunetix.com/vulnerability-

scanner/

[9] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. SecuBat: A Web Vulnerability

Scanner. ACM 1-59593-323-9/06/0005 WWW 2006,Edinburgh, Scotland.

[10] Nikto. Web Server Scanner. http://www.cirt.net/code/nikto.shtml.

80

[11] Tenable Network SecurityTM. Nessus Open Source Vulnerability Scanner Project.

http://www.nessus.org/.

[12] Paros proxy vulnerability scanner. Available at: http://www.parosproxy.org/.

[13] Y. Huang, S. Huang, and T. Lin. Web Application Security Assessment by Fault

Injection and Behavior Monitoring. 12th ACM International World Wide Web

Conference, May 2003.

[14] W. G. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for NEutralizing

SQL-Injection Attacks. In Proceedings of the IEEE and ACM International

Conference on Automated Software Engineering (ASE 2005), Long Beach, CA,

USA, Nov 2005.

[15] W. G. Halfond and A. Orso. Combining Static Analysis and Runtime Monitoring to

Counter SQL-Injection Attacks. In Proceedings of the Third International ICSE

Workshop on Dynamic Analysis (WODA 2005), pages 22–28, St. Louis, MO, USA,

May 2005.

[16] Z. Su and G. Wassermann. The Essence of Command Injection Attacks in Web

Applications. In The 33rd Annual Symposium on Principles of Programming

Languages (POPL 2006), Jan. 2006.

[17] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using Parse Tree Validation to

Prevent SQL Injection Attacks. In International Workshop on Software Engineering

and Middleware (SEM), 2005.

[18] Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo. Securing Web

Application Code by Static Analysis and Runtime Protection. In Proceedings of the

12th International World Wide Web Conference (WWW 04), May 2004.

[19] V. B. Livshits and M. S. Lam. Finding Security Errors in Java Programs with Static

Analysis. In Proceedings of the 14th Usenix Security Symposium, pages 271–286,

Aug. 2005.

81

[20] S. Saha. Consideration Points: Detecting Cross-Site Scripting. (IJCSIS) International

Journal of Computer Science and Information Security, Vol. 4, No. 1 & 2, 2009.

[21] T. Pietraszek, and C. V. Berghe, ―Defending against Injection Attacks through

Context-Sensitive String Evaluation,‖ In Proceeding of the 8th International

Symposium on Recent Advance in Intrusion Detection (RAID), September 2005.

[22] Z. Su and G. Wassermann, ―The essence of command Injection Attacks in Web

Applications,‖ In Proceeding of the 33rd Annual Symposium on Principles of

Programming Languages, USA: ACM, January 2006, pp. 372-382.

[23] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vigna, ―Multi-Module

Vulnerability Analysis of Web-based Applications,‖ In proceeding of 14th ACM

Conference on Computer and Communications Security, Alexandria, Virginia, USA:

October 2007.

[24] G. Wassermann, Z. Su. Static Detection of Cross-Site Scripting Vulnerabilities.

ICSE’08, May 10–18, 2008, Leipzig, Germany.

[25] Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., and Tao, L., A Static Analysis

Framework for Detecting SQL Injection Vulnerabilities. Proc. 31st Annual

International Computer Software and Applications Conference 2007 (COMPSAC

2007), 24-27 July (2007), 87-96.

[26] T. Haixia, Y. and Zhihong, N., A database security testing scheme of web

application. Proc. of 4th International Conference on Computer Science & Education

2009 (ICCSE '09), 25-28 July (2009), 953-955.

[27] M. Ruse, T. Sarkar, and T. Basu. Analysis & Detection of SQL Injection

Vulnerabilities via Automatic Test Case Generation of Programs. Proc. 10th Annual

International Symposium on Applications and the Internet (2010), 31-37

[28] S. Thomas, L. Williams, and T. Xie. On automated prepared statement generation to

remove SQL injection vulnerabilities. Information and Software Technology,

Volume 51 Issue 3, March (2009), 589–598 1.

82

[29] K. Kemalis and T. Tzouramanis. SQL-IDS: A Specification-based Approach for

SQLinjection Detection. SAC’08. Fortaleza, Ceará, Brazil, ACM (2008), 2153 2158.

[30] R.A. McClure and I.H. Kruger, SQL DOM: compile time checking of dynamic SQL

statements. 27th International Conference on Software Engineering (ICSE 2005),

15-21 May (2005), 88- 96.

[31] S. Ali, S.K. Shahzad, and H. Javed. SQLIPA: An Authentication Mechanism

Against SQL Injection. European Journal of Scientific Research, Vol. 38, No. 4

(2009), 604-611.

[32] Z. Su and G. Wassermann, ―The essence of command Injection Attacks in Web

Applications,‖ In Proceeding of the 33rd Annual Symposium on Principles of

Programming Languages, USA: ACM, January 2006, pp. 372-382.

[33] A. Tajpour, M. Masrom, M.Z. Heydari, and S. Ibrahim. SQL injection detection and

prevention tools assessment. Proc. 3rd IEEE International Conference on Computer

Science and Information Technology (ICCSIT’10) 9-11 July (2010), 518-522

[34] P. Bisht, P. Madhusudan and V.N. Venkatakrishnan. CANDID: Dynamic Candidate

Evaluations for Automatic Prevention of SQL Injection Attacks. ACM Transactions

on Information and System Security, Volume 13 Issue 2, (2010).

[35] Y. Huang, S. Huang, T. Lin, and C. Tsai, ―Web application security assessment by

fault injection and Behavior Monitoring,‖ In Proceeding of the 12th international

conference in World Wide Web, ACM, New York, NY, USA: 2003, pp.148-159.

[36] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo. ―Verifying Web Application

using BoundedModel Checking,‖ In Proceedings of the International Conference on

Dependable Systems and Networks, 2004.

[37] ―Web Application Security Testing – AppScan 3.5,‖ Sanctum Inc.,

http://www.sanctuminc.com.

[38] ―Web Application Security Assessment,‖ SPI Dynamics Whitepaper, SPI Dynamics,

2003.

83

[39] ―InterDo Version 3.0,‖ Kavado Whitepaper, Kavado Inc. , 2003

[40] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo,―Securing web application

code by static analysis and runtime protection,‖ In Proceedings of the 13 th

International World Wide Web Conference, 2004.

[41] D. Scott, and R. Sharp, ―Abstracting Application-Level Web Security,‖ In

Proceeding 11thinternational World Wide Web Conference, Honolulu, Hawaii:

2002, pp. 396-407

[42] Fonseca, J. CISUC - Polithecnic Inst. of Guarda, Guarda Vieira, M. ; Madeira, H.

Testing and Comparing Web Vulnerability Scanning Tools for SQL Injection and

XSS Attacks. Dependable Computing, 13th Pacific Rim International Symposium.

2007.

[43] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vigna, ―Multi-Module

Vulnerability Analysis of Web-based Applications,‖ In proceeding of 14th ACM

Conference on Computer and Communications Security,Alexandria, Virginia, USA:

October 2007.

[44] T. Pietraszek, and C. V. Berghe, ―Defending against Injection Attacks through

Context-Sensitive String Evaluation,‖ In Proceeding of the 8th International

Symposium on Recent Advance in Intrusion Detection (RAID), September 2005.

 [45] Information Assurance Tools Report – Vulnerability Assessment. Sixth Edition,

Revision by Karen Mercedes Goertzel, with contributions from Theodore Winograd.

2011.

[46] "The Three Tenants of Cyber Security". U.S. Air Force Software Protection

Initiative. Retrieved 2009-12-15.

[47] The OWASP Foundation. OWASP Top 10 - 2010, 2010.

[48] D. Shelly. Using a Web Server Test Bed to Analyze the Limitations of Web

Application Vulnerability Scanners. Virginia Polytechnic Institute and State

University. 2010.

84

[49] A. Klein. DOM Based Cross Site Scripting or XSS of the Third Kind. Available at:

http://www.webappsec.org/projects/articles/071105.shtml, July 2005.

[50] CodeScan Labs. CodeScan Developer - Security at the Source. Available at:

http://www.codescan.com/, 2009.

[51] Y. Huang and D. Lee. Web Application Security-Past, Present, and Future. Pages

183–227. 2005.

[52] Y. W. Huang, C. H. Tsai, D. Lee, and S. Y. Kuo. Non-detrimental web application

security scanning. In Software Reliability Engineering, 2004. ISSRE 2004. 15th

International Symposium on, pages 219–230, Nov. 2004.

[53] N. Antunes and M. Vieira. Detecting SQL Injection Vulnerabilities in Web Services.

In Dependable Computing, 2009. LADC ’09. Fourth Latin-American Symposium

on, pages 17–24, Sept. 2009.

[54] D. Byrne and E. Duprey. Grendel-Scan. Available at: http://www.grendel-scan.com/.

[55] N. Surribas. Wapiti. Available at: http://www.ict-romulus.eu/web/wapiti/.

[56] A. Riancho. W3AF-Web Application Attack and Audit Framework. Available at:

http: //w3af.sourceforge.net/.

[57] G. F. Lyon. NMAP.ORG. Available at: http://nmap.org/.

[58] Cenzic, Inc. Hailstorm Core and Hailstorm Starter. Available at:

http://www.cenzic.com, 2010.

[59] N-Stalker. N-Stalker The Web Security Specialists. Available at: http://nstalker.com,

2010.

[60] Mavituna Security Ltd. Netsparker Web Application Security Scanner. Available at:

http://www.mavitunasecurity.com, 2010.

[61] PortSwigger. Burp Scanner. Available at: http://portswigger.net/.

85

[62] IBM. Rational AppScan Standard Edition. Available at: http://www-01.ibm.com,

2010.

[63] BuyServers Ltd. Falcove Web Vulnerability Scanner. Available at:

http://www.buyservers.net, 2008.

[64] Carahsoft Technology Corp. HP WebInspect software. Available at:

http://www.carahsoft.com/hp/products/webinspect, 2009.

[65] NT OBJECTives. NTOSpider. Available at: http://www.ntobjectives.com, 2010.

[66] Perl Wikipedia page. Available at: http://en.wikipedia.org/wiki/Perl, last modified

2013.

 [67] Matt Bishop, ―Introduction to Computer Security,‖ Publisher: Prentice Hall PTR,

Pub Date: October 26, 2004, ISBN: 0-321-24744-2.

[68] A. Humphrey, ―Network Vulnerability Analysis‖; article published: year 2007,

month 05.

[69] Search mid-market security,

http://searchmidmarketsecurity.techtarget.com/definition/vulnerability-analysis

[70] C. Sample and I. Poynter, ―Quantifying Vulnerabilities in the Networked

Environment: Methods and Uses,‖ 2000;

[71] Y. Dong, Y. Hou, and Z. Zhang, ―A Server-Based Performance Measurement Tool

within Enterprise Networks,’’ J. Performance Evaluation, vols. 36–37, Nov. 15,

1999, pp. 233–247.

[72] S. Hariri, G. Qu, Tushneem Dharmagadda, M. Ramkishore;―Vulnerability Analysis

of Faults and Attacks in Large-Scale Network‖, IEEE Security and Privacy

magazine, October & November Issue 2003.

[73] Denial of Service, tech. report, Malaysian Computer Emergency Response Team

(My-CERT) 2003.

86

[74] DVWA (Dam Vulnerable Web Application). Available at: http://www.dvwa.co.uk/.

[75] Mutillidae vulnerable web application. Available at:

http://sourceforge.net/projects/mutillidae/

[76] Web Security Dojo. Available at:

http://www.mavensecurity.com/web_security_dojo/

[77] SQLmap vulnerability scanner. Available at: http://sqlmap.org/.

[78] Wapiti vulnerability scanner. Available at:

https://launchpad.net/ubuntu/precise/i386/wapiti/1.1.6-3.

