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Abstract: We [5, 6] have recently investigated several families of clustering algorithms. In this paper, we show
how a novel similarity function can be integrated into one of our algorithms as a method of performing clustering
and show that the resulting method is superior to existing methods in that it can be shown to reliably find a
globally optimal clustering rather than local optima which other methods often find. We discuss some of the
current difficulties with using connectivity graphs for solving clustering problems, and then we introduce a new
algorithm to build the connectivity graphs. We compare this new algorithm with some famous algorithms used to
build connectivity graphs. The new algorithm is shown to be superior to those in the current literature. We also
extend the method to perform topology preserving mappings and show the results of such mappings on artificial
and real data.
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1 Introduction

One of the major tasks falling to a data analyst is to
find groups of data all of which share some underly-
ing feature which is not shared by other samples in
the dataset. This is known as clustering the data if
it is done in an unsupervised manner i.e. if we do
not give the method any class information on which
to work. The K-means algorithm [16, 20, 23] is one
of the most frequently used investigatory algorithms
in data analysis. The algorithm attempts to locate K
prototypes or means throughout a data set in such a
way that the K prototypes in some way best repre-
sents the data. It is an iterative algorithm in which
K means are spread throughout the data and the data
samples are allocated to the mean which is closest (of-
ten in Euclidean norm) to the sample. Then the K
means are repositioned as the average of data points
allocated to each mean. This continues until stable
convergence is reached. The K-means algorithm is
one of the first which a data analyst will use to in-
vestigate a new data set because it is algorithmically
simple, relatively robust and gives ‘good enough’ an-
swers over a wide variety of data sets: it will often not
be the single best algorithm on any individual data set
but it may be close to the optimal over a wide range
of data sets. However the algorithm is known to suf-
fer from the defect that the means or prototypes found
depend on the initial values given to them at the start

of the simulation: a typical program will converge to
a local optimum. There are a number of heuristics in
the literature which attempt to address this issue but,
at heart, the fault lies in the performance function on
which K-means is based.

[19] proposed a global K-means algorithm, an in-
cremental approach to clustering that adds one clus-
ter prototype at a time through a deterministic global
search consisting ofN (the data size) executions of
the K-means; this algorithm can obtain equivalent or
better results than the standard K-means, but it suffers
from high computation cost and at the same time gives
no guarantee to find the optimum.

Arthur and Vassilvitskii [2] improved the K-
means algorithm by substituting the random alloca-
tion of the prototypes with a seeding technique. They
give experimental results that show the advantage of
this algorithm in time and accuracy.

A variation on K-means is the so-called soft K-
means [22] in which prototypes are allocated accord-
ing to

mk =
∑

n rknxn∑
j,n rjn

(1)

where e.g.rkn =
exp(−βd(xn,mk))∑
j exp(−βd(xn,mj))

(2)

andd(a, b) is the Euclidean distance betweena andb.
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Soft Kmeans v1 (beta = 8) − 40 data points, 4 prototypes 

Figure 1: The vagaries of simulations: top, the soft
K-means failed to identify the four clusters but on the
bottom is successful with the same data set.

β is a “stiffness” parameter. Note that the standard K-
means algorithm is a special case of the soft K-means
algorithm in which the responsibilities,rkn = 1 when
mk is the closest prototype toxn and 0 otherwise.
However the soft K-means does increase the non-
localness of the interaction since the responsibilities
are typically never exactly equal to 0 for any data
point-prototype combination.

However there are still problems with soft K-
means. We find that with soft K-means it is impor-
tant to choose a good value forβ; if we choose a poor
value we may have poor results in finding the clusters.
However, even with a good value, we often still find
that soft K-means has the problem of sensitivity to the
prototypes’ initialization. As shown in Fig. 1, while
soft K-means succeeds in identifying the clusters (bot-
tom diagram), sometimes it failed for the same data
sample when we used a different initialization of the
prototypes (top diagram).

In [3, 5, 26] we derive a family of new cluster-
ing algorithms that solve the problem of sensitivity to
initial conditions in the K-means algorithm. In this
paper, we show how to extend one of our algorithms,
the inverse weighted clustering IWC [7, 8], to do clus-
tering based on similarity functions. We take as an

example the exponential function to measure the sim-
ilarity between data points and prototypes; we can use
other similarity functions. We compare the new al-
gorithm with the soft K-means algorithm as it is also
based on the exponential function. We show in this
paper that the new algorithm gives better results than
both K-means and soft K-means. Also, this new algo-
rithm solves the problem of excessive computation in
[19].

2 Clustering with similarity func-
tions

The inverse weighted clustering algorithm (IWC) has
the following rule:

mk =
∑N

i=1 bikxi∑N
i=1 bik

(3)

where

bik =
‖ xi −mk∗ ‖P+2

‖ xi −mk ‖P+2
(4)

(3) introduces the clustering algorithm (IWC). We
have given extensive simulations in [7] showing that
this algorithm is insensitive to the prototypes’ initial-
ization. The question now, is how can we use this al-
gorithm for clustering if we have similarity functions
that measure the similarity between objects (or data
points)? How can we work with the similarity func-
tion and at the same time get the benefit of (3)?

2.1 Exponential function as similarity func-
tion

Let the exponential function be used, as an exam-
ple, to measure the similarities between points as
similarity(x,m) = exp(− ‖ x−m ‖).

To use this similarity function for clustering while
taking the benefits of (3) we need to go through the
following steps:

1. Measure the similarities between all data points
and prototypes.

2. For alternative similarity function, if the similar-
ity measurements are outwith [0,1], normalize,
so that 1 corresponds to the highest similarity and
0 corresponds to no similarity.

3. Map the similarity measurements to distances:
Distance(x,m) = 1− exp(− ‖ x−m ‖).

4. Compute (3) for all prototypes using the new dis-
tance measurements generated from the similar-
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Artificial data set − 7 clusters − 7 prototypes

Figure 2: Artificial data set: 7 clusters of red ’*’s, and
7 prototypes of blue ’o’s.

ity function.

bik =
distance(xi −mk∗)P+2

distance(xi −mk)P+2
. (5)

We will call this Inverse Weighted Clustering with
Similarity Function algorithm (IWCwSF)[4, 9].

2.2 Simulations

Fig. 2 shows an artificial data set consisting of 7 clus-
ters of red ’*’s, and all the prototypes are initialized
to lie within one cluster and are shown as blue ’o’s.
Fig. 3 shows the results after applying soft K-means
and inverse weighted clustering with similarity func-
tion (IWCwSF) to this artificial data set shown in Fig.
2. In Fig. 3, top, we see the first cluster, bottom left,
is divided into three sub clusters. Also, the upper two
clusters, left, are grouped together as one cluster. This
poor result from the soft K-means appeared due to its
convergence to a local optimum. As shown in Figure
3, while the soft K-means failed to identify the clus-
ters, top, the IWCwSF algorithm identified all of them
successfully, bottom.

To show how the new algorithm behaves with
dead prototypes, we have in Fig. 4 another artificial
data set consisting of 40 data points. Each data point
represents a cluster, so we have 40 clusters, and 40
prototypes are initialized randomly and very far from
data to represent some dead prototypes. Fig. 5 shows
the result after applying soft K-means and IWCwSF to
the artificial data set shown in Fig. 4. Again, the new
algorithm IWCwSF identified all the clusters success-
fully, bottom, while soft K-means algorithm didn’t,
top.
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IWCwSF algorithm identified all the clusters successfully

Figure 3: Top: result after applying soft K-
means algorithm. Bottom: result after applying in-
verse weighted clustering with similarity function
(IWCwSF).
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Artificial data set − 40 clusters − 40 prototypes

Figure 4: Artificial data set: 40 clusters of red ’*’s,
and 40 prototypes of blue ’o’s.
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IWCwSF algorithm identified all the clusters successfully

Figure 5: Top: result after applying soft K-means al-
gorithm to the data of Fig. 4. Bottom: result after
applying inverse weighted clustering with similarity
function (IWCwSF).

3 Different connectivity graphs
To construct a connectivity graph we transform a
given setx1, ...,xn of data points with pairwise sim-
ilarities sij or distancesdij into a graph. There are
several popular methods to construct similarity graphs
[21]. The goal of constructing connectivity graphs
is to model the local neighborhood relationships be-
tween data points. In this section we review two pop-
ular methods to construct a connectivity graph, and
then we introduce a new algorithm that solves some
problems that can not be solved by the others.

3.1 Theε-neighborhood graph
In this algorithm we connect all points whose pairwise
distances are smaller thanε. Choosing a useful value
of ε is not a trivial task [21]. Sometimes it is not pos-
sible to find a suitable value ofε if we have data on
different scales or densities.

3.2 k-nearest neighbor graphs
In this algorithm we connect each point to all points
among its k-nearest neighbors. This leads to a directed
graph as the neighborhood relationship is not neces-
sarily symmetric. To make this graph undirected we
have two choices. The first one is to simply ignore
the direction of the edges, so that pointsx andy are
connected with undirected edge ifx is among the k-
nearest neighbors ofy, or if y is among the k-nearest
neighbors ofx. The resulting graph is usually called
k-nearest neighbor graph. The second way is to con-
nect pointsx andy if both of them are among the
k-nearest neighbors of the other. The resulting graph
is called mutual k-nearest neighbor graph [21].

3.3 New connectivity graph
We show here a new connectivity graph that can be
used for clustering and spectral clustering [25, 28].
In this algorithm, we connect all points whose pair-
wise weights are higher than a useful threshold. This
threshold is a value ranging between 0 and 1; if its
value equals 0, all the points will be connected to-
gether. If its value equals 1, only the points which
are close to each other will be connected. The weight
between vertexvi andvj is calculated by

weight(vi,vj) =
min(X, Y )
‖ vi − vj ‖ (6)

whereX is the distance betweenvi and the closest
vertex to it.
Y is the distance betweenvj and the closest vertex to
it.
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Figure 6: Artificial data set is shown as 2 clusters of
red ’*’s.

(6) has the same motivation as our clustering algo-
rithms in [5, 7, 8], see (4) which is used to measure
the similarity between a data point and a prototype.
In (6), we use the same idea to measure the similarity
between two data points.

This new connectivity graph algorithm solves
some problems that can not be solved by the previous
algorithms as we will see in the next example. How-
ever this new algorithm is not designed to replace the
previous algorithms but to add new behavior to them
and to give better results for different applications.

Example 1:
Suppose that we have an artificial data set like that
shown in Figure 6. x1 and x2 represent the first
diffuse cluster, andx3 and x4 represent the second
tighter cluster. Figure 7 shows the results after
applyingε-neighborhood graph, with different values
of ε (ε=0.5, 1.1, 1.5 and 2.1 respectively), to the
artificial data set shown in Figure 6. From Figure 7
we can see it is not possible to find a useful parameter
ε that defines the two clusters successfully. Figure
8 shows the results after applying k-nearest neighbor
graphs, with k=1, 2 and 3, to the artificial data set
shown in Figure 6. From Figure 8 we can see there
is no useful parameter k that defines the two clusters
successfully. Figure 9 shows the results after applying
mutual k-nearest neighbor graphs, with k=1 and 2, to
the artificial data set shown in Figure 6. Figure 10
shows the result after applying the new connectivity
graph algorithm to the artificial data set shown in
Figure 6. As shown in Figure 10 the new algorithm
succeeds in identifying the two clusters.
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Figure 7: Theε-neighborhood graph results with dif-
ferent values ofε (ε=0.5, 1.1, 1.5 and 2.1 respec-
tively).
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k−nearest neighbor graphs result − k = 3

x1

x2

x3 

x4 

Figure 8: The k-nearest neighbor graphs results with
k=1, 2 and 3.
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Figure 9: The mutual k-nearest neighbor graphs re-
sults with k=1 and 2.
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Figure 10: The new connectivity graph algorithm suc-
ceeds in identifying the clusters.
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Artificial data set

Figure 11: Artificial data set consisting of 3 circles
of red ’*’s. The outer and inner circles have roughly
similar density.
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The new similarity graph algorithm result − threshold = 0.3
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The new similarity graph algorithm result − threshold = 0.2

Figure 12: The new connectivity graph algorithm re-
sults. Top: the new algorithm identifies each circle as
a cluster. Bottom: the new algorithm identifies outer
and inner circles as one cluster.
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Artificial data set − 2 Gaussian distributions

Figure 13: Artificial data set taken from two different
Gaussian distributions, the red ’o’s represents the first
distribution and the black dots represents the second
distributions.

3.4 Simulations
Figure 12 shows the results after applying the new
connectivity graph algorithm, with two different
threshold values, to the artificial data set shown in Fig-
ure 11. In Figure 12, top, the new algorithm identifies
each circle as a cluster. We can get another result by
choosing another threshold value as shown in Figure
12, bottom. In Figure 12, bottom, the outer and in-
ner circles have roughly similar density and are iden-
tified as one cluster while the middle circle, which has
higher density, is identified as another cluster. This
result can not be achieved by eitherε-neighborhood
graph or k-nearest neighbor graphs.

In Figure 13, we have an artificial data set taken
from two different Gaussian distributions. Figure 14
shows the results after applying the new connectiv-
ity graph algorithm to the artificial data set shown in
Figure 13. From Figure 14, top, we can see that all
the data points from first distribution are connected to-
gether without any connection to the points from the
second distribution.

4 A Topology Preserving Mapping

In this section we show how it is possible to extend
the IWCSF algorithm to provide a new algorithm for
visualization and topology-preserving mappings.

4.1 Inverse Weighted Clustering with Sim-
ilarity Function Topology Preserving
Mapping(IWCSFToM)

A topographic mapping (or topology preserving map-
ping) is a transformation which captures some struc-
ture in the data so that points which are mapped close
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Figure 14: The new connectivity graph algorithm re-
sults. Top: the data points in the first distribution
are connected together. Bottom: final result, clusters
identified successfully from the points that are con-
nected together.

to one another share some common feature while
points which are mapped far from one another do not
share this feature. The Self-organizing Map (SOM)
was introduced as a data quantisation method but has
found at least as much use as a visualisation tool.

Topology-preserving mappings such as the Self-
organizing Map (SOM) [17, 18] and the Generative
Topographic Mapping(GTM) [10, 11, 12, 29, 30] have
been very popular for data visualization: we project
the data onto the map which is usually two dimen-
sional and look for structure in the projected map by
eye. We have recently investigated a family of topol-
ogy preserving mappings [15] which are based on the
same underlying structure as the GTM.

The basis of our model is K latent points,
t1, t2, · · · , tK , which are going to generate the K pro-
totypes,mk. To allow local and non-linear modeling,
we map those latent points through a set of M basis
functions,f1(), f2(), · · · , fM (). This gives us a ma-
trix Φ whereφkj = fj(tk). Thus each row ofΦ is
the response of the basis functions to one latent point,
or alternatively we may state that each column ofΦ is
the response of one of the basis functions to the set of
latent points. One of the functions,fj(), acts as a bias
term and is set to one for every input. Typically the
others are gaussians centered in the latent space. The
output of these functions are then mapped by a set of
weights,W , into data space.W is M ×D, whereD
is the dimensionality of the data space, and is the sole
parameter which we change during training. We will
usewi to represent theith column of W andΦj to rep-
resent the row vector of the mapping of thejth latent
point. Thus each basis point is mapped to a point in
data space,mj = (ΦjW )T .

We may update W either in batch mode or with
online learning: with the Topographic Product of Ex-
perts [15], we used a weighted mean squared error;
with the Harmonic Topographic Mapping [15, 24, 27],
we used Harmonic K-means [31, 32]. We now apply
the IWCwSF algorithm to the same underlying struc-
ture to create a new topology preserving algorithm.

Each data point is visualized as residing at the
prototype on the map which would win the compe-
tition for that data point. However we can do rather
better by defining the responsibility that thejth proto-
type has for theith data point as

rji =
exp(−γ ‖ xi −wj ‖2)∑
k exp(−γ ‖ xi −wk ‖2)

(7)

We then project points taking into account these re-
sponsiblities: letyij be the projection of theith data
point onto thejth dimension of the latent space; then

yij =
∑

k

tkjrki (8)
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Figure 15: The resulting prototypes’ positions after
applying IWCSFToM. The prototypes are shown as
blue ’o’s.

wheretkj is thejth coordinate of thekth latent point.
When we use these algorithms for visualisation pur-
poses, it is these y-values (which are typically two di-
mensional coordinates) which we use. Note that this
method represents each data pointxi by a valueyi

whereyi is a weighted sum of the coordinates of the
original latent points. An alternative (which is typi-
cally used the SOM) is to find the latent point with
greatest responsibility for the data point and allocate
its yi value at this latent point.

4.2 Simulations
◦ Artificial data set

We create a simulation with 10 latent points deemed
to be equally spaced in a one dimensional latent
space, passed through 5 Gaussian basis functions
and then mapped to the data space by the linear
mappingW which is the only parameter we ad-
just. We generated 500 two dimensional data points,
(x1, x2), from the functionx2 = x1+1.25 sin(x1)+
µ whereµ is noise from a uniform distribution in
[0,1]. Final result from the IWCSFToM is shown
in Fig. 15 in which the projections of consecutive
latent points are joined. We see that nearby latent
points take responsibility for nearby data points.

◦ Real data sets

1. The iris1 data set is a data set with 150 ran-
dom samples of flowers from the iris species
setosa, versicolor, and virginica collected by
Anderson in 1935 [1]. There are 50 observa-
tions from each species for sepal length, sepal
width, petal length and petal width in cm. This
data set was used by Fisher(1936) [13] in his

1The iris data set is available athttp://mlearn.ics.
uci.edu/databases/ .

initiation of linear discriminant-function tech-
nique.

2. In the algae2 data set we have 72 samples clas-
sified into 9 types. Each sample is recorded
as an 18 dimensional vector representing the
magnitudes of various pigments.

3. The Bank3 data set appeared in [14]. This
data set has 200 observations. It contains
measurements on 100 forged and 100 genuine
bank notes. Each data record contains the six
measurments:
LENGTH: length of bill.
LEFT: width of bill, measured on the left.
RIGHT: width of bill, measured on the right.
BOTTOM: width of the margin at the bottom.
TOP: width of the margin at the top.
DIAGONAL: length of the image diagonal.

Fig. 16 shows the results of applying IWCSFToM to
the iris, algae and bank data set. The real data sets
are projected onto a two dimensional grid of latent
points (10 x 10). For the iris data set, top , we can see
one cluster is distant and separated, while there is
difficulty to separate the other two completely. For
the algae data set, middle, we have 7 clusters sep-
arated, and the two clusters to the left are grouped
together. For the bank data set, bottom, the two clus-
ters are identified successfully.

5 Conclusion
We have previously investigated several new families
of clustering algorithms [5, 6]. In this paper, we have
shown how to get the benefits from the new algorithms
but now based on alternative similarity functions. We
have used artificial data with deliberately poor initial-
ization since with real data, we often do not know
what is a good and what is a poor initialization. This
is exacerbated by the ‘curse of dimensionality’: even
when we decide to use means of data as cluster pro-
totypes, these can often lie far from the actual data
which may be found in the outer shell of a high di-
mensional sphere.

We have illustrated a new method of identify-
ing clusters using the concepts of connectivity graphs.
However unlike the standard methods, our method
takes into account, not just the distance between pairs
of data points, but also the shortest distance between

2The algae data set is available athttp://mlearn.ics.
uci.edu/databases/ .

3The Bank data set is available athttp://www.
quantlet.com/mdstat/scripts/mva/htmlbook/
mvahtmlnode129.html .

WSEAS TRANSACTIONS on COMPUTERS Wesam Barbakh and Colin Fyfe

ISSN: 1109-2750 432 Issue 5, Volume 7, May 2008



−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

X dim

Y
 d

im

IWCSFToM result − Iris data set

−6 −4 −2 0 2 4 6 8 10

x 10
−3

−4

−3

−2

−1

0

1

2
x 10

−3

X dim

Y
 d

im

IWCSFToM − Algae data set

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

X dim

Y
 d

im

IWCSFToM − Bank real data set

Figure 16: The results of applying IWCSFToM on the
real data sets, iris, top, algae, middle and bank, bot-
tom.

either data point and any other data point. In doing
so, we can account for variable density of data points
within a data set. Initial results on artificial data sets
are very promising.

Finally we have extended the proposed algorithm
for visualisation by incorporating a latent or hidden
space which underlies the prototypes’ positions in
data space. By constraining the latent points’ posi-
tions to certain values, we can ensure that we have pre-
served local neighbourhood relations with the proto-
types’ positions in data space. We have illustrated the
effect of this with particular emphasis on the power
of our method as a visualization tool. We have shown
typical results with the projections of real data into an
underlying two dimensional latent space.

We will, in future, investigate alternative similar-
ity functions to evaluate which is best for which data
and under what conditions. There may be no globally
optimal similarity function but there may be underly-
ing principles which we can use to determine the op-
timal similarity function for a particular type of data.
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