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Abstract In this paper we show that for any subset B of a complex 
normed algebra A, (i) the quasi centralizer  of B is the intersection of  ρ 
and σ-quasi centralizer of B, and (ii) quasi, ρ and σ-quasi center of A 
are subsets of quasi, ρ and σ -quasi centralizer of B, respectively. We 
give an example to show that the subsets above may be proper subsets. 
But if B is a dense subset of A, then the equality in (ii) holds for the 
corresponding sets. The example also shows that QC(1,B), a part of the 
quasi centralizer of B (with k =1) need not equal the centralizer of B, 
but we prove that equality holds under certain conditions. Also we 
generalize some of the results in [5] and [1].   
In this paper we study centralizing in a complex Banach 
algebra and we generalize some results related to centrality 
in a complex Banach algebra that was obtained by Le Page 
in [5] and As'ad and Sarsour in [1].   

Introduction 

           Throughout this paper all linear spaces and algebras are assumed to 

be defined over c/ , the field of complex numbers. 

Let A be any complex normed algebra, then we denote the center of 

A by  

Z(A) = { a∈A : ax = xa for all x∈A }, and the centralizer of a subset B of A 

by  

C(B) = { a∈A : ax = xa for all x∈B }. For a∈A, the spectrum in A of a will 

be  
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written )(aAσ  and the resolvent set, its complement, will be denoted by 

ρA(a). 

In [6] Rennison defined the set of all quasi central elements in a 

complex Banach algebra  A  by  Q(A)  = )A,k(Q
1k≥

∪ , 

where Q(k, A)  =  { a∈A : || x (λ - a) || ≤ k || (λ - a) x ||  for all x∈A  and  all 

λ∈ c/  }.  

Also he defined the set of all σ-quasi central elements in A by Qσ (A) = 

A)(k,Q  σ
≥

∪
1k

, 

 where Qσ(k,A) = { a∈A: || x (λ - a) || ≤ k || (λ - a) x || for all x∈A and all λ 

∈  ρA (a)}. 

In [3] we defined the set of all ρ-quasi central elements in A by Qρ(A) 

= A)(k,Q  ρ
1k≥

∪ , where Qρ(k,A) = { a∈A: || x (λ - a) || ≤ k || (λ - a) x ||  for all x∈A 

and all λ∈σA(a)} .     

          Similarly we define the following three concepts, let B be a subset of 

a complex nomed algebra A, then 

1) The quasi centralizer (quasi-commutant) of B is QC(B) = B)(k,QC 
k 1≥
∪ , 

where      QC(k, B)  =  { a∈A : || x ( λ - a ) ||   ≤   k || ( λ – a ) x ||   for all 

x∈B  and all  λ∈ c/ }. 

2) The σ-quasi centralizer (σ -quasi-commutant) of B is  QCσ(B) = 

B)(k,QC  σ
1k≥

∪ , where      QCσ (k, B)  = { a∈A: || x ( λ – a ) || ≤  k || ( λ – a ) x 

|| for all x∈B and all λ ∈  ρA(a) }.            3) The ρ-quasi centralizer ( ρ-quasi 

commutant ) of B is  QCρ (B)  = B)(k,QC  ρ
1k≥

∪ , where     QCρ (k, B) = { a∈A:  

|| x ( λ – a ) ||  ≤   k || ( λ – a ) x ||   for all x∈B  and  all λ∈σA(a) }.  
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2. The Relation Between Centralizing and Centrality in a Complex 

Banach Algebra  

 We start by a theorem that is an elementary consequence of our 

definitions of quasi, σ and ρ-quasi centralizer in a complex normed Algebra. 

2.1 Theorem:- If A is a complex normed algebra and D ⊆  B ⊆ A. Then for 

k ≥1,  

(i) C(B) ⊆  QC(k, B) = QCσ (k, B) ∩  QCρ (k, B). 

(ii) Q(k, A) =  QC(k, A) ⊆ QC(k, B) ⊆ QC(k, D).  

(iii) Qσ (k, A) =  QCσ (k, A) ⊆  QCσ (k, B) ⊆  QCσ 

(k, D). 

(iv) Qρ (k, A) = QCρ (k, A) ⊆ QCρ (k, B) ⊆ QCρ(k, D). 

Proof : 

 Left to the reader   

2.2 Proposition :- If A is a complex normed algebra such that A = i
i

n
B

1=
∪ , 

then 

(i) )(
n

1i
iBQC

=
∩ = Q (A). 

(ii) ).((
n

1i
ΑQ)BQC iσ σ

=
=∩  

(iii) ).((
n

1i
ΑQ)BQC ρiρ =∩

=
 

Proof: 

We prove (iii) and omit the similar proofs of (i) and (ii). 
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Let a∈ )BQC iρ(
n

1i=
∩ ,  then a∈ )BQC iρ(  for all i. However,  a∈QCρ(Bi) 

means 

that there exists ki ≥1 such that ||x(λ - a)|| ≤ ki ||(λ - a)x|| for all x∈Bi and all 

λ ∈σA (a) . 

Then there exists k = sup{ ki :  1≤ i ≤ n } ≥ 1 such that for all Bi, we have,  

|| x (λ - a) ||  ≤  k|| ( λ - a) x ||  for all x∈Bi  and all  λ∈  σA (a). So that 

|| x (λ - a) || ≤  k|| ( λ - a) x ||  for all x∈  iB 
n

1i=
∪ , and all λ ∈  σA (a), then 

a∈Qρ(A). 

Hence )BQC iρ(
n

1i=
∩ ⊆  Qρ(A). By Theorem 2.1 (iv), Qρ(A) ⊆  QCρ(Bi)  for all 

i. 

Hence Qρ(A) ⊆  ).BQC iρ(
n

1i=
∩  Therefore, Qρ(A) = )B(QC iρ

1

n

i=
∩   

2.3 Proposition :- if A is a complex normed algebra. Then for 

k ≥1,  

(i)   .Ak,Q xk,QC
Ax

)(}){( =
∈
I  

(ii)  .Ak,Q xk,QC σ

Ax

σ )(}){( =
∈
I  

(iii) .Ak,Q xk,QC ρ

Ax

ρ )(}){( =
∈
I  

Proof:  

We prove (iii) and omit the similar proofs of (i) and (ii).  
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Let a ∈ ,xk, QC
Ax

I
∈

}){(ρ  then a∈  QCρ(k,{x}) for all x∈A. 

However, 

a∈QCρ(k,{x})  means that   || x ( λ - a ) ||   ≤   k || ( λ - a) x ||  for all 

λ ∈σA(a).   

Hence  || x (λ - a ) ||  ≤   k || (λ - a ) x ||  for all x∈A and all λ ∈  

σA(a), then a∈Qρ(k, A). Hence .Ak,Q xk,QC ρ

Ax

)(}){( ⊆
∈
I ρ  

By Theorem 2. l(iv),  Qρ(k, A)  ⊆   QCρ (k,{x})   for all 

x∈A,  and so Qρ(k, A) .}){( xk,QC 
Ax

ρI
∈

⊆  Therefore, Qρ (k, A) = 

}){xk,(QC
Ax

ρI
∈

   

Similarly one can prove the following remark. 

Remark :- If A is a complex normed algebra and ℑ is a collection of 

subsets of A such that A  =  U
ℑ∈B

B . Then for k≥1,  

(i) .Ak,Q Bk,QC
B

)()( =
ℑ∈

I  

(ii) .Ak,Q Bk,QC σ

B

σ )()( =
ℑ∈

I  

(iii) .Ak,Q Bk,QC ρ

B

ρ )()( =
ℑ∈

I  

 

 

 In Example 2.5 below we show that QC(B) need not be a subset of 
Q(A) 
( the same can be said about σ and ρ-quasi center and centralizer ). But the 
following  Theorem shows that equality holds under certain conditions. 
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2.4 Theorem :- If A is a complex normed algebra and B is a dense subset of 

A, then 

for k≥1, 

(i) Z(A)  = C(B). 

(ii) Q (k, A)   =  QC (k, B). 

(iii) Qσ (k, A)  =  QCσ(k, B). 

(iv) Qρ (k, A)  =  QCρ(k, B). 

Proof :- 

 We prove (iii) and omit the similar proofs of (i), (ii) and (iv).  

First of all note that Qσ (k, A) ⊆  QCσ (k, B), see Theorem 2.1 (iii). 

Conversely let 

a∈  QCσ (k, B), then || x (λ - a) || ≤  k || ( λ - a) x || for all x∈B and all λ ∈  

ρA(a). However, for any fixed y∈A, there exists a sequence (yn) of elements 

of B such that Lim (yn) = y, then || yn (λ - a) || ≤ k || (λ - a) yn || for all n∈N 

and all λ ∈ρA(a). Then by the continuity of the norm we have,  || y(λ - a ) ||  

≤  k || (λ - a )y || for all λ ∈  ρA(a). However, y is arbitrary in A, then 

a∈Qσ(k, A). Hence QCσ(k, B) ⊆  Qσ (k, A). Therefore, Qσ(k, A) = QCσ(k, 

B)    

 

In [1] we have shown that Q(1,A) = Qσ (1,A) =  Z(A), where A is a 

complex Banach algebra with unity. But the following example shows that 

it is not the case for the quasi centralizer, where QC(1,B) need not equal 
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C(B) and QCσ (1,B) need not equal C(B), but under certain conditions all of 

these three sets are equal, as we shall see in corollary 1 of Theorem 2.6. 

The inclusions in Theorem 2.1 may be proper, where the following 

example explains this idea.  Also our example shows that the quasi centralizer 

element need not be quasi central. The same things can be said a bout (the ρ 

and the σ)-quasi (center and centrelizer). 

2.5 Example :- There is a complex Banach algebra A and a closed 

subalgebra B of 

A with 

(i) a ∈  QC(1, B), but a ∉C(B). 

(ii) a ∈  QC(B), but a∉  Q(A). 

(iii) a∈QCρ (B), but a∉Qρ(A). 

(iv) a∈QCσ (B), but a ∉Qσ(A). 

Construction :- 

 Let A = }β{  c  wz, y,  x,:
wz
yx

  /∈







=  and define || β ||  =  max { |x| + 

|y|,  |z| + |w| }, which makes A a unital complex Banach algebra. Let 

}c: x{B   
00
0x

   /∈







=α= and let .

01
00

a 







=  Then a∉C(B).
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Now for any λ∈ c/ , and any α∈B, we have  || α (λ - a) ||  =  || 







−








λ1
0λ

00
0x

 || = 

|| 







00
0xλ

||  =  | xλ |, and || (λ - a) α ||  =  || 















− 00

0
1

0 x
λ

λ
||  =  || 








− 0

0
x

λx
|| = 

max { | xλ |, | x | }. Hence a∈QC(1,B), then a∈QC(B) and by theorem 2.1(i) 

a∈QCσ(1, B). 

 It is easy to see that || 







−








01
00

10
00

|| = 1, and || 















− 10

00
01
00

|| = 0. 

 Hence there exist β = A
10
00

∈







  and  λ = 0  such that  || β (λ – a) ||  >  k || (λ – a) β || 

for all k ≥ 1.  Therefore, a∉Q(A) 

 Since a ∈  QC(B), then by Theorem 2.1(i), a∈QCρ(B) . Note that,                      

σA(a) = { λ∈ c/ :  
λ

λ








−

−

1
0 1

does not exist } = {0}. Hence as above there exist                     

β = A
10
00

∈







 , and λ = 0∈σA(a)  such that,   ||β (λ - a)||  >  k||(λ – a) β|| for all k ≥ 1. 

Therefore, a∉Qρ(A). Again since a∈QC(B), then by theorem 2.1(i) a ∈  QCσ(B).   

By the countablity of  σA(a)  and  [3, Corollary ],  a∉Qσ(A)    

 Now we prove our theorem that is stronger than both Theorem 5.1 in [1] and 

Le Page's Proposition in [5], where the theorem and the proposition appear in this 

paper as corollaries 3 and 4, respectively. And it would be noted here that the proof of 

Theorem 2.6 below is similar to the proof of Le Page's Proposition. 
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2.6 Theorem :-  Let  J  be an ideal of a unital complex Banach algebra  A  and let  

a∈A be such that  | |  x ( λ - a ) | |  ≤  | | (λ - a ) x | |    for all x∈J  and  all λ∈ c/  satisfying 

|  λ |  >  ||a| |. Then a∈C(J) 

Proof :- 

 Fix any u∈ c/  with u ≠ 0 and let n be any positive integer such that n|u|-1 > ||a||.  

Then by  [4, pp.400],  nu-1∈ρA (a)  and so by the definition of  ρA (a)  we have        

(nu-1 - a)-1∈  A.  Then  x  =  (nu-1 - a )-1 y ∈  J  for all y∈J. But by assumption              

|| x ( λ –a ) ||  ≤  || ( λ – a ) x || for all x∈J and all  λ∈  c/ that satisfies  | λ |  > || a ||.  

Hence for any  y∈J  ( take λ = nu-1 and      x  = ( nu-1 – a)-1y  ), we have 

|| ( nu -1 - a )-1 y ( nu -1 - a ) ||   ≤   || ( nu -1 - a ) ( nu -1 - a )-1 y ||  =  || y ||, hence 

|| ( e – un-1 a )-1 y ( e – un-1a ) ||  ≤  ||y||, where e is the unity of A.  

  Now, by induction we have that   || ( e - un-1a) -m  y  ( e - un -1a ) m ||  ≤  || y ||  

for  all natural numbers m.  In particular  for  m = n, we have,                                     

|| ( e – un-1a)-n y ( e – un-1a)n || ≤ || y ||. Take the limit as n ∞→ , and use the continuity 

of the norm to get  that   || exp(ua) y exp(-ua) ||  ≤  || y ||   ....................................... (1). 

Since u ≠ 0 was arbitrary fixed complex number and (1) is true for u = 0, then we can 

define f : c/ →  A  by  f(u) = exp(ua)y exp(-ua), where y is any fixed element in J. 

Then f is a bounded entire function (see(l)). 

Now by Liouville's theorem we have f as a constant function, so that f(u) = y. 

But y was arbitrary fixed element in J, so that exp(ua)y exp(-ua) = y for all y∈J, then 

exp(ua)y  =   y exp(ua)  for all y∈J.  Hence,  ∑
∞

=0n !
)(

n
ua n

 y  =  y ∑
∞

=0n !
)(

n
ua n

  for all y∈J 

and all u ∈ c/ . So that  ay = ya  for all y∈J.  Hence a∈C (J)     

 

Corollary 1   Let  J  be an ideal of a unital complex Banach algebra  A. Then,                  

C (J) =  QC (1, J) = QCσ (1, J). 

 

Proof:- 

 First note that C(J) ⊆  QC(1, J) ⊆  QCσ(1, J), by Theorem 2.1(i). 

 Now let a∈QCσ (1,J), then || x ( λ – a ) ||  ≤  || ( λ – a ) x ||  for all x∈J and all 

λ∈ρA(a). But by [4, pp.400],  {  λ ∈  c/  :  | λ |  >  || a ||  }  ⊆   ρA (a).  Then                             
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|| x ( λ – a ) ||  ≤  || ( λ – a ) x ||  for all x∈J and all λ∈ c/  that satisfies  | λ | > || a ||.  

Then by Theorem 2.6, a ∈  C(J),  hence  QCσ(1, J) ⊆  C(J).                                

Therefore, C(J)  =  QC(1, J)  =  QCσ(1, J)   

 

Let A be a complex Banach algebra with unity and a.b denote the reversed 

product on A, that is a.b = ba for all a,b∈A. With the reversed product and the 

given norm on A, A becomes a complex Banach algebra with unity called the 

reversed algebra of A and is denoted by rev(A) [2, pp6]. 

 

Corollary 2  Let J be an ideal of a complex Banach algebra A with unity. Then,  

QC (l, J)  =  QC(l, rev(J))  =   QCσ(1,rev (J))  =   QCσ (1, J). 

 

Proof: -                 
   By Corollary 1,  C (J) = QC (1, J) = QCσ (1, J). Since rev(J) is an ideal of  

rev(A), then by Corollary 1, C( rev(J)) =  QC(1, rev(J))  = QCσ(1, rev(J)). However, 

C(rev(J)) = C(J). Hence QC(l, J) = QC(l, rev(J)) = QCσ (1,rev(J)) = QC σ (1, J)     

 

Corollary 3 [1, Theorem 5.1] 

 Let A be a Banach algebra with unity over the complex field c/ and let a∈A be 

such that  | | x ( λ – a ) ||   ≤  | | ( λ – a ) x ||    for all  x∈A  and all  λ∈ c/  that satisfies     

|  λ |  >  ||  a | |.  Then a∈Z (A). 

Proof:-    

Take J = A in Theorem 2.6 to get the result   

Corollary 4 [5, Proposition 1.1] 

Let A be a complex Banach algebra with unity and let a∈A such that 

| |  x ( λ – a ) | |  ≤  | | ( λ – a ) x | |   for all x∈A and all λ∈ c/ . Then a∈Z(A). 

Proof: - 

Follows directly from corollary 3   
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