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Shear Strain Influence on Fiber Bragg Grating
Measurement Systems

Mathias Stefan Miiller, Thorbjorn C. Buck, Hala J. El-Khozondar, and Alexander Wilhelm Koch

Abstract—TFiber Bragg grating (FBG) sensors have become com-
mercially available sensors for the measurement of temperature,
strain, and many other quantities. One interesting application is
the embedding of these sensors, during which shear strains can
arise inside the sensor. As we have recently demonstrated by a
full-tensor coupled-mode analysis, shear strains do influence the
spectral response of fiber Bragg sensors, and thus have to be con-
sidered. In this paper, we use the theory behind this analysis to
compute the direct influence of shear strains on the output of a FBG
measurement system, and show cases where shear strain effects are
relevant. Furthermore, we compare the sensitivity of different in-
terrogation algorithms toward shear strain influences on the mea-
surement system output. To model the experimentally relevant un-
polarized light sources, we derive a model using the monochro-
matic waves of coupled-mode theory. We apply the unpolarized
light to the FBG shear strain problem and show that for unpolar-
ized light, shear strain has to be taken into account as well. We find
absolute measurement errors in the range of 100 pm. For typical
normal strain measurements, this would be of an order of 10% of
relative error.

Index Terms—Bragg scattering, measurement errors, optical
fiber measurement applications, optical fiber polarization, strain
measurement.

I. INTRODUCTION

iber Bragg gratings (FBGs) have been considered for
F numerous sensing applications, including temperature,
strain, and force, among others. One intriguing aspect is the
possibility to extract two parameters from the sensor position
by using a polarization-sensitive interrogation scheme. FBGs
may be integrated into composite materials or concrete [1] due
to their small dimensions. This possibility has gained much
interest because reconstruction of the state of strain within
such materials may improve applications such as condition
monitoring.

A transversally loaded or embedded FBG will give an op-
tical response corresponding to the strains that are distributed
along the core of the fiber at the position of the sensor. This is
due to the fact that light is only guided close to the fiber core,
which is only around 10 pm in diameter, whereas the whole
fiber measures approximately 100 pgm. This approximation is
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Fig. 1. Optical fiber with coating embedded into a host structure. The strains
in the host €, (2, y, z) will result in strains within the optical fiber & (z. y, z).

called “center strain approximation” [2], and greatly simpli-
fies the computation of the optical response of the FBG since
transversal gradients in the strain field may be neglected. The
loads applied to the fiber, either by transversal loading or em-
bedding into a host material that is itself strained, as pictured
in Fig. 1, will result in a position-dependent strain field within
the fiber, represented by the strain tensor é¢(z,y, z). Since the
dominant contribution to the change in the optical response of
the FBG will result from the core of the fiber, we assume that
e.(z) = €¢(0,0, z). The optical response of the grating upon
this load is computed from coupled-mode theory (CMT). CMT
is a widely employed tool, and has been applied to FBGs, as de-
scribed in various articles, see, for example, [3] and [4].

The influencing quantity e.(z) is a tensor of second rank. It
will, to first order, produce a dielectric perturbation in the fiber,
which is also represented by a second-rank tensor, namely, the
dielectric perturbation tensor Ag [5]. Each of the perturbation
tensor’s entries may be nonzero in an arbitrary load case. We
recently demonstrated how the optical response of FBGs may
be computed from the knowledge of this perturbation tensor by
a full tensorial CMT [6], and derived a transfer matrix formalism
for the problem [7]. We found that the strain tensor entries e,
€yy» €=z, and the shear strain e,,, show influences on the spectral
response, and that the shear strain entries e, and e,, possess
virtually no influence, due to the very small longitudinal field
components of the fundamental modes of the fiber.

The electromagnetic problem considers the four propagation
modes of the fiber: two of orthogonal polarization p and s, prop-
agating in positive z-direction, and two propagating in nega-
tive z-direction. The amplitudes of these four modes A, , A,
Ap_, and A,_ are coupled by the dielectric perturbations in-
duced by the grating and the mechanical loads. In a polariza-
tion-maintaining fiber, the propagation constants of the mode
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polarization splitter

Fig. 2. Possible measurement setup for determining the spectral response of an FBG written in a polarization-maintaining fiber. The FBG is illuminated by a
well-polarized source. Both axes of the polarization-maintaining fiber are illuminated equally. The reflected spectra are directed to a polarization splitter by a 3 dB
fiber coupler. The polarization splitter splits the light in the fast and the slow polarization axes of the fiber. Both outputs are fed to two optical spectrum analyzers
with low polarization dependency. For the whole setup, polarization-maintaining fibers are employed.

having orthogonal polarization (3,,, differ by a value AS =
27 /Lp, where Lp is called the beat length of the fiber. This
difference in propagation constant will prevent the coupling of
the polarization modes when the fiber is loaded mechanically,
such as by twists or bends or other loads [8], [9]. However, this
only works for moderate loads, and polarization coupling takes
place when the fiber is loaded substantially.

When polarization-mode coupling is neglected, the two or-
thogonal polarizations may be used to measure two different pa-
rameters from the FBGs position [10], [11]. Then, only the three
normal strains e, €y, €., and the temperature 7" have an in-
fluence on the optical response of the FBG. If all parameters are
applied homogeneously along the length L of the grating, the
Bragg reflection peaks of the two polarization axes will shift,
without deforming their shape. The center wavelength of the
two Bragg peaks is computed, and then, for example, the two
normal strain entries e,,, and e,, in the strain tensor may be
reconstructed. The center wavelength is obtained by using algo-
rithms such as maximum search, a centroid algorithm [12], or
Gaussian fit [13].

This is only possible if the two other parameters, e, and T,
are constant, which is not necessarily satisfied in each applica-
tion. A solution has been suggested by Udd, giving an overview
in [14]. The suggestion is to fabricate two Bragg gratings at the
same position inside the fiber, with widely different wavelengths
(1300 and 1500 nm). The fiber needs to be single mode in both
wavelengths. If the material properties of the fiber (Pockel’s
coefficients and thermo-optic coefficient) are different at both
wavelengths, it is possible to measure all four quantities with
one sensor. In a recent work by Mawatari and Nelson [15] this
suggestion is investigated. The authors note the necessity of
being able to neglect polarization rotation within the fiber due to
its polarization-holding capabilities. They state that the problem
of reconstructing the four parameters would become much more
complicated if such a polarization-mode coupling would occur.

The aim of our research is to study the influence of polariza-
tion-mode coupling within FBGs on the basis of the theory pre-
sented in [6]. We give a short summary on the theory and intro-
duce the measurement setup we model with our simulations. We
show how the parameter “shear strain,” which has been widely
ignored in the discussions on multiparameter strain sensing, has
a significant influence on the response of such a sensor. For this
purpose, we simulate the reflection spectrum of a mechanically
loaded FBG sensor when shear strain is neglected and when

shear strain effects are considered, and compare the results. Fur-
thermore, we calculate the performance of three different peak
fitting algorithms: maximum search, centroid, and Gaussian fit.
To evaluate the outcome of an experiment incorporating shear
strain and using an unpolarized light source, we introduce a
model for unpolarized light using monochromatic waves. This
becomes necessary since the underlying CMT model for com-
puting the reflection of the FBG uses monochromatic waves. We
demonstrate how shear strains also influence the response of an
FBG measurement system when unpolarized light is used viz.,
a depolarizing element of some kind is employed. Parts of this
paper have been already presented in [16].

II. FUNDAMENTALS AND THEORY

Several FBG interrogation schemes have been proposed to
date. For the polarization-sensitive interrogation, a polariza-
tion-independent measurement is conducted, and the two Bragg
peaks are separated by an algorithm [15] or the polarization
spectra are recorded independently [17], [18]. We model the
latter setup as it is in principle capable of providing more
insights. A possible implementation of such a measurement
system is illustrated in Fig. 2. We assume that either polarized
light, with an angle of 45° with respect to the axes of the
polarization-maintaining fiber is used to illuminate the Bragg
grating, or, as a frequently used alternative, an unpolarized light
source is employed. In both cases, the two reflected polariza-
tion spectra are split up by a polarization splitter or equivalent
device and are directed to two polarization-independent optical
spectrum analyzers or tunable Fabry Perot filters, etc.

A. Mechanical Test Case

In real-world applications, the strain tensor entries may vary
independently of each other, giving a large range of parameters.
In the transversal loading experiments [15], [17], [18], this range
of parameters is reduced, since only two parameters, namely, the
load angle ¢ and the load force F', are varied. This results in a
strain tensor €. that may be approximated by the form [6]

Con 0 0
e.(¢) = FR(¢) 0 —megzy O R(¢)T
0 0 0

ey

where R(¢) is the rotation matrix around the z-axis. By rotating
the fiber in the experiment, the shear strain e, is generated,
which possesses a maximum value of approximately that of ..



MULLER et al.: SHEAR-STRAIN INFLUENCE ON FIBER BRAGG GRATING MEASUREMENT SYSTEMS

To further simplify the model, we restrict ourselves to the fol-
lowing load case. The only nonzero strain tensor entries are e,
Eyy = —MEyy, and ezy. Entry ey, is varied from 0 to 2000
pm/m, ey, is scaled with mm = 0.2, and ey, is either zero,
when neglecting shear strain effects, or possesses a value of
ery = 2000 pym/m. The parameter m is determined by geo-
metrical properties and material properties, such as Poisson’s
ratio and Young’s modulus. For isotropic materials, an analyt-
ical treatment is given by Timoshenko and Goodier [19]. The
chosen value is approximately that of Poisson’s ratio of the fiber
material. The exact value will, however, be different and could,
for example, be predicted by a finite-element simulation. These
parameters may very well be found in a real-world application.
From the spectral information, the ‘“Bragg-wavelength” has to
be extracted. Therefore, several algorithms have been used. For
a symmetrical Bragg peak, the algorithms—peak maximum,
centroid, and Gaussian fit yield the same value. If the Bragg
peak becomes unsymmetrical, the outputs of these algorithms
will show differences. We apply the three algorithms to the two
polarization-mode reflections separately.

B. Modeling of Polarized Light Source

Polarized light is characterized by the fact that the time de-
pendence of the two polarization directions is fully correlated
within the time of observation viz., the coherence length of both
field components is long. The CMT model used in this paper
uses monochromatic waves to compute the interaction of these
waves at dielectric perturbations. Since monochromatic waves
possess an infinite coherence length, both field components are
fully correlated. Thus, the description of polarized light is easily
possible. In a polarization-maintaining fiber, the direction of the
electric fields of the two modes is fixed to the main axes of the
fiber, and the polarization direction is thus fixed. However, there
is a continuous retardation of both modes relative to one another,
leading to the well-known beating effect in these fibers [20],
[21]. This retardation may also be modeled using the monochro-
matic waves by introducing a relative z-dependent phase term
¢(z). The normalized amplitudes of the monochromatic waves
traveling in positive z-direction, and polarized parallel to the x
axis (p+) and parallel to the y axis (s+) are thus described by

1 1
Apy = 7 Ay = ﬁe“”(z). )
The intensity of this field is equal to 1. For the ongoing compu-
tations, we assume the phase term ¢)(z) to be zero. We are aware
that this represents a special case, but many effects may be well
demonstrated under this assumption. Besides, this special case
will frequently show up in FBG experiments.

C. Modeling of Unpolarized Light Source

The presented four wave model of FBGs is able to predict
the interaction of monochromatic waves at a certain wavelength
A. By altering this wavelength and solving the coupled mode
equations consecutively, we obtain the spectral response of the
grating. Monochromatic waves, however, posses an infinite co-
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herence length. The electric field of such a wave may be de-
scribed by

E.(z,t) = Ay, cos (Bpz — wt + B.(t)) 3)
Ey(z,t) = As cos (Bs2 — wt + By(1)) . 4)

This fact raises a problem when trying to incorporate effects
such as depolarized or unpolarized light into the model. For un-
polarized light, the correlation between the two polarization di-
rections needs to be zero. This may not be fulfilled by purely
monochromatic waves. For the description of unpolarized light,
the Stokes parameters sg, S1, S2, and s3 may be used. An alter-
native description is given by using the coherence matrix [22]

P;; = (ei(t) @ €5(t)) Q)
with e1(¢t) = A,(t), ea(t) = Ap(t) exp(id(t)), and 6(t) =
Bs(t) — Bp(t). The brackets are indicating time averaging

lim — / X (t)dt. (©6)

A basis for the coherence matrix is given by

() ae(h) o
02=<‘f é) ag,:(? ‘0‘> @®)

By these, the Stokes vector entries s; may be computed using
S; = tr((ﬁai) (9)

and from the Stokes vector, the degree of polarization is given

by

(3% + s% + s%)l/z

50

P =

(10)

We intend to use the given description to assess the validity
of a polarization model capable of describing unpolarized light
using the monochromatic waves of the FBG model. The idea
is to construct a signal consisting of a series of monochromatic
waves with different states of polarization. Such an approach
has been demonstrated by Jizhong [23]. By choosing the po-
larization of each wave in an appropriate way, the constructed
signal will show the required low degree of polarization. It is
then possible to feed the individual signals, each with a different
polarization to the FBG model, and sum up the resulting output
intensities for each polarization. This will give the response of
the FBG for unpolarized incident light.

The trace of the coherence matrix represents the intensity
of the light I = tr(®), which is kept constant. Hence, the
monochromatic wave—unpolarized light model—is con-
structed using the | = m - n individual waves

Ay = cos(p1n) (11
Agp = sin(¢py ,)e P2 (12)

with ¢1,1...N7 ¢2,1...N = {0 27T/N, - ,27‘(’(1 — l/N)} The
variables ¢; and ¢, represent the 2 DOF—polarization direc-
tion and relative phase of the two fields. The positive integer NV



5226

0.2 "
R Rp no shear
. 015 ‘_._Rsnoshear
20— Rp shear
~
N ——— Rs shear
E 0.1 .
‘8‘ . \A
3 LA
= 0.05¢ I
Yoo, \
0 L '.4 M \ '~
1548.5 1549 1549.5 1550 1550.5

wavelength / nm

Fig. 3. Result of the simulation using a normal strain ¢, = 2000 p1n/m and
€yy = —Mey,, m = 0.2. The shear strain is neglected in the thin-lined result
and set to 2000 pm/m for the simulation with shear strain. The results without
shear strain show the expected shift of the spectral response, without changing
the shape of the spectrum. With shear strain, the polarization modes couple and
the reflection spectra are changed in shape.

is the number of polarization directions and phase differences,
respectively.

Choosing N to be 50, the computed coherence matrix ¢ of the
model becomes diagonal, representing fully unpolarized light
[24]. However, this may also be an artefact of the way we con-
structed the series of monochromatic waves. To have an inde-
pendent measure of the quality of approximation of unpolarized
light, we choose N random values of ¢; and ¢2 between 0 and
27, and compute the degree of polarization P for each random
set. The mean degree of polarization P over several sets is eval-
uated. We expect P to decrease for higher N. This is confirmed
by our results. For a random set of N = 50, the mean degree of
polarization is approximately 8%.

For further modeling of unpolarized light, we chose NV = 10,
and thus run the FBG simulation procedure with 100 different
incident polarizations for each wavelength point. The computed
degree of polarization of this wave is zero. The [ reflected ampli-
tudes A, ; and A;_ ; each contribute to the detected reflection
intensities I, , and I, , at a certain wavelength, giving

I l
1 1
L, = 1 E |Ap—,l|2 I = 7 § |As—,l|2~ (13)
Jj=1 Jj=1

ITII. RESULTS AND DISCUSSION

A. Polarized Light

The first load case is computed to illustrate in detail the in-
fluence of shear strain on the reflection spectra. A normal strain
ezz = 2000 pm/m and a shear strain e, = 2000 pm/m is
used. Fig. 3 shows the computed result both neglecting shear
strain and taking into account shear strain.

As may be seen from the results that neglecting shear strain,
the spectral shapes of both Bragg peaks are symmetric. They are
shifted by some amount according to the load, but do not change
their spectral characteristic. The reflection spectra considering
shear strain do change their characteristics. The left peak cor-
responding to the s polarization couples intensity into the right
peak corresponding to the p polarization. This would by itself
not change the output of the peak-finding algorithms. But what
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Fig. 4. Six simulations with increasing normal strain and a fixed shear strain
of e,, = 1000 ;lm/ m. For low normal strains, the reflection peaks are only
separated by the birefringence of the fiber and polarization-mode coupling is
high, leading to a strong second peak in the s-mode reflection spectrum. For
higher normal strain loads, peak separation is increased and polarization-mode
coupling is reduced.

may also be observed is that the shear strain changes the spec-
tral position of the peaks, something that would yield a different
result. Apart from this, a second-order effect may be observed
when taking a look at the s-mode’s intensity at the position of
the p-mode’s reflection peak. Here, due to polarization-mode
coupling, the backward propagating p-mode couples onto the
backward propagating s-mode. This leads to a second peak in
the s-mode spectrum, something that has been observed by Ye
et al. [18] in their lateral loading experiment, attributing it to
structural changes in the polarization-maintaining fiber.

To precisely study the effect, the reflection spectra
of the Bragg grating are computed for increasing load
e = {0,400,800,1200,1600,2000} pm/m and e,, ac-
cordingly. e, is fixed to 2000 pm/m. For low e, the two
peaks are separated by the fiber’s birefringence only, and the
polarization modes are strongly coupled. This results in a
s-mode reflection peak, which nearly possesses two equally
strong maxims. For increasing normal strain, the separation
of the polarization modes’ reflection peaks increases, and the
propagation constant difference increases, leading to lower
polarization-mode coupling. Hence, the second maxima in the
s-mode reflection decreases.

Calculating the response of the interrogation algorithms, we
use the loads described before. We compute the output of the
measurement setup for two different kinds of fibers. Since polar-
ization-mode coupling will increase with increasing beat length
Lp, we use the beat length values of 7.7 and 3.0 mm. These
fibers are commercially available and represent the lower end
of available beat lengths. Thus, polarization-mode coupling is
generally low in the selected fibers and effects may be expected
to increase with higher beat lengths.
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Fig. 5. Computation of the Bragg wavelength of the s- and p-modes by three
algorithms —maximum search, Gaussian fit, and centroid. For comparison, the
Bragg wavelength neglecting shear strain influences is computed. For symmet-
rical reflection peaks, all three algorithms yield the same result; therefore, the
result without shear is independent of the algorithm used. This figure show the
simulation results for a fiber with a lower birefringence and a beat length of
Lg = 7.7 mm.

Fig. 5 shows the results for Lg = 7.7 mm. The lower values
correspond to the Bragg wavelength of the s-mode reflection
spectrum, and those at higher wavelengths correspond to the
p-mode reflection. The p-mode’s spectral response is less de-
formed in shape than the s-mode. This is simply determined by
the positive sign of the shear strain, using a negative value, and
the p-mode would be deformed in a comparable way. It is ob-
served that the values for the p-mode Bragg wavelength are all
situated at higher wavelengths than without shear strain.

This is something that may be explained by the spectral shift
to higher values, shown in Fig. 3. Yet the s-modes’ results show
positive as well as negative differences. This may be explained
as follows. The maximum of the s-modes’ Bragg peak with
shear strain is at lower wavelengths than without shear strain.
This also yields lower values for the maximum algorithm. The
Gaussian fit applies to the strong left peak of the s-mode in
Fig. 3, but the centroid algorithm integrates the whole spectrum
and weights it with the spectral position. This gives the right
second peak in the s-modes reflection spectrum a special influ-
ence on the position of the Bragg wavelength. For low normal
strains, the polarization-mode coupling is the strongest, leading
to a strong second peak in the s-modes reflection spectrum. The
Gaussian fit algorithm will either fit to one or the other, yielding
strong deviations.

If the beat length is increased viz., the birefringence of the
fiber is higher, the polarization-mode coupling is reduced, and
the effects are smaller. This may be observed by comparing
Fig. 5 and Fig. 6. Due to the higher birefringence, the reflection
peaks of the polarization modes are separated stronger initially,
leading to a different scaling of the plots.

The effect of polarization cross coupling results in a measure-
ment error in the determination of the actual Bragg wavelength,
since the spectral response is deformed. This interferes with the
concept of multiparameter strain sensing, as suggested by Udd
[14]. The shear strain component e, has to be considered as an
individual parameter, yielding a total of five parameters. These
are €., Cyy, Cay, €2z, and T'. The four values extracted from
the four Bragg peaks, as suggested by Udd, thus yield a sin-
gular problem.
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Fig.7. Testing of the model of unpolarized light by simulating a FBG response
without shear effects. The polarized and unpolarized light sources should show
the same reflection spectra, as confirmed by the plot.

B. Unpolarized Light

Before demonstrating the results of shear-strain-loaded FBGs
when illuminated with unpolarized light, we need to confirm the
applicability of our model for unpolarized light. We, therefore,
compute the response of an FBG in a polarization-maintaining
fiber in the absence of shear strain. For this case, the result for
polarized light with A, = 1/v/2 and A, = 1/v/2, and fully
unpolarized light need to be the same. Fig. 7 shows the results
of both computations. As is to be expected, both light sources
are yielding the same results.

As a next step, we are interested in whether by using an un-
polarized light source, the effects of shear strain on the FBG re-
flection response may be changed or even canceled out. There-
fore, we use the mechanical model of the preceding section
with e,, = 2000 pm/m and e,, = 2000 ym/m. The re-
sult of this computation is given in Fig. 8. When comparing the
lines corresponding to a simulation neglecting shear strain with
those taking into account shear strain and using an unpolarized
light source, it is notable that a small shift of the main peaks in
wavelength occurs. The two main peaks stem from the conven-
tional Bragg reflection at the Bragg wavelength shifted by the
normal strains e, and ey, plus an additional effect from the
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Fig. 9. Response of the depolarized FBG measurement system using three dif-
ferent peak searching algorithms, upon shear strain. The results show a clear
deviation from the ideal line, neglecting shear strain influences.

shear strain. Two secondary peaks at the position of these main
peaks may be observed, yet in the orthogonal field component.
These peaks are again a result of shear-strain-assisted polariza-
tion-mode coupling within the grating, as we describe in [6].
This implies that the shear strain e,, will change the spectral
response, and thus have an influence on the output of an FBG
measurement system again.

To gain an insight into the influence on a depolarized mea-
surement system, we compare the results of the three frequently
employed peak searching algorithms of Section III-A. We
model an FBG in a polarization-maintaining fiber with a beat
length of Lp = 7.7 mm and a constant shear strain of 2000
pm/m. The normal strains are increased from 0 to 2000
pm/m, and the algorithms are applied to the two polarization
directions’ reflection spectra.

The results shown in Fig. 9 show a clear deviation from the
ideal line, neglecting shear strain for the Gaussian fit and the
maximum search algorithm. This may be understood from the
results in Fig. 8. The shear-strain-loaded response shows a shift
in the main Bragg peaks’ wavelength. These two algorithms are
more sensitive to the main peak. The centroid algorithm, how-
ever, takes into account the weight of every contribution of the
spectrum equally. This means that the shift of the main Bragg
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peaks position due to shear strain gets somewhat compensated
for by the secondary peaks, also caused by shear-strain-assisted
polarization-mode coupling. This implies that shear strain ef-
fects play arole even in depolarized FBG measurement systems.

IV. CONCLUSION AND OUTLOOK

In this paper, we applied full tensor CMT to compute the
optical response of a mechanically loaded FBG in a polariza-
tion-maintaining fiber in the presence of strong shear strains.
We constructed a representative load case that may occur in a
fiber sensing application. For several load scenarios, we cal-
culated the output spectrum for the two polarization modes.
We used these data to test three algorithms to determine the
Bragg wavelength-maximum search, centroid, and Gaussian fit.
We demonstrated how the algorithms perform for two different
types of polarization-maintaining fibers having different beat
lengths. As expected, we found a reduced influence of shear
strain if fibers with high birefringence are employed. For a case
of Lp = 7.7 mm, the deviations of the Bragg peak caused by
shear strain were found to exceed 100 pm.

Thus, a load case that comprises identical normal strains, but
different shear strains may lead to strongly differing results.
Comparing the values to a temperature measurement, the 100
pm would correspond to approximately 10 °C or 100 gm/m.
As a result, shear strain has to be considered as a parameter in-
fluencing the output of an FBG measurement system. We also
demonstrated how a model for unpolarized light may be estab-
lished using monochromatic waves used for the CMT. We ap-
plied this model to calculate the response of shear-strain-loaded
FBGs for a measurement system using a depolarization unit.
The results demonstrate that depolarizing the light source does
not cancel the shear strain effects. These have to be taken into
account in this case also. An exception was made by the cen-
troid algorithm that seemed to cancel the shear strain effects for
the studied case. Yet there may be other cases for which the cen-
troid algorithm might not provide such a kind of compensation.

This has implications for the method of reconstructing the
three normal strains and temperature, as proposed by Udd [14].
Since five parameters are actually influencing the spectral re-
sponse significantly, the four parameters derived from the pro-
posed experiment will not suffice to reconstruct the state of
strain.

However, it may be observed that the relative power of the
polarization reflection peaks is depending on the applied shear
strain. It may therefore be possible to use this dependency to
reconstruct a fifth parameter, possibly directly the shear strain
component e;,, from the relative intensities of the two Bragg
peaks. This should then allow to overcome the singularity of the
problem and provide a method that allows the reconstruction of
the full strain tensor by a single FBG sensor.
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