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ABSTRACT

In recent years, waveguide sensors in dielectric films have
received more attention. Many theoretical studies concerning analysis of
dispersion equations were introduced for many planar waveguide

structures for both linear and nonlinear media.

In this work, the TE electromagnetic waves in a three- layer
waveguide sensors is studied. The waveguide structure is linear

dielectric film bounded by two nonlinear cladding and substrate.

The dispersion relation of the electromagnetic field in the proposed
structure has been derived. Numerical calculations are carried out.
Consequently; effect of stress and thermal- stress on the core of the
structure has been studied. Temperature sensitivity is also measured.
These results were simulated and presented in graphical form using

software program called Maple V.



PREFACE

Optical waveguides exhibit a number of interesting properties that
have been investigated over the last years because of their application in
all optical signal processing [6-10]. A great attention is nowadays paid to
optical waveguide sensors because they offer many advantages such as:
small size and capability of performing multi-functional sensor on one
chip [16-20]. Since then, varieties of sensors have been developed and
theoretical analysis of novel devices has been proposed. Most of the
studies has focused on such waveguide sensors, that have three layers in
which all layers are linear or at least one is nonlinear [21-24]. Huang
studied the effect of thermal-stress on three layers linear waveguide
sensors. He introduced temperature sensitivity and studied the effect of
various kinds of stresses on performance [8, 26]. EI-Khozondar, et.
al.(2006) have investigated the thermal, and stress effects on a three layer

nonlinear waveguide sensors where one layer is a nonlinear medium [35].

In the present work we study the s-polarized nonlinear surface
electromagnetic waves supported by three layers structure consisting of
linear dielectric film, bounded by nonlinear cover and substrate. The
temperature sensitivity of optical waveguide structure could be controlled
by thermal- stress and stress too. The aim of this study is to examine the

influence of nonlinearity and thermal stress on sensitivity.

The first chapter contains definitions and basis for analytical
investigation of the present work. In chapter two, we review the general

solution for linear waveguide sensors with stress and thermal- stress

Vi



effect. Chapter three gives a full description of optically nonlinear waves
in thin film without thermal- stress.

In chapter four, we derive a new exact analytical dispersion
equation of a nonlinear TE waves propagating in the proposed
waveguide structure and the nonlinear sensitivity is calculated. Finally,

the results are plotted, discussed, and analyzed in chapter five.
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CHAPTER 1

General Survey

1.1 Introduction

This introductory chapter deals with the fundamental ideas needed
to carry out this work. The concept of three — layered optical planar
waveguides are considered. Solutions of Maxwell’s equations in linear
and nonlinear media are discussed. The fundamentals of optical sensing

processes are also studied.

1.2 Planer waveguides

Optical waveguides are basic components in many optical systems.
It consists of layer of high refractive index material called the core
surrounded with other lower refractive index called the cladding[1].

We can define the effective refractive index (N) of the guided mode
traveling along the guiding film as the ratio of speed of light in vacuum to
the effective speed along the guide. (N) is different for the different
modes and does depend on the refractive index, thickness of waveguide

film and the surroundings.

N =~ ( 1.1)

0
(ko , k) are the wave numbers of free space and medium respectively
[2,6]. In general, sensing process consists of measuring the change of
the effective index of a propagating mode according to either changes of
refractive index in the waveguide cover or changes in thickness of the

core [7].



The type of waveguides currently used in biochemical and medical
sensing is planar optical waveguide structure. We can consider planar
waveguide slab consist of three — layer settled on the x-y plane and x-
direction will be considered the propagation direction of guided modes,
the guide is therefore a film of dielectric non — magnetic material [8].

The electric field E and the magnetic field H for the system in

general can be written as [9]:

E=[Ed+E,j+E, k].exp[i (kx-aot)] (1.2.a)
H=[H,+H,j+Hxk].expli (kx—at)] (1.2.b)

where  is the angular frequency and t is time.
1.3 Maxwell’s equation for optical planar waveguide

In dielectric media, the electric and magnetic fields must, of

course, satisfy Maxwell’s equations, in the planar waveguide as:

i) V.E=0 (1.3.2)
(i)V.H=0 (1.3.b)
(ii)Vx E=- u aa—lt{ (1.3.¢)
W H= o OE
(iVi\iVx H= ¢ Py (1.3.d)

Where p, € are permeability and permittivity respectively of the media,
for free space p= o and € = &,.
Using eq.(1.2), we find the following relations:

i OF i OH,

B= "Wz T _a)gog 01 (1.42)




oH, i OE,

i
H, = — = — 1.4.b
k 0z o u, 012 (1.40)
E i .
OBy _ i KE, +i 1 @Hy (1.4.0)
01
H ) .
a X = IkHz' |(0€0€|Ey (1.4.d)
01
@ 0
E, = sz (1.4.¢)
WE &,
Hy= == E, (1.4.9)

Where ¢, is the permittivity of the free space, L, 1s the permeability of
free space and g; is the relative permittivity in the medium [3].

If eq (1.4.c) and eq (1.4.d) are differentiated with respect to z, we

obtained:
0°E 2
* |2 ek |E.= 0 (1.5.a)
o1z? c?
o%H 2
X 4 |2 k2 |H, =0 (1.5.b)
o1z° c?
where ¢ = : is the speed of light in vacuum [8] .
\/50/10

1.4 Types of transverse field

Equations (1.5.a) and (1.5.b) show that E, and Hy are uncoupled, this
uncoupling is necessary, and sufficient to obtain the condition for the

existence of TE and TM modes [9].



(i) - Transverse electric field (TE):

In the transverse electric field [6] (s-polarized) the electric field E
is perpendicular to the plane of incidence, and the magnetic field H

is parallel to it, that is:

E=(0, E,, 0) . exp[i (kx — wt)] (1.6.2)
H=(H,, 0, H,) . exp[i (kx— @t)] (1.6.b)

(ii) - Transverse magnetic field (TM):

In the transverse magnetic field (p-polarized) the magnetic field
H is normal to the plane of incidence, and the electric field E is

parallel to it that is:

E=(Es, 0,E,).exp[i (kx— ot)] (1.7.2)
H= (0, Hy , 0) . exp[i (kx — @ t)] (1.7.b)

There is a finite number of discrete modes, and the field distributions
associated with the few TE,, waves. Figure 1.1 exhibits the field
distribution for three TE wave modes. It can be seen that fields executes
oscillatory behavior in the film, and decay exponentially with distance

into the cladding and substrate [10].



N
|

Figure.1.1:Typical electric field distributions for TE;, modes



1.5 TE waves Linear and nonlinear

TE waves can introduced by two kind of waves in which the
dielectric constants dependent on field strength (nonlinear) or does not

depend on field strength (linear).

1.5.a Linear TE waves

Suppose the fields are TE waves, which propagates along the x-
axis. The field components of these waves are shown in eq. (1.6 ). If this
wave propagates in a medium that has a linear dielectric constant (&),

then the field equation for this medium is given as :

0* Ey
0z’

— kX(N? - &)Ey=0 (1.8)

The differential eq. (1.8) can have two kinds of solutions:
1- surface wave (N> > &), N> & is positive quantity, then the solution

in the medium is given by :
E, = Acosh(k,qz) + Bsinh(k gz, (1.9)

q:w/N2—8

2- propagating wave(N ’<&), N %-& is negative quantity, then the
oscillatory solution in the medium is given by:
E, = Ccos(k,qz) + Dsin(k,q2) (1.10)

Where A, B, C and D are constants which can computed by using

boundaries conditions.



1.5.b Nonlinear TE waves

In Nonlinear medium the dielectric constant depends on field

strength and is given by [9, 27]:

NI L 2
¢ =¢ +a |E| (1.11)
Where a, is nonlinearity coefficient, e is the dielectric constant for

nonlinear medium and € is the dielectric constant for linear medium.

Substituting in eq. (1.5.a) leads to the differential equation[9, 15]:

&°E,
0z’

-k (N* =g )E +ak E, =0 (1.12)

According to « values this differential equation has two solutions:

E, = = : fi >0 (1.13
e cosh(koq(z—zc)) o e (1.13.2)

E = 2 a fi <0 (1.13.b
" Va sinh(k,q (z-z,)) o« (1.13b)

z.is a constant related to the power of the waveguide, more specifically,

the field peaks at z = z..
In the case where « is positive (a« >0), the medium is said to be self —
focusing, whereas for the casea is negative (a <0), the medium is said to

be self — defocusing [14- 16].
1.6 Power flow in guided waves

The guided wave power per unit length (P) in units of (watt/m) or
(m watt/m m) along the y-axis is obtained in the usual way by integrating

the Poynting vector over the depth dimension [2, 10, 27] as:



S= ExH (1.14)
Where S (watts/m” ) is the amount of flow energy on unit surface of any
volume (V). The integration of this quantity over the closed surface gives
the power flow associated with the wave.
Invariably a time-harmonic field[ exp(-i@ t) ]is used so that instead of S,
we should use the time average over one period. This is given

mathematically as:

<S> =<Re(E) xRe(H)>
= <I12(E+E*)x12(H+H*)> (1.15)
Notice that <E x H>=<E* x H*>= 0 over one period. This gives:

<S>=12Re(ExH*) = 1/2Re (E*x H) (1.16)

Where * denotes the complex conjugate (imaginary part) and Re means

that the real part is taken.
1 .
Finally , P :EI(EX H") dz

In the case of TE waves propagates down the x-axis < S > is follow as :

| ] k
0 E, 0
<S>= lRe i OE k = lLEzi (1.17)
2 — 0 —E, 2ou, '
wu, 01 U,
i OE Kk
Where H,= ’ , H,= —Ey
o p, 01 @

This formula can be used for both linear and nonlinear TE.



For TM waves < S > is given below:

i j K
—i oH
1 | - 0 - « E, lous
<S>=—Re|wee 01 weEE |= > k° EXi  (1.18)
0 H, 0

This formula is also applied for nonlinear TM waves [10- 16].

1.7 Optical sensors

Optical Sensors are used for optical communication and made of
transparent dielectrics whose function is to guide visible and infrared
light over long distance. Optical sensors are very important components
for the measurement of biological, physical and chemical quantity as
detecting the concentration of certain chemical blood. Sensors based on
the design and fabrication of a physical transducer that can transform the
chemical or biological reaction into a measurable signal. Sensing is
performed by the evanescent penetration of the field in the cover medium,
and is proportional to the fraction of evanescent power flow in the cover.
Due to their importance in bio-sensing application, various optical
sensors based on evanescent wave concept have been developed [17].

Optical Sensing is mainly used in concentration monitoring,
measuring traces of chemicals and studying all physical and chemical
properties that change in accordance with changes in refractive index
which depends on film thickness and refractive indices of both film and
surroundings [18, 19].

Optical sensing is very important in both research and industry
because of their miniature, high sensitivity, small size, immunity to

electromagnetic interference and low price [20].



In recent years several planar optical waveguide sensors have been
suggested for biological applications. The detection of pathogenic
bacteria have received renewed interest, especially within the fields of
food safety, medical diagnostics, and biological warfare. Typically,
optical waveguide sensors are used for measuring the refractive index of
liquids or various aqueous solutions of biological substances, such as
mammalian cells, bacterial cells, and proteins .

There are another application for optical waveguide sensors that
can be used for detecting and measuring the thickness of layers such as
metals, metal compounds, organic, bio-organic, enzymes, antibodies and
microbes. They are also used in radiation dosimeters and protective
masks or clothing when they can readily identify and give scanning data

about any change in exposure or lack in protection [12, 13].

1.8 Schemes of sensing and the sensitivity

Sensing is performed by the evanescent tail of the modal field in
the cover medium. In general, sensing process consists of measuring the
change of the effective index of a propagating mode according to either
changes of refractive index in the waveguide cover or changes in
thickness of the core [7].

The sensitivity of the measurement of the physical or chemical
quantity present in the cover depends on the strength and the distribution
of the evanescent field in the cover, Therefore there is the temperature
sensitivity which defined as the rate of effective refractive index respect
to temperature.

There are two types of sensing as shown in figure 1.2, where n, ng, n,,
and n; are the refractive indices for cover, core, substrate, and film

respectively:

10



a) Homogeneous sensing

In which the properties of waveguide cover are distributed
homogenously, and the sensitivity for this sensing is defined as the
rate of change of the model effective refractive index under an index

change of the cover as shown in figure (1.2.a).
b) Surface sensing

In which an ultra- thin film rests on guiding film. In this
configuration, changes in optical properties are due to adsorption of some
molecules that construct an ultra thin- film. The sensitivity of surface
sensing structure is defined as the rate of change of the model effective

index with respect to changes in ad- layer width as shown in figure

(1.2.b) [17] .

1.9 Aim of work

We will study the TE- nonlinear surface electromagnetic waves
supported by a three- layer structure, consisting of a linear dielectric film,
surrounded by nonlinear cladding and nonlinear substrate too. Dispersion
relationship and numerical results for this structure will be obtain then
present in graphical form and discussed. This study of three- layer
structure that considered in the present work can support symmetric

modes, which investigated by Huang [8].

11



evanescent field
/ cover Ne
—a-> waveguide g
subsirate g
()

evanescent field

/ cover Ne
nim M
—> waveguide ng

substrate Ng

(b)
Figure .1.2: Schematic representation of (a) Homogeneous sensor and

(b) surface sensor.

12



CHAPTER 2
Effect of Thermal- Stress and Stress on Linear Optical

Waveguide Sensors

The stress effects on the refractive index of a dielectric and on the
performance of optical waveguide sensors are widely studied [8].
This chapter gives a theoretical analysis and a fundamental mathematical
concepts of temperature-dependent linear waveguide sensors. The
dispersion relation and the temperature sensitivity for linear media have
been derived. Stress and thermal - stress effect on optical waveguide

sensors are discussed.

2.1 Thermal-Stress effects on optical properties of dielectric

materials

In anisotropic and inhomogeneous medium The dielectric tensor of,

&, 1s given by [8, 29]:

2 2 2
nxx nxy nxz
2 2 2
E=|Ny Ny Ny o1
2 2 2
_nzx nzy nzz ]

where the refractive indices ny , nyy, Ny, Ny, and ny, are Functions of
temperature, stress, and wavelength. The relation between the refractive

index and temperature ( thermo — optic relation ) is

on

—— =Bn , 2.2
oT 22)

13



where T is temperature and B is the thermo-optic coefficient, which is
usually a function of the refractive index, wavelength and temperature.
[26].

Thermal stresses vary with temperature. Combining thermo-optic
and elasto-optic relations gives the refractive index change with

temperature in the form:

N, nxx AO'XX
n, Ny, c, ¢, ¢, 0 0 0)]Ag,
n, aar| M ¢, ¢ ¢ 0 0 0
Al _ N6 ¢ ¢ 0 0 0|\ 2.3)
yz yz yz .
) " 0.0 0 ¢ 0 0ff
X “ 0 0 0 0 c O &
My ") 1o 0 0 0 o0 c)\%%w

W)

where ¢y, ¢y, and c;, are stress-optic constant, Gyy, , Gyy, Gzz, Oyz, Oxz, Oxy
are the stress components.

The change of refractive index,An, is affected by temperature
change, AT, and stress change, Ao, change is considered linear with
temperature, upon changing temperature from T, to T. Stresses in the

waveguide at temperature T are written as:

O ny Ox
O-xy O-yy O-YZ (2 4)
O (o} o}

Xz yz bk

the refractive indices at temperature T can be obtained from eq. (2.3) as

14



n n O
nxx nO c, ¢, ¢, 0 0 O o,
yy 0 c, ¢, ¢, 00 O
N, Ny cc. cc 0 0 O 9z
=[1+BT-T,)] S o, (2.5)
n,, 0 00 0c 0 0f]"
N 0 000 0c 0|l
n
g 0 00 0 0 0 c)\%

)

where n, is the refractive index at temperature T, and under the stress-
free state [11, 26].

In practical situation, a waveguide is usually exposed to a very
complicated form of stress, both in homogeneity and anisotropy exist.

Therefore the stress state in the core can be expressed as:

0w =9, EAa(T -T,)+0,

o, =9,EAa(T -T))+ 0,

o, =0,EAa(T -T,)+0, (2.6)
O-yZ = O-XZ = O-Xy = O

where E is Young’s modulus of the core which defined as a measure of

the elasticity of a material which does not depend on the shape or size of
the piece of material, A= 44y~ Xore 1S the thermal- expansion

coefficient mismatch between the cladding and core; 6., 6, and c,, are
residual stresses along x, y, and z directions, which are independent of
temperature, gy, g, and g, are loading parameters, which are functions of
Young’s modulus ratio.

In the following analysis the stress in the core is assumed to be
homogenous, and the thermal stress in the core is assumed to be only due

to the thermal mismatch between the core and cladding, this will give:

15



gx = O
g9,=9,=1/(0-v) (2.7)
where v is Poisson’s ratio.

Under the stress state given in eq. (2.6), the refractive-index profile

of the core can be obtained from eq. (2.5) as:

Ny = nO + BnO(T _TO)_Cl(ngAa(T _TO)+O-rx)_
Cz(gyEAa(T _To)+0ry)_cz(ngAa(T -Ty)+0o,)

N, =Ny +(T =Ty)Bn, —¢,9,EAa—c,9, EAa -

C,0, EACX) —Co, — Czo-ry -C,0,

n,, =n, +[Bn, —c,0,EAa —c,(g, + g9,)EAC]

x(T =Ty)=€,0, —C, (0, +0,,) (2.8.2)

n, =n,+Bn,(T -T,)—¢,(9,EAa(T -T))+0,) -
Cl(gyEAa(T —T0)+O'ry)—02(ngAa(T ~-Ty)+o,,)

n, =n, +(T =T,)(Bn, —¢,0,EAx —
¢9,EAa-c,9,EA)-cC,0, -C/0, —C,0

rz

n, =n,+[Bn, —c,g,EAa-c,(g, +0,)EAx]

X(T _TO)_CIGry _Cz (O-rx +O—rz) (Zgb)

n, = nO + BnO(T _TO)_Cz(ngAa(T _T0)+er)_
¢,(9,EAa(T -Ty)+0,)—-C (9,EAx(T -T) +0,,)

16



n,=n,+(T -Ty)Bn,-c,9,EAa —c,9 EAa -

ClngAa) —C,o — Czory -C0oy

n, =n, +[Bn0 _ClngAa_Cz(gx +gy)EAa]

x(T-T,)-c0,—-C,(0,+0,) (2.8.c)

2.2 Dispersion equation of linear planer waveguide

Consider a symmetric, infinitely large planar waveguide sensor
with very thick cladding regions as shown in figure 2.1. The light is
confined in the core region with thickness t, propagates in the x-
direction, and has no variation in the y- direction [21, 22]. The
waveguide is assumed under the homogenous stress state, and the
cladding does not have an elasto — optic effect.

In a TE configuration, the Maxwell’s equation of the core is:

0’ E
0z°

-k (N7 - )E, =0 (2.9)

The equation for the cladding is:
2
0" E,
01’

~k; (N * =&, )E, =0 (2.10)

The equation for the substrate is :
0’ E
0z’

L —ki(N* - )E, =0 (2.11)

where k = 21/A, A 1s the wavelength, &;is the dielectric constant of the
core, N is the effective refractive index of the TE mode, and ¢, & is the

dielectric constant for the cladding and substrate respectively.

17



N

Cladding ¢,

substrate g

Fig.2.1: Schematic of a symmetric three —layer planar waveguide.
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The general solution of Maxwell's equations, eq. (2.9), eq. (2.10)

and eq. (2.11) respectively takes the general form as:

E, = Acosh(k,qz) + Bsinh(k,qz) (2.12)
E, = A exptk,g2) (2.13)
E, = Aexpk,q2) (2.14)

where P = 4/N 2—5f andq=\/(N P g .

where A, B, A., A are constants can be determined from the boundary
condition.

OE

Continuity of both E,, 8—Zy at the boundaries (z=0and z=1t)

will give the dispersion equation, eq. (2.15) [11, 24]:
K, tp— 2arctan@) —mz =0 (2.15)
P

where m=0,1,2,... .

For even values of m eq. (2.15) reduces to

p tan(

k t
°Tp) =q (2.16.a)

For odd values of m, eq. (2.15) will be
g tan(kotp/2) = -p (2.16.b)
2.3 Stress effects on the performance of planer waveguides

Stresses can cause anisotropic and inhomogeneous distribution of
the refractive index. The relation between refractive indices and the stress

is found to be [4, 8]:

19



nxx nO O-xx
) ) c, c, c, 0 0 O
(o2
Y no c, ¢ ¢, 00 0 Y
n
N e I S S I I B
n, |= [0 |- o (2.17)
v . 00 0¢c 0 Of] ~
ﬂxz 0 0 0 0c 0f]%
W 0 0 0 0 0 0 c) \9v

[

WhereC, = ng(pn -2vp,)/(2E),C, = ng(pn + p12)/(2E)and

C; =N;(Py)/(2G) are stress — optic constant. E, G and V are Young’s
modulus, shear modulus and Poisson’s ratio, respectively. For isotropic
crystals, Py, = (P;; — Pp)/2andG = E /2(1 + v). In eq.(2.17), it
is assumed that the refractive index of media is homogeneous and is
defined in terms of the principal dielectric axes of the free stress state.
Table (1) lists the photo-elastic constants of some material. Stress — optic
constants, are calculated from strain — optic constants, p, listed in the book
by Xu and Stroud (1992) [8].

The stresses in microstructures are usually on the order of 10° Pa,
and the values in Table (1) are on the order of 10™"" Pa™, so the refractive
index change caused by stress is normally between +0.01. Because the
stresses are usually non- uniformly distributed (inhomogeneous) and have
different values in different direction (anisotropic) in the waveguide, the
refractive indices are also inhomogeneous and anisotropic.

To study the stress magnitude effect, referring to figure 2.1 we
assumed the core is to be under hydrostatic stress state, 1.€., Gxx = Oyy = G,
= o and o,y = 0, the value of the refractive index in the core changes due to
the stress, 1.€., Ny = nyy =N, =n=1ny — (¢; + 2¢,) 6. The mode equation of

the core is simplified to
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OE,

ora

~I¢(N* - )E,=0 (2.18)

Considering zero fields at large z, the above equation can be solved
as for N, - & positive quantity then the general solution of eq. (2.18) is

given by [25]:

E, = Acosh(k,gz) + Bsinh(k,qz)

y (2.19)
At the interface between core and the two cladding the continuity
OE,
of both E,, 3 at the interfaces (z = 0 and z =t ) will give the values

of the constants and the effective refractive index (N).
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Table 1

The photo —elastic constants of some materials

Material ~ 4(um) ny P;; P, Py C1(10"%/pa) Cx(10"%/pa)  C5(10"*/pa)
Ge 2022 4 -0.063 -0.0535 -0.074 -10.56 -6.78 -35.29

10.6 0.27 0235 0.125 44.27 30.37 59.61
Si 1.15 3.42 -0.101 0.0094 -11.35 3.65

3.39 -0.094 0.017 -0.051 -11.04 4.04 -12.82
GaAs 1.15 343 -0.165 -0.140 -0.072 -18.39 -10.63 -24.46
Fused silica 0.633 1.46 0.121 0.270 0.65 4.50 -3.85
GaP 0.633  3.32 -0.151 -0.082 -0.074 -17.91 -1.87 -19.21
LiNbO; 0.633  2.29 -0.026 0.090 0.146 -2.10 2.55 -14.63
LiTaO3 0.633 2.18 -0.084 0.081 0.028 -2.57 1.91 1.53
Al, O3 0.633 1.76 -0.23 -0.03 -0.10 -1.61 0.202 -1.90
PbMoO, 0.633 239 024 0.24 0.067 6.63 6.63 17.04
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A computer program was developed to plot the relation between
effective refractive index (N) and a thickness of the core(t) form =0, 1,
2 as shown in figure 2.2, where the value of the stress can take two
values (C,0=-0.0))and (C,0 =0.01). In the figure, c,/c, is considered 0.1,
A =0.83um n,=3.5 n, =23, and (t) can take the value from 0 to 1.5um.
This figure shows that the order— m = 0 has the largest values in both
negative and positive stresses. It is clear that the highest values is

achieved with negative stresses for m = 0.

Figure 2.3 shows the effective indices as a function of normalized
stress for a 1 um core thickness waveguide.
However, the effective indexes vary with stress, and the cutoff thickness,
which is defined as the core thickness at which the field is no longer
guided by the core (N = n. in this case ), shifts when the stress value is
high. In figure 2.3, when t = 1 zm, the second mode (m = 2) appears (or
disappears) when stress changes. This means that stress can cause
multimode. The field distributions of the fundamental modes (m = 0) are
shown in figure 2.4. The model field is normalized by the time-averaged

power flow, P, which is given by Poynting vector, 1/2Re(ExH¥).
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Fig.2.2: Effective refractive index (N) as a function of core thickness (t) for

a symmetric planar optical waveguide under different hydrostatic stresses.
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Fig.2.3: Effective refractive index (N) as a function of normalized hydrostatic stress

for a symmetric planar optical waveguide with t=1 zm.
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Fig.2.4: Normalized transverse field distributions of the fundamental modes (m = 0) for

a symmetric planer optical waveguide under different hydrostatic stresses with t=1 z#m .
The curves from top are corresponding toc,0c = —-0.01 ,c,0c =0 andc,c = 0.01

stress values.
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2.4 Evaluation of temperature sensitivity

Differentiating egs. (2.8) with respect to the temperature, T, gives

the temperature Sensitivity of the refractive index as [26]:

dn, /dT =Bn, —c¢,g,EAa —c,(9, + 9,)EAq,

(2.20.a)
dn, /dT =Bn, —c,g,EAa —c¢,(9, + 9,)EAa,

(2.20.b)
dn,, /dT =Bn, —c¢,g,EAa —c, (9, + 9,)EAa,

(2.20.c)

Temperature Sensitivity is defined as the rate of change of the
effective refractive index with respect to temperature. To evaluate

Sensitivity we differentiae egs. (2.16) with respect to the temperature ,T,

d 1

da .py_
dT (q)

and after some arrangement we find the relation as

dp dg
+(p?+g)kt/2]—=—=p—
[q (P”+97)k, ]dT e (2.21)
this relation is applied for both even and odd modes. substituting for p, g,
dpdg o N
dT and d_T , and after some simplification we can find qT (which is

temperature sensitivity (St)) expressed as:

S, =A/B (2.22)
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dn,

, dn; dn;
Where, A = (2 q + qp "kt +

dnc)
aT aT aT and

k t+2p?
g7K, pdT

B= (29° +gp’k,t+ g’k t+2p?)
As an example, we take t =1um | 2 = 0.83 um, dn, /dT=2x10"1C |
dn /dT= dn /dT=1x10"1/°C , ny= 3.5, and n. = 3.

Then with a computer program we plot some relations like
temperature sensitivity (St) as a function with a thickness of the core (t),
also temperature sensitivity (St) as a function with effective refractive
index (N) and effective refractive index (N)as a function with a thickness
of the core (t) as shown in figures 2.5 and 2.6.

It 1s apparent from figures that the temperature sensitivity of the
lower-order mode (m = 0) is higher than that of the higher — order mode
(m = 2). Moreover, it is clear that from figure 2.5, sensitivity increases
with the core thickness up to a limiting value when it become constant.
From figure 2.6 there is a directly proportional between effective
refractive index (N) and the core thickness of the waveguide. Also the
same behavior between temperature sensitivity (St) and effective

refractive index (N) appear in figure 2.7.

28



% ol98
= X
z
% 1.95 .
£ :
5 194
(=N
£ _
F .
192
1.9 ' ' '
0.2 0.4 0.5 0.8 1
Core thickness (t) (A m)

Fig.2.5: Temperature sensitivity (St) as a function of core thickness (t), for m=0,1,2.
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Fig.2.6: Effective refractive index (N) as a function of core thickness (t),for m=0,1,2.
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CHAPTER 3

Mathematical Simulation of Nonlinear Waveguide Sensors

In this chapter, an extensive theoretical and graphical analysis of nonlinear
waveguide structure sensors is carried out. The waveguide sensor
structure considered here without thermal stress effect and consists of a
dielectric film bounded by a nonlinear cladding and a nonlinear substrate.
The dispersion relation and sensitivity of nonlinear media are derived.
The interface for nonlinear waves is also discussed. The power flow in

nonlinear TE waves is calculated.
3.1 Dispersion equation of nonlinear planer waveguide

Suppose the structure of waveguide sensor is shown in figure 3.1
where a linear waveguide film is sandwiched between a nonlinear
substrate and a nonlinear cladding with an intensity dependent refractive
index whose dielectric function of the electric field is expressed as in eq.
(1.12).

Consider the TE waves are propagate in the x-direction, with wave

number k, and expressed as:

E = (0, E,, 0) exp[iko(N x-ct)], (3.1)
In TE wave Maxwell s equations for cladding, core, and substrate

respectively are givenas [ 5, 15 ]:

0’E
— (N2 B, +ak2(EY)=0 s (24
Z
O°E, [,
sk, N - )E =0 (0<z<t) (3.2.b)
0z
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Fig.3.1: The waveguide structure under consideration.
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2
6a;y_k02(N2—gs)Ey+ak02(Ej)=0 (:<0)  (3.2.0)

Solution of eq. (3.2.a) and eq. (3.2.c) is given [ 9, 31] by:

_ |2 q;
K _\/07 coshlk,q,(z—z,)] G-

where z, is a constant related to the power of the waveguide and

q, =+ N 2 &, ,1=c, cladding and s, substrate.

If N*> &r, then the solution in the film medium is given by:

E, = A¢cosh (k, pz) +By sinh (k, pz) 34

where p = N°-¢, .
OE

The continuity of both E, and 8—y at the boundaries ( z=0 and z=t)
/4

will give:

E, = 4, Looshik,pz) +° tanh(hyg,2,)-sinhlhop2)] .5

2 q
4, =]= S
Where Ay \/; cosh(koqs Zo)

_ |2 9.
£ _\Ecosh k,q.(z-z,)] G-©)

E —\E 95
* "V« cosh lk.q.(z—z2,)] (3.7)

From these equations, the dispersion equation is given as:
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tanh(k, pt )- p + g, tanh(k,q,z,)

—tanh(k,q,(r—z,))q,= q (3.98)
14+~ tanh(k,q,z,) - tanh(k, p?)
p

To simplify this equation and to present the normalized formulae we
will define [11, 17], two asymmetry parameters (a; and a.) and a

normalized variable (X;and X.), are introduced as follows

(3.9)

aC =_¢ , as - — (310)

a.and a, are defining normalized refractive index contrasts.
By use the relation between a normalized variable (X and X.), and

after some mathematics we reach to,

1-a, G.11)

s 3.12
- (3.12)
The effective refractive index N can be have the relation:
2
£, (a,+X)
N = (3.13)

1+X2
C

35



By substituting aboutq; = +/ N 2 - &; and using eq. (3.11) and eq.
(3.12), and after some mathematical arrangement the dispersion equation

may be given by [5, 9, 16 |:

1—
k,t\e, - ;“ = arctan( X, tanh (C))+ arctan( X, tanh(C)) + m

(3.14)
with C=k,(t—z,)\N°—¢, andm=0,1,2,.... If the term (tanh(C)) in

eq. (3.14) equal (x1) the problem will simplified to the linear dispersion

equation.

3.2 The interface for nonlinear waves

For nonlinear waveguide we can study an important quantity it is
the interface nonlinearity which can calculated from the electric field due
to clad at the film-clad interface. We can replace with z =t in the field

given from eq. (3.3). The resultis [5, 9, 10]:

_ |2 q.
Eo= \/;cosh [koqc (t—z, )] (3.15)

by squaring both sides of eq. (3.15) and using the relation

[cosh x]_2=1 — tanh ? x, we can found that:

aE, q;
2 costlk, q,(—2,)]

= g, {I—-tanl’[k, ¢,(1—z,)]} (3.16)

36



From the dispersion equation eq. (3.14) one can substitute about tanh(C)

a E*

o

2

tanh(C) = tanhf,q,(t-z,)) = ‘/ 1 - 0;52 (3.17)

Substituting for tanh(C) and making use of eq. (3.9) and eq. (3.10) we

in terms of . Where from eq. (3.16) tanh(C) equal to [28- 32]:

end with:
l—-a.) ¢ N*—-ac¢ 2
k,t ( 2S) /__ _ arctan —Ssz 1 — aE2
N*—a., le, = N"| 2q.
I+
|5f_N |
Nz—asgf
(I-a) |1+ —— =
|5_/'_N| (ZEj
— arctan -1 1- > =0
l—-a, 2(N —acgf)
(3.18)

This equation can be used to evaluate numerically N and conversely

tanh(C) which will be used to give z,,.
3.3  The sensitivity for nonlinear waves

For homogeneous sensing, sensitivity ( Sy, ) is evaluated as the rate
of change of the effective refractive index of the waveguide ( N ) under an

index change of the cover [18, 19], 1.e.

Sp=—-— (3.19)
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Applying this to eq. (3.13) and after some arrangements, sensitivity can be

expressed as [5]:

Sh(TE):

Va, 1/1+Xc2 tanh(C)
1+ X ?)tanh(C
X Ja,+X.? (1+X 7 tanh(C))| Fpp + L (I+X, )tanh(C) 1
c c c c 2
X, (1+X_" tanh(C)) X

(3.20)
where Frz = arctan (X, tanh (C) ) + arctan (X tanh (C) ) + m «

3.4 Power flow of nonlinear TE waves

Researches showed a strong relationship between sensitivity and the

power flow in the layers of the sensor is defined in ch.1 as:

1 * 1% .
P=—[(ExH ) dz=— [E H dz
2( ) 2_{oy .
:Ps_}_Pf_{_Pc (321)

H . is given from Maxwell's equation (chapter 1) as:

k
H, =ﬂ"a) E, (3.22)
o

By using E from egs. (3.5), (3.6), (3.7), for N’ > ¢ r and carrying
out the integration one can result that [ 5, 33, 34 |:
p_ Ng’ A’
* 2u,0, 0.q, cosh’(C)

(3.23)
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N 2A2 2
P, = 9= _1kn |1-L
2p, 0, acosh”(C) g

sinh(k g, h : 2
D Lm ) cosh(k, g0+ sin(k, g, J]

2

9y gy qr
(3.24)
Ngq
P = < [1-tanh(C)] (3.25)
U0
1+Xx 2
A, :FTE+Ttanh(C)+ | T = : c
X, X 1+ X~ tanh(C)

The fraction of the total power flowing through the cover region is

related to the sensitivity.
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CHAPTER 4

Effect of Thermal-Stress on Nonlinear Optical Waveguide Sensors
4.1 Introduction

The properties of waveguide sensing in dielectric films have been
studied intensively for a number of years and have resulted in a large
number of devices. To date, it has tacitly been assumed that the
refractive indices associated with all of the media which constitute the
waveguide sensors are independent of the local field intensity[ 6- §].
Recently, dielectric film waveguides containing one or more media,
whose refractive index depends on the local intensity, have stimulated a
great deal of theoretical interest [17- 20 ].

Sensitivity for optical waveguide sensors has been obtained in
many studies. Stress and thermal— stress effects on the sensitivity of
linear optical waveguide sensors have been studied by Huang [8, 26 ].

In this chapter we study a planer structure of waveguide sensors
containing a linear dielectric film that bounded by two nonlinear layers.
We derive the dispersion relation for this structure and study the effect of
stress on this structure and the effect of thermal- stress on temperature

sensitivity.
4.2  The electric field in each layer of the medium

The dielectric function of a nonlinear media is characterized by

eq.(1.11):

e'=e"+alE|

Figure 4.1 shows the configuration of the sensors under study. We

assume a core of finite linear layer occupies the region 0 < z < ¢ . The
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two surrounding nonlinear layers occupy the region z<0 and z>t as

substrate and cladding respectively.
Only TE modes are going to be considered and these propagate

along x- axis as:

E = (0, E,, 0) exp[iky(N x-cT)],

where N = k/k, is the effective index, k,, ¢ are the wave number and the

speed of light in free space, respectively.
In TE waves, Maxwell s equations for cladding, core, and substrate

respectively are given as [ 5, 15 |:

O’E
5 2y —k; (N2 —&, )Ey +ak? (Ei)z 0  (cladding) 4.1)
z
OB, L,
oo k(N e B, = 0 (core) 2)
O0’E
p Lk (N2 —&, )Ey +ak. (E;)= 0 (substrate) (4.3)
zZ

For « ) 0 the solution of eq. (4.1) and eq. (4.3) respectively

is given as [9, 31]:

_ |2 q.
Bem \/; cosh [k, g, (z — z,)] (44

_ |2 q,
g ﬁ cosh[k,q, (=— )] %)
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Fig.4.1 : Structure of the waveguide sensors, linear media bounded by two

nonlinear cladding and substrate.
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where ¢, =/ N’ — &, , i=c, s which denotes to cladding and substrate

respectively and 7z, is a constant related to the power of the waveguide
(at z = z, the field is peak).

For N* > gr the solution of eq. (4.2) is given as:

E¢= A¢cosh (k, p z) +B¢sinh (k, p 2) (4.6)

where p =+ N* —¢&, for the core.

Now to find the electric field in the core and the dispersion
equation, there are four boundary conditions, to evaluate the constant A,

we relate this condition,

(1) Eyz=0)=E¢(z=0)and from eq. (4.4) and eq. (4.5),

2 q, :
- — + =
\/; cosh [kofls (z —Zo)] =) =4 cosh (kip 2) +B; sinh (k, p2) (2=0)
4.7)
the result is:
12 q
A, =.— :
/ a cosh(k,q.z,) (4.8)
To evaluate the constant B, we relate the derivative of E, and Eg,
¥, oF,
“(z=0) = —(z=0
@ - (z=0) P (z=0) where,
OE 2 0
= |—q.— h(k —
82 aqs 82 (SeC ( OQS (Z ZO ))) (4~9)

but %(sech(u) =—sech(u) tanh@);{—z ,
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oF, 2
GZS B \Eqs ) [_SeCh(kOqs (Z _Z()) ) tanh((OQS (Z _ZO))]. kOQs (4 10)

E. [2
aZ - \/;qv ) [_SeCh(kOqs (_ZO) : tanh(koqs (_ZO ))] ) kOqs (4 1 1)

but sech(-u) = sech(u) , tanh(-u) = -tanh(u), where (u) for any function,

then eq. (4.11) become:

oE. [2
b o tseohtba z) nbiigz0bbe, )

In a similar approach, we find:

oE,

Ef = A, sinhé,pz )-kyp+ B, coshl,pz )] k,p (4.13)
OE

52f (z=0)=B,k,p (4.14)

OE,
Referring to the boundary condition e

(=0 = T (z=0
Y Oz (2=0),

and from eq. (4.13) and eq. (4.15) then:

2
\Eqs -[sedh(kyq,z,)- tanht,q,z))]- kg, = B 1k p (4.15)

Which leads to:
2 q,
By = ;;[Sech(koqszo)-tanh(kquZO)]°qs (4.16)
B. = 4. 45 tanh(k
f S p an ( OCISZO) (417)
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Finally, the electric field in the core film can be obtained from

eq. (4.7), the result is,

E, = Aleosh(kypz) + = tanh(kq,z,)-sinh(kyp2)] - (4.18)

Ef=Es<0>[cosh<kopz>+%tanh<koqszo>-sinh(kopzn 4.19)

where E; (0) 1s the electric field for substrate when z=0.

4.3 Dispersion relation

To relate the dispersion equation, we can use the third and fourth

boundary conditions,

() Ec(z7t) = Ee (z=t)

OF OE
(4) a—ZC(Z =1) =

5 =0

Substituting in the third condition, we get:

2 q 2 g, q. .
\/ ) = \/_—5 cosh(k, pz) + = tanh(k,q .z, ) - sinh(k, pz
acoslikg.(z—z)] Ve coshik,g,z,) [cosh(k, pz) D (kog,2,) - sinh(k, pz)]

(4.20)

but g5 = q. then,

]. 1 q .
N COSh k t +—Stanh k z 'Sll’lh k t
cosh [k()qc(t_zo)] COSh(koquo) [ ( Op ) p ( Oqs 0) ( Op )]

(4.21)
Also by substituting in the fourth condition, we get
OEc OF,
—(z=1)= z=t
oz ( ) 0z ( ),
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2
\/gqc ‘[=sech(k,q,(z — z,) - tanh(kyq, (z — z)))]- koq, =

\/z qs - [sinhé,pz )-k,p +£tanh@€0p20) -cosh,pz )-k,p]
a cosh(k,q,z,) p

(4.22)

—sech(kyq,.(t —z,))-tanh(kyq, (¢ —z,)) koq, =

1
cosh(k,q,z,)

- [sinh(k,pt )-k,p + k,q, tanh(k, pz, ) - cosh(k, pt )]

(4.23)
Where:

oE

_ 2
8.76 \/; q, -[-sedh(kyq.(z—z,)- tanhkyq.(z—z,))] k..

oF .
_f:Af sinhé, pz )-k0p+Bf coshé,pz )]-k,p

oz

Dividing eq. (4.23) by eq. (4.21), we result,

—tanh(k,q,(t—2z,)) k,q,.=

sinh(k, pt )-k,p + k,q, tanh(k, pz,) - cosh(k, pt )

cosh(k, pt) + L8 tanh(k,q, z,) - sinh(k, pt)
p

(4.24)
Now, divining the right hand side of eq. (4.24) by cosh(k,pt) , and

after some arrangement, eq. (4.24) gives rise to:
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tanh(k, pt )- p+q, tanh(k, pz,)

_tanh(kOQC (t_ZO)).qc = q
1+ tanh(k,q,z,) - tanh(k, p?)
p

(4.25)
Equation 4.25 is called the dispersion equation of the system, and
can take another form by taking (arctan) for both side of the last equation

and after some arrangement we will rise to [ 5 |:

ktp — 2arctan(1tanh C)-mmr=0 (4.26)
p

where q = q. = g5 , m 1s the mode of the wave and take the value

as0,1,2,....
4.4  Evaluation the temperature sensitivity for nonlinear medium

Temperature sensitivity is defined as the rate of change of the
effective refractive index with respect to temperature. To evaluate the
temperature sensitivity we differentiate the dispersion equation, eq. (4.26)
with respect to temperature T, and making use the quantities p and q as a

function of T that:

2
p:\/NZ(T)_”fz(ﬂa q=9, =\/N2(T)—n12(T) ,where & =1 and n,’=¢&;.

dp=(n,dn, —N.dN)/p 4.27)

dq =(N.dN —n,.dnl)/q (4.28)
where dp is the differentiate of p with respect to T, dq is the differentiate
of q with respect to T, dny is the differentiate of n¢ with respect to T,

dN is the differentiate of N with respect to T, and we can define it as the

temperature sensitivity, St, and dn; is the differentiate of n, (refractive
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index for cladding or substrate) with respect to T. Differentiate the

dispersion equation, eq.(4.26) with respect to temperature T,

k,tdp — 2[tanh(k,z,q)dq | p — q tanh(k,z,q)dp | p* +
(1-tanh(k,z,q)2qgk,z,dq) / p1/[1+ (¢’ tanh(k,z,q)’ / p’

(4.29)
Substituting about dp and dq from eq. (4.28) and eq. (4.29), and dN = St
and by means of a computer program to simplified it, finally we get the

temperature sensitivity as,

ST =[Fn,dn,q+Gndn pl/[N(Fq+Gp)] (4.30)
Where, F =1/2kt(p* + q’ tanh(C?)) + g tanh(C) (4.31)
G = tanh(C) p + g(1—tanh(C*)k,z, p (4.32)

4.5 Stress effects on the performance of nonlinear waveguides

To study the stress magnitude effect on nonlinear waveguides we
follow a similar approach as in section (2.3) and we assume that the core
to be under hydrostatic stress state ,1.€., Oxx = Gyy = 6,, = 6 and o, = 0, the

value of the refractive index in the core changes due to the

h,=n, —(¢+2c))o . By substitute ny in the quantity p = N —nf2 and
consider the value of the stress can take two values (¢,0=-0.01) and

(c,0=0.0]), the ratio ¢, /¢;=0.1, finally we use the dispersion equation, eq.

(4.26) and a computer program was used to plot the relation between

effective refractive index (N) and a thickness of the core(t) for m =0, 1, 2.
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CHAPTER 5

Results, Discussion and Conclusions

chapter two has described the dispersion relation for linear
waveguide sensors and have evaluated the temperature sensitivity for
such configuration. It also discussed the effect of stress on the core
medium and then plotted some relations describing this case.

In chapter four, we derived the nonlinear characteristic dispersion
equation eq. (4.25) and evaluated the value of temperature sensitivity eq.
(4.29) , The effect of stress on the core region was also studied. These
results are presented and studied numerically by means of a computer

program maple V.
5.1 Numerical results for nonlinear temperature sensitivity

The mathematical study in the previous chapters is sufficient for
describing and designing of the planer waveguide sensors. In
computation, the data is used as reported by Huang [8, 26], where n; = 2,
A=0.83um, dn, =1x10 °1/°c, dn, = 2x10 °1/°Cc, n; = 3.5.
The core thickness (t) takes the values from 0 to 1.5 xm, also the quantity
tanh(C) takes values between (-1, 1) but we chose some of them, namely
(0.3, 0.6, 0.55, 0.7, 0.9) and the dispersion relation eq. (4.25) can valid
for any order of modes but we takem =0, 1, 2.

What we have actually done to plot temperature thermal sensitivity
, we derived the dispersion eq. (4.25) with respect to temperature, then
the derivative of the effective refractive index with respect to temperature
called temperature sensitivity. A computer program was developed to
plot temperature thermal sensitivity against various parameters. The

appropriate equations are feed to the computers and we can get the results
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plotted, we change parameters to study their effects. Moreover we carry
out some graphs for comparison, we plotted the temperature sensitivity
(St) as a relation between the quantities: core thickness (t) and effective
refractive index (N) as shown in the following figures.

Figure 5.1.a shows how the temperature sensitivity varies with the
core thickness (t), for order m = 0. From the figure the a directly
proportional relation is apparent, that is; when the core thickness
increases, the temperature sensitivity increases also. In the range of
waveguide width less than 0.2 micrometer temperature sensitivity
increases spontaneous with increasing width until the temperature
sensitivity reach to maximum value after that, some sort of saturation
takes place. This means that there is a considerable tolerance choosing
the waveguide width which is get importance in manufacture. Figure
5.1.b also shows how the temperature sensitivity varies with the core
thickness (t), for order m = 0, but for tanh (C) = 0.55, 0.7, 0.95. This
figure tells us that there is a direct proportionality between temperature
sensitivity and tanh (C) where when the value of tanh (C) is increased the
peak of curve is increased too.

In figure 5.2, the relation between core thickness (t) and effective
refractive index (N) is examined. The figure shows that relation for m =
0,1, 2,and tanh (C) = 0.9. It’s clear that when core thickness increases
the effective refractive index increases also we found the largest peak is
form =0.

Figure 5.3 shows another relation between core thickness (t) and
effective refractive index (N) for m = 0 but we varied in the values of
tanh (C), where (tanh (C) = 0.3, 0.6, 0.9) and found that there is a inverse
relation, i.e when the value of tanh ( C ) is decreases the peak of curve

Increases.
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Fig.5.1.a: Temperature sensitivity (St)as a function of core thickness (t),
for m=0, and tanh (C) =0.9.
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Fig.5.1.b: Temperature sensitivity (St)as a function of core thickness (t)

for m=0 and for curve 1 tanh (C ) = 0.95, for curve 2 tanh (C ) = 0.7,and for
curve 3tanh (C) =0.55
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Fig.5.2: Effective refractive index (N) as a function of core thickness (t),
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After that we could plot a relation between temperature sensitivity
(St) and the effective refractive index (N) as shown in figure 5.4, where
m =0, 1, 2 and tanh (C) = 0.7. it’s clear that when effective refractive
index (N) increases the temperature sensitivity (St) increases, also we

found the largest peak is for m = 2.

Another relation between temperature sensitivity (St) and the
effective refractive index (N) for m = 0 is shown in figure 5.5, in which
we varied the values of tanh (C), where (tanh (C) = 0.3, 0.6, 0.9), there is
a directly proportional between temperature sensitivity (St) and the
effective refractive index (N) and found the largest peak for
tanh (C) =0.3.

Finally we made a comparison between linear and nonlinear media
and described this difference by plotting some relations as shown in

figure 5.6, figure 5.7 and figure 5.8.

Figure 5.6 shows a relation between temperature sensitivity and
core thickness (t) for m = 0. From this figure we can see the described
difference between linear and nonlinear media and we found that the peak

of the nonlinear configuration is larger than linear one.

Also figure 5.7 shows a relation between temperature sensitivity
and effective refractive index (N) for m = 0, the first curve for nonlinear
media where tanh (C) = 0.9 and the second curve for the linear case.
From the figure we found that the peak of the line for nonlinear sensors

is larger than it is in the linear case.
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In figures 5.6 and 5.7 we can explain the larger beak for the
temperature sensitivity in the nonlinear curves for present the

nonlinearity.

Another comparison between linear and nonlinear sensors is shown
in figure 5.8, in which a relation between effective refractive index (N)
and core thickness (t) for m = 0 was carried out. The curves 1, 2, 3 refer
to the nonlinear configuration while curve 4 belongs to the linear case.
We found that the linear case has the smallest peak that because the
nonlinearity is present, where there is not that difference between it and
the line of nonlinear (for tanh (C) = 0.9), so we can predict that the linear
curve is the same as of nonlinear when tanh(C) =1, so from this figure we
can reduced the describing difference between linear case and nonlinear,

where the linear case and nonlinear can miserly when tanh(C) =1.
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2 tanh (C ) = 0.6,and for curve 3 tanh (C ) = 0.9 and curve 4 for linear sensor.
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5.2 Numerical results for the Stress effects on nonlinear waveguides
Sensors

To describe the effect of stress on nonlinear waveguide sensors we

assumed the core is under hydrostatic stress then the index of the core

change due to stress i.e: N; =N, —(G,+2,)0, to plot it we revering to the

desperation equation, eg. (4.26) and use the data as reported by Huang
[8, 26], Wheren; =2,4 = 0.83 um , ny = 3.5, tanh(C) = 0.7,

N =n,—(q+20,)0, c,/c, = 0.1, the stress takes two values (c,o =—-0.01)

and (c,0 =0.01), and ( t) takes the values from (0, 1.5 micro meter).

Figure 5.9 shows the effective refractive indexes as a function of
core thickness form=0, 1, 2 and tanh (C) = 0.7, a comparison between
different hydrostatic stresses take place, where the solid curves for
positive stress while the dashed curves for negative stress. From the
figure the mode wave m = 0 has a largest peak and the negative stress

have peaks larger than the positive.

61



3B L (c,0=-00D)

359 PR EERE S
gl (@ =0.01) oo
346
3.443
3423
3.4
3,361
3,36
334

rri=

Effective refractive index (N)

i LR PR PAY 1 12 14

Core thickness (t) (J1m)

Fig.5.9: Effective refractive index (N) as a function of core thickness(t) for m=0,1,2,
under different hydrostatic stresses.

62



5.3 Conclusion

The nonlinear optical waveguide sensors that the wave can
propagate along the planer interfaces between different dielectric
medium, in cases where at least one of the media is nonlinear, have
attracted much attention. Plenty of papers have been devoted to deriving
the dispersion equation and evaluating the sensitivity for various types of
guided waves sensors in multi layered structure with nonlinear
components.

Other papers investigated a new parameter to linear guided wave
sensors, such as the effect of stress ,and thermal effect in which the

temperature sensitivity was evaluated.

In this thesis, we have limited this work to TE waves. A
mathematical and numerical analysis for propagation of electromagnetic
wave along sensing structure which consists of a linear film bounded by
two nonlinear cladding has been carried out. Dispersion equation has
been derived theoretically. The propagation characteristics in the present
three layers sensors were shown to be affected by stress and thermal —
stress in which the effective refractive index exchanged and the

temperature sensitivity evaluated.

We plotted temperature sensitivity with other parameter and found
that there is a directly proportional between it and the quantities, as core
thickness, effective refractive index. Also a directly proportional

between effective refractive index and core thickness .

Comparison between linear and nonlinear sensors assumed and we

can noticed that nonlinear sensors exhibit higher values of sensitivity,
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these maxima, however, appear at smaller wave guiding widths this
makes nonlinear sensors suitable for scientific and accurate sensing while
linear configurations fit for commercial applications. Linear and
nonlinear sensors do not differ at thick material(bulk), the values of
effective refractive index in nonlinear sensors larger than it is in linear
sensors. Finally depending on tolerance in choosing waveguide width, it

Is possible to manufacture cheap sensors with suitable sensitivity.

Future work :

One of the advantages of using planar optical waveguide sensors is
that they are easily brought to maximum working point so there are
some ideas that I suggest for future work like, the thermal stress effect

may be shifted to multilayer planar waveguide sensors.

We can consider in future studying the other kinds of stress i.e.( in-plane,
stress concentration, and pure shear) and Studying the effect of these
kinds of stress on the sensitivity for nonlinear planer waveguide sensors.
An interesting study may include evaluate the maximum sensitivity for
our structure. In future we can applied the effect of thermal stress on
surface sensors and a promising study may arise if coaxial fibers were

considered.
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