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Abstract—The increasing demand on microwave spectrum 

for communication systems has been the driving force in the 
filter industry. Multiple filtering characteristics have become 
necessary for many filter designs in mobile and satellite 
applications. In this paper, a new cost-function for an 
optimization algorithm to achieve multiple passband filtering 
function has been introduced. A High Temperature 
Superconductor (HTS) 10-pole filter with triple-band 
performance has been designed and fabricated to verify this 
algorithm. Each of the three passbands has a fractional 
bandwidth of approximately 0.26%.  
 

Index Terms— bandpass filters, HTS filters, multiple-band 
filters, triple-band filters.  
 

I. INTRODUCTION 
he unceasing development of telecommunication 
systems has led to substantial increase in their 

complexity and channel numbers. This initiates the need of 
microwave devices capable of working on multiple 
frequency bands. Being an essential part of such systems, 
microwave bandpass filters with dual-band characteristic 
have been designed through various approaches [1]-[10].  
One report on initial work on dual band filters has simply 
produced two distinctive passband filters and combined 
them through a coupler [1]. Extra matching networks are 
needed at the input/output of each filter. Another method 
of achieving a multi-band design is to design a bandpass 
filter followed by stopband filter [2].  
To minimize the size and the cost of the circuit, there is a 
trend to design a single circuit, which is capable of 
producing the different designated bands. Resonators with 
tunable 2nd harmonic such as Stepped Impedance 
Resonators (SIRs) have been used for such purposes [3]-
[6].  It is still a real challenge to synthesise the coupling 
coefficients and the external quality factors accurately for 
each of the two bands. The SIRs are usually used on dual 
band filters when the two bands are quite far from each 
other. 
For close spaced passbands, other design techniques can be 
used such as frequency mapping transformation for the 
low-pass filtering function [7], [8]. These are limited to 
symmetric two-band cases as described in [7]. However, 
Macchiarella [8] introduces frequency transformation for 
 

 

asymmetric dual band. However, this method can be 
applied only when all the transmission zeros are 
overlapped within the middle stopband. This gives a 
limitation to the selectivity on the edges of the stopband. 
Another downside is that this method can only be applied 
using an inline filter, which limits the number of 
transmission zeros to maximum of n/2; where n is the 
order of the filter. Moreover, the reflection zeros can be 
only equally distributed between the two passbands 
regardless of their bandwidth, which results in a higher 
selectivity for the narrower passband at the cost of the 
wider band.  
Optimization has been used to realize the multi-band 
filtering function as in [9], but for a much more general 
case than previously reported. However, the reflection level 
is not equiripple and the algorithm is restricted again to 
inline filters. In [10] Lee has expanded the algorithm for 
canonical cases enabling it to achieve N-2 transmission 
zeros; where N is the order of the filter. In both cases the 
cost functions for the optimization algorithms are not 
given.  
As one of the driving points in designing multi-band filters 
is minimizing the size whilst preserving the performance, 
superconducting filters look an optimum choice. The low-
loss of HTS allows very compact filters with a very small 
insertion loss (high sensitivity) and a sharp skirt for the 
filter (high selectivity).  The significance of using HTS can 
be seen with a very narrow bandwidth for each channel; 
where the filters become sensitive to losses. In this paper 
we present the cost function for an optimization algorithm 
to achieve multi-band filtering function for both symmetric 
and asymmetrical cases. A 10-pole symmetrical triple-
passband HTS filter has been designed to verify this 
algorithm. 

II. OPTIMIZATION ALGORITHM 
The optimization algorithm, used here, aims to locate 
transmission and reflection zeros in such a way that 
realizes multi-band filtering functions. These functions are 
defined by the reflection losses, insertion losses, and the 
bandwidths for the different bands involved.   
The number of reflection zeros is equal to the filter order 
while the number of transmission zeros depends on the 
filter topology. For multi-band filters, the available nulls 
can be evenly distributed over the different pass/stop bands 
(i.e. higher number of nulls for the wider bandwidth). 

Triple-band HTS Filter Using Dual Spiral 
Resonators With Capacitive-loading 

A. M. Abu Hudrouss, A. B. Jayyousi, and M. J. Lancaster 

T

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Islamic University of Gaza

https://core.ac.uk/display/385930754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Preprint copy 

The following can be used:  
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Where iZ is the number of nulls assigned to each band i, 

iBW is the bandwidth of band i, and p is the total number 
of passbands or stopbands within the response.  X refers to 
the maximum number of available nulls. It equals the 
number of resonators when considering passbands and it 
equals the number of transmission zeros in case of 
stopbands. As iZ  is rounded to the lowest nearest integer, 
the number of assigned zeros can be less than the filter 
order. The missing nulls can be allocated arbitrarily to any 
of the available stop/pass-bands.   
The error function depends on the ripple-peak values of S11 
and S21 within the passbands and stopbands respectively. 
The summation of the difference between the attained 
ripple-peak values and the desired ripple-peak values is 
calculated at every iteration and compared to an arbitrary 
small number; the value of which depends on the required 
accuracy.  
The optimization starts with arbitrary chosen nulls the 
ripple-peak values can be evaluated through the following 
procedure. 
Starting with a single passband filtering function, the 
scattering parameters can be written as:  
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Where   represents a radian frequency variable of a 
lowpass prototype filter with unity cutoff frequency, the 
constant   is the nominal ripple, and )(nC  is the 
filtering function, defined as: 
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Where  F  and  P are polynomials whose roots are 
the frequency positions of the reflection and the 
transmission nulls respectively. Because of the multiband 
nature of the filtering functions under consideration, the 
nominal ripple does not directly correspond to the equal 
ripple of any of the passbands. To underline this fact, the 
common symbol of   is replaced by   as seen in equation 
(2) and (3). 
The value of nominal ripple can be found through the 
optimization process along with the locations of the 
required nulls.   
Substituting for )(nC  in (1) and (2) and taking the 
derivatives with respect to   will lead to: 
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The arguments of the polynomials are dropped for 
convenience. From (5) and (6), it is clear that the 
numerators of the derivatives are equal. This leads to the 
conclusion that the maxima and minima of both functions 
occur at the same frequency.   
It should be noted that when considering stopbands, 
reflection-loss maxima are ignored. Likewise, when 
considering passbands, insertion-loss maxima should be 
neglected. 
 
The cost function can be formulated as: 

BA   
Where: 
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The variables x and y corresponds to the reflection and 
insertion ripple-peak frequency locations respectively. The 
constant g in the outer summation of (7) corresponds to the 
number of required passbands, whereas n corresponds to 
the number of stopbands.  The internal summation in both 
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Fig. 2.  Layout of a 10-pole microstrip filter  (diagram is not to scale) 
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equations is carried out for nulls within a single band. z(k) 
and m(k) corresponds to the number of maxima within the 
kth passband and stopband respectively . max

11S is the 
designated value of maximum reflection loss within the kth 
passband. Likewise kS min11 is the designated insertion loss 
within the kth stopband. 
Some constraints need to be taken into consideration to 
avoid convergence to local minima. The most important of 
these involves restricting nulls to their assigned bands. 
Considering a certain band, k, with a bandwidth extends 
from 1f  to 2f , and assuming that { 1x , 2x … mx } are the 
initially assigned nulls for that stop/pass band, the nulls 
position can be rescaled at the outset of each optimization 

iteration using: 
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Where ix  is the position of the ith null following the 
rescaling procedure. 
Moreover, nulls located at the edges of each band can be 
allowed to move during the optimization within a certain 
tolerance. The smaller this tolerance is, the more accurate 
the realized bandwidths are. However, this usually comes 
at the price of degrading the equi-ripple level sought 
within each band.  A compromise needs to be established 
based on which of the two parameters is of more 
importance to the filter designer. The term edge-null 
tolerance will be used to refer to the percentage of the 
bandwidth within which the edge nulls of any band can be 
located. 

III. TRIPLE –BAND FILTER 
A 10-pole filter with designated centre frequency 887 MHz 
and total bandwidth of 11.5 MHz has been designed to 
have a triple-band. Each stop/pass band has a bandwidth of 
2.3 MHz, an insertion loss for the stopband of –40 dB, and 
a reflection loss for the passband of -25 dB.  The 
optimization algorithm requires 90 iterations to realize the 
positions of the reflection and transmission zeros which are 
given in table I. To achieve the prescribed rejection levels, 
the bandwidth tolerance has been chosen to be 30 %. This 
results in a decrease for two the terminal passbands of 
7.1% each. The centre passband has been realized as 
specified. The achieved transmission/reflection losses are 
depicted in Fig. 2. In getting the transfer functions (S11 and 
S12), the general coupling matrix can be constructed using 
the synthesis method developed by Cameron [11].  To 
achieve the six required transmission zeros with 10 
resonators, semi-canonical topology (fig 2.b.) has been 
chosen; where the cross couplings are between the 2nd and 
9th, 3rd and 8th, and 4th and 7th resonators. To achieve this 
topology from the general form of coupling matrix, the 
matrix has been synthesized using the SFG model 

TABLE I 
REFLECTION AND ATTENUATION ZEROS FOR THE 10TH ORDER TRIPLE-PASSBAND FILTER 

K 1 2 3 4 5 6 7 8 9 10 
R. Z. -0.9607 -0.8394 -0.7431 -0.1527 -.0685 .0685 0.1527 0.7431 0.8394 0.9607 
T. Z. -0.5251 -0.4148 -0.3185 0.3185 0.4148 0.5251     

 
TABLE II 

COUPLING MATRIX  FOR THE 10TH ORDER TRIPLE-PASSBAND FILTER 

 1 2 3 4 5 6 7 8 9 10 

1 0 0.7827 0 0 0 0 0 0 0 0 

2 0.7827 0 0.5597 0 0 0 0 0 0.2048 0 

3 0 0.5597 0 0.3451 0 0 0 0.0637 0 0 

4 0 0 0.3451 0 0.2372 0 0.4454 0 0 0 

5 0 0 0 0.2372 0 0.3058 0 0 0 0 

6 0 0 0 0 0.3058 0 0.2372 0 0 0 

7 0 0 0 0.4454 0 0.2372 0 0.3451 0 0 

8 0 0 0.0637 0 0 0 0.3451 0 0.5597 0 

9 0 0.2048 0 0 0 0 0 0.5597 0 0.7827 

10 0 0 0 0 0 0 0 0 0.7827 0 
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Fig. 2.  Theoretical response of 10-pole triple-band filter 
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developed by Jayyousi [12]. Table II gives the resultant 
matrix. Input and output external quality factors both take 
a value of 1.7338. 
 

IV. FILTER FABRICATION 
Figure 2b shows a layout of the 10-pole canonical filter. 
The basic resonator is the compact double-spiral inductor 
resonator developed by Zhou [13].  Not only does the 
resonator have a very compact structure, but it also holds 
most of the electric and magnetic energy near the surface 
of the substrate. This makes the spurious coupling between 
non-adjacent resonators very weak. The centre frequency of 
the resonators is also immune to the small fluctuation in 
the substrate thickness. Moreover, spiral resonators in 
general are less sensitive to over-etching during 
manufacturing [14]. 
The filter design was carried out according to the coupled-
resonators design methodology, which is well covered in 
the literature [15]. The external quality factors were 

converted into a distance between the feed-line and virtual 
ground of the resonator. The direct and cross couplings 
were also converted into spacing between the 
corresponding resonators. 
The substrate is MgO with thickness of 0.5 mm and the 
chip size is 40 mm  20 mm using YBCO thin film on 
both sides of the substrate. The resonator line width is 50 
m. The filter has been simulated and optimized using 
sonnet software with resolution of 50 m  50 m. The 
simulated response is shown in Fig. 3. The discrepancy 
between simulated and theoretical responses may be 
attributed to the spurious coupling between diagonal pairs 
of resonators in the folded canonical structure and the 
limitation on cell size of the grid. 
 

V. MEASUREMENT RESULTS 
The circuit has been patterned onto the substrate, which is 
bonded onto a Mgo carrier fixed in a titanium box. Both 
the carrier and the box were covered by 6 m thick gold. 
Dielectric screws have been used for tuning the filter. The 
tuning screws give limited control over the resonant 
frequency for each resonator. Hence, they allow 
compensation for errors in coupling coefficients and 
external quality factors. Due to the high number of 
resonators in the filter, the tuning was tedious with the lack 
of a sophisticated tuning algorithm. 
Instead of having one passband as normal filters, the filter 
has 3 passbands and 2 stopbands which need to be tuned 
simultaneously.  The resultant total bandwidth after tuning 
is 11.3 MHz with discrepancy of 0.2 MHz to the designed 
one; the passbands are 1.8 MHz, 1.7 MHz, and 2.5 MHz. 
The experimental result is depicted in Fig. 4. The centre 
frequency is shifted down by 4.85 MHz from the simulated 
response. This can be explained by limitation of software 
or/and defects in various levels of the fabrication. However, 
apart from the frequency shift, there is good agreement 
between the measured and simulated results in Fig. 3. and 
Fig. 4.  
The losses on the passbands are mainly due to the small 
fractional bandwidth of each passband, which is 
approximately 0.26%. A small bandwidth results in high 
sensitivity to small shift of resonant frequency of the 
resonators.  

VI. CONCLUSION 
A novel triple-band HTS filter was presented in this study. 
An algorithm which allows design of multiple band 
symmetric and asymmetric filtering function is also 
provided.  The measured results agree with the simulated 
ones. However, the filter exhibits problems concerning 
tuning. More advanced tuning algorithms can be used in 
the future for higher accuracy. 
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Fig. 4.  Measured response of 10-pole triple-band HTS filter 
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Fig. 3.  EM simulated response of 10-pole triple-band  HTS filter 
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