
Islamic University of Gaza (IUG)

Deanery of Post Graduate Studies

Faculty of Engineering

Electrical Engineering Department

CONSTRUCTION OF LDPC CODES

USING RANDOMLY PERMUTATED

COPIES OF PARITY CHECK MATRIX

By:

Amr Yehia Lulu

Supervised By:

 Dr. Ammar Abu Hadrous

Thesis submitted in partial fulfillment of the requirements for

the degree of Master of Engineering Science.

June, 2012

II

III

Abstract

Low-density parity-check codes (LDPC) have been shown to have good error

correcting performance, putting in mind the Shannon's limit approaching capability.

This enables an efficient and reliable communication. However, the construction

method of LDPC code can vary over a wide range of parameters such as rate, girth

and length. There is a need to develop methods of constructing codes over a wide

range of rates and lengths with good performance.

This research studies the construction of LDPC codes in randomized and structured

form. The contribution of this thesis is introducing a method called "Randomly

permutated copies of parity check matrix" that uses a base parity check matrix

designed by a random or structured construction method such as Gallager or QC-

LDPC codes respectively to get codes with multiple lengths and same rate of the base

matrix. This is done by using a seed matrix with row and column weights of one,

distributed randomly and can be addressed by a number in the base matrix. This

method reduces the memory space needed for storing large parity check matrices, and

also reduces the probability of failing to construct a parity matrix by random

approaches. Numerical results show that the proposed construction performs similarly

to random codes with the same length and rate as in Gallager's and Mackay's codes. It

also increases the girth average of the Tanner graph and reduces the number of 4

cycles in the resulted matrix if exists in a base graph.

IV

 ملخص الأطروحة

مع الاخذ في . صحيح الأخطاءاستطاعت الأكواد ذات مصفوفات الفحص قليلة الكثافة أن تعطي أداء جيداَ لت

. هذه الخاصية تمكن من الحصول على اتصال فعال وحقيقي. الاعتبار قدرتها على الأداء قريبا من نهاية شانون

تبقى هناك حاجه لتطوير . توجد العديد من الطرق لبناء هذا النوع من الاكواد وتتغير حسب معدل وطول الكود

 .حصول على شريحه واسعه من المعدلات والاطوال ذات أداء فعال وجيدطرق بناء هذا النوع من الاكواد لل

يتطرق هذا البحث إلى دراسه وعرض طرق بناء هذا النوع من الاكواد بطرقه المختلفه مثل الاكواد المبنية

بطريقه عشوائية التركيب مثل أكواد جالاجر، والاكواد المبنية بطريقه منظمة ذات نسق ونموذج معروف مثل

الإضافة التي تضيفها هذه الاطروحة هي تقديم طريقة جديده لبناء الأكواد ذات . الاكواد ذات الطبيعة الدائرية

مصفوفات الفحص قليلة الكثافة تستخدم مصفوفات سابقة البناء كأساس للبناء وللحصول على أكواد ذات أطوال

طريق استخدام مصفوفه وحدة موزعه بشكل يتم ذلك عن . مضاعفة من نفس طول الكود الأساسي وبنفس المعدل

هذا الأسلوب يقلل من الذاكرة المستخدمة . ويمكن تمييزها برقم عند إدراجها في المصفوفه الأساسية، عشوائي

النتائج العددية ايضاً تدل على ان البناء المقترح يزيد . ويقلل من احتمال حدوث فشل في البناء بالطريقة العشوائية

الدوائر في رسومات تانر الدالة على المصفوفة، ويقلل من عدد الدورات ذات الطول الرباعي من متوسط طول

 .في المصفوفة الاساسية

V

Dedication and

Acknowledgment

To The Soul of My Beloved Father

Yehia M. Lulu

And

To my struggling Mother

I would also want to thank my supervisor Dr. Ammar Abu Hadrous for his

support and trust during my work on this thesis, and also during his helpful

courses. And Last but not least, I would like to thank my wife for standing

beside me throughout all the crises we faced during writing this thesis.

VI

Contents

1 Introduction

1.1 Communication Systems and Reliable Transmission……………………

1.2 LDPC Codes……………………………………………………………..

1.3 Problem Statement……………………………………………………….

1.4 Objectives………………………………………………………………..

1.5 Thesis Outline……………………………………………………………

1

1

2

4

5

5

2 LDPC Codes

2.1 Linear Block Codes……………………………………………………...

2.2 Low-Density Parity Check Codes……………………………………….

2.3 Tanner Graph…………………………………………………………….

2.4 Encoding of LDPC………………………………………………………

2.5 Decoding of LDPC………………………………………………………

2.5.1 Bit-Flip Algorithm (Hard Decision Decoding)………………….

2.5.2 Message Passing Algorithm (MPA)……………………………..

2.5.3 Log- domain Sum-Product Algorithm Decoder…………………

2.6 Designing and Optimizing LDPC codes…………………………………

2.6.1 Code Size………………………………………………………...

2.6.2 Code weight and Code Rate……………………………………..

2.6.3 Code Structure…………………………………………………...

2.6.4 Decoder Iterations……………………………………………….

2.6.5 Minimum Distance………………………………………………

2.6.6 Girth……………………………………………………………...

2.6.7 Density Evolution……………………………………………….

2.7 Modeling and Measuring Decoding Performance of LDPC codes….......

6

6

8

8

9

9

10

11

14

18

18

18

19

19

20

20

21

21

3 Constructing LDPC codes

3.1 Randomly Constructed LDPC Codes……………………………………

3.1.1 Gallager's Construction………………………………………….

3.1.2 MacKay's Constructions…………………………………………

3.1.3 Irregular LDPC codes……………………………………………

3.1.4 Progressive Edge-Growth Algorithm……………………………

3.1.5 Protograph LDPC codes…………………………………………

23

23

24

28

30

32

34

VII

3.2 Structured Construction of LDPC Codes………………………………..

3.2.1 Combinatorial Designs…………………………………………..

3.2.2 Euclidean Geometry LDPC code Construction (EG-LDPC).…...

35

36

37

4 Constructing Quasi-Cyclic LDPC Codes

4.1 Algebraic construction of LDPC codes based on circulant matrices…….

4.2 Construction of QC-LDPC Codes from Circulant Permutation Matrices

by search algorithm………………………………………………………

4.3 Design parameters of QC-LDPC codes………………………………….

40

40

43

47

5 LDPC code construction using randomly permutated copies of parity

check matrix………………………………………………………………...

5.1 Construction of LDPC code using identity seed matrix ………...............

5.2 Graphical Perspective…………………………………………………....

5.3 Construction of LDPC code using randomly permutated identity seed

matrix.……………………………………………………………………

5.4 Construction of LDPC code using seeds of circulant identity matrices..

5.5 Simulation and Results………………………………………………...…

49

49

53

53

56

57

6 Conclusions and Future Work……………………………………………...

 6.1 Conclusions………………………………………………………………

 6.2 Future Work……………………………………………………………...

62

62

62

Bibliography……………………………………………………………………... 63

VIII

List of figures

1.1: Basic Communication system block diagram……………………............. 2

1.2: Bit Error Rates of different codes shows the effectiveness of LDPC code

over other codes.………………………………………………………….

4

2.1: LDPC matrix example and Tanner graph representation………………... 8

2.2: Message Passing Decoding on Tanner Graph…………………………… 14

2.3: An iteration of message passing in Sum product algorithm. (a) The

computation of)(bqij . (b) The computation of)(br ji ……………………..

15

2.4: Tanner graph of H matrix of irregular code to be decoded by log-domain

SPA decoding algorithm………………………………………………….

16

3.1: An example of Gallager's Construction of a (20, 3, 4) parity check

matrix, where πi(H1) denotes a column permutation of H1……………….

25

3.2: BER Performance of different lengths of Gallager Codes with R = 1/2… 27

3.3: BER Performance of different lengths of Gallager Codes with R = 2/3… 27

3.4: BER Performance of ensemble 2 of MacKay LDPC codes with and

without removing cycles of length 4……………………………………...

29

3.5: BER Performance of ensemble 3 of MacKay LDPC codes with and

without removing cycles of length 4……………………………………..

29

3.6: H matrix with corresponding Tanner graph with l2 = 4/5, l3 = 1/5 and r3

= 1/3, r4 = 2/3, λ2 = 8/11, λ3 = 3/11, ρ3 = 3/11, ρ4 = 8/11………………...

30

3.7: A tree that shows the depth l for a variable node ʋj……………………… 34

3.8: An example of a protograph and the corresponding base matrix………... 34

3.9: Illustration of the protograph copy and permute procedure with Q = 4

copies……………………………………………………………………..

35

3.10: The corresponding parity check matrix of a (9, 3, 1)-BIBD…………….. 36

3.11: A graphical representation of a finite geometry with ρ = 2, γ = 3 and the

corresponding incidence matrix.………………………………………….

38

4.1: A [5219, 4300] QC-LDPC code, constructed with m = 307, a = 9, and b

= 17 where o(a) = 17 and o(b) = 3………………………………………..

42

4.2: An example of Identity matrix of dimensions 4 × 4 with columns

permutated 3 positions to the left and denoted by I(3)……….………......

43

4.3: Parity Check Matrix of code (120, 40) of design rate 1/3 constructed

IX

with J = 4, L = 6, p = 20………………………………...………………... 46

4.4: BER performance of QC-LDPC codes of different lengths with R = 1/2.. 48

4.5: BER performance of QC-LDPC codes of different lengths with R = 2/3.. 48

5.1: A graphical representation of cycles of girth g = 6 resulted from the

construction in definition 5.1……………………………………………..

51

5.2: (a) Construction of H matrix with an identity seed of size 3 × 3. (b)

Corresponding Tanner graph of the H matrix. (c) The same Tanner

graph in part (b) after rearrangement of nodes shows the separation of

edges between the three copies.…………………………………………

52

5.3: (a) H matrix of LDPC code of length N = 18, R = 1/3, with j = 2 and k =

3 constructed by definition 5.2. (b) The corresponding Tanner graph of

H.…………………………..

54

5.4: The 6 possible random seeds generated when p = 3………………...…… 54

5.5: The model matrix Ȟc for H in figure 5.3a………………………………... 55

5.6: BER performance of (504, 3, 6) proposed code designed with base of

Gallager H with random seed of p = 3, and with an identity seed of p =

3, compared to Gallager code with length N = 504.………………………

58

5.7: BER performance of proposed codes with (504, 3, 6), with random seed

of p = 3, and Mackay's and Gallager's codes of the same length………...

58

5.8: BER performance of proposed codes with rate R = 2/3 and a classic

random QC-LDPC code with the same rate and block length N = 324......

59

5.9: BER performance of proposed code with rate R =1/2 and a classic

random QC-LDPC code with the same rate and block length N = 288......

59

5.10: BER performance of (90, 6, 3) proposed code, shows the effect of

reducing 4 cycles in corresponding Tanner graph of H matrix…………..

60

5.11: BER performance of proposed QC-LDPC code with N = 360 and code

with random seeds, compared to Gallager code...………………………..

60

5.12: BER performance of proposed QC-LDPC code with N = 360 and code

with random seeds, compared to MacKay code.……..…………………..

61

X

List of Tables

3.1: A Summary of EG-LDPC codes…………………………………………... 39

4.1: Examples of QC-LDPC codes constructed from (prime) circulant

sizes………………………………………………………………………..

42

4.2: Smallest value for p for a (J, L)-regular QC-LDPC code with girth g ≥ 6

found by computer search…………………………………………………

47

XI

List of Abbreviations

AWGN Additive White Gaussian Noise

BCH The Bose, Chaudhuri, and Hocquenghem

BER Bit Error Rate

BF Belief Propagation

BIBD Balanced Incomplete Block Design

BPSK Binary Phase Shift Key

ECC Error Correcting Code

EG Euclidean Geometry

GF Galois Field

IRRWBF Implementation Efficient Reliability Ratio Based Weighted Bit-

Flipping

LDPC Low Density Parity Check

LLR Log-Likelihood Ratio

MPA Message Passing Algorithm

PEG Progressive Edge-Growth Algorithm

QC-LDPC Quasi Cyclic-Low Density Parity Check

SNR Signal to Noise Ratio

WER Word Error Rate

1

Chapter 1
Introduction

1.1 Communication Systems and Reliable Transmission

The goal behind communication systems is to transmit data from a source to a

destination. Transmission is done through different mediums like air, wires or optical

fibers. These mediums can't keep the originality of data at the source, and they add

noise that changes the data according to the level of noise in that medium. The noise

added by mediums results in errors that lead to the unreliability problem in

communication systems.

In 1948, a remarkable historical innovated work by Shannon [1] showed the limit of

reliable transmission of data over noisy channels and suggestions to achieve that, he

also defined the capacity of a channel as a number that reliable transmission can be

obtained within it. The reliable transmission of data can be achieved by having a code

with arbitrary data rate close to the capacity of the channel and it can correct all errors

as code length approaches infinity [1].

The study of channel codes began with the pioneered work of Hamming [2] and as

mentioned Shannon [1]. The error correcting process is achieved using error

correcting codes (ECCs), which are constructed by adding extra symbols that make

relations and bonds between the original data symbols. These bonds help in retrieving

the original symbols in case they are changed by the effect of the transmission process

in the channel. Without error correcting codes, data signals would be retransmitted in

case an error occurred at the destination, which in this case adds delay and cost to the

system. Another way than retransmission is increasing the power of transmission so

the power of signal overcomes the noise in the channel. This approach causes more

power waste and consumption in the system. Using the ECCs can increase both the

speed and throughput of the system and reduce the power consumption in the system.

The basic communication system is shown in figure 1.1; the information data is

encoded at the resource before transmission by adding redundancy symbols to the

original data based on an error correcting and detection algorithm. Then in the

modulation block the data is carried on high frequency signals and sent through the

2

channel where the noise is added and it changes symbols of the encoded data. At the

receiver, the received signal is demodulated and a stream of symbols including the

redundancy symbols is now in hand but with some errors in the data. After that, the

decoding block uses the bonds added by the coding algorithm to apply a decoding

algorithm that detects and corrects the stream of the received data to some extent. The

probability of having an error at the output of the system depends on many factors

like the code characteristics, the type of modulation, noise, interference level of the

channel and the signal power.

There is a tradeoff between the probability of having an error and the transmission

power. It will always be a researching point to try to minimize the power consumption

while maintaining a reliable communication. This point shows the need of having

stronger codes with more error correcting capability.

Several error correcting codes have been developed over decades to perform encoding

and decoding of data. They vary in their construction, performance, computation, and

implementation complexity. Some well known error correcting codes are

convolutional code, Reed Solomon, BCH, turbo and LDPC codes [3].

1.2 LDPC Codes

Low density parity check codes are a special type of error correcting codes that is

known for their good decoding performance and high throughput.

Low density parity check codes were first introduced by Robert Gallager in early 60's

[4, 5]. His work was ignored for decades because of its high computational

complexity for hardware implementation in that time.

Figure 1.1: Basic Communication system block diagram.

Channel
coding

Demodulator
Source
Coding

Source
Coding

Channel
coding Modulator

Channel +

Information
source

Receiver
Information

3

LDPC codes are decoded using a subclass of message passing algorithms [6]

introduced in Gallager's work named the belief propagation decoding algorithm. Its

strength is in the inherent parallelism of the message passing and the iterative

decoding behavior that is done by updating bit probabilities.

LDPC codes are designed starting from the parity check matrix, where two sets of

separated nodes called check and variable nodes are connected to points in the other

set based on some regulations and restrictions. The separation of sets allows parallel

decoding computations. In contrary, the decoding operations of turbo codes which are

the most competitors to LDPC codes, depends on each other in blocks or windows [7]

which results in serial computations. LDPC codes have simple graphical

representation based on Tanner graph [8] that leads to accurate analysis of

performance, also it helps optimizing the designs of regular and irregular

constructions.

The complexity problem of computations in LDPC decoding algorithms is reduced by

approximation techniques without significant affecting on the performance. Another

good property of LDPC codes is having good distance properties, which is one of the

main challenges in designing of LDPC codes.

After many years MacKay [9] rediscovered LDPC codes and showed that they

perform close to the capacity limits of turbo codes. The work of MacKay was

extended by Luby [10] to show that irregular LDPC codes are capable of exceeding

the performance of regular LDPC codes, and he also introduced approaches to design

irregular codes. Richardson and Urbanke [6] extended that work to soft decision

message passing decoding and introduce a method called density evolution. Chung

[11] showed that, with carefully choosing an irregular LDPC code from an optimized

ensemble, performance of LDPC codes can approach the Shannon limit.

The construction and decoding of LDPC codes results in a low error rates that is close

to Shannon limit. A threshold of 0.0045 dB away from Shannon limit is achieved with

a LDPC code of rate 1/2 and a block length of 10
7
 bits with additive white Gaussian

noise [11]. Figure 1.2 shows the effectiveness of different LDPC codes over other

codes.

4

1.3 Problem Statement

Construction methods of LDPC codes are either random or structured. Random

methods have unstructured row-column connections and generated by computer

searches. Construction can be done by designing Tanner graphs that can produce

undesirable cycles of four and may not produce a desired rate, but still can be

optimized by post processing or by having constrains on the code. Random

construction codes are desired to produce high rates and girths, also when long length

codes are desired then random construction codes are to be used. They are

characterized by flexibility in design and in construction. At the same time they lack

regularity in row-column construction which increases the decoder interconnection

complexity. Structured constructions have regular interconnection patterns that give

good performance and are easier to implement in hardware but with limitations in

rate, length and girth.

There are a lot of developed methods that include algebra [13], graph [14],

combinatorial designs [15] and heuristic searching techniques [16-19]. The

construction of LDPC code determines how good the decoding performance and

hardware implementation will be.

Figure 1.2 [12]: Bit Error Rates of different codes shows the effectiveness of LDPC

code over other codes.

5

1.4 Objectives

 Analyzing and comparing the performance of different LDPC randomized

construction algorithms and methods.

 Analyzing and comparing the performance of different LDPC structured

construction algorithms and methods.

 Constructing LDPC codes that have a good performance which are also easy to

implement.

 Publishing the research results in prestigious IEEE journals and in proceedings of

highly reputed, refereed international conferences.

1.5 Thesis Outline

This thesis is organized as follows. In chapter 2, we provide a brief review of LDPC

codes, including representations of LDPC cods, encoding, decoding algorithms, and

optimization of LDPC codes parameters. In chapter 3 we introduce different methods

and schemes of LDPC codes construction. In chapter 4, Quasi-Cyclic LDPC codes

with different construction methods are reviewed. In chapter 5 we examine a method

of extending a base LDPC parity check matrix by a use of a randomly permutated

identity matrix and finding the analyses of the performance of constructed codes

under this modification. And finally, chapter 6 includes conclusions and future work

for this thesis.

6

Chapter 2
LDPC Codes

2.1 Linear Block codes

The error correcting codes are obtained by adding additional bits to the original data

to be transmitted. These bits are redundant and used to detect and correct errors on the

received data. In linear block codes the original data are divided into blocks of fixed

lengths of K bits. Based on certain rules and regulations each symbol or bit is

expressed as a linear combination of other bits or symbols of block length N called

codewords, where N > K, the redundancy, m = N – K, determines the code rate R =

K/N, which is a measure on how much information is sent per codeword. The term

linear code refers to the property where the sum of any subset of codewords is always

equal to a codeword from the code space.

With K bits in the input message, there are 2
K
 possible messages encoded to the same

number of possible codewords of length N. Thus there are 2
N
 – 2

K
 vectors of length N

that are not codewords, which is a necessary and sufficient condition for error

detection.

A simple encoding requires the encoder to store all possible combination of

codewords. But this approach is not efficient for large K. The linear block codes can

reduce the complexity of encoding by using a linear generator matrix that transforms

original data of K bits to codewords of length N. The linearity leads to the

construction of generator matrix that consists of K independent row vectors g0…gK – 1

of size N. It is expressed as:

)1.2(

.

.

.

1

2

1

0

K

K

g

g

g

g

G

7

Where two vectors are called linearly independent if the sum in GF(2) of these

vectors is non zero, and called the basis of the space since they can span out all code

vectors in the space.

The codewords are generated by multiplying an input vector a by the generator

matrix, each 1 in the input vector refers to the row of generator to be added to the

combination of independent rows which will result in the unique codeword c, where c

= aG. This reduces the space complexity from 2
K
×N which is all possible codewords

in the space to K×N, the generator matrix dimensions.

The dual code C
┴
 with dimensions N × m is a linear code called the null space of code

C where the cross product of some codes in C and codes in C
┴
 is 0, the dual space of a

linear code is used to derive the parity check matrix H that relates the generator

matrix by GH
T
 = 0 and it is used to check if the received word v is indeed a word, this

is guaranteed if

This property is used to detect and correct errors. The construction of generator matrix

can be done in systematic and nonsystematic form. In the first type G = [IK | P] and H

is derived as

where IK is the K×K identity matrix, and P is a random matrix with dimensions m×N.

The generator matrix is reformed to get the systematic form by Gaussian elimination,

and then the transpose of P is obtained to construct the parity check matrix H, also the

generator matrix can be derived from the parity check matrix if G is given using the

same way.

The weight of a code vector is the number of 1's entries. Minimum distance of a linear

code dmin is defined as the minimum number of different bits between two codewords,

which is a fundamental property that shows the error correcting capability of a code,

hence increasing the minimum distance improves the error correcting capability,

referring to the relations, s ≤ dmin – 1 and t ≤ (dmin – 1)/2 where s is number of detected

errors, and t is the number errors to be corrected.

)2.2(0TvH

)3.2(]|[m

T IPH

8

2.2 Low-Density Parity Check Codes

Low density parity check matrix are a class of linear block codes defined by a sparse

parity check matrix H with dimensions m×N. A matrix is called sparse if its density is

less than 0.5 and very sparse if the density remains constant while N → ∞ [20]. The

term density refers to the average weight distribution taken over all row vectors in the

matrix. The set of LDPC codewords c ϵ C in the code space C of length N, spans the

null space of the parity check matrix H in which: cH
T
 = 0, Thus LDPC codes are

given as the null space of a sparse matrix, rather than as the space generated by the

rows of that matrix. Considering only binary codes, the parity check matrix has a

small number of 1's compared to the number of 0's. The row weight k is the number of

1's in a row, the column weight j is the number of 1's in a column, if weights of rows

are equal to k, and weights of columns are equal to j, the parity check matrix is regular

LDPC code, otherwise it is an irregular parity check matrix, with always k > j. the rate

of regular LDPC code can be expressed as K/N = 1 – m/N, since the number of 1's in

the matrix is given by mk or Nj, then m/N = j/k, hence the rate can be express as 1 –

j/k.

2.3 Tanner Graph

LDPC codes can be represented by a bipartite graph called Tanner Graph [8], the

term bipartite refers to a set of nodes partitioned into two subsets in such a way that

all edges have a vertex in the first subset and another one in the second, and no edges

connect nodes within the same subset. The two subsets are called check nodes

representing rows, and variable nodes representing columns of the LDPC parity check

matrix. The entry Ha,b is 1 if the check node a is connected to the variable node b as

shown in figure 2.1

 Figure 2.1: LDPC matrix example and Tanner graph representation.

f1 f2 f3

11010

10101

01011

H

v1 v2 v3 v4 v5

9

From figure 2.1, f1....f3 represent the rows of H and v1....v5 are the columns of H, rows

and columns weights are equal to the edges connected to corresponding check nodes

and variable nodes in sequence. Tanner graph results in cycles of different lengths, a

cycle is defined by the path of edges starting and ending at the same node, the shortest

cycle in the graph is called girth, which is a fundamental property of LDPC code that

affects the performance of decoding. If column and rows have fixed number of 'one'

entries in each, then the code is a regular LDPC code, otherwise it is irregular LDPC

code.

2.4 Encoding of LDPC

Encoding of LDPC codes has been considered the major problem in restricting the use

of LDPC codes. LDPC encoding is done by the same way linear block codes are

encoded. Since LDPC codes are designed starting by the parity check matrix, the

generator is derived from H in systematic form H = [–P
T
 | Im], this needs rearranging

H matrix by Gaussian reduction to obtain a dense P matrix part that results in rows

and columns of non-fixed lengths. The generator matrix is derived and the data word

is multiplied by the generator to get the code. The denseness of P determines the

computational complexity of the encoder. The encoding complexity in this case is

O(N
2
) which is the major concern in LDPC codes, since it is not proportional to the

linear time decoding in LDPC. There are some innovated techniques to reduce

complexity of encoding process that reaches linear complexity of O(N) [21]. In

designing parity check matrix, we may get dependent rows that are reduced in

obtaining systematic forms without changing the code space. However, the existence

of redundant rows helps in overdefining the code and gives additional indicators that

help in the decoding process. A common approach for researches that are less

concerned about encoding process, is dealing with the 'all zeros' codeword, which is

valid in any linear code space, this helps to skip the encoding process altogether.

2.5 Decoding of LDPC

The process of decoding tries to recover the transmitted codeword c from the received

codeword v using the parity check matrix H, since cH
T
 = 0 defines the set of equations

that must be satisfied in order to retrieve the received codeword. The relations

10

between check nodes and variable nodes are taken from the Tanner graph where the

(mod 2) sum of the values attached to variable nodes returns 0 to the check node in

case the codeword is valid.

In his thesis, Gallager introduced two algorithms: the bit flipping algorithm based on

hard decision decoding, and the belief propagation algorithm based on soft decision

decoding, they are subclasses of message passing algorithms, which are an iterative

decoding algorithms where the passed messages are probability estimators sent

,updated and exchanged between variable and check nodes on the Tanner graph,

check nodes measure the reliability of bit probability using estimations form adjacent

variable nodes, the variable nodes estimate the probability that a given bit is 0 or 1

based on the estimation of the received bit from connected check nodes.

Operations in the decoding algorithm are simplified by implementing log domain to

replace multiplication and division operations by adding and subtracting, which

reduces the implementation complexity of the decoder.

2.5.1 Bit-Flip Algorithm (Hard Decision Decoding) [4]

As discussed above the bit flipping algorithm is a hard decision algorithm deals with

simple messages, where a variable node sends a message to a check node with a value

of 1 or 0, then check nodes send a message to its connected variable nodes with a

value of 1 or 0 declaring if it is satisfied or not.

Steps of Bit Flipping Algorithm:

Step 1: Initialization. Variable nodes are assigned corresponding bit values from the

received vector, and send these values as messages to the check nodes connected with

each variable node.

Step 2: Check Nodes Update. Each check node calculates a response for each

variable node connected assuming other bits are correct and sends a value that results

with a sum of 0 to satisfy the parity check equations. If all equations are satisfied the

algorithm terminates.

Step 3: Bit Update. The variable nodes receive values from check nodes and

determine if the original received bit is correct, depending on the majority voting of

11

values received from check nodes. This process is repeated until satisfying all parity

check equations or until number of suggested iterations is reached, if maximum

number of iterations is reached the algorithm terminates and declares failure to

converge. Note that the design of LDPC sparse H matrix ensures existence of one or

no transmission error in each parity check equation.

Regardless of the simpliness of this algorithm, there is major drawback in the fact of

operating on hard decision by the decoder ignoring all valuable information from the

channel when we are dealing with continuous output channels.

2.5.2 Message Passing Algorithm (MPA) [22, 23]

MPA is an iterative decoding algorithm that is used with codes represented by factor

graphs as in linear block codes and LDPC codes, it is also known by other names as

max-product and sum-product algorithm (SPA).

The message passing algorithm uses estimations of bit probabilities such as intrinsic

and extrinsic information of bits representing knowledge before and after an event in

sequence. The extrinsic information is about data being depending only on other

nodes, and it is not affected by the node it is sent to, in messages containing intrinsic

information, nodes will be dominated by its current value.

There are two types of probabilities that express the relation between a variable and

an event E, the first is a-priori probability of u with respect to E, which is the

probability that u is equal to a, and is denoted by:

)()(auPauP priori

E (2.4)

The second probability is a-posteriori probability of u with respect to E, which is the

probability of u given the outcome E and it is denoted by:

and it can be written as:

)5.2()|()(EauPauP post

E

)6.2()()|(
)(

1
)|(auPauEP

EP
EauP

12

The term)|(auEP is proportional to the extrinsic probability, that describes new

information for u obtained from E. and the extrinsic probability is given by:

Where d is a constant that normalize the probability sum to 1. Thus the relation

between these probabilities can be written as:

 (2.8)

Since our concern is binary case, we can use log-likelihood ratio (LLR) in which

probability of variable u is expressed in terms of a real number. Thus LLR of u is

defined as:

where p = P(u = 1). Now equation (2.6) can be rewritten as:

where LLR(u) is positive if p ≥ 0.5 and negative if p < 0.5. The extrinsic information

reflects the incremental gain in knowledge of a-posteriori information over a-priori

information. The message passing algorithm is based on a-priori, extrinsic and a-

posteriori probabilities. The a-priori information is taken from channel, where the

extrinsic information comes from other nodes. The steps for MPA iterative decoding

are listed below.

MPA iterative processes:

1. Initialization: decoder is initialized by giving variable nodes the values from the

received vector yn of n bits. The initial probability that the sent bit is 1 or 0 given the

received vector is calculated for each variable node by:

)()()(auPauPauP ext

E

priori

E

post

E

)9.2(
1

log
)0(

)1(
log)(

p

p

uP

uP
uLLR

)10.2()()()(uLLRuLLRuLLR ext

E

priori

E

post

E

)11.2(
)|0(

)|1(
ln)(

ii

ii

i
yuP

yuP
uL

)7.2()|()(auEdPauPext

E

13

where 0 < i < n – 1. In AWGN channel 2/2)(ii yuL , where σ
2
 is the noise

variance. Messages to check nodes and variable nodes, and check nodes LLRs are

initialized to zero by sending values on variable nodes to connected check nodes.

2. Updating Check nodes. In this step LLR and check to variable node messages are

calculated for each check nodes based on variable node messages. LLR for check

nodes of number m denoted by λj where 0 < j < m – 1 is given by:

where Ωi,j is the message from variable node i to check node j. check to variable

messages are given by:

2× atanh)13.2(
2

tanhln)ln(exp
,

ji

j

3. Updating variable nodes. LLR and outgoing messages of variable nodes are

calculated and LLR is given by:

LLR is the sum of all incoming messages with addition to the initial value of variable

node. Messages from variable node to check nodes are given by check nodes LLR

minus messages received on that edge as given:

4. Decision: The values of variable nodes are decided as 1 or 0 by the value λi, If λi <

0 then LLRi = 0, and LLRi = 1 if λi ≥ 0, if LLR × H
T
 = 0, then take the value of LLR as

an estimation of codeword cn at the decoder output, if not, go to step 2. Maximum

number of iterations is decided so the algorithm stops in case the algorithm doesn't

halt.

 ij ,

)12.2(
2

)(
tanhln

,

messagesall

ji

j

abs

)14.2()(,

messagesall

ijii uL

)15.2(,, jiiji

14

Figure 2.2: Message Passing Decoding on Tanner Graph.

2.5.3 Log- domain Sum-Product Algorithm Decoder

A simplified version of the sum product algorithm (SPA) that reduces the complexity

of the parity check update at the cost of some loss in performance was proposed in

[24]. This simplification has been derived by operating in the log-likelihood domain.

In log domain SPA the following notations and LLRs are defined.

Notations:

)(bqij
: Probability that variable node vi having a bit value b satisfies all check

equations except cj.

)(br ji
: Probability that check equation related to check node cj is satisfied if variable

node vi has value b. (Meaning that from all the other nodes related to check node cj we

obtain an even (b=0) or odd (b=1) number of ones).

Qi(b): Probability that variable node vi has value b, where b = {0,1}.

Vj = {variable nodes connected to check node cj} (neighborhood of cj).

Vj/i = {variable nodes connected to check node cj}/{variable node vi}={variable nodes

connected to check node cj except vi}.

Ci = {check-nodes connected to variable node vi} (neighborhood of vi).

Ci/j = {check nodes connected to variable node vi}/{check node cj} = {check nodes

connected to variable node vi except cj}.

Variable to Check

Messages

Check to Variable
 Messages

Check Nodes

Channel Messages

15

LLRs:

L(ci) = ln

)|1Pr(

)|0Pr(

ii

ii

yc

yc
 (2.16)

L(rji) = ln

)1(

)0(

ji

ji

r

r
 (2.17)

L(qji) = ln

)1(

)0(

ij

ij

q

q
= L(vi) +

 jCj

ij

i

rL
/'

')((2.18)

L(Qi) = ln

)1(

)0(

i

i

Q

Q
= L(vi) +

 iCj

jirL)((2.19)

where L(rji) can be approximated by [25]:

L(rji) =
 iVi j /'

)(' jiqL (2.20)

Where refers to box-plus operator defined as:

L(x1) L(x2) = sgn[L(x1)] sgn[L(x2)]min{| L(x1)|, | L(x2)|} (2.21)

with rules:

 L(x) 0 = 0 , L(x) = L(x), L(x) = L(x). (2.22)

Summary of the log-domain SPA Decoding Algorithm [26]:

1) For i = 0,1, … ,n – 1, initialize L(qij) = L(vi) = 2yi/σn
2
 for all i,j for which hji = 1.

2) Update { L(rji) }.

)(bqij

j ≠ i

)(br ji

cj

vi

)(bqij

)(br ji

i≠ j
cj

vi

yi

a)) b))

Figure 2.3: An iteration of message passing in Sum product algorithm. (a) The

computation of)(bqij
. (b) The computation of)(br ji

.

16

3) Update { L(qij) }.

4) Update { L(Qi) }.

5) For i = 0, 1, … , n – 1, set.

else

QLif
v

i

0

0)(1
ˆ

6) If 0ˆ THv or the number of iterations equals the maximum number of iterations

set, stop, else, go to step 2.

Example:

Given Tanner graph of H matrix as in figure 2.4, and running first irritation of

decoding process given the value of L(v).

First step: Initializing the value of L(qij)=L(vi) so,

Second step: Updating L(rji).

C0 C1

C2

V0 V1

V2

V3 V4

Figure 2.4: Tanner graph of H matrix of irregular code to be decoded by log-

domain SPA decoding algorithm.

17

Third step: Updating L(qij).

Step four: Update L(Qi).

18

Step five: Find v.

Step Six: Check if 0ˆ THv or maximum number of iterations is reached to stop, else

go to step 2.

2.6 Designing and Optimizing LDPC codes

There are some parameters to be taken in consideration in the design of LDPC codes

as code length and code rate. These parameters and others are affected by the

application needs and affect the performance of the code. Also In designing LDPC

codes, there are some parameters to be optimized in order to get better performance

and better bit error rate, such as optimizing girth, increasing Hamming distance.

2.6.1 Code Size

One of the basic parameters of code design is code size, which is specified by the

code length N and row-column weights j and k as (N, j, k), unsurprisingly, codes with

larger block length are better in performance than shorter ones [9], but in terms of cost

and implementation they require larger memory.

2.6.2 Code weight and Code Rate

Another parameter is code weight and rate. Having codes with large row and column

weights, results in increasing computations at each node, since nodes will be attached

to more information bits in the decoding process. In the other hand, higher weights

leads to more consistent decoding and more nodes to participate in estimating the

probability of a bit which leads to faster convergence. Code rate describes the

redundancy of bits where higher rates mean less redundancy, which results in high

throughput of information data and less protection of bits that decreases the efficiency

of decoding performance and increases bit error rate (BER) [27]. Low rates means

19

less throughput and better decoding performance. Column weight has been proven [4]

to affect the minimum distance property as in codes with column weight of 2 grows

logarithmically with N, where codes with j ≥ 3 have a minimum distance that grows

linearly with N that makes them more desired to be used. However, compared with j ≥

3 codes, codes with j = 2 are easier to implement and require less storage making

them a target for many applications [28]. A careful adjusting of the bit and check

nodes, with maximizing bit degree, minimizing check degree, and increasing the

support of some bits, many well-designed Irregular codes with nonuniform columns

distribution of 1's have achieved better error correcting performance than regular

codes [10].

2.6.3 Code Structure

The next parameter in designing LDPC codes is the type of code structure, which is

defined as the pattern of connections between bit and check nodes, the type of

structure results in many tradeoffs as cost, decoder complexity and flexibility of

design. The original introduced LDPC code [4] was a random code, where no pattern

of interconnections defines the row-column connections. Some disadvantages of

random construction appear when trying to implement it in real communication

system. Random construction codes need to be stored in memory for decoding and

encoding process. In case of long block codes, very large memory usage is needed to

store the parity check matrix which deduces the computational efficiency of the code,

to overcome this problem structured constructions appear to have predefined patterns

that needs few inputs to generate a range of code words. These constructions have an

advantage in reducing the cost, complexity, memory usage, and latency.

2.6.4 Decoder Iterations

Number of iterations in the decoding process is defined by the number of times the

received bit is estimated before a hard decision is made by the decoding algorithm

[29]. Increasing number of iterations increases the decoding convergence and lowers

the bit error ratio until reaching the error floor, The parameter of iterations affects the

power consumption and the decoder delay, that is in some applications like video

broadcasting where decoding time is limited, optimum number of iterations is set to

the maximum decoding delay allowed. Another point is that in case of soft values,

20

decoding may converges a non valid state, also soft values tend to converge a stable

state after a few number of iterations, that's where increasing time of decoding does

not improve the decoding process.

2.6.5 Minimum Distance

In general, Codes with larger minimum distance have better performance and correct

larger number of errors. LDPC codes are found to have better minimum distance than

linear codes with the same length and dimension. A good property of LDPC codes is

that minimum distance is proportional to the size of code in case of random

constructed LDPC codes [7]. In other types of structured construction, minimum

distance is restricted to a an upper bound depending on column weight, and in this

case increasing the code size does not increase minimum distance [19]. Although

LDPC codes performance depends on both the structure of its Tanner graph and its

minimum distance, a LDPC code with better minimum distance may not outperform

the performance of a code with worse minimum distance, that's because codes with

better graph structure ease the decoding process in the belief propagation decoding

algorithm, since BF is a suboptimum and graph dependent [23].

2.6.6 Girth

Girth of a code is also optimized to enhance its performance. Avoiding cycles of

length 4 and trying to obtain girths that is greater than 4, provides sufficient feedback

protection, since with small cycles a node gets a probability estimate depending

mainly on its own probability contribution. With large girth, the probability

estimation of bit decoding relies on the connected bits, which results in better

estimation of the node. Bad topologies result in a low minimum distance. It is proved

that there is dependence between girth and minimum distance of a code [8, 19]. In

general, maximizing girth will improve code performance to some bound [30]. Also

the girth distribution defined by the fraction of the symbol nodes with a given girth is

proposed as an effective tool for designing short LDPC codes and it matters more than

girth [31]. The average girth is defined by the sum of the smallest cycles in nodes

divided by the number of nodes, where codes with larger average girths perform

better than ones with small averages.

21

2.6.7 Density Evolution [6, 32]

Density evolution is a technique used for observing convergence of the overall bit

error probability of decoding process and thus approximating the decoding bit error

probability. It is used in Sum product algorithm messages at fixed SNR levels as the

decoder iterates under the assumption of having free cycles. The density is observed

and plotted in a graph to show the relation between number of iterations and

convergence of density. Using this chart, one can optimize the number of iteration

used in the decoding process and approximate the bit error probability of the code.

2.7 Modeling and Measuring Decoding Performance of LDPC codes

The decoding performance of LDPC codes is measured and evaluated using Bit Error

Rate (BER), which is the number of errors found per iteration over the code length at

a given Signal to Noise Ratio (SNR), calculated by

The BER of a code is calculated under the assumption of Additive White Gaussian

Noise (AWGN) channel. The AWGN channel is a simple-binary input, unquantized

output channel- model, which subjects the transmitted vector of bits into random

peaks of energy (noise) described as a random normally distributed variable added

successfully to the transmitted symbols. The channel output is modeled as yi = si + ni,

where s is the transmitter output, n is the AWGN, at any instant i. The randomness of

the Gaussian noise is a one sided power spectral density (PSD) N0, that depends on

the noise level or the variance σ
2
, where N0 = 2σ

2
.

The errors are the received bits with different values than the transmitted bits. The

SNR is a measure that compares the level of a desired signal to the level of

background noise, and it is modeled as:

where Es is the signal energy. The higher the SNR, the less obtrusive the background

noise is. Thus increasing the SNR generally decreases number of errors. In simulating

decoding performance, BER is calculated many times at the same level of SNR and

)22.2(
BitsofNumbers

ErrorsofNumber
BER

)23.2(log10
0N

E
SNR s

22

the average of BER is plot as an output of SNR level, this is to increase the level of

confidence of BER results. Other parameters may be used in simulation like Word

Error Rate (WER) which is the number of decoded words with errors compared to

the number of transmitted words, the use of BER or WER is determined by the

application used. In some cases it is essential that all of a word must be received

correctly, that's where WER is preferred.

In case of binary Input, data is modulated using Binary Phase Shift Key (BPSK)

technique as in the simulations of this thesis.

23

Chapter 3
Constructing LDPC Codes

The rediscovery of LDPC codes opened the doors wide to researchers to find efficient

algorithms that construct efficient codes, especially after the remarkable improvement

of computers processing speed. The construction of LDPC codes is affected by many

parameters that should be taken care of, as discussed in Chapter 2. The main goal in

constructing a code is determining the length and rate of the code to be used. Another

aspect is the ability of getting a construction method that can produce a wide range of

codes that vary in length and rate as desired. There always will be a tradeoff between

good decoding performance and easier hardware implementations.

The construction of LDPC codes is categorized mainly into two main categories:

Random constructions and Structured constructions. The type of construction is

determined by the connections between check nodes and variable nodes in Tanner

graph. Each type of constructions has their advantages over the other. In the

following, we will review some of the important construction methods from both

types and clarify their reflections over the performance of LDPC codes.

3.1 Randomly Constructed LDPC Codes

Random constructions refer to the unstructured row-column connections in the parity

check matrix with no predefined pattern. The design of randomly constructed LDPC

codes is done by computer searching algorithms to fulfill the design requirements.

Actually the process of generating in this case is a pseudo-random process but it is

written 'random' for brevity.

As previously mentioned in chapter 2, constructing LDPC codes is a backward

process, starting by constructing the H matrix with dimensions of N × K. The random

search results in dependant rows that reduce the rate of the code. The rank of H is

defines the number of K bits that will ensemble the code and K = N – Rank(H), thus

the rate of the designed code varies and become slightly higher than what is

intended[20], which means obtaining a different code. So the rank of random codes

24

should be checked each type the H matrix is constructed. In case we want to construct

a code with R = 1/3, we construct a random H matrix with dimensions of rate 3:2 as in

(1200, 800) code, meaning to have all rows to be linearly independent, but the rank is

to be less than or equal to the desired full rank, which increases the rate of the code.

The sparsity of LDPC codes decreases the probability of producing linearly dependent

rows as the code size grows large, especially when column weight of H is odd [33].

So repeating the generating of code with different seed may result in the desired rate.

Another important point of randomly constructed LDPC codes is that the generating

of codes - based on some regulations of random filling of H matrix- results in similar

codes that has different code space but they approximately have the same

performance on the level of bit-error, this allows us to optimize the code design by

focusing on design parameters without going on details discussing the structure of bits

in a specific code.

The construction of random LDPC codes is done by adding random edges to a Tanner

graph or '1' entries in the parity check matrix. Designing a code with a desired rate

and girth can be achieved by post processing the connections of H matrix to maintain

the desired rate and girth and to delete cycles of 4 which degrade the performance of

the code. Also random construction is done by putting constraints on design

parameters to satisfy the desired girth and rate.

The design and analysis of LDPC codes are based on Ensembles, an ensemble is a set

of codes with certain properties. Usually it is easier to evaluate the performance of a

code based on its ensemble than evaluating the performance for a particular randomly

generated code, putting in mind that the average performance of the ensembles is well

approximated to meet the performance of any generated code from the same

ensemble. Richardson proved the assumption that the codes in an ensemble are

equivalent [6]. Thus a randomly constructed code is chosen from an ensemble that

satisfies the desired requirements and then it is fixed and built in the system.

Random codes have better performance compared to structured codes in case of long

codes [11]. They are used in cases we want to increase the girth or rate of a given size

[17]. A disadvantage of random LDPC codes appears when wanted to be

25

implemented it in practical system, the long length needs large memory to be stored

and used in decoding and encoding, which affects the computational efficiency of the

code, which is considered more important than bit-error rate in real life. Also random

codes perform poorly with decoding methods as one-step majority logic decoding or

bit flipping decoding, furthermore, when using Sum-product algorithm, they do not

converge as fast as in structured LDPC codes [3]. With all these disadvantages, long

random LDPC codes still can perform very close to Shannon limit better than

structured codes.

In the following we review some random construction algorithms with their analysis.

3.1.1 Gallager's Construction

In his early work [4], Gallager describes a way to construct regular LDPC codes

denoted by (N, j, k) where part of H matrix is structured and the other is random. The

term 'Gallager codes' refers to codes that correspond to the relation Nj = mk. The

design is done by dividing the H matrix into j sub-matrices of dimensions (N/j) × N

and each column of sub-matrices has only one nonzero entry, this ensures having k

'1's in each rows. The first row of H1 is initialized by setting the first k entries with

'1's, leaving zeros in the remaining entries. The remaining rows of the first sub-matrix

are shifted by multiples of k positions. The other sub-matrices are merely column

permutations of H1. Gallager emphasized avoiding cycles of length 4 but didn't show

how to achieve that.

Figure 3.1: An example of Gallager's Construction of a (20, 3, 4) parity check matrix,

where πi(H1) denotes a column permutation of H1.

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

)(

)(Hπ

12

11

1

H

H

26

A step-by-step random construction method that produces Gallager code with girth g

> 4 is introduced by Lin and Costello in [3], the introduced algorithm grows the parity

check matrix of dimensions m × N column by column. The codes generated by this

algorithm are regular and given by the framework (N, j, k). The approach is done by

computer search starting with the null matrix H0 by picking a random vector hi of the

pool of length m and weight j at the ith step where 1 ≤ i ≤ N, and each vector is

checked if it satisfies the constraints of the ensemble to be added to a previously

partially constructed parity check matrix Hi – 1 that satisfies the required constraint of

j, k, and g. To add column hi the following constraints must be satisfied, taking in

mind that for constructing regular H matrix with constant row weight k the equation j

× N = k × (N – K) must hold, if N is not divisible by (N – K) then j × N = k × (N – K) +

b which can be rearranged to j × N = (N – K – b)k + b(k + 1).

1. Choose hi at random from the remaining binary (N – K)-tuples that are not

being used in Hi – 1 and that were not rejected earlier.

2. Check whether hi has more than one 1-component in common with any

column in Hi – 1. If not, go to step 3, otherwise, reject hi and go back to step 1

to choose another candidate column.

3. Add hi to Hi – 1 to form a temporary partial parity check matrix Hi. check the

row weights of Hi if all the top b rows of Hi have weights less than or equal to

k + 1, and all the bottom N – K – b rows of Hi have weights less than or equal

to k, then permanently add hi to Hi – 1 to form Hi and go to step 1 to continue

the construction process. If any of the top b rows of Hi has weight exceeding k

+ 1, or any of the bottom N – K – b rows of Hi has weight exceeding k, reject

hi, and go to step 1 to choose another candidate column.

From the analysis of this algorithm [34], it is recommended to increase the number of

pool candidates compared to N, this improves the probability that the candidate will

be acceptable and not rejected. Still, the algorithm is not suitable for handling a large

number of candidates since the evaluation of candidates is repeated exponentially and

the founding of a valid candidate becomes very difficult. A modification on this

algorithm is to keep vectors already in use since rejecting will result in extensive

bookkeeping and causes latency for looking up for matches in rejects table. In case

27

Figure 3.2: BER Performance of different lengths of Gallager Codes with R = 1/2.

Figure 3.3: BER Performance of different lengths of Gallager Codes with R = 2/3.

the candidate from the pool is already in use, it will not satisfy the conditions of step 2

and another candidate will be picked.

Figures 3.2 and 3.3 show the performance of Gallager codes with different rates and

lengths over an AWGN channel.

1 1.5 2 2.5 3 3.5 4
-12

-11

-10

-9

-8

-7

-6

-5

-4

Eb/No

lo
g
(B

E
R

)

N = 120 Gallager

N = 150

N = 180

N = 270

N = 360

1 1.5 2 2.5 3 3.5 4 4.5 5
-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

Eb/No

lo
g
(B

E
R

)

Gallager rate 2/3 N = 180

270

360

450

28

3.1.2 MacKay's Constructions

MacKay was the first to introduce the benefit of designing codes with sparse parity

check matrices and showed their ability to perform near capacity limits [20, 33].

MacKay introduced an order of ensembles of random LDPC codes in which he

assumed will decrease the average probability of decoding error, but not necessarily

improve performance [20] named by 'Ensembles of very Sparse Matrices', though he

didn't give a prove for his assumption.

MacKay's Ensembles of Very Sparse Matrices:

1. Matrix H is generated by starting from an all-zero matrix and randomly

flipping j not necessarily distinct bits in each column.

2. Matrix H is generated by randomly creating weight j columns.

3. Matrix H is generated with weight j per column and (as near as possible)

uniform weight per row.

4. Matrix H is generated with weight j per column and uniform weight per row,

and no columns having overlap greater than 1 (meaning, 'no 4-cycles').

5. Matrix H is further constrained so its bipartite graph has girth greater than 6.

6. Matrix H = [C1 | C2] is further constrained or slightly modified so that C2 is an

invertible m × m matrix.

Figures 3.4 and 3.5 show the BER performance of MacKay code from ensemble 2

where 1's are distributed uniformly in columns and ensemble 3 where 1's are

distributed uniformly in columns and rows, the construction of MacKay code with

obtaining these codes with random generation doesn't guarantee a cycle-4 free

construction for short lengths codes, thus further processing can be applied in order to

remove these loops which degrade the decoding performance of the code as shown in

figures 3.4 and 3.5.

29

Figure 3.4: BER Performance of ensemble 2 of MacKay LDPC codes with and

without removing cycles of length 4.

Figure 3.5: BER Performance of ensemble 3 of MacKay LDPC codes with and

without removing cycles of length 4.

1 1.5 2 2.5 3 3.5 4 4.5 5
-11

-10

-9

-8

-7

-6

-5

-4

-3

Eb/No

lo
g
(B

E
R

)

MacKay code N = 360 rate 1/2 without removing loops

MacKay code N = 360 rate 1/2 with removing loops

1 1.5 2 2.5 3 3.5 4 4.5 5
-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

Eb/No

lo
g
(B

E
R

)

MacKay code N = 360 rate 1/2 without removing loops

MacKay code N = 360 rate 1/2 with removing loops

30

C0 C1

C2

V0 V1

V2

V3 V4

3.1.3 Irregular LDPC codes

Irregular LDPC codes are a generalization of regular LDPC codes. Parity check

matrix of an irregular LDPC codes [32] has nonuniform column weights and non

uniform row weights, thus, an irregular LDPC code is defined by an expression that

describe the degree distribution of check nodes and variable nodes along the Tanner

graph. The irregularity in weights results in variable nodes and check nodes with

different degrees in the Tanner graph. Increasing the degree of a variable node means

connecting to more check nodes and more information to be gathered about the state

of the correct value of the variable node, thus more accurate values can be derived. In

the other hand increasing the variable node degree increases the probability of sending

wrong guesses to the variable node. These two factors are balanced in the design of

irregular codes in order to enhance the performance of the code.

The procedure of decoding irregular LDPC codes is done by starting with higher

degree variable nodes where they converge to their correct values faster with less

number of iterations, such strong bits are called 'elite bits'. Then they pass their values

to check nodes helping them to decode lower degree variable nodes. Now the

remaining errors are now easier to detect.

In constructing irregular LDPC codes, the following parameters are defined.

- λi : The fraction of edges incident to variable nodes of degree i.

- ρj : The fraction of edges incident to check nodes of degree j.

- li : The fraction of variable node of degree i.

- rj : The fraction of variable node of degree j.

11101

01110

10111

H

Figure 3.6: H matrix with corresponding Tanner graph with l2 = 4/5, l3 = 1/5 and

r3 = 1/3, r4 = 2/3, λ2 = 8/11, λ3 = 3/11, ρ3 = 3/11, ρ4 = 8/11.

31

In the literature, it is usual to specify the variable node and check node degree

distribution polynomial, denoted by [10]:

 λ(X) =

vd

d

d

d X
1

1 (3.1)

cd

d

d

d XX
1

1)((3.2)

Where dv and dc are the maximum variable node and check node degree respectively.

By defining E as the total number of edges in the corresponding Tanner graph, the

number of variable nodes of degree d by Nv(d), and the number of check nodes of

degree d by Nc(d) then they can be expressed as proved [35] by:

1

0

1

0

)()(dXX

m

dXX

n
E

 (3.3)

1

0

)(

)(

dXXd

n

d

E
dN dd

v

 (3.4)

1

0

)(

)(

dXXd

m

d

E
dN dd

c

 (3.5)

Then from equation (3.3) one can easily conclude that code rate is bounded by

1

0

1

0

)(

)(

11

dXX

dXX

n

m
R

 (3.6)

A precise theory in optimizing the design of irregular codes is difficult to find, the

studies about this field [14, 32] depends on computer searches to find the best

optimization of check and variable degrees. Different approaches have been used in

the design of irregular LDPC codes. On approach is to have one profile given as an

input from which the other profile can be found, a simpler searching approach is to fix

the distribution along one dimension, typically using constant row-weight.

32

3.1.4 Progressive Edge-Growth Algorithm

In their published paper [18] Hu et al. introduced a method for constructing LDPC

codes based on progressive establishing of edges in Tanner graph between variable

nodes and check nodes called Progressive Edge-Growth Algorithm (PEG). Tanner

graphs are defined by (V , E) where V is a set of nodes consists of check nodes Vʋ =

{ʋ0, ʋ1,…,ʋn – 1} and variable nodes Vc = {c0 ,c1 ,…,cm – 1}, E of size Vʋ × Vc consists of

all possible edges (ci, ʋj) between the set of Vʋ and Vc when hi,j ≠ 0, hi,j H, 0 ≤ i ≤ m –

1, 0 ≤ j ≤ n – 1. The degree of variable nodes is stored in the array

110

,,,

n

dddD , where
j

d is the degree of the variable node ʋj, in the same

manner the degree of the check nodes is stored in the array
110

,,,

mcccc dddD ,

where
icd is the degree of the check node ci. Define

j
E be the set of edges incident

on the variable node ʋj and k

j
E

is the k
th

 edge incident on ʋj where 0 ≤ k ≤ 1
j

d . For

a variable node ʋj, the set of check nodes connected through a cycle starting and

ending at ʋj is l

j
N

where l is the depth of its neighbors as shown in figure 3.7, the

complementary set of l

j
N

is
l

j
N where l

j
N

l

j
N = Vc. for computing l

j
N

an

indicator Ici is set for each check node ci taking values from the set {0, 1} and it is

initialized to 0, as the tree starting at ʋj to the determined depth l, the indicators of

check nodes in the tree is also set to 1, which indicates that these nodes belongs to l

v j
N

,at the same time
l

v j
N is obtained by checking the indicator Ici is 0. For each variable

node ʋj, a local girth
j

g is defined as the set {
j

g } such that the girth of the code g =

minj {
j

g }.

The construction of PEG consists of two procedures; the first is the expansion of the

local graph, and the check node selection. The expansion of the variable node is to

avoid short cycles when adding a new edge to the graph, by pruning the check nodes

that will produce a short cycle or in case short cycles can't be avoided then only check

nodes that will produce large cycles remain in the set as candidates. In the selection

procedure is used to reduce the candidates according to the settings of the graph as

degree of check nodes. The selection is done basically by choosing check nodes with

the lowest degree.

33

PEG algorithm can construct regular and irregular LDPC codes with optimized

performance. Codes obtained by PEG algorithm is known for the best performance in

the case of short length codes [36]. A drawback of this algorithm is that it is not

guaranteed to achieve bipartite graphs that has the largest possible girth with the given

parameters n, m and Dʋ which leads to a problem of complexity in combinatorics.

Thus PEG algorithm is considered as a sub-optimal algorithm in constructing high

girth bipartite graphs. The performance of PEG LDPC codes is found to be better than

codes constructed by MacKay's method having the same length in case of short codes

[37].

Progressive Edge-Growth Algorithm:

for j = 0 to n = 1 do

begin

for k = 0 to ds = 1 do

begin

if k = 0

0

j
E ← edge (ci, ʋj), where 0

j
E is the first edge incident to ʋj and ci is a check

node such that it has the lowest check-node degree under the current graph

setting
0

E ∪
1

E ∪…. ∪
1j

E .

else

expand a subgraph from symbol node ʋj up to depth l under the current

graph setting such that the cardinality of l

v j
N stops increasing but is less

than m, or
l

j
N ≠ Φ but

1l

j
N s = ϕ, then k

j
E

← edge (ci, ʋj), where k

j
E

is the

k
th

 edge incident to ʋj and ci is a check node picked from the set
l

j
N having

the lowest check-node degree.

end

end

34

3.1.5 Protograph LDPC codes

The construction of protograph LDPC codes [38, 39] starts by having a relatively

small bipartite graph that may include parallel edges called a protograph, which is

used to obtain a large related graph by a copy-and-permute procedure. The protograph

is copied Q times and then the edges are copied and connected among the copies of

the protograph under some restrictions to obtain a large single Tanner graph of a new

parity check matrix. Variable and check nodes are labeled so if a variable node V in

the protograph is connected to a check node C, then variable node V in copies can

only be connected to one check node C of the copies. The reason behind this is to

preserve the decoding threshold properties of the protograph. The construction

eliminates any parallel edges in the main protograph so a single Tanner graph that

suits the constraints of parity check matrix can be obtained.

c2 c1 c0

v3 v2 v1 v0

2100

1221

0012

H

Figure 3.8: An example of a protograph and the corresponding base matrix.

Depth 0

Depth 1

Depth l

ʋj

Figure 3.7: A tree that shows the depth l for a variable node ʋj.

35

Figure 3.9 shows a protograph seed copied with Q = 4, the protograph seed is copied

to 4 disconnected protographs of the same edges, the endpoints of the edges are

permuted among the four copies at the same corresponding variable and check nodes.

The resulted Tanner graph is called the derived graph and it is corresponding to a

protograph LDPC code of length N = 12, K = 4 of rate R = 1/4. The protograph LDPC

codes have many approaches and methods to optimize the construction of LDPC

codes as in [40, 41].

3.2 Structured Construction of LDPC Codes

The uncertainty of guaranteeing an asymptotically optimum performance in random

constructions leads to the use of structured construction of LDPC codes. Randomly

constructed codes have some disadvantages as needing extra memory for the use of

decoding and encoding. Also the randomness of construction affects the

computational efficiency which is more crucial than the bit-error rate performance of

the code. This leads to the need of some regularity in construction to overcome these

problems.

Figure 3.9: Illustration of the protograph copy and permute procedure with

Q = 4 copies.

36

In this type of LDPC constructions, predefined patterns of row-column connections

are set following some constraints. Many methods have been developed as algebraic

constructions, combinatorial designs, graph based constructions, and heuristic

searching techniques.

3.2.1 Combinatorial Designs

Structured LDPC codes can be generated by constructing parity check matrix using

combinatorial mathematics. A well structured, low complexity implemented codes

using Balanced Incomplete Block Designs (BIBDs) [15] are designed by the inclusion

of v points in b blocks according to some defined constraints. The two basic

constraints are [42]:

1- A pair of points appear together only in λ blocks for a defined value of λ.

2- The number of points in each block is given by k and the number of blocks

that a point appears at is r.

The construction is done by considering points and blocks and rows and columns, the

design is balanced by having the covalency λ the same for all pair of points, from the

definition, the dimensions of the code is given by (b × v). Row and column weights

are given by k and r. The design parameters (v, k, λ, r, b) are considered and only

three parameters of the five are independent, there for the notation (v, k, λ)-BIBD

represents a BIBD code designed by v points with block size k and covalency λ.

010001100100

001100010100

100010001100

001010100010

100001010010

010100001010

100100100001

010010010001

001001001001

H

Figure 3.10: The corresponding parity check matrix of a (9, 3, 1)-BIBD.

37

Example: LDPC code designed by (9, 3, 1)-BIBD.

Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and A the collection of 12 three-element blocks:

A = {(1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 4, 7), (2, 5, 8), (3, 6, 9), (1, 5, 9), (2, 6, 7), (3, 4,

8), (1, 6, 8) ,(2, 4, 9) ,(3, 5, 7)}, the pair (X, A) is a (9, 3, 1)-BIBD.

The corresponding parity check matrix of the BIBD system is shown in figure 3.10.

The previous example is a Steiner triple system where k = 3, and λ = 1.

3.2.2 Euclidean Geometry LDPC code Construction (EG-LDPC)

Euclidean geometry is used to construct LDPC parity check matrix [16, 43] and it is

similar to combinatorial design. Finite geometry is defined for n points intersecting by

unique lines J with the conditions of the following structural properties.

1- Every line consists of ρ points.

2- Every point is intersected by γ lines.

3- Any two points are connected with one and only one line.

4- Any two lines are either disjointed, or they have only one point in common.

In this construction rows of H matrix represent lines and columns represent points,

properties (1) and (2) ensure regularity of H matrix since two columns do not have

more than one position with common '1's, and number of points in lines is constant.

Property (3) keeps the girth at least 6 and avoids cycles of length 4. The sparsity of H

can be obtained by choosing ρ << n and γ << J and thus the constructed matrix can be

considered as a low density parity check matrix. The minimum distance of this

construction can be calculated and lower bounded by γ + 1 in the case of decoding by

one-step majority logic decoding since each bit has γ orthogonal check-sums.

Compared to other types of construction as quasi-cyclic LDPC codes, finite geometry

tends to have relatively large minimum distance.

A drawback of this type of construction is having a maximum girth of 6 [43] with

existence of cycles of length 8 [44], which limits the improvement of the code in

terms of optimizing and increasing the girth of the matrix. Another drawback of this

construction is that the resultant H matrix is a square matrix of dimensions N × N, so

we have to choose (N – K) rows to decode the code but this still degrade the

performance of the code [45]. Also another drawback is that the row and column

38

weights are relatively large which increases the complexity of the decoding process.

Also the structure of the code does not provide flexibility in the design to obtain wide

range of lengths or rates.

In designing, one can omit the origin from the set of points, and lines intersecting the

origin from the set of lines to obtain cyclic codes, which leads to lower-complexity

linear time encoding [16].

LDPC codes constructed via Euclidian Geometry is denoted by EG-LDPC codes and

defined over GF(2
s
) as EG(m, 2

s
). It consists of N = 2

ms
 points represented by m-

tuples. Number of lines in the geometry is J = [2
(m – 1)s

(2
ms

 – 1)]/[2
s
 – 1], each point is

intersecting γ = (2
ms

 – 1)/(2
s
 – 1) lines that represents the column weight of the matrix.

And each line includes ρ = 2
s
 points which is the row weight of H. The density is

given by r = 2
–(m – 1)s

. Table 3.1 shows variety of EG-LDPC codes found and listed in

[26].

Figure 3.11: A graphical representation of a finite geometry with ρ = 2, γ = 3 and

the corresponding incidence matrix.

1100

1010

0110

1001

0101

0011

H

39

Density

of H

r = p/n

Col.

Weight

γ

Row

Weight

p

Rows

in H

J

Minimum

Distance

Code

Rate

R

Code

dim.

K

Code

length

n

Design

Parameters

s m

0.667

0.267

0.127

0.063

0.031

0.016

2

4

8

16

32

64

2

4

8

16

32

64

3

15

63

255

1,023

4,095

3

5

9

17

33

65

0.333

0.467

0.587

0.686

0.763

0.822

1

7

37

175

781

3,367

3

15

63

255

1,023

4,095

1

2

3

4

5

6

2

2

2

2

2

2

0.286

0.063

0.016

6

20

72

2

4

8

21

315

4,599

7

23

79

0.143

0.206

0.272

1

13

139

7

63

511

1

2

3

3

3

3

0.133

0.016

14

86

2

4

105

5,355

15

95

0.067

0.082

1

21

15

255

1

2

4

4

0.065

0.004

30

340

2

4

465

86,955

31

383

0.032

0.030

1

31

31

1,023

1

2

5

5

0.032 62 2 1,953 63 0.016 1 63 1 6

0.016 126 2 8,001 127 0.008 1 127 1 7

Table 3.1: A Summary of EG-LDPC codes.

40

Chapter 4

Constructing Quasi-Cyclic LDPC

Codes

In the previous chapter, we reviewed different algorithms and methods to construct

structured LDPC codes, these codes differ in their computational and implementation

complexity. This belongs to the fact that structured codes may have many patterns for

the interconnections between rows and columns in a single structured H matrix. The

more row-column interconnection patterns the more storage needed for the decoder to

store and manage.

Quasi-Cyclic (QC) LDPC codes are codes in which rows or columns in a sub matrix

have similar and cyclic connections [29]. The structure of QC-LDPC codes allows

them to be decoded using shift registers [46] and their decoders architectures require

simple address generation mechanisms, less memory and localized memory accesses

[47]. The construction of QC-LDPC codes is done by shifting identity sub-matrices.

Numbers of cyclic shifts of columns in the identity sub-matrices are represented in a

matrix which gives a compact representation of H matrix.

A linear code C is called a Quasi-Cyclic (QC) LDPC code (with circulant

permutation matrices), if a parity-check matrix H of C has the following block form

[48]:

)()()(

)()()(

)()()(

1,11,10,1

1,11,10,1

1,01,00,0

LJJJ

L

L

cIcIcI

cIcIcI

cIcIcI

H

 (4.1)

Let Ȟc denotes a matrix which consists of the indices of H, in other words,

41

Ȟc

1,11,10,1

1,11,10,1

1,01,00,0

LJJJ

L

L

ccc

ccc

ccc

 (4.2)

We call Ȟc the model matrix of H. It should be noted that a model matrix Ȟc

characterizes a parity check matrix H of a quasi-cyclic LDPC code.

4.1 Algebraic construction of LDPC codes based on circulant matrices [49]

Quasi cyclic block codes can be constructed using multiplicative groups in term of

integers mod m to refer to the number of circulations of identity matrices that

construct various H matrix with a variety of length and rates.

The construction starts by choosing a prime number m, the element from 0 to m – 1

form a field under addition and multiplication (mod m), and thus the nonzero elements

of this field represent a cyclic multiplicative group. Choose a and b to be nonzero

elements with order of K and J respectively. And then form the P matrix with

dimensions of J × K with elements from GF(m) as the following:

111211

12

121

JKJJJ

K

K

babaabb

babaabb

aaa

P

 (4.3)

Then a (Jm × Km) H matrix is constructed by having an m × m identity matrices (Ix)

inserted with their rows circularly shifted to the left by (x – 1) positions according to

the values of P matrix as the following,

111211

12

12

JKJJJ

K

K

babaabb

babaabb

aaa

IIII

IIII

IIII

H

(4.4)

The rate R of the constructed code is up to 1 – J/K due to the independence between

some of resulting rows of H matrix. The number of '1's in columns and rows is J and

K in sequence, this makes it a regular LDPC code. The construction also can be

42

extended to use nonprime integers with some modifications to sustain the regularity of

the H matrix.

43

Table 4.1 [49]: Examples of QC-LDPC codes constructed from (prime) circulant

sizes.

Block Length

N

Design

Parameters

J K

Design Rate

 R

Actual Rate

R

Circulant Size

 m

21 2 3 1/3 0.3809 7

93 2 3 1/3 0.3441 31

129 2 3 1/3 0.3411 43

155 3 5 2/5 0.4129 31

186 5 6 1/6 0.1882 31

305 3 5 2/5 0.4065 61

755 3 5 2/5 0.4423 151

905 3 5 2/5 0.4022 181

1055 3 5 2/5 0.4018 211

1205 3 5 2/5 0.4016 241

1477 3 7 4/7 0.5727 211

1477 5 7 2/7 0.2884 211

1703 5 13 5/8 0.6177 131

1928 3 8 5/8 0.626 241

1928 5 8 3/8 0.3771 241

1967 5 7 2/7 0.2877 281

2041 3 13 10/13 0.7702 157

2248 5 8 3/8 0.3768 281

2947 3 7 4/7 0.5721 421

2947 4 7 3/7 0.4296 421

3641 3 11 8/11 0.7278 331

3641 5 11 6/11 0.5465 331

5219 3 17 14/17 0.8239 307

11555 3 5 2/5 0.4001 2311

30568144167076179546103182259977977145289

364171192751671552561992951012509611314915317

27323529927226964280304102216241051141158191

IIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIII

H

Figure 4.1 [48]: A [5219, 4300] QC-LDPC code, constructed with m = 307, a =

9, and b = 17 where o(a) = 17 and o(b) = 3.

b = 17 where o(a) = 17 and o(b) = 3.

44

4.2 Construction of QC-LDPC Codes from Circulant Permutation

Matrices by search algorithm

In his work, M. Fossier [19] has shown that codes with large girths are easy to obtain

by QC-LDPC codes. He derived sufficient conditions to obtain these high girth codes

using a search algorithm.

Starting by H matrix with rows and columns of weight J and L respectively, A

number of circularly permutated (J × L) identity matrices of dimension (p × p) are

inserted in the matrix to have a code length N = Lp. The first column and row are set

to identity matrix, thus we only need (J – 1)(L – 1) integers to describe the code.

The parity check matrix H of a (J, L) - regular QC-LDPC code of length N = pL can

be represented by:

)()()0(

)()()0(

)0()0()0(

1,11,1

1,11,1

LJJ

L

pIpII

pIpII

III

H

 (4.5)

Where 1 ≤ j ≤ J – 1, 1 ≤ l ≤ L – 1, and I(pj,l) is the Identity matrix with columns

circularly shifted to the left by pj,l positions. And I(0) represents the identity matrix,

another approach is to set just the first row by identity matrices and other rows have

circularly shifted identity matrices [50].

0001

1000

0100

0010

)3(

1000

0100

0010

0001

)0(II

Figure 4.2: An example of Identity matrix of dimensions 4 × 4 with columns

permutated 3 positions to the left and denoted by I(3).

Defining:

)(, ljyjx pjx,l – pjy,l (4.6)

45

A general rule for obtaining H matrix containing a cycle of length at least 2(i + 1) is

giving by (4.7) if and only if:

pl
m

k

kjj kk
mod0)(

1

0

, 1

 (4.7)

for all m, 2 ≤ m ≤ i, all jk, 0 ≤ jk ≤ J – 1, all jk+1, 0 ≤ jk+1 ≤ J – 1, and all 0 ≤ lk ≤ L – 1,

with j0 = jm, jk ≠ jk+1, and lk ≠ lk+1.

A condition for constructing QC-LDPC codes with girth g ≥ 6 is given by (4.8) as:

ppppp ljljljlj mod0
12222111 ,,,, (4.8)

Where 0 ≤ j1 ≤ j2 < J and 0 ≤ l1 ≤ l2 < L.

In the choosing of parameters J, L, and p, some conditions must be taken in

consideration in order to achieve girth ≥ 6, 8, 10 or 12 [19].

The indices of the model matrix can be found by a search algorithm as in [50], an

example of constructing QC-LDPC codes is represented.

Example:

Consider the construction of H matrix with J = 4, L = 6, p = 20, given the following

incomplete model matrix.

Ȟc

?15210513

1213104149

46872016

000000

To find the missing entry the following calculations is set.

A random value x = 11 is picked from a vector of remaining values other than picked

numbers in the current row, Now the algorithm checks the difference between this

value and the previous elements in the same row with mod(p). So in this case, by

checking the condition (4.8) between the current row and the (current row – 1) we get:

(11 – 15)mod(20) = 16

(12 – 13)mod(20) = 19

Reject = 0

(11 – 2)mod(20) = 9

46

(12 – 10)mod(20) = 2

Reject = 0

(11 – 10)mod(20) = 1

(12 – 4)mod(20) = 12

Reject = 0

(11 – 5)mod(20) = 6

(12 – 14)mod(20) = 18

Reject = 0

(11 – 13)mod(20) = 18

(12 – 9)mod(20) = 3

Reject = 0

The flag 'Reject' returns 1 if the two values are equal. Now check the condition (4.8)

between the current row and the (current row – 2).

(11 – 15)mod(20) = 16

(4 – 6)mod(20) = 18

Reject = 0

(11 – 2)mod(20) = 9

(4 – 8)mod(20) = 16

Reject = 0

(11 – 10)mod(20) = 1

(4 – 7)mod(20) = 17

Reject = 0

(11 – 5)mod(20) = 6

(4 – 20)mod(20) = 4

Reject = 0

(11 – 13)mod(20) = 18

(4 – 16)mod(20) = 8

Reject = 0

And the algorithm continues until the value satisfies condition (4.8). The result will be

a matrix with girth g = 6 with dimentions 80 by 120 with 480 ones distributed

regularly.

47

Figure 4.3: Parity Check Matrix of code (120, 40) of design rate 1/3

constructed with J = 4, L = 6, p = 20.

The rank of the generated parity check matrix is found to be in this case 77, thus the

actual rate is in this case R = 43/120 = 0.3583.

There are some observations and comments about random construction of QC-LDPC

codes based on column permutation method listed below:

- This method does not guarantee a full rank parity check matrix, thus it is hard

to construct a code with specific length.

- The construction of the parity check matrix is not guaranteed from the first

trial of running the algorithm; therefore the amount of time needed cannot be

predetermined.

- Enlarging the block length for a given row and column weights can help

avoiding the occurrence of overlapping of circulant matrices.

0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

80

nz = 480

48

4.3 Design Parameters of QC-LDPC codes

QC-LDPC codes are characterized into two families, Random constructions as in 4.2

and structured constructions as in 4.1. In random construction LDPC codes, the

smallest value of p to be chosen for a (J, L) regular QC-LDPC is found by computer

search as in table 4.1. a theoretical limit was derived in [19] as the following: For

codes with girth ≥ 6 a necessary condition for finding a code is p ≥ L, or N ≥ L
2
 if L is

odd, and p ≥ L + 1 or N ≥ L(L – 1) if L is even. For obtaining a code with girth ≥ 8 a

necessary condition is p > (L – 1)(J – 1) or N > (L – 1)(J – 1)L.

 L

J

4 5 6 7 8 9 10 11 12

3 5 5 7 7 9 9 11 11 13

4 - 5 7 7 9 10 11 11 13

5 - - 7 7 9 10 11 11 13

Table 4.2: smallest value for p for a (J, L) - regular QC-LDPC code with girth

g ≥ 6 found by computer search [19].

Another important parameter is the minimum distance, in [51] the upper bound for the

minimum Hamming distance of a (J, L) regular QC-LDPC code is given by dH ≤ (J +

1)!. Therefore, the minimum distance cannot increase with increasing the code length

N, which leads to the suggestion that QC-LDPC codes are compared only to random

codes of short and medium lengths.

The following figures 4.4-4.5 show the BER performance of different lengths and

rates of QC-LDPC codes, the simulation shows the efficiency of QC-LDPC codes

with short and moderate lengths.

49

Figure 4.4: BER performance of QC-LDPC codes of different lengths with R =

1/2.

Figure 4.5: BER performance of QC-LDPC codes of different lengths with R =

2/3.

1 1.5 2 2.5 3 3.5 4
-11

-10

-9

-8

-7

-6

-5

-4

-3

Eb/No

lo
g
(B

E
R

)

m = 15

m = 18

m = 25

m = 30

m = 40

m = 50

1 1.5 2 2.5 3 3.5 4
-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

Eb/No

lo
g
(B

E
R

)

QC-LDPC m = 12

m = 18

m = 21

m = 24

m = 30

m = 40

m = 60

50

Chapter 5

LDPC code construction using randomly
permutated copies of parity check matrix

In this chapter, a method to generate LDPC codes of multiple lengths starting from

previously constructed codes is introduced. The idea starts from the same idea of QC-

LDPC codes. In constructing QC-LDPC codes, we first construct the model matrix Ȟc

where its entries refer to the number of shifts applied to an identity matrix placed at

the same address in the parity check matrix. The design is introduced in the following

sections.

5.1 Construction of LDPC code using identity seed matrix

In the following design, we consider having a base parity check matrix Hb of

dimensions N × m represented by:

1,11,10,1

1,11,10,1

1,01,00,0

Nmmm

N

N

b

ccc

ccc

ccc

H

 (5.1)

Hb must satisfy the constraints of LDPC design, where g ≥ 6, λ = 0 or 1. Entries of Hb

are binary data denoted by ci,j where ci,j ϵ {0, 1}, 0 ≤ j ≤ m – 1 and 0 ≤ i ≤ N – 1

Definition 5.1: An identity sub-matrix Ip called identity seed and all-zeros square sub-

matrix Op with dimensions p × p are defined, where p is an integer and p ≥ 2. The

construction is done by constructing an all-zeros parity check matrix H of dimensions

Np × mp divided into a number of (Nm) sub-matrices of dimensions p × p, and then

the base matrix Hb is used as a model matrix to construct H by replacing each 1 and 0

in Hb by Ip and Op in H respectively. The resulted H has the same row and column

weights of Hb.

In the following, we show an arbitrary example of the construction.

51

Example 5.1: Consider a (2, 3)-regular code of parity check matrix of dimensions (6

× 4) obtained from Euclidean geometry construction and represented by the parity

check matrix:

This matrix defines the regular-LDPC code which has a length of N = 6 with a rate R

= 1/3. Let us assume that we want to construct a regular code with length N = 12 of

the same rate, thus we define I2 and O2 by:

Now we replace each 1 by I2 and each 0 by O2, and the resulted H matrix is:

which is equivalent to:

The resultant matrix represents a (2, 3)-regular LDPC code of length of N = 12, and

rate R = 1/3.

Theorem 5.1: A parity check matrix constructed by definition 5.1 has a girth equal to

the girth of the base matrix Hb.

110100

101010

011001

000111

bH

10

01
2I

00

00
2O

,

222222

222222

222222

222222

IIOIOO

IOIOIO

OIIOOI

OOOIII

H

101000100000

010100010000

100010001000

010001000100

001010000010

000101000001

000000101010

000000010101

H

52

Proof: the girth is calculated by counting the straight edges that connect between '1's

starting and ending at the same 1 entry in the parity check matrix, since the

construction expands the parity check matrix with identity and all zeros matrices, then

the construction do not change horizontal and vertical positions of the ones, nor adds

ones between existed '1's in the matrix, where the length of the edges just increases by

multiples equal to p. The insertion of identity seed results in new cycles of the same

length which keeps the girth equal to the same girth in the base matrix.

.

Theorem 5.2: The rank of H is equal to Rank(Hb) × p.

Proof: The rank of matrix Hb is defined by the maximum number of independent rows

in the matrix, the construction of H in definition 5.1 keeps the positions of horizontal

and vertical '1's fixed without adding '1's between the original '1's, which preserves

the relation of dependency or independency between rows fixed. Since row reduction

method operations between rows will result in the same rows in Hb but with zeros

from the expansion added to the row. The shifted expanded copies of the original

rows are independent of original rows which results in (p – 1) copies of original rows

independent from the original and have the same relations with their rows, which

leads to the relation:

Rank(H) = p • Rank(Hb)

Corollary 5.1: The rate R of H is equal to the rate Rb of Hb.

The rate of Hb is given by Rb = (N – Rank(Hb))/N, the rate of H is given by R= (pN –

p•Rank(Hb))/(pN) = p(N – Rank(Hb)/(pN) = (N – Rank(Hb))/N. Thus R = Rb.

110100

101010

011001

000111

bH

Figure 5.1: A graphical representation of cycles of girth g = 6 resulted from the

construction in definition 5.1.

101000100000

010100010000

100010001000

010001000100

001010000010

000101000001

000000101010

000000010101

H

53

Sparsity of H:

The proposed construction keeps the degree of variable nodes and check nodes fixed.

The insertion of the identity matrices leads to sparser H matrix. Suppose that in Hb the

total number of '1's is given by e, and the total number of entries is s, then the density

Db of Hb is e/s. The number of '1's in H matrix is then equal to (pe) and the total

entries is now equal to p
2
s, the density of H is pe/(p

2
s) = e/(ps). So the relation

between D and Db is given by:

D = Db/p

100100000100000000

010010000010000000

001001000001000000

100000100000100000

010000010000010000

001000001000001000

000100100000000100

000010010000000010

000001001000000001

000000000100100100

000000000010010010

000000000001001001

H

(a)

(b)

Figure 5.2: (a) Construction of H matrix with an identity seed of size 3 × 3. (b)

Corresponding Tanner graph of the H matrix. (c) The same Tanner graph in part

(b) after rearrangement of nodes shows the separation of edges between the three

copies.

(c)

54

5.2 Graphical Perspective

The proposed code construction is similar to protograph construction describe in

3.1.5. The corresponding Tanner graph results in p separated copies of the base matrix

Hb. The copies are not connected by any edge between their check and variable nodes

as shown in figure 5.2c. The advantage of this construction is decreasing the time of

decoding to about 1/p of the decoding time, since each copy can be implemented

individually and semi parallel with other copies as in [52]. The problem in this type of

construction is in decoding process when a data bit is received at a variable node that

belongs to one of the copies, the outgoing messages of that bit are sent only among its

parent copy, and at the same time it receives messages only from the check nodes

from the same parent copy, thus it cannot benefit from the information sent from bits

in the other copies with strong probabilities of receiving a correct bit. Also the girth

average of variable nodes is not changed where increasing the number of columns and

rows with decreasing the density of ones in the matrix is expected to increase the girth

average of its Tanner graph, where increasing the girth average enhances the decoding

performance [31].

5.3 Construction of LDPC code using randomly permutated identity

seed matrix

To solve the problem of independency between copies we introduce an enhancement

in definition 5.2 that interchanges the connections of edges between all variable nodes

and check nodes all over the copies and increases the girth average of the code.

Definition 5.2: The identity seed matrix Ip is replaced by a randomly permutated

identity matrix of dimensions p × p with regular column and row weights of 1, in

other words each row contains 1 in a unique random column. And each 0 in the base

matrix is replaced as in definition 5.1.

The graphical correspondence of permutations in definition 5.2 is that for a variable

node V1 connected to check node C1 by edge E, the edges of the p copies of V1 are

permutated across the p copies of C1 where each copy of V1 is connected with only

one copy of C1.

55

The proposed construction can be represented by a model matrix since each 1 in the

original matrix is replaced by a randomly permutated identity matrix Ip(r) called

random seed selected from a space of p! different matrices, where 0 ≤ r ≤ p! – 1. Each

permutated identity matrix is assigned a number r which indicates which Ip(r) to be

replaced.

Figure 5.4 shows an example of a 6 random seeds generated by choosing p = 3, each

assigned by a number, and figure 5.5 shows the model matrix for H in figure 5.3

100

010

001

)0(3I ,

001

100

010

)1(3I ,

010

001

100

)2(3I

010

100

001

)3(3I ,

100

001

010

)4(3I ,

001

010

100

)5(3I

Figure 5.4: The 6 possible random seeds generated when p = 3.

100010000010000000

001100000001000000

010001000100000000

001000001000010000

100000100000001000

010000010000100000

000100100000000001

000001001000000010

000010010000000100

000000000010100100

000000000001010001

000000000100001010

H

(a)

(b)

Figure 5.3: (a) H matrix of LDPC code of length N = 18, R = 1/3, with j = 2 and

k = 3 constructed by definition 5.2. (b) The corresponding Tanner graph of H.

56

Ȟc

)4()3()2(

)2()1()2(

)4()4()5(

)2()0()4(

333333

333333

333333

333333

IIOIOO

IOIOIO

OIIOOI

OOOIII

Figure 5.5: The model matrix Ȟc for H in figure 5.3a.

The proposed construction differs from protograph LDPC code construction is the

ability of storing the addresses of permutated matrices and calling the addresses by a

simple address generation mechanism from the model matrix. This helps in reducing

the memory for storing the m × N matrix. Another advantage of construction from

definition 5.2 is when constructing starting by a bad seed matrix generated with a

random method containing 4 cycles, the construction can reduce the number of

removed bit resulted by any method of removing loops algorithms [53] in order to

enhance the decoding performance of the code as illustrated in the following

theorem..

Theorem 5.3 The Girth of code constructed by definition 5.3 is greater than or equal

to the girth of the base matrix.

Proof: The girth of the proposed code is guaranteed to be greater than or equal to the

girth of the base matrix, this belongs to the fact that the insertion of random seeds in

the base matrix, adds cycles of the same length of the existed cycles in the base matrix

distributed by the randomness of the positions of 1's in each seed matrix which allows

the path of old cycles to pass over the possible position of old ones to construct larger

cycles. So the random distribution of ones in each seed results in enlarging the length

of cycles in corresponding Tanner graph and keeps the girth of the base matrix which

is the reason why the proposed construction can reduce number of 4 cycles in bad

base matrices.

Theorem 5.4: The memory storage needed for storing entries of a LDPC parity check

matrix constructed by random seed method is equal to 1/p
2
 of the memory storage

needed for entries of a random LDPC code with the same length.

Proof: Suppose a base H matrix with dimensions a × b is designed and a seed of

dimension p × p is inserted to construct a LDPC code by definition 5.2 that has the

57

same length of a random LDPC code. The new number of entries is then (ap)(bp) =

abp
2
. The model matrix has a number of entries equal to ab. Thus the memory storage

needed for the model matrix is 1/p
2
 of entries of H.

5.4 Construction of LDPC code using seeds of circulant identity

matrices

The proposed construction proposed in definition 5.2 helps in reducing the memory to

store and construct random entries of the LDPC H matrix by a factor of 1/p
2
. An

example is when a construction of a LDPC code with of length N = 3000 and rate R =

1/2 is done using a random seed with p = 100, it results in a model matrix with

dimensions of 15 by 30 instead of 1500 by 3000, and the construction can be achieved

by a simple random generation of numbers that refers to a predefined random seeds. It

also preserves the performance of same length code constructed by the same method

the base matrix is constructed by. A drawback of the proposed construction in

definition 5.2 is when choosing a large seed matrix in order to get a long length code

from a small base matrix, the number of all possible random seeds of dimensions p ×

p is growing to exceed the number of 1's in the base matrix. And each 1 in the base

matrix has the possibility to be replaced with a different seed matrix, which leads to

storing a number of seeds that are probably greater than the number of ones in the

sparse base matrix, and that reduces the efficiency of the code design. Recalling the

base matrix represented in example 5.1, if p is chosen to be 4, the number of possible

matrices to be generated is 4! = 24, but the number of matrices to be used is upper-

bounded by the total number of ones in the base matrix which is 12 in this case, so to

overcome this problem we can limit the number of seeds by the total number of 1's in

the base matrix in order not to store unused seeds. Another problem in this type of

construction appears when using a large p seeds with a relatively large base matrix

with many 1's entries, in this case the random generation will result in too many

different seeds to be stored, and the advantage of reducing the memory space of H

matrix will be violated by the large number of stored seeds. So it is recommended to

use of codes from definition 5.2 only when the dimensions of base matrix are small

with large p seeds, or when the base matrix is large using small p seeds

In order to overcome the restrictions in constructing codes by definition 5.2, we

suggest degreasing the number of choices to be equal to p instead of p! by taking the

58

seed matrix Ip with its p – 1 circulant matrices to be the only available choices, the

insertion of only p circulant matrices turns the code into a QC-LDPC code similar to

[54]. The randomness in choosing the seed to be inserted keeps the girth of the

constructed code greater than or equal to the original girth of the base matrix as in

theorem 5.2. The quasi cyclic property of the code allows linear encoding with shift

registers [55, pp. 256–261]. The performance of the QC-LDPC codes generated by

this method is found to be similar in BER performance of codes from definition 5.2.

5.5 Simulation and Results

In this section, we represent the performance results for the proposed LDPC codes by

comparing the BER of codes designed by the proposed construction with codes from

random constructions such as Gallager codes and with classic random QC-LDPC

codes. In additive white Gaussian noise (AWGN) channel, we use Implementation-

efficient Reliability Ratio Based Weighted Bit-Flipping (IRRWBF) [56] to decode

LDPC codes. And all simulations use maximum iteration number of 80. In the first

example we compare the performance of a LDPC Gallager code (504, 3, 6) with a

LDPC code constructed using a base matrix Hb constructed by a LDPC Gallager code

with (168, 3 ,6) and a random seed with p = 3. The resulted H matrix is of a LDPC

code of length N = 504 of the same rate. It can be seen in figure 5.6 and figure 5.7 that

the BER performance of the proposed codes is very close to Gallager's and MacKay's

codes. Since both of constructions have similar BER performance, the proposed code

still has an advantage over random codes such as Gallager's and MacKay's is that it

reduces the memory usage by having addresses of each random seed. The

construction with identity seeds shows degradation of the performance of the

extended code.

The second example represents a comparison between the proposed code with rate R

= 1/2, j = 3, k = 6 constructed with classic random QC-LDPC base matrix of m = 9

with a seed I3(r) to give a block length N = 162, and with a classic random QC-LDPC

of the same length with circulant identity matrices with m = 27. The results in figure

5.7 show that proposed codes constructed by a QC-LDPC base, outperform the

original code constructed with the same QC-LDPC matrix.

59

The proposed code also outperforms the classic QC-LDPC codes with different rates

and block lengths as shown in figure 5.8 and figure 5.9.

0 0.5 1 1.5 2 2.5 3
-10

-9

-8

-7

-6

-5

-4

-3

Eb/N0

lo
g
(B

E
R

)

Gallager (504,3,6)

Gallager base (168,3,6), random seed p = 3

Gallager base (168,3,6), Identity seed p = 3

0 0.5 1 1.5 2 2.5 3 3.5 4

-11

-10

-9

-8

-7

-6

-5

-4

-3

Eb/No

lo
g
(B

E
R

)

Gallager code (360, 3, 6)

(360, 3, 6) by random seed p = 3

(360, 3, 6) by Identity seed p = 3

Mackay code (360, 3, 6)

Figure 5.6: BER performance of (504, 3, 6) proposed code designed with base

of Gallager H with random seed of p = 3, and with an identity seed of p = 3,

compared to Gallager code with length N = 504.

Figure 5.7: BER performance of proposed codes with (504, 3, 6), with random

seed of p = 3, and Mackay's and Gallager's codes of the same length.

60

The following figure shows the effect of proposed code on decreasing the number

of 4 cycles in a bad constructed Hb. the removing of bits in order to get a free 4

cycle graph degrade the decoding performance, so removing less ones with

respect to the constructed size of H reduce the degrading in decoding

performance.

0 0.5 1 1.5 2 2.5 3 3.5 4
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

Eb/No

lo
g
(B

E
R

)

QC-LDPC base, (324, 3, 9) random seed p = 3

QC-LDPC base, (324, 3, 9) Identity seed p = 3

classic random QC-LDPC code (108, 3, 9)

classic random QC-LDPC code (324, 3, 9)

0 0.5 1 1.5 2 2.5 3 3.5 4
-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

Eb/No

lo
g
(B

E
R

)

proposed code (288, 3, 6), identity seed p = 4

proposed code (288, 3, 6), random seed p = 4

QC-LDPC code (288, 3, 6)

Figure 5.8: BER performance of proposed codes with rate R = 2/3 and a classic

random QC-LDPC code with the same rate and block length N = 324.

Figure 5.9: BER performance of proposed codes with rate R =1/2 and a classic

random QC-LDPC code with the same rate and block length N = 288.

61

1 1.5 2 2.5 3 3.5 4 4.5 5
-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

Eb/No

lo
g
(B

E
R

)

N = 360 using a random seed with p = 4

N = 360 using a random circulant seed with p = 4

Gallager Code 360,6,3

Figure 5.11: BER performance of proposed QC-LDPC code with N = 360 and

code with random seeds, compared to Gallager code.

Figure 5.10: BER performance of (90, 6, 3) proposed codes, shows the effect of

reducing 4 cycles in corresponding Tanner graph of H matrix.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

Eb/No

lo
g
(B

E
R

)

Seed gallager 90,6,3 with p = 3 after removing cycles of length 4

Seed gallager 90,6,3 with p = 3 before removing cycles of length 4

Gallager 270,6,3

62

1 1.5 2 2.5 3 3.5 4
-12

-11

-10

-9

-8

-7

-6

-5

-4

Eb/No

lo
g
(B

E
R

)

QC-LDPC p = 3 N = 360

LDPC code by Randomly permutated copies p =3 N = 360

Mackay N = 360 Rate = 0.5

Figure 5.12: BER performance of proposed QC-LDPC code with N = 360 and

code with random seeds, compared to MacKay code.

Figure 5.11 shows the performance of proposed QC-LDPC code compared to

code generated by definition 5.2. Both constructions appear to have the same

BER performance, taking in mind the advantage of QC-LDPC codes over the

other proposed design in encoding process and in decreasing the number of stored

seed matrices. Figure 5.12 shows comparison between constructions using a seed

of MacKay code.

63

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The main subject of this thesis is to study various construction methods of LDPC

codes and to understand the advantages and disadvantages of each type. The main

issue between random construction methods and structured methods is the trade-off

between the need of high memory storage for randomly constructed codes and the

easy implementation of structured codes, taking in account the outperforming of

random codes in large block lengths over structured codes.

Thus, the objective that comes up is to construct LDPC codes that have good BER

performance, and are also easy to be implemented in hardware. We achieved our

objectives by developing new LDPC code construction method that reduces the

memory usage for storing H matrix by a factor of 1/p
2
 and performs similar to fully

random codes such as Gallager's and MacKay's. Also experimental results show that

the proposed codes outperform classic random QC-LDPC codes. Another advantage

is that it can reduce the number of ones to be removed in order to get rid of 4 cycles

which degrade the decoding performance. We constructed LDPC codes with various

lengths and rates and we show that the proposed method works well in designing

block type LDPC codes.

6.2 Future work

The proposed code showed that it performs as good as random codes. Further analysis

of the obtained codes is needed to improve the performance in terms of girth, and how

to improve girth of the constructed codes. Also analysis of the obtained codes in terms

of minimum distance is required. Also further BER simulations at different lengths

and rates will be necessary to evaluate the stability of performance of these codes for

some applications.

A detailed study of hardware implementations of the proposed code is necessary to

have a better comparison with different constructions.

64

Bibliography

[1] C. Shannon, “A mathematical theory of communication,” Bell System Technical

Journal, vol. 27, pp. 379-423 (Part I) and 623-656 (Part II), 1948.

[2] R. Hamming, “Error detecting and error correcting codes,” Bell Systems

Technical, vol. 29, pp. 147-160, 1950.

[3] S. Lin and D. Costello, Error-Control Coding: Fundamentals and Applications.

2nd ed. Upper Saddle River, NJ: Pearson/Prentice- Hall, 2004.

[4] R. Gallager, “Low-Density Parity Check Codes,” Cambridge, MA: MIT Press,

1963.

[5] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. 8, pp.

21-28, Jan. 1962.

[6] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes

under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, pp. 599-618,

2001.

[7] C. Berroux, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error

correcting coding and decoding: Turbo codes,” Proc. IEEE Intl. Conf. Commun. (ICC

93), pp. 1064-1070, 1993.

[8] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf.

Theory,” vol. 27, pp. 533-547, 1981.

[9] D. MacKay and R. Neal, “Near Shannon limit Performance of Low-Density

Parity-Check Codes,” Electron. Lett., vol. 32, pp. 1645-1646, Aug. 1996.

[10] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann,

“Practical loss-resilient codes,” Proc. 29th Symp. Theory of Computing, pp. 150-159,

1997.

65

[11] S. Chung et al., “On the design of low density parity-check codes within 0.0045

dB of the Shannon limit,” IEEEComm. Lett., vol. 5, pp .58-60, Feb. 2001.

[12] M. Davey and D. MacKay, “Low density parity check codes over GF(q),” IEEE

Commun. Lett., vol. 2, pp. 165–167, June 1998.

[13] Q. Huang et al., “Quasi-cyclic LDPC codes: an algebraic construction,” IEEE

Trans. Commun., vol. 58, pp. 1383-1396, May 2010.

[14] M. Luby et al., “Improved Low-Density Parity-Check Codes Using Irregular

Graphs,” IEEE Trans. Inf. Theory, vol. 47, pp. 585-598, Feb. 2001.

[15] B. Vasic and O. Milenkovic, “Combinatorial constructions of low-density parity-

check codes for iterative decoding,” IEEE Trans. Inf. Theory, vol. 50, pp. 1156-1176,

June 2004.

[16] Y. Kou, S. Lin, and M. Fossorier, “Low-Density Parity-Check Codes Based on

Finite Geometries: A Rediscovery and New Results,” IEEE Trans. Inf. Theory, vol.

47, pp. 2711-2736, Nov. 2001.

[17] J. Campello, D. Dodha, and S. Rajagopalan, “Designing LDPC codes using Bit-

Filling,” Proc. Int. Conf. Communications (ICC), Helsinki, Finland, 2001.

[18] X.Y. Hu, E. Eleftheriou, and D.M. Arnold, “Progressive edge growth Tanner

Graphs,” IEEE Global Telecommunications Conf. 2001, vol. 2, pp. 995-1001, Nov.

2001.

[19] M. Fossorier, “Quasi-Cyclic Low-Density Parity-Check Codes From Circulant

Permutation Matrices,” IEEE Trans. on Inf. Theory, vol. 50, pp. 1788-1793, Aug.

2004.

[20] D. MacKay and R. Neal, “Good codes based on very sparse matrices,” Proc.

IMA Conf. Cryptography, Coding, vol. 1025, pp. 100-111, 1995.

66

[21] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check

codes,” IEEE Trans. Inf. Theory, vol. 47, pp.638-656, Feb. 2001.

[22] S.B. Wicker and S. Kim, “Fundamentals of Codes, Graphs and Iterative

Decoding,” Kluwer Academic Publishers, Nor- well, MA, 2003.

[23] F. Kshinschang, B. Frey, and H. Loeliger, “Factor Graphs and the Sum-Product

Algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498-519, Feb. 2001.

[24] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative

decoding of low density parity check codes based on belief propagation,” IEEE Trans.

Commun., vol. 47, pp. 673-680, May 1999.

[25] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and

convolutional codes,” IEEE Trans. Inf. Theory, vol. 42, pp. 429- 445, Mar. 1996.

[26] J. Attili, “An Investigation of Low Density Parity Check Codes,” San Diego

State Univ. Report, May 2006.

[27] D. MacKay and M. Davey, “Evaluation of Gallager Codes for Short Block

Length and High Rate Applications,” Proc. IMA Workshop on Codes, Systems and

Graphical Models. vol. 123, pp. 113-130, Aug. 1999.

[28] G. Malema, and M. Liebelt, “Low Complexity Regular LDPC codes for

Magnetic Storage Devices,” World Academy of Science, Engineering and Technology.

July 2005.

[29] G. Malema, “Low density Parity-Check Codes: Construction and

Implementation,” Ph.D. dissertation, Faculty of Eng. Comp. and Math. Sci., Univ. of

Adelaide, Australia, 2007.

[30] M. O’Sullivan, “Algebraic Construction of Sparse Matrices With Large Girth,”

IEEE Trans. Inf. Theory, vol. 52, pp. 718-727, Feb 2006.

67

[31] Y. Mao and AH Banihashemi, “A Heuristic Search for Good Low-Density

Parity-Check Codes at Short Block Lengths,” Proc. IEEE Int. Conf. Commun.,

Helsinki, Finland, June 2001.

[32] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-approaching

irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, pp. 619-

637, 2001.

[33] D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE

Trans. Inf. Theory, vol. 45, pp. 399-431, 1999.

[34] J. Knudsen, “Randomised Construction and Dynamic Decoding of LDPC Code,”

M.S. thesis, dep. Inf., Univ. Bergen. 2005.

[35] N. Traore, S. Kant, and T. Jensen, “Message Passing Algorithm and Linear

Programming Decoding for LDPC and Linear Block Codes,” Faculty Eng. Sci.,

Aalborg Univ., 2007.

[36] D. MacKay, S. Wilson, M. Davey, “Comparison of Construction of Gallager

codes,” IEEE Trans. Comm., vol. 47, pp. 1449-1454, Oct. 1999.

[37] X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and Irregular Progressive

Edge-Growth Tanner graphs,” IEEE Trans. Inf. Theory, vol. 51, pp. 386-298, Jan.

2005.

[38] J. Thorpe, “Low-Density Parity-Check (LDPC) Codes Constructed from

Protographs,” JPL INP, Tech. Rep., pp. 42-154, Aug. 2003.

[39] T. Richardson, “Multi-Edge Type LDPC Codes,” presented at the Workshop

honoring Prof. Bob McEliece on his 60th birthday (but not included in the

proceedings), California Institute of Technology, Pasadena, California, May 24-25,

2002.

68

[40] K. Wang, Y. Xiao, and K. Kim, “Construction of protograph LDPC codes with

circular generator matrices,” Journal of Systems Engineering and Electronics, vol. 22,

no. 5, pp. 840-847, Oct. 2011.

[41] D. Mitchell, R. Smarandache, M. Lentmaier, and D. Costello, “Quasi-Cyclic

Asymptotically Regular LDPC Codes,” Proc. IEEE Inf. Theory Workshop (ITW),

2010.

[42] S. Johnson, S. Weller,

“Construction of low-density parity-

check codes from Kirkman triple

systems,” Proc. IEEE Globecom

Conf., vol. 2, pp. 970-974, Nov

2001.

[43] Y, Kou, S. Lin, and M. Fossorier, “Low-Density Parity-Check Codes:

Construction based on finite Geometry,” IEEE Globecom conf. 2000, San Fransisco,

CA, vol. 2, no.7, pp. 825-829, Nov. 2000.

[44] M. Flanagan et al., “A Euclidean Geometry Based Algebraic Construction

Technique for Girth-8 Gallager LDPC Codes,” Proc. IEEE Inf. Theory Workshop

(ITW), 2006.

[45] W. Ryan, “An introduction to LDPC codes,” Dep. Elect. Comp. Eng., Univ.

Arizona, Aug. 2003.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4119225
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4119225

69

[46] H. Fujita and K. Sakaniwa, “Some Classes of Quasi-Cyclic LDPC Codes:

Properties and Efficient Encoding Methods,” IEICE Trans. Fundam. Electr. Commun.

Comp. sci., vol. 88, pp. 3627-3635, 2005.

[47] Y. Chen and K. Parhi, “Overlapped Message Passing For Quasi-Cyclic Low

Density Parity Check Codes,” IEEE Trans. Circuits syst., vol. 51, pp. 1106-1113,

June 2004.

[48] M. Hagiwara and H. Imai, “Quantum Quasi-Cyclic LDPC Codes,” Proc. ISIT'07,

pp. 806-811, Nice, June 2007.

[49] R. Tanner et al., “LDPC Block and Convolutional Codes Based on Circulant

Matrices,” IEEE Trans. Inf. Theory, vol. 50, pp. 2966– 2984, Dec. 2004.

[50] G. Malema, “Constructing

Quasi-Cyclic LDPC codes Using a

Search Algorithm,” Signal

Processing and Information

Technology. IEEE Int. Symp., pp.

956-960, 2007.

[51] D. MacKay and M. Davey, “Evaluation of Gallager codes for short block length

and high rate applications,” Proc. IMA Workshop Codes, Systems and Graphical

Models, Aug. 1999.

70

[52] J. Lee et al., “A Scalable Architecture of a Structured LDPC Decoder,” Proc. Int.

Symp. Information Theory, June 27-July 2, 2004.

[53] J. McGowan and R. Williamson, “Removing Loops from LDPC Codes,”

Australian Commun. Theory Workshop Proceedings, 2003.

[54] R. Tanner, “On Graph Constructions for LDPC Codes by Quasi-Cyclic

Extension,” in Itgomlation, Coding and Matlzematics (M. Elaum, P. Farrell, and H.

van Tilborg, eds.), pp. 209-220, Kluwer, June 2002.

[55] W. Peterson and E. Weldon, Error-Correcting Codes. 2nd ed. Cambridge, MA:

MIT Press, 1972.

[56] C. Lee, and W. Wolf, “Implementation-efficient reliability ratio based weighted

bit-flipping decoding for LDPC codes,” Electronics Letters, vol. 41, no. 13, pp. 755-

757, 23 June 2005.

