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Abstract 

Low-density parity-check codes (LDPC) have been shown to have good error 

correcting performance, putting in mind the Shannon's limit approaching capability. 

This enables an efficient and reliable communication. However, the construction 

method of LDPC code can vary over a wide range of parameters such as rate, girth 

and length. There is a need to develop methods of constructing codes over a wide 

range of rates and lengths with good performance. 

This research studies the construction of LDPC codes in randomized and structured 

form. The contribution of this thesis is introducing a method called "Randomly 

permutated copies of parity check matrix" that uses a base parity check matrix 

designed by a random or structured construction method such as Gallager or QC-

LDPC codes respectively to get codes with multiple lengths and same rate of the base 

matrix. This is done by using a seed matrix with row and column weights of one, 

distributed randomly and can be addressed by a number in the base matrix. This 

method reduces the memory space needed for storing large parity check matrices, and 

also reduces the probability of failing to construct a parity matrix by random 

approaches. Numerical results show that the proposed construction performs similarly 

to random codes with the same length and rate as in Gallager's and Mackay's codes. It 

also increases the girth average of the Tanner graph and reduces the number of 4 

cycles in the resulted matrix if exists in a base graph.  
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 ملخص الأطروحة

مع الاخذ في . صحيح الأخطاءاستطاعت الأكواد ذات مصفوفات الفحص قليلة الكثافة أن تعطي أداء جيداَ لت

. هذه الخاصية تمكن من الحصول على اتصال فعال وحقيقي. الاعتبار قدرتها على الأداء قريبا من نهاية شانون

تبقى هناك حاجه لتطوير . توجد العديد من الطرق لبناء هذا النوع من الاكواد  وتتغير حسب معدل وطول الكود

 .حصول على شريحه واسعه من المعدلات والاطوال ذات أداء فعال وجيدطرق بناء هذا النوع من الاكواد لل

يتطرق هذا البحث إلى دراسه وعرض طرق بناء هذا النوع من الاكواد بطرقه المختلفه مثل الاكواد المبنية  

بطريقه عشوائية التركيب مثل أكواد جالاجر، والاكواد المبنية بطريقه منظمة ذات نسق ونموذج معروف مثل 

الإضافة التي تضيفها هذه الاطروحة هي تقديم طريقة جديده لبناء الأكواد ذات . الاكواد ذات الطبيعة الدائرية

مصفوفات الفحص قليلة الكثافة تستخدم مصفوفات سابقة البناء كأساس للبناء وللحصول على أكواد ذات أطوال 

طريق استخدام مصفوفه وحدة موزعه بشكل يتم ذلك عن . مضاعفة من نفس طول الكود الأساسي وبنفس المعدل

هذا الأسلوب يقلل من الذاكرة المستخدمة . ويمكن تمييزها برقم عند إدراجها في المصفوفه الأساسية، عشوائي

النتائج العددية ايضاً تدل على ان البناء المقترح يزيد . ويقلل من احتمال حدوث فشل في البناء بالطريقة العشوائية

الدوائر في رسومات تانر الدالة على المصفوفة، ويقلل من عدد الدورات ذات الطول الرباعي من متوسط طول 

 .في المصفوفة الاساسية
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Chapter 1 
Introduction 

1.1 Communication Systems and Reliable Transmission 

The goal behind communication systems is to transmit data from a source to a 

destination. Transmission is done through different mediums like air, wires or optical 

fibers. These mediums can't keep the originality of data at the source, and they add 

noise that changes the data according to the level of noise in that medium. The noise 

added by mediums results in errors that lead to the unreliability problem in 

communication systems. 

 

In 1948, a remarkable historical innovated work by Shannon [1] showed the limit of 

reliable transmission of data over noisy channels and suggestions to achieve that, he 

also defined the capacity of a channel as a number that reliable transmission can be 

obtained within it. The reliable transmission of data can be achieved by having a code 

with arbitrary data rate close to the capacity of the channel and it can correct all errors 

as code length approaches infinity [1].  

 

The study of channel codes began with the pioneered work of Hamming [2] and as 

mentioned Shannon [1]. The error correcting process is achieved using error 

correcting codes (ECCs), which are constructed by adding extra symbols that make 

relations and bonds between the original data symbols. These bonds help in retrieving 

the original symbols in case they are changed by the effect of the transmission process 

in the channel. Without error correcting codes, data signals would be retransmitted in 

case an error occurred at the destination, which in this case adds delay and cost to the 

system. Another way than retransmission is increasing the power of transmission so 

the power of signal overcomes the noise in the channel. This approach causes more 

power waste and consumption in the system. Using the ECCs can increase both the 

speed and throughput of the system and reduce the power consumption in the system. 

The basic communication system is shown in figure 1.1; the information data is 

encoded at the resource before transmission by adding redundancy symbols to the 

original data based on an error correcting and detection algorithm. Then in the 

modulation block the data is carried on high frequency signals and sent through the 
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channel where the noise is added and it changes symbols of the encoded data. At the 

receiver, the received signal is demodulated and a stream of symbols including the 

redundancy symbols is now in hand but with some errors in the data. After that, the 

decoding block uses the bonds added by the coding algorithm to apply a decoding 

algorithm that detects and corrects the stream of the received data to some extent. The 

probability of having an error at the output of the system depends on many factors 

like the code characteristics, the type of modulation, noise, interference level of the 

channel and the signal power. 

 

There is a tradeoff between the probability of having an error and the transmission 

power. It will always be a researching point to try to minimize the power consumption 

while maintaining a reliable communication. This point shows the need of having 

stronger codes with more error correcting capability. 

 

Several error correcting codes have been developed over decades to perform encoding 

and decoding of data. They vary in their construction, performance, computation, and 

implementation complexity. Some well known error correcting codes are 

convolutional code, Reed Solomon, BCH, turbo and LDPC codes [3]. 

 

 

 

 

 

 

 

1.2 LDPC Codes 

Low density parity check codes are a special type of error correcting codes that is 

known for their good decoding performance and high throughput. 

Low density parity check codes were first introduced by Robert Gallager in early 60's 

[4, 5]. His work was ignored for decades because of its high computational 

complexity for hardware implementation in that time. 

Figure 1.1: Basic Communication system block diagram. 

Channel 
coding 

 

Demodulator 
Source 
Coding 

Source 
Coding 

Channel 
coding Modulator 

Channel + 

Information 
source 

Receiver 
Information  
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LDPC codes are decoded using a subclass of message passing algorithms [6] 

introduced in Gallager's work named the belief propagation decoding algorithm. Its 

strength is in the inherent parallelism of the message passing and the iterative 

decoding behavior that is done by updating bit probabilities. 

 

LDPC codes are designed starting from the parity check matrix, where two sets of 

separated nodes called check and variable nodes are connected to points in the other 

set based on some regulations and restrictions. The separation of sets allows parallel 

decoding computations. In contrary, the decoding operations of turbo codes which are 

the most competitors to LDPC codes, depends on each other in blocks or windows [7] 

which results in serial computations. LDPC codes have simple graphical 

representation based on Tanner graph [8] that leads to accurate analysis of 

performance, also it helps optimizing the designs of regular and irregular 

constructions. 

 

The complexity problem of computations in LDPC decoding algorithms is reduced by 

approximation techniques without significant affecting on the performance. Another 

good property of LDPC codes is having good distance properties, which is one of the 

main challenges in designing of LDPC codes. 

  

After many years MacKay [9] rediscovered LDPC codes and showed that they 

perform close to the capacity limits of turbo codes. The work of MacKay was 

extended by Luby [10] to show that irregular LDPC codes are capable of exceeding 

the performance of regular LDPC codes, and he also introduced approaches to design 

irregular codes. Richardson and Urbanke [6] extended that work to soft decision 

message passing decoding and introduce a method called density evolution. Chung 

[11] showed that, with carefully choosing an irregular LDPC code from an optimized 

ensemble, performance of LDPC codes can approach the Shannon limit. 

 

The construction and decoding of LDPC codes results in a low error rates that is close 

to Shannon limit. A threshold of 0.0045 dB away from Shannon limit is achieved with 

a LDPC code of rate 1/2 and a block length of 10
7
 bits with additive white Gaussian 

noise [11]. Figure 1.2 shows the effectiveness of different LDPC codes over other 

codes. 
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1.3  Problem Statement 

 

Construction methods of LDPC codes are either random or structured. Random 

methods have unstructured row-column connections and generated by computer 

searches. Construction can be done by designing Tanner graphs that can produce 

undesirable cycles of four and may not produce a desired rate, but still can be 

optimized by post processing or by having constrains on the code. Random 

construction codes are desired to produce high rates and girths, also when long length 

codes are desired then random construction codes are to be used. They are 

characterized by flexibility in design and in construction. At the same time they lack 

regularity in row-column construction which increases the decoder interconnection 

complexity. Structured constructions have regular interconnection patterns that give 

good performance and are easier to implement in hardware but with limitations in 

rate, length and girth. 

There are a lot of developed methods that include algebra [13], graph [14], 

combinatorial designs [15] and heuristic searching techniques [16-19]. The 

construction of LDPC code determines how good the decoding performance and 

hardware implementation will be. 

 

 

Figure 1.2 [12]: Bit Error Rates of different codes shows the effectiveness of LDPC 

code over other codes. 
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1.4  Objectives 

 Analyzing and comparing the performance of different LDPC randomized 

construction algorithms and methods. 

 Analyzing and comparing the performance of different LDPC structured 

construction algorithms and methods. 

 Constructing LDPC codes that have a good performance which are also easy to 

implement. 

 Publishing the research results in prestigious IEEE journals and in proceedings of 

highly reputed, refereed international conferences. 

 

1.5  Thesis Outline 

This thesis is organized as follows. In chapter 2, we provide a brief review of LDPC 

codes, including representations of LDPC cods, encoding, decoding algorithms, and 

optimization of LDPC codes parameters. In chapter 3 we introduce different methods 

and schemes of LDPC codes construction. In chapter 4, Quasi-Cyclic LDPC codes 

with different construction methods are reviewed. In chapter 5 we examine a method 

of extending a base LDPC parity check matrix by a use of a randomly permutated 

identity matrix and finding the analyses of the performance of constructed codes 

under this modification. And finally, chapter 6 includes conclusions and future work 

for this thesis.  
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Chapter 2 
LDPC Codes 

2.1 Linear Block codes 

The error correcting codes are obtained by adding additional bits to the original data 

to be transmitted. These bits are redundant and used to detect and correct errors on the 

received data. In linear block codes the original data are divided into blocks of fixed 

lengths of K bits. Based on certain rules and regulations each symbol or bit is 

expressed as a linear combination of other bits or symbols of block length N called 

codewords, where N > K, the redundancy, m = N – K, determines the code rate R = 

K/N, which is a measure on how much information is sent per codeword. The term 

linear code refers to the property where the sum of any subset of codewords is always 

equal to a codeword from the code space. 

With K bits in the input message, there are 2
K
 possible messages encoded to the same 

number of possible codewords of length N. Thus there are 2
N
 – 2

K
 vectors of length N 

that are not codewords, which is a necessary and sufficient condition for error 

detection. 

A simple encoding requires the encoder to store all possible combination of 

codewords. But this approach is not efficient for large K. The linear block codes can 

reduce the complexity of encoding by using a linear generator matrix that transforms 

original data of K bits to codewords of length N. The linearity leads to the 

construction of generator matrix that consists of K independent row vectors g0…gK – 1 

of size N. It is expressed as: 
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Where two vectors are called linearly independent if the sum in GF(2) of these 

vectors is non zero, and called the basis of the space since they can span out all code 

vectors in the space. 

The codewords are generated by multiplying an input vector a by the generator 

matrix, each 1 in the input vector refers to the row of generator to be added to the 

combination of independent rows which will result in the unique codeword c, where c 

= aG. This reduces the space complexity from 2
K
×N which is all possible codewords 

in the space to K×N, the generator matrix dimensions. 

The dual code C
┴
 with dimensions N × m is a linear code called the null space of code 

C where the cross product of some codes in C and codes in C
┴
 is 0, the dual space of a 

linear code is used to derive the parity check matrix H that relates the generator 

matrix by GH
T
 = 0 and it is used to check if the received word v is indeed a word, this 

is guaranteed if 

 

This property is used to detect and correct errors. The construction of generator matrix 

can be done in systematic and nonsystematic form. In the first type G = [IK | P] and H 

is derived as 

 

where IK is the K×K identity matrix, and P is a random matrix with dimensions m×N. 

The generator matrix is reformed to get the systematic form by Gaussian elimination, 

and then the transpose of P is obtained to construct the parity check matrix H, also the 

generator matrix can be derived from the parity check matrix if G is given using the 

same way. 

The weight of a code vector is the number of 1's entries. Minimum distance of a linear 

code dmin is defined as the minimum number of different bits between two codewords, 

which is a fundamental property that shows the error correcting capability of a code, 

hence increasing the minimum distance improves the error correcting capability, 

referring to the relations, s ≤ dmin – 1 and t ≤ (dmin – 1)/2 where s is number of detected 

errors, and t is the number errors to be corrected.  

 

)2.2(0TvH

)3.2(]|[ m

T IPH 
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2.2 Low-Density Parity Check Codes 

Low density parity check matrix are a class of linear block codes defined by a sparse 

parity check matrix H with dimensions m×N. A matrix is called sparse if its density is 

less than 0.5 and very sparse if the density remains constant while N → ∞ [20]. The 

term density refers to the average weight distribution taken over all row vectors in the 

matrix. The set of LDPC codewords c ϵ C in the code space C of length N, spans the 

null space of the parity check matrix H in which: cH
T
 = 0, Thus LDPC codes are 

given as the null space of a sparse matrix, rather than as the space generated by the 

rows of that matrix. Considering only binary codes, the parity check matrix has a 

small number of 1's compared to the number of 0's. The row weight k is the number of 

1's in a row, the column weight j is the number of 1's in a column, if weights of rows 

are equal to k, and weights of columns are equal to j, the parity check matrix is regular 

LDPC code, otherwise it is an irregular parity check matrix, with always k > j. the rate 

of regular LDPC code can be expressed as K/N = 1 – m/N, since the number of 1's in 

the matrix is given by mk or Nj, then m/N = j/k, hence the rate can be express as 1 – 

j/k. 

2.3 Tanner Graph 

LDPC codes can be represented by a bipartite graph called Tanner Graph [8], the 

term bipartite refers to a set of nodes partitioned into two subsets in such a way that 

all edges have a vertex in the first subset and another one in the second, and no edges 

connect nodes within the same subset. The two subsets are called check nodes 

representing rows, and variable nodes representing columns of the LDPC parity check 

matrix. The entry Ha,b is 1 if the check node a is connected to the variable node b as 

shown in figure 2.1 

 

 

 

 

  

 

 Figure 2.1: LDPC matrix example and Tanner graph representation. 
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From figure 2.1, f1....f3 represent the rows of H and v1....v5 are the columns of H, rows 

and columns weights are equal to the edges connected to corresponding check nodes 

and variable nodes in sequence. Tanner graph results in cycles of different lengths, a 

cycle is defined by the path of edges starting and ending at the same node, the shortest 

cycle in the graph is called girth, which is a fundamental property of LDPC code that 

affects the performance of decoding. If column and rows have fixed number of 'one' 

entries in each, then the code is a regular LDPC code, otherwise it is irregular LDPC 

code. 

 

2.4 Encoding of LDPC 

Encoding of LDPC codes has been considered the major problem in restricting the use 

of LDPC codes. LDPC encoding is done by the same way linear block codes are 

encoded. Since LDPC codes are designed starting by the parity check matrix, the 

generator is derived from H in systematic form H = [–P
T
 | Im], this needs rearranging 

H matrix by Gaussian reduction to obtain a dense P matrix part that results in rows 

and columns of non-fixed lengths. The generator matrix is derived and the data word 

is multiplied by the generator to get the code. The denseness of P determines the 

computational complexity of the encoder. The encoding complexity in this case is 

O(N
2
) which is the major concern in LDPC codes, since it is not proportional to the 

linear time decoding in LDPC. There are some innovated techniques to reduce 

complexity of encoding process that reaches linear complexity of O(N) [21]. In 

designing parity check matrix, we may get dependent rows that are reduced in 

obtaining systematic forms without changing the code space. However, the existence 

of redundant rows helps in overdefining the code and gives additional indicators that 

help in the decoding process. A common approach for researches that are less 

concerned about encoding process, is dealing with the 'all zeros' codeword, which is 

valid in any linear code space, this helps to skip the encoding process altogether. 

2.5 Decoding of LDPC 

The process of decoding tries to recover the transmitted codeword c from the received 

codeword v using the parity check matrix H, since cH
T
 = 0 defines the set of equations 

that must be satisfied in order to retrieve the received codeword. The relations 
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between check nodes and variable nodes are taken from the Tanner graph where the 

(mod 2) sum of the values attached to variable nodes returns 0 to the check node in 

case the codeword is valid. 

In his thesis, Gallager introduced two algorithms: the bit flipping algorithm based on 

hard decision decoding, and the belief propagation algorithm based on soft decision 

decoding, they are subclasses of message passing algorithms, which are an iterative 

decoding algorithms where the passed messages are probability estimators sent 

,updated and exchanged between variable and check nodes on the Tanner graph, 

check nodes measure the reliability of bit probability using estimations form adjacent 

variable nodes, the variable nodes estimate the probability that a given bit is 0 or 1 

based on the estimation of the received bit from connected check nodes. 

Operations in the decoding algorithm are simplified by implementing log domain to 

replace multiplication and division operations by adding and subtracting, which 

reduces the implementation complexity of the decoder. 

2.5.1 Bit-Flip Algorithm (Hard Decision Decoding) [4] 

As discussed above the bit flipping algorithm is a hard decision algorithm deals with 

simple messages, where a variable node sends a message to a check node with a value 

of 1 or 0, then check nodes send a message to its connected variable nodes with a 

value of 1 or 0 declaring if it is satisfied or not. 

Steps of Bit Flipping Algorithm: 

Step 1: Initialization. Variable nodes are assigned corresponding bit values from the 

received vector, and send these values as messages to the check nodes connected with 

each variable node. 

Step 2: Check Nodes Update. Each check node calculates a response for each 

variable node connected assuming other bits are correct and sends a value that results 

with a sum of 0 to satisfy the parity check equations. If all equations are satisfied the 

algorithm terminates. 

Step 3: Bit Update. The variable nodes receive values from check nodes and 

determine if the original received bit is correct, depending on the majority voting of 
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values received from check nodes. This process is repeated until satisfying all parity 

check equations or until number of suggested iterations is reached, if maximum 

number of iterations is reached the algorithm terminates and declares failure to 

converge. Note that the design of LDPC sparse H matrix ensures existence of one or 

no transmission error in each parity check equation. 

Regardless of the simpliness of this algorithm, there is major drawback in the fact of 

operating on hard decision by the decoder ignoring all valuable information from the 

channel when we are dealing with continuous output channels. 

 

2.5.2 Message Passing Algorithm (MPA) [22, 23] 

MPA is an iterative decoding algorithm that is used with codes represented by factor 

graphs as in linear block codes and LDPC codes, it is also known by other names as 

max-product and sum-product algorithm (SPA). 

The message passing algorithm uses estimations of bit probabilities such as intrinsic 

and extrinsic information of bits representing knowledge before and after an event in 

sequence. The extrinsic information is about data being depending only on other 

nodes, and it is not affected by the node it is sent to, in messages containing intrinsic 

information, nodes will be dominated by its current value. 

There are two types of probabilities that express the relation between a variable and 

an event E, the first is a-priori probability of u with respect to E, which is the 

probability that u is equal to a, and is denoted by: 

                              )()( auPauP priori

E                            (2.4) 

The second probability is a-posteriori probability of u with respect to E, which is the 

probability of u given the outcome E and it is denoted by: 

 

and it can be written as: 

)5.2()|()( EauPauP post

E 

)6.2()()|(
)(

1
)|( auPauEP

EP
EauP 
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The term )|( auEP  is proportional to the extrinsic probability, that describes new 

information for u obtained from E. and the extrinsic probability is given by: 

Where d is a constant that normalize the probability sum to 1. Thus the relation 

between these probabilities can be written as: 

              (2.8) 

Since our concern is binary case, we can use log-likelihood ratio (LLR) in which 

probability of variable u is expressed in terms of a real number. Thus LLR of u is 

defined as: 

where p = P(u = 1). Now equation (2.6) can be rewritten as: 

where LLR(u) is positive if p ≥ 0.5 and negative if p < 0.5. The extrinsic information 

reflects the incremental gain in knowledge of a-posteriori information over a-priori 

information. The message passing algorithm is based on a-priori, extrinsic and a-

posteriori probabilities. The a-priori information is taken from channel, where the 

extrinsic information comes from other nodes. The steps for MPA iterative decoding 

are listed below. 

 

MPA iterative processes: 

1. Initialization: decoder is initialized by giving variable nodes the values from the 

received vector yn of n bits. The initial probability that the sent bit is 1 or 0 given the 

received vector is calculated for each variable node by: 

)()()( auPauPauP ext
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where 0 < i < n – 1. In AWGN channel 2/2)( ii yuL  , where σ
2
 is the noise 

variance. Messages to check nodes and variable nodes, and check nodes LLRs are 

initialized to zero by sending values on variable nodes to connected check nodes. 

 

2. Updating Check nodes. In this step LLR and check to variable node messages are 

calculated for each check nodes based on variable node messages. LLR for check 

nodes of number m denoted by λj where 0 < j < m – 1 is given by: 

 

where Ωi,j is the message from variable node i to check node j. check to variable 

messages are given by: 

2× atanh )13.2(
2

tanhln)ln(exp
,
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3. Updating variable nodes. LLR and outgoing messages of variable nodes are 

calculated and LLR is given by: 

 

 

LLR is the sum of all incoming messages with addition to the initial value of variable 

node. Messages from variable node to check nodes are given by check nodes LLR 

minus messages received on that edge as given: 

 

4. Decision: The values of variable nodes are decided as 1 or 0 by the value λi, If λi < 

0 then LLRi = 0, and LLRi = 1 if λi ≥ 0, if LLR × H
T
 = 0, then take the value of LLR as 

an estimation of codeword cn at the decoder output, if not, go to step 2. Maximum 

number of iterations is decided so the algorithm stops in case the algorithm doesn't 

halt. 
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Figure 2.2: Message Passing Decoding on Tanner Graph. 

2.5.3 Log- domain Sum-Product Algorithm Decoder 

A simplified version of the sum product algorithm (SPA) that reduces the complexity 

of the parity check update at the cost of some loss in performance was proposed in 

[24]. This simplification has been derived by operating in the log-likelihood domain. 

In log domain SPA the following notations and LLRs are defined. 

 

Notations: 

)(bqij
: Probability that variable node vi having a bit value b satisfies all check 

equations except cj. 

)(br ji
: Probability that check equation related to check node cj is satisfied if variable 

node vi has value b. (Meaning that from all the other nodes related to check node cj we 

obtain an even (b=0) or odd (b=1) number of ones). 

Qi(b): Probability that variable node vi has value b, where b = {0,1}. 

Vj = {variable nodes connected to check node cj} (neighborhood of cj). 

Vj/i = {variable nodes connected to check node cj}/{variable node vi}={variable nodes 

connected to check node cj except vi}. 

Ci = {check-nodes connected to variable node vi} (neighborhood of vi). 

Ci/j = {check nodes connected to variable node vi}/{check node cj} = {check nodes 

connected to variable node vi except cj}.  

 

Variable to Check 

Messages 

Check to Variable 
 Messages 

    

    
 

Check Nodes 

 

Channel Messages 
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LLRs: 

L(ci) = ln 
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where L(rji) can be approximated by [25]: 

L(rji) = 
 iVi j /'

  )( ' jiqL                   (2.20) 

Where   refers to box-plus operator defined as:  

L(x1)   L(x2) = sgn[L(x1)] sgn[L(x2)]min{| L(x1)|, | L(x2)|} (2.21) 

with rules:  

 L(x)   0 = 0 , L(x)   = L(x), L(x)    = L(x).  (2.22) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary of the log-domain SPA Decoding Algorithm [26]: 

1) For i = 0,1, … ,n – 1, initialize L(qij) = L(vi) = 2yi/σn
2
 for all i,j for which hji = 1.  

2) Update { L(rji) }.  

)(bqij  

j ≠ i 
 

)(br ji
  

cj 

vi 

)(bqij 

)(br ji
  

i≠ j  
cj 

vi 

yi 

a)) b)) 

Figure 2.3: An iteration of message passing in Sum product algorithm. (a) The 

computation of )(bqij
. (b) The computation of )(br ji

. 
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3) Update { L(qij) }.  

4) Update { L(Qi) }.  

5) For i = 0, 1, … , n – 1, set.  



 


else

QLif
v

i

0

0)(1
ˆ  

6) If 0ˆ THv  or the number of iterations equals the maximum number of iterations 

set, stop, else, go to step 2. 

 

Example: 

Given Tanner graph of H matrix as in figure 2.4, and running first irritation of 

decoding process given the value of L(v). 

                         

 

 

 

 

 

First step: Initializing the value of L(qij)=L(vi) so, 

           
           

           
            

             
           

           
           

           
            

Second step: Updating L(rji). 

                                              

                                              

                                              

C0 C1 

 

C2 

 

V0 V1 

 

V2 

 

V3 V4 

 

Figure 2.4: Tanner graph of H matrix of irregular code to be decoded by log-

domain SPA decoding algorithm. 
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Third step: Updating L(qij). 

                                

                              

 

                                  

                                  

 

                                            

                                           

                                            

 

                                

                                

 

                                  

                                  

 

Step four: Update L(Qi). 
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Step five: Find v. 

  

 
 
 
 
 
 
 
 
 
  
 
 
 
 

 

 

Step Six: Check if 0ˆ THv or maximum number of iterations is reached to stop, else 

go to step 2. 

2.6 Designing and Optimizing LDPC codes 

There are some parameters to be taken in consideration in the design of LDPC codes 

as code length and code rate. These parameters and others are affected by the 

application needs and affect the performance of the code. Also In designing LDPC 

codes, there are some parameters to be optimized in order to get better performance 

and better bit error rate, such as optimizing girth, increasing Hamming distance. 

2.6.1 Code Size 

One of the basic parameters of code design is code size, which is specified by the 

code length N and row-column weights j and k as (N, j, k), unsurprisingly, codes with 

larger block length are better in performance than shorter ones [9], but in terms of cost 

and implementation they require larger memory. 

2.6.2 Code weight and Code Rate 

Another parameter is code weight and rate. Having codes with large row and column 

weights, results in increasing computations at each node, since nodes will be attached 

to more information bits in the decoding process. In the other hand, higher weights 

leads to more consistent decoding and more nodes to participate in estimating the 

probability of a bit which leads to faster convergence. Code rate describes the 

redundancy of bits where higher rates mean less redundancy, which results in high 

throughput of information data and less protection of bits that decreases the efficiency 

of decoding performance and increases bit error rate (BER) [27]. Low rates means 
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less throughput and better decoding performance. Column weight has been proven [4] 

to affect the minimum distance property as in codes with column weight of 2 grows 

logarithmically with N, where codes with j ≥ 3 have a minimum distance that grows 

linearly with N that makes them more desired to be used. However, compared with j ≥ 

3 codes, codes with j = 2 are easier to implement and require less storage making 

them a target for many applications [28]. A careful adjusting of the bit and check 

nodes, with maximizing bit degree, minimizing check degree, and increasing the 

support of some bits, many well-designed Irregular codes with nonuniform columns 

distribution of 1's have achieved better error correcting performance than regular 

codes [10]. 

2.6.3 Code Structure 

The next parameter in designing LDPC codes is the type of code structure, which is 

defined as the pattern of connections between bit and check nodes, the type of 

structure results in many tradeoffs as cost, decoder complexity and flexibility of 

design. The original introduced LDPC code [4] was a random code, where no pattern 

of interconnections defines the row-column connections. Some disadvantages of 

random construction appear when trying to implement it in real communication 

system. Random construction codes need to be stored in memory for decoding and 

encoding process. In case of long block codes, very large memory usage is needed to 

store the parity check matrix which deduces the computational efficiency of the code, 

to overcome this problem structured constructions appear to have predefined patterns 

that needs few inputs to generate a range of code words. These constructions have an 

advantage in reducing the cost, complexity, memory usage, and latency. 

2.6.4 Decoder Iterations 

Number of iterations in the decoding process is defined by the number of times the 

received bit is estimated before a hard decision is made by the decoding algorithm 

[29]. Increasing number of iterations increases the decoding convergence and lowers 

the bit error ratio until reaching the error floor, The parameter of iterations affects the 

power consumption and the decoder delay, that is in some applications like video 

broadcasting where decoding time is limited, optimum number of iterations is set to 

the maximum decoding delay allowed. Another point is that in case of soft values, 
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decoding may converges a non valid state, also soft values tend to converge a stable 

state after a few number of iterations, that's where increasing time of decoding does 

not improve the decoding process. 

2.6.5 Minimum Distance 

In general, Codes with larger minimum distance have better performance and correct 

larger number of errors. LDPC codes are found to have better minimum distance than 

linear codes with the same length and dimension. A good property of LDPC codes is 

that minimum distance is proportional to the size of code in case of random 

constructed LDPC codes [7]. In other types of structured construction, minimum 

distance is restricted to a an upper bound depending on column weight, and in this 

case increasing the code size does not increase minimum distance [19]. Although 

LDPC codes performance depends on both the structure of its Tanner graph and its 

minimum distance, a LDPC code with better minimum distance may not outperform 

the performance of a code with worse minimum distance, that's because codes with 

better graph structure ease the decoding process in the belief propagation decoding 

algorithm, since BF is a suboptimum and graph dependent [23]. 

  

2.6.6 Girth 

Girth of a code is also optimized to enhance its performance. Avoiding cycles of 

length 4 and trying to obtain girths that is greater than 4, provides sufficient feedback 

protection, since with small cycles a node gets a probability estimate depending 

mainly on its own probability contribution. With large girth, the probability 

estimation of bit decoding relies on the connected bits, which results in better 

estimation of the node. Bad topologies result in a low minimum distance. It is proved 

that there is dependence between girth and minimum distance of a code [8, 19]. In 

general, maximizing girth will improve code performance to some bound [30]. Also 

the girth distribution defined by the fraction of the symbol nodes with a given girth is 

proposed as an effective tool for designing short LDPC codes and it matters more than 

girth [31]. The average girth is defined by the sum of the smallest cycles in nodes 

divided by the number of nodes, where codes with larger average girths perform 

better than ones with small averages. 
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2.6.7 Density Evolution [6, 32] 

Density evolution is a technique used for observing convergence of the overall bit 

error probability of decoding process and thus approximating the decoding bit error 

probability. It is used in Sum product algorithm messages at fixed SNR levels as the 

decoder iterates under the assumption of having free cycles. The density is observed 

and plotted in a graph to show the relation between number of iterations and 

convergence of density. Using this chart, one can optimize the number of iteration 

used in the decoding process and approximate the bit error probability of the code.  

2.7 Modeling and Measuring Decoding Performance of LDPC codes 

The decoding performance of LDPC codes is measured and evaluated using Bit Error 

Rate (BER), which is the number of errors found per iteration over the code length at 

a given Signal to Noise Ratio (SNR), calculated by 

The BER of a code is calculated under the assumption of Additive White Gaussian 

Noise (AWGN) channel. The AWGN channel is a simple-binary input, unquantized 

output channel- model, which subjects the transmitted vector of bits into random 

peaks of energy (noise) described as a random normally distributed variable added 

successfully to the transmitted symbols. The channel output is modeled as yi = si + ni, 

where s is the transmitter output, n is the AWGN, at any instant i. The randomness of 

the Gaussian noise is a one sided power spectral density (PSD) N0, that depends on 

the noise level or the variance σ
2
, where N0 = 2σ

2
. 

The errors are the received bits with different values than the transmitted bits. The 

SNR is a measure that compares the level of a desired signal to the level of 

background noise, and it is modeled as: 

where Es is the signal energy. The higher the SNR, the less obtrusive the background 

noise is. Thus increasing the SNR generally decreases number of errors. In simulating 

decoding performance, BER is calculated many times at the same level of SNR and 

)22.2(
BitsofNumbers

ErrorsofNumber
BER 

)23.2(log10
0N

E
SNR s
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the average of BER is plot as an output of SNR level, this is to increase the level of 

confidence of BER results. Other parameters may be used in simulation like Word 

Error Rate (WER) which is the number of decoded words with errors compared to 

the number of transmitted words, the use of BER or WER is determined by the 

application used. In some cases it is essential that all of a word must be received 

correctly, that's where WER is preferred. 

In case of binary Input, data is modulated using Binary Phase Shift Key (BPSK) 

technique as in the simulations of this thesis.  
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Chapter 3 
Constructing LDPC Codes 

The rediscovery of LDPC codes opened the doors wide to researchers to find efficient 

algorithms that construct efficient codes, especially after the remarkable improvement 

of computers processing speed. The construction of LDPC codes is affected by many 

parameters that should be taken care of, as discussed in Chapter 2. The main goal in 

constructing a code is determining the length and rate of the code to be used. Another 

aspect is the ability of getting a construction method that can produce a wide range of 

codes that vary in length and rate as desired. There always will be a tradeoff between 

good decoding performance and easier hardware implementations. 

 

The construction of LDPC codes is categorized mainly into two main categories: 

Random constructions and Structured constructions. The type of construction is 

determined by the connections between check nodes and variable nodes in Tanner 

graph. Each type of constructions has their advantages over the other. In the 

following, we will review some of the important construction methods from both 

types and clarify their reflections over the performance of LDPC codes. 

 

3.1 Randomly Constructed LDPC Codes 

Random constructions refer to the unstructured row-column connections in the parity 

check matrix with no predefined pattern. The design of randomly constructed LDPC 

codes is done by computer searching algorithms to fulfill the design requirements. 

Actually the process of generating in this case is a pseudo-random process but it is 

written 'random' for brevity. 

 

As previously mentioned in chapter 2, constructing LDPC codes is a backward 

process, starting by constructing the H matrix with dimensions of N × K. The random 

search results in dependant rows that reduce the rate of the code. The rank of H is 

defines the number of K bits that will ensemble the code and K = N – Rank(H), thus 

the rate of the designed code varies and become slightly higher than what is 

intended[20], which means obtaining a different code. So the rank of random codes 
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should be checked each type the H matrix is constructed. In case we want to construct 

a code with R = 1/3, we construct a random H matrix with dimensions of rate 3:2 as in 

(1200, 800) code, meaning to have all rows to be linearly independent, but the rank is 

to be less than or equal to the desired full rank, which increases the rate of the code. 

The sparsity of LDPC codes decreases the probability of producing linearly dependent 

rows as the code size grows large, especially when column weight of H is odd [33]. 

So repeating the generating of code with different seed may result in the desired rate. 

 

Another important point of randomly constructed LDPC codes is that the generating 

of codes - based on some regulations of random filling of H matrix- results in similar 

codes that has different code space but they approximately have the same 

performance on the level of bit-error, this allows us to optimize the code design by 

focusing on design parameters without going on details discussing the structure of bits 

in a specific code. 

 

The construction of random LDPC codes is done by adding random edges to a Tanner 

graph or '1' entries in the parity check matrix. Designing a code with a desired rate 

and girth can be achieved by post processing the connections of H matrix to maintain 

the desired rate and girth and to delete cycles of 4 which degrade the performance of 

the code. Also random construction is done by putting constraints on design 

parameters to satisfy the desired girth and rate.  

 

The design and analysis of LDPC codes are based on Ensembles, an ensemble is a set 

of codes with certain properties. Usually it is easier to evaluate the performance of a 

code based on its ensemble than evaluating the performance for a particular randomly 

generated code, putting in mind that the average performance of the ensembles is well 

approximated to meet the performance of any generated code from the same 

ensemble. Richardson proved the assumption that the codes in an ensemble are 

equivalent [6]. Thus a randomly constructed code is chosen from an ensemble that 

satisfies the desired requirements and then it is fixed and built in the system.  

 

Random codes have better performance compared to structured codes in case of long 

codes [11]. They are used in cases we want to increase the girth or rate of a given size 

[17]. A disadvantage of random LDPC codes appears when wanted to be 
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implemented it in practical system, the long length needs large memory to be stored 

and used in decoding and encoding, which affects the computational efficiency of the 

code, which is considered more important than bit-error rate in real life. Also random 

codes perform poorly with decoding methods as one-step majority logic decoding or 

bit flipping decoding, furthermore, when using Sum-product algorithm, they do not 

converge as fast as in structured LDPC codes [3]. With all these disadvantages, long 

random LDPC codes still can perform very close to Shannon limit better than 

structured codes. 

In the following we review some random construction algorithms with their analysis. 

 

3.1.1 Gallager's Construction 

In his early work [4], Gallager describes a way to construct regular LDPC codes 

denoted by (N, j, k) where part of H matrix is structured and the other is random. The 

term 'Gallager codes' refers to codes that correspond to the relation Nj = mk. The 

design is done by dividing the H matrix into j sub-matrices of dimensions (N/j) × N 

and each column of sub-matrices has only one nonzero entry, this ensures having k 

'1's in each rows. The first row of H1 is initialized by setting the first k entries with 

'1's, leaving zeros in the remaining entries. The remaining rows of the first sub-matrix 

are shifted by multiples of k positions. The other sub-matrices are merely column 

permutations of H1. Gallager emphasized avoiding cycles of length 4 but didn't show 

how to achieve that. 

 

Figure 3.1: An example of Gallager's Construction of a (20, 3, 4) parity check matrix, 

where πi(H1) denotes a column permutation of H1. 
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A step-by-step random construction method that produces Gallager code with girth g 

> 4 is introduced by Lin and Costello in [3], the introduced algorithm grows the parity 

check matrix of dimensions m × N column by column. The codes generated by this 

algorithm are regular and given by the framework (N, j, k). The approach is done by 

computer search starting with the null matrix H0 by picking a random vector hi of the 

pool of length m and weight j at the ith step where 1 ≤ i ≤ N, and each vector is 

checked if it satisfies the constraints of the ensemble to be added to a previously 

partially constructed parity check matrix Hi – 1 that satisfies the required constraint of 

j, k, and g. To add column hi the following constraints must be satisfied, taking in 

mind that for constructing regular H matrix with constant row weight k the equation j 

× N = k × (N – K) must hold, if N is not divisible by (N – K) then j × N = k × (N – K) + 

b which can be rearranged to j × N = (N – K – b)k + b(k + 1). 

 

1. Choose hi at random from the remaining binary (N – K)-tuples that are not 

being used in Hi – 1 and that were not rejected earlier. 

2. Check whether hi has more than one 1-component in common with any 

column in Hi – 1. If not, go to step 3, otherwise, reject hi and go back to step 1 

to choose another candidate column. 

3. Add hi to Hi – 1 to form a temporary partial parity check matrix Hi. check the 

row weights of Hi if all the top b rows of Hi have weights less than or equal to 

k + 1, and all the bottom N – K – b rows of Hi have weights less than or equal 

to k, then permanently add hi to Hi – 1 to form Hi and go to step 1 to continue 

the construction process. If any of the top b rows of Hi has weight exceeding k 

+ 1, or any of the bottom N – K – b rows of Hi has weight exceeding k, reject 

hi, and go to step 1 to choose another candidate column. 

 

From the analysis of this algorithm [34], it is recommended to increase the number of 

pool candidates compared to N, this improves the probability that the candidate will 

be acceptable and not rejected. Still, the algorithm is not suitable for handling a large 

number of candidates since the evaluation of candidates is repeated exponentially and 

the founding of a valid candidate becomes very difficult. A modification on this 

algorithm is to keep vectors already in use since rejecting will result in extensive 

bookkeeping and causes latency for looking up for matches in rejects table. In case 
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Figure 3.2: BER Performance of different lengths of Gallager Codes with R = 1/2. 

Figure 3.3: BER Performance of different lengths of Gallager Codes with R = 2/3. 

the candidate from the pool is already in use, it will not satisfy the conditions of step 2 

and another candidate will be picked. 

Figures 3.2 and 3.3 show the performance of Gallager codes with different rates and 

lengths over an AWGN channel. 
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3.1.2 MacKay's Constructions 

MacKay was the first to introduce the benefit of designing codes with sparse parity 

check matrices and showed their ability to perform near capacity limits [20, 33]. 

MacKay introduced an order of ensembles of random LDPC codes in which he 

assumed will decrease the average probability of decoding error, but not necessarily 

improve performance [20] named by 'Ensembles of very Sparse Matrices', though he 

didn't give a prove for his assumption. 

 

MacKay's Ensembles of Very Sparse Matrices: 

1. Matrix H is generated by starting from an all-zero matrix and randomly 

flipping j not necessarily distinct bits in each column. 

2. Matrix H is generated by randomly creating weight j columns. 

3. Matrix H is generated with weight j per column and (as near as possible) 

uniform weight per row. 

4. Matrix H is generated with weight j per column and uniform weight per row, 

and no columns having overlap greater than 1 (meaning, 'no 4-cycles'). 

5. Matrix H is further constrained so its bipartite graph has girth greater than 6. 

6. Matrix H = [C1 | C2] is further constrained or slightly modified so that C2 is an 

invertible m × m matrix. 

 

Figures 3.4 and 3.5 show the BER performance of MacKay code from ensemble 2 

where 1's are distributed uniformly in columns and ensemble 3 where 1's are 

distributed uniformly in columns and rows, the construction of MacKay code with 

obtaining these codes with random generation doesn't guarantee a cycle-4 free 

construction for short lengths codes, thus further processing can be applied in order to 

remove these loops which degrade the decoding performance of the code as shown in 

figures 3.4 and 3.5. 
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Figure 3.4: BER Performance of ensemble 2 of MacKay LDPC codes with and 

without removing cycles of length 4. 

Figure 3.5: BER Performance of ensemble 3 of MacKay LDPC codes with and 

without removing cycles of length 4. 
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3.1.3 Irregular LDPC codes 

Irregular LDPC codes are a generalization of regular LDPC codes. Parity check 

matrix of an irregular LDPC codes [32] has nonuniform column weights and non 

uniform row weights, thus, an irregular LDPC code is defined by an expression that 

describe the degree distribution of check nodes and variable nodes along the Tanner 

graph. The irregularity in weights results in variable nodes and check nodes with 

different degrees in the Tanner graph. Increasing the degree of a variable node means 

connecting to more check nodes and more information to be gathered about the state 

of the correct value of the variable node, thus more accurate values can be derived. In 

the other hand increasing the variable node degree increases the probability of sending 

wrong guesses to the variable node. These two factors are balanced in the design of 

irregular codes in order to enhance the performance of the code. 

The procedure of decoding irregular LDPC codes is done by starting with higher 

degree variable nodes where they converge to their correct values faster with less 

number of iterations, such strong bits are called 'elite bits'. Then they pass their values 

to check nodes helping them to decode lower degree variable nodes. Now the 

remaining errors are now easier to detect. 

 

In constructing irregular LDPC codes, the following parameters are defined. 

- λi : The fraction of edges incident to variable nodes of degree i. 

- ρj : The fraction of edges incident to check nodes of degree j. 

- li : The fraction of variable node of degree i. 

- rj : The fraction of variable node of degree j. 
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10111

H
 

 

Figure 3.6: H matrix with corresponding Tanner graph with l2 = 4/5, l3 = 1/5 and 

r3 = 1/3, r4 = 2/3, λ2 = 8/11, λ3 = 3/11, ρ3 = 3/11, ρ4 = 8/11. 
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In the literature, it is usual to specify the variable node and check node degree 

distribution polynomial, denoted by [10]: 

 λ(X) = 



vd

d

d

d X
1

1    (3.1) 
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d XX
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1)(     (3.2) 

Where dv and dc are the maximum variable node and check node degree respectively.  

By defining E as the total number of edges in the corresponding Tanner graph, the 

number of variable nodes of degree d by Nv(d), and the number of check nodes of 

degree d by Nc(d) then they can be expressed as proved [35] by: 
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Then from equation (3.3) one can easily conclude that code rate is bounded by  






1

0

1

0

)(

)(

11

dXX

dXX

n

m
R





   (3.6) 

A precise theory in optimizing the design of irregular codes is difficult to find, the 

studies about this field [14, 32] depends on computer searches to find the best 

optimization of check and variable degrees. Different approaches have been used in 

the design of irregular LDPC codes. On approach is to have one profile given as an 

input from which the other profile can be found, a simpler searching approach is to fix 

the distribution along one dimension, typically using constant row-weight. 
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3.1.4 Progressive Edge-Growth Algorithm 

In their published paper [18] Hu et al. introduced a method for constructing LDPC 

codes based on progressive establishing of edges in Tanner graph between variable 

nodes and check nodes called Progressive Edge-Growth Algorithm (PEG). Tanner 

graphs are defined by (V , E) where V is a set of nodes consists of check nodes Vʋ = 

{ʋ0, ʋ1,…,ʋn – 1} and variable nodes Vc = {c0 ,c1 ,…,cm – 1}, E of size Vʋ × Vc consists of 

all possible edges (ci, ʋj) between the set of Vʋ and Vc when hi,j ≠ 0, hi,j H, 0 ≤ i ≤ m – 

1, 0 ≤ j ≤ n – 1. The degree of variable nodes is stored in the array

 
110

,,,



n

dddD   , where 
j

d is the degree of the variable node ʋj, in the same 

manner the degree of the check nodes is stored in the array  
110

,,,



mcccc dddD  , 

where 
icd is the degree of the check node ci. Define 

j
E be the set of edges incident 

on the variable node ʋj and k

j
E

is the k
th

 edge incident on ʋj where 0 ≤ k ≤ 1
j

d . For 

a variable node ʋj, the set of check nodes connected through a cycle starting and 

ending at ʋj is l

j
N

where l is the depth of its neighbors as shown in figure 3.7, the 

complementary set of l

j
N

is
l

j
N where l

j
N

l

j
N = Vc. for computing l

j
N

an 

indicator Ici is set for each check node ci taking values from the set {0, 1} and it is 

initialized to 0, as the tree starting at ʋj to the determined depth l, the indicators of 

check nodes in the tree is also set to 1, which indicates that these nodes belongs to l

v j
N

,at the same time 
l

v j
N  is obtained by checking the indicator Ici is 0. For each variable 

node ʋj, a local girth 
j

g  is defined as the set {
j

g } such that the girth of the code g = 

minj {
j

g }. 

The construction of PEG consists of two procedures; the first is the expansion of the 

local graph, and the check node selection. The expansion of the variable node is to 

avoid short cycles when adding a new edge to the graph, by pruning the check nodes 

that will produce a short cycle or in case short cycles can't be avoided then only check 

nodes that will produce large cycles remain in the set as candidates. In the selection 

procedure is used to reduce the candidates according to the settings of the graph as 

degree of check nodes. The selection is done basically by choosing check nodes with 

the lowest degree. 
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PEG algorithm can construct regular and irregular LDPC codes with optimized 

performance. Codes obtained by PEG algorithm is known for the best performance in 

the case of short length codes [36]. A drawback of this algorithm is that it is not 

guaranteed to achieve bipartite graphs that has the largest possible girth with the given 

parameters n, m and Dʋ which leads to a problem of complexity in combinatorics. 

Thus PEG algorithm is considered as a sub-optimal algorithm in constructing high 

girth bipartite graphs. The performance of PEG LDPC codes is found to be better than 

codes constructed by MacKay's method having the same length in case of short codes 

[37]. 

 

 

 

 

Progressive Edge-Growth Algorithm: 

 
for j = 0 to n = 1 do 

begin 

for k = 0 to ds = 1 do 

begin 

if k = 0 

0

j
E ← edge (ci, ʋj), where 0

j
E is the first edge incident to ʋj and ci is a check 

node such that it has the lowest check-node degree under the current graph 

setting 
0

E ∪ 
1

E ∪…. ∪
1j

E . 

else 

expand a subgraph from symbol node ʋj up to depth l under the current 

graph setting such that the cardinality of l

v j
N stops increasing but is less 

than m, or 
l

j
N ≠ Φ but 

1l

j
N s = ϕ, then k

j
E

← edge (ci, ʋj), where k

j
E

is the 

k
th

 edge incident to ʋj and ci is a check node picked from the set 
l

j
N having 

the lowest check-node degree. 

end 

end 



34 
 

 

3.1.5 Protograph LDPC codes 

The construction of protograph LDPC codes [38, 39] starts by having a relatively 

small bipartite graph that may include parallel edges called a protograph, which is 

used to obtain a large related graph by a copy-and-permute procedure. The protograph 

is copied Q times and then the edges are copied and connected among the copies of 

the protograph under some restrictions to obtain a large single Tanner graph of a new 

parity check matrix. Variable and check nodes are labeled so if a variable node V in 

the protograph is connected to a check node C, then variable node V in copies can 

only be connected to one check node C of the copies. The reason behind this is to 

preserve the decoding threshold properties of the protograph. The construction 

eliminates any parallel edges in the main protograph so a single Tanner graph that 

suits the constraints of parity check matrix can be obtained. 

c2 c1 c0 

v3 v2 v1 v0 



















2100

1221

0012

H

Figure 3.8: An example of a protograph and the corresponding base matrix. 

Depth 0 

Depth 1 

Depth l 

ʋj 

Figure 3.7: A tree that shows the depth l for a variable node ʋj. 
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Figure 3.9 shows a protograph seed copied with Q = 4, the protograph seed is copied 

to 4 disconnected protographs of the same edges, the endpoints of the edges are 

permuted among the four copies at the same corresponding variable and check nodes. 

The resulted Tanner graph is called the derived graph and it is corresponding to a 

protograph LDPC code of length N = 12, K = 4 of rate R = 1/4. The protograph LDPC 

codes have many approaches and methods to optimize the construction of LDPC 

codes as in [40, 41]. 

 

3.2 Structured Construction of LDPC Codes 

The uncertainty of guaranteeing an asymptotically optimum performance in random 

constructions leads to the use of structured construction of LDPC codes. Randomly 

constructed codes have some disadvantages as needing extra memory for the use of 

decoding and encoding. Also the randomness of construction affects the 

computational efficiency which is more crucial than the bit-error rate performance of 

the code. This leads to the need of some regularity in construction to overcome these 

problems. 

Figure 3.9: Illustration of the protograph copy and permute procedure with 

Q = 4 copies. 
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In this type of LDPC constructions, predefined patterns of row-column connections 

are set following some constraints. Many methods have been developed as algebraic 

constructions, combinatorial designs, graph based constructions, and heuristic 

searching techniques. 

3.2.1 Combinatorial Designs 

Structured LDPC codes can be generated by constructing parity check matrix using 

combinatorial mathematics. A well structured, low complexity implemented codes 

using Balanced Incomplete Block Designs (BIBDs) [15] are designed by the inclusion 

of v points in b blocks according to some defined constraints. The two basic 

constraints are [42]: 

1- A pair of points appear together only in λ blocks for a defined value of λ. 

2- The number of points in each block is given by k and the number of blocks 

that a point appears at is r. 

 

The construction is done by considering points and blocks and rows and columns, the 

design is balanced by having the covalency λ the same for all pair of points, from the 

definition, the dimensions of the code is given by (b × v). Row and column weights 

are given by k and r. The design parameters (v, k, λ, r, b) are considered and only 

three parameters of the five are independent, there for the notation (v, k, λ)-BIBD 

represents a BIBD code designed by v points with block size k and covalency λ. 
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H

Figure 3.10: The corresponding parity check matrix of a (9, 3, 1)-BIBD. 
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Example: LDPC code designed by (9, 3, 1)-BIBD. 

Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and A the collection of 12 three-element blocks: 

A = {(1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 4, 7), (2, 5, 8), (3, 6, 9), (1, 5, 9), (2, 6, 7), (3, 4, 

8), (1, 6, 8) ,(2, 4, 9) ,(3, 5, 7)}, the pair (X, A) is a (9, 3, 1)-BIBD.  

The corresponding parity check matrix of the BIBD system is shown in figure 3.10. 

The previous example is a Steiner triple system where k = 3, and λ = 1. 

 

3.2.2 Euclidean Geometry LDPC code Construction (EG-LDPC) 

Euclidean geometry is used to construct LDPC parity check matrix [16, 43] and it is 

similar to combinatorial design. Finite geometry is defined for n points intersecting by 

unique lines J with the conditions of the following structural properties. 

1- Every line consists of ρ points. 

2- Every point is intersected by γ lines. 

3- Any two points are connected with one and only one line. 

4- Any two lines are either disjointed, or they have only one point in common. 

In this construction rows of H matrix represent lines and columns represent points, 

properties (1) and (2) ensure regularity of H matrix since two columns do not have 

more than one position with common '1's, and number of points in lines is constant. 

Property (3) keeps the girth at least 6 and avoids cycles of length 4. The sparsity of H 

can be obtained by choosing ρ << n and γ << J and thus the constructed matrix can be 

considered as a low density parity check matrix. The minimum distance of this 

construction can be calculated and lower bounded by γ + 1 in the case of decoding by 

one-step majority logic decoding since each bit has γ orthogonal check-sums. 

Compared to other types of construction as quasi-cyclic LDPC codes, finite geometry 

tends to have relatively large minimum distance. 

A drawback of this type of construction is having a maximum girth of 6 [43] with 

existence of cycles of length 8 [44], which limits the improvement of the code in 

terms of optimizing and increasing the girth of the matrix. Another drawback of this 

construction is that the resultant H matrix is a square matrix of dimensions N × N, so 

we have to choose (N – K) rows to decode the code but this still degrade the 

performance of the code [45]. Also another drawback is that the row and column 
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weights are relatively large which increases the complexity of the decoding process. 

Also the structure of the code does not provide flexibility in the design to obtain wide 

range of lengths or rates. 

In designing, one can omit the origin from the set of points, and lines intersecting the 

origin from the set of lines to obtain cyclic codes, which leads to lower-complexity 

linear time encoding [16].  

 

 

 

 

 

 

 

 

 

 

 

LDPC codes constructed via Euclidian Geometry is denoted by EG-LDPC codes and 

defined over GF(2
s
) as EG(m, 2

s
). It consists of N = 2

ms
 points represented by m-

tuples. Number of lines in the geometry is J = [2
(m – 1)s

(2
ms

 – 1)]/[2
s
 – 1], each point is 

intersecting γ = (2
ms

 – 1)/(2
s
 – 1) lines that represents the column weight of the matrix. 

And each line includes ρ = 2
s
 points which is the row weight of H. The density is 

given by r = 2
–(m – 1)s

. Table 3.1 shows variety of EG-LDPC codes found and listed in 

[26]. 

 

Figure 3.11: A graphical representation of a finite geometry with ρ = 2, γ = 3 and 

the corresponding incidence matrix. 
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Density 

of H 

r = p/n 

Col. 

Weight 

γ 

Row 

Weight 

p 

Rows 

in H 

J 

Minimum 

Distance 

Code  

Rate 

R 

Code 

dim. 

K 

Code 

length 

n 

Design  

Parameters 

s m 

0.667 

0.267 

0.127 

0.063 

0.031 

0.016 

2 

4 

8 

16 

32 

64 

2 

4 

8 

16 

32 

64 

3 

15 

63 

255 

1,023 

4,095 

3 

5 

9 

17 

33 

65 

0.333 

0.467 

0.587 

0.686 

0.763 

0.822 

1 

7 

37 

175 

781 

3,367 

3 

15 

63 

255 

1,023 

4,095 

1 

2 

3 

4 

5 

6 

2 

2 

2 

2 

2 

2 

0.286 

0.063 

0.016 

6 

20 

72 

2 

4 

8 

21 

315 

4,599 

7 

23 

79 

0.143 

0.206 

0.272 

1 

13 

139 

7 

63 

511 

1 

2 

3 

3 

3 

3 

0.133 

0.016 

14 

86 

2 

4 

105 

5,355 

15 

95 

0.067 

0.082 

1 

21 

15 

255 

1 

2 

4 

4 

0.065 

0.004 

30 

340 

2 

4 

465 

86,955 

31 

383 

0.032 

0.030 

1 

31 

31 

1,023 

1 

2 

5 

5 

0.032 62 2 1,953 63 0.016 1 63 1 6 

0.016 126 2 8,001 127 0.008 1 127 1 7 

 

Table 3.1: A Summary of EG-LDPC codes. 
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Chapter 4 

Constructing Quasi-Cyclic LDPC 

Codes 

In the previous chapter, we reviewed different algorithms and methods to construct 

structured LDPC codes, these codes differ in their computational and implementation 

complexity. This belongs to the fact that structured codes may have many patterns for 

the interconnections between rows and columns in a single structured H matrix. The 

more row-column interconnection patterns the more storage needed for the decoder to 

store and manage. 

Quasi-Cyclic (QC) LDPC codes are codes in which rows or columns in a sub matrix 

have similar and cyclic connections [29]. The structure of QC-LDPC codes allows 

them to be decoded using shift registers [46] and their decoders architectures require 

simple address generation mechanisms, less memory and localized memory accesses 

[47]. The construction of QC-LDPC codes is done by shifting identity sub-matrices. 

Numbers of cyclic shifts of columns in the identity sub-matrices are represented in a 

matrix which gives a compact representation of H matrix. 

A linear code C is called a Quasi-Cyclic (QC) LDPC code (with circulant 

permutation matrices), if a parity-check matrix H of C has the following block form 

[48]: 
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   (4.1) 

Let Ȟc denotes a matrix which consists of the indices of H, in other words, 
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Ȟc
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            (4.2) 

We call Ȟc the model matrix of H. It should be noted that a model matrix Ȟc 

characterizes a parity check matrix H of a quasi-cyclic LDPC code. 

 

4.1 Algebraic construction of LDPC codes based on circulant matrices [49] 

Quasi cyclic block codes can be constructed using multiplicative groups in term of 

integers mod m to refer to the number of circulations of identity matrices that 

construct various H matrix with a variety of length and rates.  

The construction starts by choosing a prime number m, the element from 0 to m – 1 

form a field under addition and multiplication (mod m), and thus the nonzero elements 

of this field represent a cyclic multiplicative group. Choose a and b to be nonzero 

elements with order of K and J respectively. And then form the P matrix with 

dimensions of J × K with elements from GF(m) as the following: 
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                (4.3) 

Then a (Jm × Km) H matrix is constructed by having an m × m identity matrices (Ix) 

inserted with their rows circularly shifted to the left by (x – 1) positions according to 

the values of P matrix as the following, 
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(4.4) 

The rate R of the constructed code is up to 1 – J/K due to the independence between 

some of resulting rows of H matrix. The number of '1's in columns and rows is J and 

K in sequence, this makes it a regular LDPC code. The construction also can be 
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extended to use nonprime integers with some modifications to sustain the regularity of 

the H matrix.  
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Table 4.1 [49]: Examples of QC-LDPC codes constructed from (prime) circulant 

sizes. 

 

 

 

 

 

Block Length 

N 

Design 

Parameters 

J               K 

Design Rate 

 R 

Actual Rate  

R 

Circulant Size 

 m 

21 2 3 1/3 0.3809 7 

93 2 3 1/3 0.3441 31 

129 2 3 1/3 0.3411 43 

155 3 5 2/5 0.4129 31 

186 5 6 1/6 0.1882 31 

305 3 5 2/5 0.4065 61 

755 3 5 2/5 0.4423 151 

905 3 5 2/5 0.4022 181 

1055 3 5 2/5 0.4018 211 

1205 3 5 2/5 0.4016 241 

1477 3 7 4/7 0.5727 211 

1477 5 7 2/7 0.2884 211 

1703 5 13 5/8 0.6177 131 

1928 3 8 5/8 0.626 241 

1928 5 8 3/8 0.3771 241 

1967 5 7 2/7 0.2877 281 

2041 3 13 10/13 0.7702 157 

2248 5 8 3/8 0.3768 281 

2947 3 7 4/7 0.5721 421 

2947 4 7 3/7 0.4296 421 

3641 3 11 8/11 0.7278 331 

3641 5 11 6/11 0.5465 331 

5219 3 17 14/17 0.8239 307 

11555 3 5 2/5 0.4001 2311 



















30568144167076179546103182259977977145289

364171192751671552561992951012509611314915317

27323529927226964280304102216241051141158191

IIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIII

H

Figure 4.1 [48]: A [5219, 4300] QC-LDPC code, constructed with m = 307, a = 

9, and b = 17 where o(a) = 17 and o(b) = 3. 

b = 17 where o(a) = 17 and o(b) = 3. 
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4.2 Construction of QC-LDPC Codes from Circulant Permutation 

Matrices by search algorithm  

In his work, M. Fossier [19] has shown that codes with large girths are easy to obtain 

by QC-LDPC codes. He derived sufficient conditions to obtain these high girth codes 

using a search algorithm.  

Starting by H matrix with rows and columns of weight J and L respectively, A 

number of circularly permutated (J × L) identity matrices of dimension (p × p) are 

inserted in the matrix to have a code length N = Lp. The first column and row are set 

to identity matrix, thus we only need (J – 1)(L – 1) integers to describe the code. 

The parity check matrix H of a (J, L) - regular QC-LDPC code of length N = pL can 

be represented by: 
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                  (4.5) 

Where 1 ≤ j ≤ J – 1, 1 ≤ l ≤ L – 1, and I(pj,l) is the Identity matrix with columns 

circularly shifted to the left by pj,l positions. And I(0) represents the identity matrix, 

another approach is to set just the first row by identity matrices and other rows have 

circularly shifted identity matrices [50]. 
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)0( II  

Figure 4.2: An example of Identity matrix of dimensions 4 × 4 with columns 

permutated 3 positions to the left and denoted by I(3). 

Defining: 

          )(, ljyjx pjx,l  – pjy,l   (4.6) 
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A general rule for obtaining H matrix containing a cycle of length at least 2(i + 1) is 

giving by (4.7) if and only if: 

pl
m

k

kjj kk
mod0)(

1

0

, 1







   (4.7) 

for all m, 2 ≤ m ≤ i, all  jk, 0 ≤ jk ≤ J – 1, all jk+1, 0 ≤ jk+1 ≤ J – 1, and all 0 ≤ lk ≤ L – 1, 

with j0 = jm, jk ≠ jk+1, and lk ≠ lk+1. 

A condition for constructing QC-LDPC codes with girth g ≥ 6 is given by (4.8) as: 

ppppp ljljljlj mod0
12222111 ,,,,    (4.8) 

Where 0 ≤ j1 ≤ j2 < J and 0 ≤ l1 ≤ l2 < L. 

In the choosing of parameters J, L, and p, some conditions must be taken in 

consideration in order to achieve girth ≥ 6, 8, 10 or 12 [19].  

The indices of the model matrix can be found by a search algorithm as in [50], an 

example of constructing QC-LDPC codes is represented. 

Example: 

Consider the construction of H matrix with J = 4, L = 6, p = 20, given the following 

incomplete model matrix. 

Ȟc 





















?15210513

1213104149

46872016

000000

 

To find the missing entry the following calculations is set. 

A random value x = 11 is picked from a vector of remaining values other than picked 

numbers in the current row, Now the algorithm checks the difference between this 

value and the previous elements in the same row with mod(p). So in this case, by 

checking the condition (4.8) between the current row and the (current row – 1) we get: 

(11 – 15)mod(20) = 16 

(12 – 13)mod(20) = 19 

Reject = 0  

(11 – 2)mod(20) = 9 
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(12 – 10)mod(20) = 2 

Reject = 0 

(11 – 10)mod(20) = 1 

(12 – 4)mod(20) = 12 

Reject = 0 

(11 – 5)mod(20) = 6 

(12 – 14)mod(20) = 18 

Reject = 0 

(11 – 13)mod(20) = 18 

(12 – 9)mod(20) = 3 

Reject = 0 

The flag 'Reject' returns 1 if the two values are equal. Now check the condition (4.8) 

between the current row and the (current row – 2). 

(11 – 15)mod(20) = 16 

(4 – 6)mod(20) = 18 

Reject = 0  

(11 – 2)mod(20) = 9 

(4 – 8)mod(20) = 16 

Reject = 0 

(11 – 10)mod(20) = 1 

(4 – 7)mod(20) = 17 

Reject = 0 

(11 – 5)mod(20) = 6 

(4 – 20)mod(20) = 4 

Reject = 0 

(11 – 13)mod(20) = 18 

(4 – 16)mod(20) = 8 

Reject = 0 

 

And the algorithm continues until the value satisfies condition (4.8). The result will be 

a matrix with girth g = 6 with dimentions 80 by 120 with 480 ones distributed 

regularly. 
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Figure 4.3: Parity Check Matrix of code (120, 40) of design rate 1/3 

constructed with J = 4, L = 6, p = 20. 

 
The rank of the generated parity check matrix is found to be in this case 77, thus the 

actual rate is in this case R = 43/120 = 0.3583. 

There are some observations and comments about random construction of QC-LDPC 

codes based on column permutation method listed below: 

- This method does not guarantee a full rank parity check matrix, thus it is hard 

to construct a code with specific length. 

- The construction of the parity check matrix is not guaranteed from the first 

trial of running the algorithm; therefore the amount of time needed cannot be 

predetermined. 

- Enlarging the block length for a given row and column weights can help 

avoiding the occurrence of overlapping of circulant matrices. 
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4.3 Design Parameters of QC-LDPC codes 

QC-LDPC codes are characterized into two families, Random constructions as in 4.2 

and structured constructions as in 4.1. In random construction LDPC codes, the 

smallest value of p to be chosen for a (J, L) regular QC-LDPC is found by computer 

search as in table 4.1. a theoretical limit was derived in [19] as the following: For 

codes with girth ≥ 6 a necessary condition for finding a code is p ≥ L, or N ≥ L
2
 if L is 

odd, and p ≥ L + 1 or N ≥ L(L – 1) if L is even. For obtaining a code with girth ≥ 8 a 

necessary condition is p > (L – 1)(J – 1) or N > (L – 1)(J – 1)L. 

       L 

J 

4 5 6 7 8 9 10 11 12 

3 5 5 7 7 9 9 11 11 13 

4 - 5 7 7 9 10 11 11 13 

5 - - 7 7 9 10 11 11 13 

Table 4.2: smallest value for p for a (J, L) - regular QC-LDPC code with girth  

g ≥ 6 found by computer search [19]. 

Another important parameter is the minimum distance, in [51] the upper bound for the 

minimum Hamming distance of a (J, L) regular QC-LDPC code is given by dH ≤ (J + 

1)!. Therefore, the minimum distance cannot increase with increasing the code length 

N, which leads to the suggestion that QC-LDPC codes are compared only to random 

codes of short and medium lengths. 

The following figures 4.4-4.5 show the BER performance of different lengths and 

rates of QC-LDPC codes, the simulation shows the efficiency of QC-LDPC codes 

with short and moderate lengths. 
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Figure 4.4: BER performance of QC-LDPC codes of different lengths with R = 

1/2.  

 

Figure 4.5: BER performance of QC-LDPC codes of different lengths with R = 

2/3.  
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Chapter 5 

LDPC code construction using randomly 
permutated copies of parity check matrix 

In this chapter, a method to generate LDPC codes of multiple lengths starting from 

previously constructed codes is introduced. The idea starts from the same idea of QC-

LDPC codes. In constructing QC-LDPC codes, we first construct the model matrix Ȟc 

where its entries refer to the number of shifts applied to an identity matrix placed at 

the same address in the parity check matrix. The design is introduced in the following 

sections. 

5.1 Construction of LDPC code using identity seed matrix 

In the following design, we consider having a base parity check matrix Hb of 

dimensions N × m represented by:  



























1,11,10,1

1,11,10,1

1,01,00,0

Nmmm

N

N

b

ccc

ccc

ccc

H









   (5.1) 

Hb must satisfy the constraints of LDPC design, where g ≥ 6, λ = 0 or 1. Entries of Hb 

are binary data denoted by ci,j where ci,j ϵ {0, 1}, 0 ≤ j ≤ m – 1 and 0 ≤ i ≤ N – 1  

Definition 5.1: An identity sub-matrix Ip called identity seed and all-zeros square sub-

matrix Op with dimensions p × p are defined, where p is an integer and p ≥ 2. The 

construction is done by constructing an all-zeros parity check matrix H of dimensions 

Np × mp divided into a number of (Nm) sub-matrices of dimensions p × p, and then 

the base matrix Hb is used as a model matrix to construct H by replacing each 1 and 0 

in Hb by Ip and Op in H respectively. The resulted H has the same row and column 

weights of Hb. 

In the following, we show an arbitrary example of the construction. 
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Example 5.1: Consider a (2, 3)-regular code of parity check matrix of dimensions (6 

× 4) obtained from Euclidean geometry construction and represented by the parity 

check matrix: 

This matrix defines the regular-LDPC code which has a length of N = 6 with a rate R 

= 1/3. Let us assume that we want to construct a regular code with length N = 12 of 

the same rate, thus we define I2 and O2 by: 

 

 

Now we replace each 1 by I2 and each 0 by O2, and the resulted H matrix is: 

 

 

 

which is equivalent to: 

 

 

 

 

 

 

The resultant matrix represents a (2, 3)-regular LDPC code of length of N = 12, and 

rate R = 1/3. 

 

Theorem 5.1: A parity check matrix constructed by definition 5.1 has a girth equal to 

the girth of the base matrix Hb. 
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Proof: the girth is calculated by counting the straight edges that connect between '1's 

starting and ending at the same 1 entry in the parity check matrix, since the 

construction expands the parity check matrix with identity and all zeros matrices, then 

the construction do not change horizontal and vertical positions of the ones, nor adds 

ones between existed '1's in the matrix, where the length of the edges just increases by 

multiples equal to p. The insertion of identity seed results in new cycles of the same 

length which keeps the girth equal to the same girth in the base matrix. 

 

 

 

 

 

 

. 

 

 

Theorem 5.2: The rank of H is equal to Rank(Hb) × p. 

Proof: The rank of matrix Hb is defined by the maximum number of independent rows 

in the matrix, the construction of H in definition 5.1 keeps the positions of horizontal 

and vertical '1's fixed without adding '1's between the original '1's, which preserves 

the relation of dependency or independency between rows fixed. Since row reduction 

method operations between rows will result in the same rows in Hb but with zeros 

from the expansion added to the row. The shifted expanded copies of the original 

rows are independent of original rows which results in (p – 1) copies of original rows 

independent from the original and have the same relations with their rows, which 

leads to the relation: 

Rank(H) = p • Rank(Hb) 

 

Corollary 5.1: The rate R of H is equal to the rate Rb of Hb. 

The rate of Hb is given by Rb = (N – Rank(Hb))/N, the rate of H is given by R= (pN – 

p•Rank(Hb))/(pN) = p(N – Rank(Hb)/(pN) = (N – Rank(Hb))/N. Thus R = Rb. 
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Figure 5.1: A graphical representation of cycles of girth g = 6 resulted from the 

construction in definition 5.1. 
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Sparsity of H: 

The proposed construction keeps the degree of variable nodes and check nodes fixed. 

The insertion of the identity matrices leads to sparser H matrix. Suppose that in Hb the 

total number of '1's is given by e, and the total number of entries is s, then the density 

Db of Hb is e/s. The number of '1's in H matrix is then equal to (pe) and the total 

entries is now equal to p
2
s, the density of H is pe/(p

2
s) = e/(ps). So the relation 

between D and Db is given by: 

D = Db/p 
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(a) 

(b) 

Figure 5.2: (a) Construction of H matrix with an identity seed of size 3 × 3. (b) 

Corresponding Tanner graph of the H matrix. (c) The same Tanner graph in part 

(b) after rearrangement of nodes shows the separation of edges between the three 

copies. 

(c) 
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5.2 Graphical Perspective 

The proposed code construction is similar to protograph construction describe in 

3.1.5. The corresponding Tanner graph results in p separated copies of the base matrix 

Hb. The copies are not connected by any edge between their check and variable nodes 

as shown in figure 5.2c. The advantage of this construction is decreasing the time of 

decoding to about 1/p of the decoding time, since each copy can be implemented 

individually and semi parallel with other copies as in [52]. The problem in this type of 

construction is in decoding process when a data bit is received at a variable node that 

belongs to one of the copies, the outgoing messages of that bit are sent only among its 

parent copy, and at the same time it receives messages only from the check nodes 

from the same parent copy, thus it cannot benefit from the information sent from bits 

in the other copies with strong probabilities of receiving a correct bit. Also the girth 

average of variable nodes is not changed where increasing the number of columns and 

rows with decreasing the density of ones in the matrix is expected to increase the girth 

average of its Tanner graph, where increasing the girth average enhances the decoding 

performance [31]. 

5.3 Construction of LDPC code using randomly permutated identity 

seed matrix 

To solve the problem of independency between copies we introduce an enhancement 

in definition 5.2 that interchanges the connections of edges between all variable nodes 

and check nodes all over the copies and increases the girth average of the code. 

Definition 5.2: The identity seed matrix Ip is replaced by a randomly permutated 

identity matrix of dimensions p × p with regular column and row weights of 1, in 

other words each row contains 1 in a unique random column. And each 0 in the base 

matrix is replaced as in definition 5.1. 

The graphical correspondence of permutations in definition 5.2 is that for a variable 

node V1 connected to check node C1 by edge E, the edges of the p copies of V1 are 

permutated across the p copies of C1 where each copy of V1 is connected with only 

one copy of C1. 
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The proposed construction can be represented by a model matrix since each 1 in the 

original matrix is replaced by a randomly permutated identity matrix Ip(r) called 

random seed selected from a space of p! different matrices, where 0 ≤ r ≤ p! – 1. Each 

permutated identity matrix is assigned a number r which indicates which Ip(r) to be 

replaced. 

Figure 5.4 shows an example of a 6 random seeds generated by choosing p = 3, each 

assigned by a number, and figure 5.5 shows the model matrix for H in figure 5.3 
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Figure 5.4: The 6 possible random seeds generated when p = 3. 
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Figure 5.3: (a) H matrix of LDPC code of length N = 18, R = 1/3, with j = 2 and    

k = 3 constructed by definition 5.2. (b) The corresponding Tanner graph of H. 
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Figure 5.5: The model matrix Ȟc for H in figure 5.3a. 

The proposed construction differs from protograph LDPC code construction is the 

ability of storing the addresses of permutated matrices and calling the addresses by a 

simple address generation mechanism from the model matrix. This helps in reducing 

the memory for storing the m × N matrix. Another advantage of construction from 

definition 5.2 is when constructing starting by a bad seed matrix generated with a 

random method containing 4 cycles, the construction can reduce the number of 

removed bit resulted by any method of removing loops algorithms [53] in order to 

enhance the decoding performance of the code as illustrated in the following 

theorem.. 

Theorem 5.3 The Girth of code constructed by definition 5.3 is greater than or equal 

to the girth of the base matrix.  

Proof: The girth of the proposed code is guaranteed to be greater than or equal to the 

girth of the base matrix, this belongs to the fact that the insertion of random seeds in 

the base matrix, adds cycles of the same length of the existed cycles in the base matrix 

distributed by the randomness of the positions of 1's in each seed matrix which allows 

the path of old cycles to pass over the possible position of old ones to construct larger 

cycles. So the random distribution of ones in each seed results in enlarging the length 

of cycles in corresponding Tanner graph and keeps the girth of the base matrix which 

is the reason why the proposed construction can reduce number of 4 cycles in bad 

base matrices. 

Theorem 5.4: The memory storage needed for storing entries of a LDPC parity check 

matrix constructed by random seed method is equal to 1/p
2
 of the memory storage 

needed for entries of a random LDPC code with the same length. 

Proof: Suppose a base H matrix with dimensions a × b is designed and a seed of 

dimension p × p is inserted to construct a LDPC code by definition 5.2 that has the 
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same length of a random LDPC code. The new number of entries is then (ap)(bp) = 

abp
2
. The model matrix has a number of entries equal to ab. Thus the memory storage 

needed for the model matrix is 1/p
2
 of entries of H. 

5.4 Construction of LDPC code using seeds of circulant identity 

matrices 

The proposed construction proposed in definition 5.2 helps in reducing the memory to 

store and construct random entries of the LDPC H matrix by a factor of 1/p
2
. An 

example is when a construction of a LDPC code with of length N = 3000 and rate R = 

1/2 is done using a random seed with p = 100, it results in a model matrix with 

dimensions of 15 by 30 instead of 1500 by 3000, and the construction can be achieved 

by a simple random generation of numbers that refers to a predefined random seeds. It 

also preserves the performance of same length code constructed by the same method 

the base matrix is constructed by. A drawback of the proposed construction in 

definition 5.2 is when choosing a large seed matrix in order to get a long length code 

from a small base matrix, the number of all possible random seeds of dimensions p × 

p is growing to exceed the number of 1's in the base matrix. And each 1 in the base 

matrix has the possibility to be replaced with a different seed matrix, which leads to 

storing a number of seeds that are probably greater than the number of ones in the 

sparse base matrix, and that reduces the efficiency of the code design. Recalling the 

base matrix represented in example 5.1, if p is chosen to be 4, the number of possible 

matrices to be generated is 4! = 24, but the number of matrices to be used is upper-

bounded by the total number of ones in the base matrix which is 12 in this case, so to 

overcome this problem we can limit the number of seeds by the total number of 1's in 

the base matrix in order not to store unused seeds. Another problem in this type of 

construction appears when using a large p seeds with a relatively large base matrix 

with many 1's entries, in this case the random generation will result in too many 

different seeds to be stored, and the advantage of reducing the memory space of H 

matrix will be violated by the large number of stored seeds. So it is recommended to 

use of codes from definition 5.2 only when the dimensions of base matrix are small 

with large p seeds, or when the base matrix is large using small p seeds 

In order to overcome the restrictions in constructing codes by definition 5.2, we 

suggest degreasing the number of choices to be equal to p instead of p! by taking the 
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seed matrix Ip with its p – 1 circulant matrices to be the only available choices, the 

insertion of only p circulant matrices turns the code into a QC-LDPC code similar to 

[54]. The randomness in choosing the seed to be inserted keeps the girth of the 

constructed code greater than or equal to the original girth of the base matrix as in 

theorem 5.2. The quasi cyclic property of the code allows linear encoding with shift 

registers [55, pp. 256–261]. The performance of the QC-LDPC codes generated by 

this method is found to be similar in BER performance of codes from definition 5.2. 

5.5 Simulation and Results 

In this section, we represent the performance results for the proposed LDPC codes by 

comparing the BER of codes designed by the proposed construction with codes from 

random constructions such as Gallager codes and with classic random QC-LDPC 

codes. In additive white Gaussian noise (AWGN) channel, we use Implementation-

efficient Reliability Ratio Based Weighted Bit-Flipping (IRRWBF) [56] to decode 

LDPC codes. And all simulations use maximum iteration number of 80. In the first 

example we compare the performance of a LDPC Gallager code (504, 3, 6) with a 

LDPC code constructed using a base matrix Hb constructed by a LDPC Gallager code 

with (168, 3 ,6) and a random seed with p = 3. The resulted H matrix is of a LDPC 

code of length N = 504 of the same rate. It can be seen in figure 5.6 and figure 5.7 that 

the BER performance of the proposed codes is very close to Gallager's and MacKay's 

codes. Since both of constructions have similar BER performance, the proposed code 

still has an advantage over random codes such as Gallager's and MacKay's is that it 

reduces the memory usage by having addresses of each random seed. The 

construction with identity seeds shows degradation of the performance of the 

extended code. 

The second example represents a comparison between the proposed code with rate R 

= 1/2, j = 3, k = 6 constructed with classic random QC-LDPC base matrix of m = 9 

with a seed I3(r) to give a block length N = 162, and with a classic random QC-LDPC 

of the same length with circulant identity matrices with m = 27. The results in figure 

5.7 show that proposed codes constructed by a QC-LDPC base, outperform the 

original code constructed with the same QC-LDPC matrix. 
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The proposed code also outperforms the classic QC-LDPC codes with different rates 

and block lengths as shown in figure 5.8 and figure 5.9. 
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Figure 5.6: BER performance of (504, 3, 6) proposed code designed with base 

of Gallager H with random seed of p = 3, and with an identity seed of p = 3, 

compared to Gallager code with length N = 504. 

Figure 5.7: BER performance of proposed codes with (504, 3, 6), with random 

seed of p = 3, and Mackay's and Gallager's codes of the same length. 
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The following figure shows the effect of proposed code on decreasing the number 

of 4 cycles in a bad constructed Hb. the removing of bits in order to get a free 4 

cycle graph degrade the decoding performance, so removing less ones with 

respect to the constructed size of H reduce the degrading in decoding 

performance. 
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Figure 5.8: BER performance of proposed codes with rate R = 2/3 and a classic 

random QC-LDPC code with the same rate and block length N = 324. 

Figure 5.9: BER performance of proposed codes with rate R =1/2 and a classic 

random QC-LDPC code with the same rate and block length N = 288. 
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Figure 5.11: BER performance of proposed QC-LDPC code with N = 360 and 

code with random seeds, compared to Gallager code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.10: BER performance of (90, 6, 3) proposed codes, shows the effect of 

reducing 4 cycles in corresponding Tanner graph of H matrix. 
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Figure 5.12: BER performance of proposed QC-LDPC code with N = 360 and 

code with random seeds, compared to MacKay code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 shows the performance of proposed QC-LDPC code compared to 

code generated by definition 5.2. Both constructions appear to have the same 

BER performance, taking in mind the advantage of QC-LDPC codes over the 

other proposed design in encoding process and in decreasing the number of stored 

seed matrices. Figure 5.12 shows comparison between constructions using a seed 

of MacKay code. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

The main subject of this thesis is to study various construction methods of LDPC 

codes and to understand the advantages and disadvantages of each type. The main 

issue between random construction methods and structured methods is the trade-off 

between the need of high memory storage for randomly constructed codes and the 

easy implementation of structured codes, taking in account the outperforming of 

random codes in large block lengths over structured codes. 

Thus, the objective that comes up is to construct LDPC codes that have good BER 

performance, and are also easy to be implemented in hardware. We achieved our 

objectives by developing new LDPC code construction method that reduces the 

memory usage for storing H matrix by a factor of 1/p
2
 and performs similar to fully 

random codes such as Gallager's and MacKay's. Also experimental results show that 

the proposed codes outperform classic random QC-LDPC codes. Another advantage 

is that it can reduce the number of ones to be removed in order to get rid of 4 cycles 

which degrade the decoding performance. We constructed LDPC codes with various 

lengths and rates and we show that the proposed method works well in designing 

block type LDPC codes. 

 

6.2 Future work 

The proposed code showed that it performs as good as random codes. Further analysis 

of the obtained codes is needed to improve the performance in terms of girth, and how 

to improve girth of the constructed codes. Also analysis of the obtained codes in terms 

of minimum distance is required. Also further BER simulations at different lengths 

and rates will be necessary to evaluate the stability of performance of these codes for 

some applications. 

A detailed study of hardware implementations of the proposed code is necessary to 

have a better comparison with different constructions. 
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