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Abstract 

In this work, we develop a new method of setting the input to reservoir and reservoir to 

reservoir weights in echo state machines. We use a clustering technique which we have 

previously developed as a pre-processing stage to set the reservoir parameters which at 

this stage are prototypes. We then use these prototypes as weights in the standard 

architecture while setting the reservoir to output weights in a standard manner. We show 

results on a variety of data sets in the literature which show that this method out-performs 

a standard random echo state machine. 
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1. Introduction 

There are many clustering algorithms but few [16-17] which are specifically designed 

for time series data. Since such data may contain e.g. Periodical such as seasonal data or, 

particularly for financial time series, be non-stationary, clustering such data provides 

special challenges. In this paper, we use an echo state network (ESN) in order to cluster 

time series data. 

The standard ESN uses random weights in the reservoir (see below) however in our 

work, we create structure in these weights by using an existing clustering algorithm to set 

these parameters and most importantly subsequently use these parameters as feed forward 

weights in the same way that standard ESNs do. 

In the next subsections, we review echo state networks and then existing clustering 

techniques before describing our new work. We give exemplar clustering results on 

standard data sets used in the literature. 

 
1.1. Echo State Networks 

Echo state networks (ESNs) [9], [21-24] consist of three layers of ‟neurons‟: an 

input layer which is connected with random and fixed weights Win to the next layer 

which forms the reservoir. The neurons of the reservoir are connected to other 

neurons in the reservoir with a fixed, random, sparse matrix of weights W. Typically 

only about 10% of the weights in the reservoir are non-zero. The reservoir is connected 

to the output neurons using weights which are trained using error descent. The 

constructed reservoir is sensitive to the initial weights. Different random weights may 

cause different capabilities in reservoirs with respect to representing the time series 

data. 

To construct the reservoir, we have the following equation: 

x(t) = f (Win u(t) + W x(t − 1))                                                                                       (1) 
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where typically f (.) = tanh(.), t is the time index, Win ∈  RNx ×Nu, W ∈ RNx ×Nx, Nu is 

the number of input neurons and Nx is the number of reservoir units. The feed forward 

stage is given by 

y = Wout x                                                                                                                         (2) 

where Wout ∈ RNx ×Ny  and Ny is the number of output neurons. This is followed by a 

supervised learning of the output weights, Wout. Wout weights are changed in a 

training process using gradient descent methods or other classical tools for solving a 

simple linear regression. 

It is often stated that the W weights should be such that the spectral radius (its 

greatest eigenvalue) is less than 1 to ensure stability in the reservoir when there is no 

input (see (1)). However a more useful heuristic for the more usual conditions (in 

which there is a non-zero input) is that there should be a playoff between the 

magnitude of the reservoir-reservoir weights, W, and those from the inputs, Win : the 

larger W is, the more memory of previous values can be retained but of course we 

cannot ignore the inputs entirely. Most research effort has gone into giving the 

reservoir weights some structure, either by pre-training with, for example, a self-

organising map [9-19] or by fixing the topology of the reservoir [21-25]. In this 

paper, we propose a new method to find an optimal set of weights to construct a 

more useful reservoir 

 

1.2. Data Clustering 

Data clustering techniques are an important aspect used in many fields such as data 

mining [20], pattern recognition and pattern classification [3], data compression, 

machine learning [8], image analysis [26], and bioinformatics [22]. The purpose of 

clustering is to group data points into clusters in which the similar data points are 

grouped in the same cluster while dissimilar data points are in different clusters. 

Measures of quality of clustering are based on obtaining high intra-cluster similarity 

and low inter-cluster similarity. 

The K-means algorithm is one of the most frequently used investigatory algorithms 

in data analysis. The algorithm attempts to locate K prototypes or means throughout 

a data set in such a way that the K prototypes in some way best represent the 

data.  It is an iterative algorithm in which K means are spread throughout the data 

and the data samples are allocated to the mean which is closest (often in Euclidean 

norm) to the sample. Then the K means are repositioned as the average of data points 

allocated to each mean. This continues until stable convergence is reached. The K-

means algorithm is one of the first which a data analyst will use to investigate a new 

data set because it is algorithmically simple, relatively robust and gives „good enough‟ 

answers over a wide variety of data sets: it will often not be the single best algorithm 

on any individual data set but it may be close to the optimal over a wide range of data 

sets. However the algorithm is known to suffer from the defect that the means or 

prototypes found depend on the initial values given to them at the start of the 

simulation: a typical program will converge to a local optimum. There are a number 

of heuristics in the literature which attempt to address this issue but, at heart, the 

fault lies in the performance function on which K-means is based.[18] proposed a 

global K-means algorithm, an incremental approach to clustering that adds one 

cluster prototype at a time through a deterministic global search consisting of N (the 

data size) executions of the K-means; this algorithm can obtain equivalent or better 

results than the standard K-means, but it suffers from high computation cost and at 

the same time gives no guarantee to find the optimum. 

Arthur and Vassilvitskii [2] improved the K-means algorithm by substituting the 

random allocation of the prototypes with a seeding technique. They give 
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experimental results that show the advantage of this algorithm in time and 

accuracy. 

In [4-7] we derive a family of new clustering algorithms that solve the problem of 

sensitivity to initial conditions in the K-means algorithm. 

This paper is composed as follows. In Section 2, we describe the proposed 

algorithm. We show how to find an optimal set of weights based on clustering to 

construct more useful reservoir. We describe the clustering algorithm that we have 

used. In Section 3 we show our simulation and experimental results. Finally in Section 

4, we present the conclusion of our work. 

 

2. The Proposed Method 

To construct the reservoir we need two matrices of weights, Win and W. These two 

matrices are used to map the input space u into the reservoir space x as shown in 

eq. (1). The advantage of reservoir space is that it captures and represents the input 

time series data in a useful way by maintaining the dynamic history between samples. 

In the standard version of constructing the reservoir, random weights have been used. 

However, random weights may cause inaccurate construction of the reservoir and, 

almost by definition of random, is liable to be less than optimal. 

Some papers [9-19] have proposed methods for selecting the weights values that give 

better reservoir construction. [19] has introduced a model called Self-Organised 

Reservoir. In this model, Self-Organising map [15] has been used for fixing the input 

and reservoir weights prior to training the output weights. Recently, [9] has 

investigated the idea of using Scale Invariant Maps (SIM) [10- 12] to create the 

reservoir.  However, those methods have a high cost of processing and are thus time 

consuming.  In this paper we propose a novel method that based on clustering for 

finding an optimal set of weights for both Win and W. This new method, through 

finding a better set of weights, enhances mapping from input to reservoir space and 

constructs a more useful reservoir. In the proposed algorithm, we have used a 

previously developed clustering algorithm, IWK, [5-7] to find the weights for both 

Win and W. 

 

2.1. Inverse Weighted K-means Algorithm IWK 

Consider the performance function 
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where, K is the number of clusters, N is the number of data points, and n and p are 

values of the exponent. 

In this objective function, we multiply two functions together.  One of them is the 

minimum function which calculates the distance between each data point and its closest 

prototype (sometimes also called the seed or centroid).  This function is important to 

help in clustering data, but it has a limitation which causes dead prototypes and also 

convergence to a local optimum.  The problem for this function is that each prototype 

responds only to data points that are closest to this prototype and is not affected by 

other data points. Thus it is sensitive to the prototypes‟ initialisation. This limitation 

has been overcome by multiplying the minimum function by the inverse weighted 

function which gives a relationship between all data points and all prototypes. The 

purpose of the inverse weighted function is to provide a good learning process for all 

prototypes, without losing the advantage of the minimum function which helps to find 

the clusters. This function makes the prototypes, in the derived learning process, 
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respond to all the data points not only to the closest data points to the prototypes. 

Thus each prototype before being moved to any new location, responds to all the 

other prototypes‟ positions and, in particular, to their relative locations with respect to 

the data points, and hence it is possible to identify the free clusters that are not 

recognized by the other prototypes [5-7]. 

To create a learning rule and find the new locations of the prototypes that give 

iteratively better performance, we need to find the partial derivative of the 

performance function with respect to mk∗, which is the closest prototype to xi , and 

with respect to mj which represent the prototypes that are not the closest to xi . 

Solving this over all the data set results in 














rjVi irVi ir

rjVi iriVi iri

r

jr

jr

ba

bxax
tm

,

,
)1(                                                                           (4) 

where Vr contains the indices of data points that are closest to mr , Vj contains the 

indices of all the other points and 

 

                                                                                                                                            (5) 

 

            (6) 

A more complete discussion of this and other methods can be found in [5-7]. 

 

2.2. Supervised Learning 

After finding an optimal set of Win and W weights to construct a more useful 

reservoir, we use a linear regression supervised method to train the output weights 

which generate the output vectors that match the desired output vectors. 

y = Wout x                                                                                                                        (7) 

where: y is the output vector, Wout is the trained weights to generate the desired 

output, and x is the reservoir. 

 

2.3. The Algorithm 

In this section, we describe the main steps of the proposed method in Algorithm 1. It 

is important to recognize that in stage 8, we are using the newly constructed input 

Algorithm 1 Description of the Proposed Algorithm 

INPUT: {u(t), ytarget(t) : t = 1, …, T}, Win ∈  RNx ×Nu, W ∈ RNx ×Nx, Wout ∈  RNx 

×Ny, Nx 

 OUTPUT: M SE, Win, W. 

1: Initialise randomly Win, W and Wout. 

2: Use Win as initial prototypes and apply IWK clustering algorithm to the input data set. 

3: After convergence in step 2, assign the resulted prototypes to Win. 

4: Construct the reservoir using eq.(1). 

5: Use W as initial prototypes and apply the IWK clustering algorithm to the reservoir. 

6: After convergence in step 5, assign the resulted prototypes to W. 

7: Construct the reservoir again, but this time with the calculated set of weights Win and 

W. 

8: Apply linear regression supervised learning algorithm to train the output weights Wout. 
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9: After training the output weights in step 8 and convergence, calculate the outputs using eq. 

(7). 

10: Finally, calculate the Mean Square Error MSE using: 
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to reservoir weights, Win and reservoir to reservoir weights, W in the standard manner 

i.e., exactly as in 1. Thus the parameters which were previously cluster prototypes or 

centres are now multiplicative parameters. This is very different from those methods 

which instantiated the reservoir with SOM or SIM [9-19] which continued to use the 

prototypes in the standard manner.  Note that at stage 8, we will have maximum 

output values for inputs which have greatest projection on the input weights and for 

which simultaneously, the current reservoir activations have greatest projection on 

the reservoir weights which contain historical information of the previous inputs. It is this 

which gives power to our method. 

 

3. Simulations 

To test and compare the resulting reservoirs constructed with random weights and 

with the proposed algorithm, we have the following main steps: 

1. Construct the reservoir using random weights for Win and W. 

2. Apply linear regression supervised learning algorithm to train the output weights 

Wout, and then find the outputs y using eq. (7). 

3. Using eq. (8), calculate the mean square error (MSE). 

4. Repeat the run many times (specified below) and record each time the calculated 

(MSE). 

5. Repeat all the previous steps, but this time with the reservoir that has been 

constructed with the proposed algorithm. 

6. Finally, compare the results. 

 

Experiment 1: Freedman‟s non linear time series dataset [14-21]: 

ytarget (t + 1) = f (ytarget (t)), where: 

{
                 

               
                                                                                                          (9) 

In this experiment, we have used the first 60 samples of Freedman time series 

dataset, ytarget (0) = 0.001. We have constructed the reservoir twice, once with 

random weights and the second time with the proposed algorithm. Then we have 

calculated the MSE after applying the supervised algorithm which is required to find 

the output weights Wout. We have run the code 10 times (reservoir units = 10) and 

recorded the MSE results for each run in Table 1. In Table 1, the average MSE we got 

with using random weights, 0.4411, is larger than the average MSE we got with using 

the proposed algorithm, 0.0017. The proposed algorithm constructs a more useful 

reservoir which represents the data with its history. 
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10  

 

10  

 0.1748 0.0016 

 0.2159 0.0012 

 0.0071 0.0012 

 0.0098 0.0026 

 2.5484 0.0012 

 0.1930 0.0015 

 0.1171 0.0020 

 0.8503 0.0011 

 0.0139 0.0011 

 0.2804 0.0031 

 0.4411 0.0017 

 

  

 

10  

 

 

10  

 0.1144 0.0069 

 0.0655 0.0067 

 3.3000 0.0067 

 0.4032 0.0068 

 9.7462 0.0070 

 1.2837 0.0069 

 0.8542 0.0069 

 0.0140 0.0068 

 0.1007 0.0069 

 0.1795 0.0068 

 1.6061 0.0068 

 

Table 1. Mean Square Error (MSE) for 10 Times Run, Freedman Data. 
Results with using Random Weights and with using the Proposed 

Algorithm. Reservoir Units = 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment 2: Fixed 10th order Narma time series dataset [1]: 

ytarget (t + 1) = 0.3ytarget (t) + 0.05ytarget (t)∑                  
    + 1.5s(t − 9)s(t) + 

0.1                  (10) 

where: s(t) ∈ Unif [0.0,0.5]. 

In this experiment, we have omitted the first 50 samples and used the next 300 

samples of Narma 10th order time series dataset. The first 50 samples may be 

considered burn-in data allowing the network to settle to its standard regime. Similar 

to the previous experiment we run the code 10 times and record the results in Table 

2. As shown in Table 2, the proposed algorithm gives better results than that given by 

using the random weights. 

Table 2. Mean Square Error (MSE) for 10 Times Run, Narma 10 Data. Two 
Columns of Results, One for Random Weights, and One for the Proposed 

Algorithm. Reservoir Units = 10 
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Experiment 3: Henon map time series dataset [13]: 

ytarget (t + 1) = 1 − 1.4ytarget (t)
2 + 0.3ytarget (t − 1).                                           (11) 

In this experiment, we have used the first 1000 samples of the Henon map, initially, 

ytarget (t − 1) = 0, ytarget (t) = 0.1 and then iterate.  For reservoir units, we have used 

30, 60 and 100 units. 

Table 3. Mean Square Error (MSE) for 100 Times Run, Henon Data. Results 
of 30, 60 and 100 Reservoir Units with Random Weights and with the 

Proposed Algorithm. Average2 (90 runs) is the Average after Removing the 
Worst 10 MSE Results. Average3 (80 runs) is the Average after Removing 

the Worst 20 MSE Results 

 Random 

Weights 

30 units 

Proposed 

Algorithm 

30 units 

Random 

Weights 

60 units 

Proposed 

Algorithm 

60 units 

Random 

Weights 

100 units 

Proposed 

Algorithm 

100 units 

1 0.0971 0.0013 0.3678 0.0011 0.5468 0.0010 

2 0.0804 0.0019 0.1698 0.0010 0.5488 0.0004 

3 0.2027 0.0033 0.2447 0.0008 0.9744 0.0008 

4 0.2530 0.0020 1.8373 0.0008 0.4549 0.0003 

5 0.0064 0.0013 0.1867 0.0005 0.1924 0.0003 

6 0.0148 0.0027 0.4786 0.0006 0.5488 0.0005 

7 0.2950 0.0013 0.4869 0.0020 0.3340 0.0002 

8 0.0643 0.0022 0.0774 0.0005 0.5744 0.0002 

9 0.0216 0.0019 0.3943 0.0005 0.3722 0.0002 

10 0.0494 0.0014 0.3718 0.0004 0.1017 0.0002 

... ... ... ... ... ... ... 

100 0.0750 0.0034 0.0368 0.00083 0.3974 0.00051 

 
Average1 

 
0.1334 

 
0.0026 

 
0.5507 

 
0.000739 

 
1.747 

 
0.000556 

 
Average2 

 
0.0824 

 
0.0023 

 
0.2948 

 
0.000644 

 
0.5365 

 
0.000458 

 
Average3 

 
0.0604 

 
0.0022 

 
0.2205 

 
0.000589 

 
0.4335 

 
0.000401 

 

In Table 3, first 10 rows show the MSE result after running the code 10 times with 

reservoir units 30, 60 and 100 respectively. The last 3 rows show the average of MSE 

results. Average1 is the average MSE for 100 runs. Average2 (90 runs) is the average 

after removing the worst 10 MSE results. Average3 (80 runs) is the average after 

removing the worst 20 MSE results.  We have two columns for each reservoir units 

number. he first column shows the MSE resulted from using random weights, while the 

second column shows the MSE resulted from using the proposed algorithm. We have 

plotted the MSE results for 100 runs with reservoir units 30, 60 and 100 in Figures 1, 

2 and 3, respectively. In each figure, the dotted line represents the average MSE for 

100 runs. The left figures show the results with using random weights, while the right 

figures show the results with using the proposed algorithm. As shown in Table 3 and 

Figures 1, 2 and 3, we can see that the proposed algorithm provides superior results 

comparable to random weights (note the vertical axes scales). It is also worth noting 
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that the random algorithm gives several examples of really poor initialisation of Win 

and W as shown in the large variation in output errors. 

 

    

Figure 1. 30 Reservoir Units. Left: MSE error for 100 Runs with random 
Weights. Right: MSE Error for 100 Runs with Proposed Algorithm 

   

Figure 2. 60 Reservoir Units. Left: MSE Error for 100 Runs with Random 
Weights. Right: MSE Error for 100 Runs with Proposed Algorithm 

    

Figure 3. 100 Reservoir Units. Left: MSE Error for 100 Runs with Random 
Weights. Right: MSE Error for 100 Runs with Proposed Algorithm 
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4. Conclusion and Future Work 

We have developed a new method for constructing non-random reservoirs for echo 

state networks and shown that the new method out-performs the standard random 

networks on 

3 standard data sets: it gives a lower mean squared error and also much less variance 

than randomly constructed reservoirs do. 

The most important feature of our method is the dual nature of the parameters: 

during the first stage of the process, Win and W both act as prototypes and thus are 

useful in identifying different regimes in the time series. During the second stage, when 

the Wout weights are being found, W and Win are fixed and are used as 

multiplicative parameters. Thus at this stage, the reservoir activation is function of the 

projection of the input data and its current memory on the prototypes from the first 

stage and thus the reservoir neurons which are most active are those which are most 

aligned with the current input and history; the parameters are now acting as a 

measure of how like the smoothed historical data the current data is. 

Future work will perform a comparison between the clustering methods in this 

paper with other clustering techniques in the context of echo state machines as 

predictors of the future. 
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