
International Journal of Computer Applications (0975 – 8887)

Volume 75– No.3, August 2013

13

Design and Evaluation of a Parallel Classifier for
Large-Scale Arabic Text

Mohammed M. Abu Tair

College of Science and
Technology

KhanYounis, Palestine

 Rebhi S. Baraka
Faculty of Information

Technology
Islamic University of Gaza

Gaza, Palestine

ABSTRACT

Text classification has become one of the most important

techniques in text mining. A number of machine learning

algorithms have been introduced to deal with automatic text

classification. One of the common classification algorithms is

the k-NN algorithm which is known to be one of the best

classifiers applied for different languages including Arabic

language. However, the k-NN algorithm is of low efficiency

because it requires a large amount of computational power.

Such a drawback makes it unsuitable to handle a large volume

of text documents with high dimensionality and in particular

in the Arabic language. This paper introduces a high

performance parallel classifier for large-scale Arabic text that

achieves the enhanced level of speedup, scalability, and

accuracy. The parallel classifier is based on the sequential

k-NN algorithm. The classifier has been tested using the

OSAC corpus. The performance of the parallel classifier has

been studied on a multicomputer cluster. The results indicate

that the parallel classifier has very good speedup and

scalability and is capable of handling large documents

collections with higher classification results.

General Terms

Data Mining, Parallel and Distributed Computing.

Keywords

Arabic text classification, k-NN algorithm, parallel classifier,

multicomputer cluster.

1. INTRODUCTION
Automatic text classification (also known as text

categorization) is the task of assigning documents to one or

more predefined categories based on their content. It has

witnessed a growing attention in the last few years [1, 2].

Automatic text classification has been used in many

applications such as topic identifications, automatic meta-data

organization, documents' organization for databases and web

pages [3, 4, 5].

Many algorithms have been used for text classification for

different languages including Arabic language such as k-NN

[6, 7, 8], Naïve Bayes (NB) [7, 9, 10], Support Vector

Machines (SVM) [11, 12], and Decision Tree [11, 13, 14].

Most serial text classification methods, like the k-NN

algorithm, take a large amount of running times especially

when the volume of text documents available for analysis is

big. The huge amount of text documents with high

dimensionality (i.e. the features or attributes and in this case

they are the words that occur in documents) and in particular

in the Arabic language which has a rich nature and very

complex morphology requires a large amount of

computational power for classification.

To be more precise, the large-scale Arabic text means; the

large number of text documents that are represented as

records (thousands of documents) and the large number of

words that are represented as features or attributes in the

vector space model after preprocessing the text (thousands of

features) [15].

The k-NN algorithm becomes a standard within the field of

text classification for different languages and is included in

numerous experiments as a basis for comparison. It has been

in use since the early stages of text classification research, and

is one of the best classifiers within the field [4, 16].

Furthermore, it is a simple classification algorithm and very

easy to implement since it does not require a training phase

that most classification algorithms must have. However, the

k-NN algorithm is of low efficiency because it requires a large

amount of computational power for evaluating a measure of

the similarity between a test document and every training

document and for sorting the similarities. Such a drawback

makes it unsuitable to handle a large volume of text

documents with high dimensionality and in particular in the

Arabic language which has a rich nature and very complex

morphology and for some applications where classification

efficiency is crucial such as online text classification, in which

the classifier has to respond to a lot of documents arriving

simultaneously in stream format. Since text data rapidly

increase on the Internet, the scalability of the algorithm is

required to handle such massive data.

Parallel and distributed computing is an interesting technique

for scaling up the algorithms. It presents a natural and

promising method to deal with the problem of efficient

classification in large-scale Arabic text collection. The current

trend in parallel and distributed computing is clustering. In

clustering, powerful low cost workstations are linked through

fast communication interfaces to achieve high performance

computing. Recent increases in communication speeds,

microprocessor clock speeds, and availability of message

passing libraries make cluster based computing appealing in

terms of both high performance computing and cost

effectiveness. Parallel and distributed computing on clustered

systems is a viable and attractive proposition due to the high

communication speeds of modern networks [17].

This paper presents the development of a parallel classifier for

large-scale Arabic text that achieves the enhanced level of

speedup, scalability, and accuracy. The proposed classifier is

based on the sequential k-NN algorithm. The platform

comprises a set of processors and their own exclusive memory

(multicomputer cluster) which is a viable and attractive

method due to the high communication speeds of modern

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Islamic University of Gaza

https://core.ac.uk/display/385928681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.3, August 2013

14

networks. This platform is programmed using send and

receive primitives; Libraries such MPI provide such

primitives.

The rest of this paper is organized as follows: Section 2

reviews related works. Section 3 presents the sequential

k-NN algorithm. Section 4 describes the text pre-processing

steps. Section 5 describes the proposed parallel classifier.

Section 6 presents the experiments and the results. Finally,

Section 7 presents the conclusion and future directions.

2. RELATED WORKS
In order to improve the efficiency of sequential classification

algorithms for text classification, some researches have been

conducted in this area.

Lianga et. al [15], proposed a parallel learning algorithm. The

parallel algorithm is based on the k-NN algorithm. They

evaluated the parallel implementation on Compute Unified

Device Architecture (CUDA) enabled Graphics Processing

Unit (GPU). The advantage of this method is the highly

parallelizable architecture of the GPU. Recent development in

GPUs has enabled inexpensive high performance computing

for general-purpose applications. Due to GPU's tremendous

computing capability, it has emerged as the co-processor of

the Central Processing Unit (CPU) to achieve a high overall

throughput. CUDA programming model provides the

programmers adequate C language like APIs to better exploit

the parallel power of the GPU and manipulate it. At the

hardware level, CUDA-enabled GPU is a set of Single

Instruction Stream, Multiple Data Stream (SIMD) processors

with 8 stream processors. They used synthetic data generated

by MATLAB for the purpose of evaluation where the number

of data objects is 262144 records. Their experiment showed

good scalability on data objects. The result shows that

CUk-NN is suitable for large scale dataset. However, since

SIMD processors are specially designed, they tend to be

expensive and have long design cycles and the scalability of

the processors is limited.

Duwairi et. al [18], compared three dimensionality reduction

techniques; stemming, light stemming, and word cluster. The

purpose of employing the previous methods is to reduce the

size of documents vectors without affecting the accuracy of

the classifiers. They used k-NN to perform the comparison.

The comparison metric includes size of documents vectors,

classification time, and accuracy (in terms of precision and

recall). They used Term Frequency (TF) as a weighting

scheme for feature selection. They collected 15,000

documents belonging to one of three categories (sport,

economic, education). Each category has 5,000 documents.

They split the corpus; 9,000 documents for training and 6,000

documents for testing. In terms of vector sizes and

classification time, the stemmed vectors consumed the

smallest size and the least time necessary to classify

a testing dataset that consists of 6,000 documents. The light

stemmed vectors superseded the other three representations in

terms of classification accuracy. The feature selection and

reduction strategies can decrease the computation complexity,

reduce the dimensionality, and improve the accuracy rate of

classification. However, this approach could not do well in the

case of reducing computation complexity for text documents

with high number of distinct words and in particular in the

Arabic language which has a rich nature and very complex

morphology. Also, this approach reduces the features but what

is the solution in the case of large volume of text documents

which increase the computation complexity.

Guan and Zhou [19], proposed a training-corpus pruning

based approach to speedup the k-NN algorithm. It depends on

the removal of the noisy and superfluous documents in

training corpuses, which leads to substantial classification

efficiency improvement. They used clustering-based feature

selection method that treating each training class as

a distinctive cluster, then using a genetic algorithm to select

a subset of documents features. They used Apte corpus; the

number of documents sample is 5773 in ten categories, 2447

documents prepared for testing. The pruning strategy can

reduce the size of training corpus significantly, decrease the

computation complexity, but it can damage the classification

quality of k-NN for text classification, any removal of training

documents may aggravate the sparseness of the text corpus,

which leads to a degradation of the k-NN classifier.

Buana et. al [20], proposed a method that combine traditional

k-NN algorithm and k-Means clustering algorithm. They used

TF-IDF as the weighting scheme for feature selection. They

group all the training samples of each category by k-Means

algorithm, and take all the cluster centres as the new training

samples, the modified training samples are used for

classification with the k-NN algorithm. The results show that

the combination of the proposed algorithm in this study has

a percentage accuracy reached 87%, an average value of

f-measure evaluation= 0.8029 with the best k-values= 5 and

the computation takes 55 second for one document. They

collected corpus from news website www.detik.com and

www.kompas.com. The number of documents sample is 802

with 5915 terms and 6 categories that are, General News,

Business Economics, Education and Science, Health, Sports,

and Technology. 60 documents prepared for testing, each

category of 10 documents. The combination of traditional

k-NN algorithm and clustering algorithm can reduce the time

complexity of traditional k-NN algorithm. However, the

clustering algorithm can take a large amount of time for

clustering the training samples especially in the case of the

large volume of text documents.

Ruoming et. al [21], proposed a parallel learning algorithm.

The parallel algorithm is based on the k-NN algorithm. They

evaluated the parallel implementation on a multiprocessor

with shared memory that connect multiple processors to

a single memory system. They experimented with a 800 MB

main memory resident dataset. The reduction object in this

algorithm’s parallel implementation is the list of k-nearest

neighbors. The speedup results was suitable up to four

processors. However, sharing memory in this way can easily

lead to a performance bottleneck and the scalability of the

processors is limited.

Tekiner et. al [22], proposed a parallel learning algorithm for

part of speech tagging. The parallel algorithm is based on the

Maximum Entropy algorithm. They used Genia which is

a sequential POS tagger as a baseline for comparison. Genia

is built with maximum entropy and it is specifically tuned for

biomedical text. They implemented a parallel version of

Genia tagger application and performance has been compared.

The focus has been particularly on scalability of the

application. Scaling up to 96 processors has been achieved

and a hundred thousand abstracts have been processed in less

than 5 minutes, whereas serial processing would take around 8

hours. The parallel implementation of Genia tagger is done

using MPI library. They used two datasets; the first dataset is

Medline which is a collection of Medline abstracts contain

around 1.7 billion words, another dataset contains 1 Million

abstracts. This work supports our approach in terms of using

http://www.kompas.com/

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.3, August 2013

15

multicomputer cluster which is a viable and attractive method

due to the high communication speeds of modern networks.

3. THE SEQUENTIAL k-NN

ALGORITHM
The k-NN algorithm [23]: was first described in the early

1950. It is based on learning by analogy, that is, by comparing

a given test tuple with training tuples that are similar to it. The

training tuples are described by n attributes. Each tuple

represents a point in an n-dimensional space. In this way, all

of the training tuples are stored in an n-dimensional pattern

space. When given an unknown tuple, a k-NN classifier

searches the pattern space for the k training tuples that are

closest to the unknown tuple. These k training tuples are the

k nearest neighbors of the unknown tuple. Closeness is

defined in terms of a distance metric, such as Euclidean

distance. The Euclidean distance between two points or

tuples, X=(x1,x2,…,xn) and Y=(y1,y2,…,yn) is:

 (1)

The pseudo code of the sequential k-NN algorithm is shown

in Algorithm 1.

1

2

3

4

Input: Training set D = {(x1 , y1), . . . , (xn, yn)}.

 x′ new instance to be classified.

Output: predicted class label y′ for x′.

ALGORITHM

FOR each labeled instance (xi, yi) calculate d(xi , x′)

from (1)

Order d(xi , x′) from lowest to highest, (i = 1, . . . , n).

Select the k nearest instances to x′: Dx′.

Output y′ that is the most frequent class in Dx′.

Algorithm 1. The k-NN algorithm [24].

4. TEXT PRE-PROCESSSING
One of the widely used methods for text mining presentations

is viewing text as a Bag Of Tokens (BOT) (words, n-grams).

Under that model we can already classify text [6].

Some pre-processing in the corpus is performed. It includes

tokenizing string to words, normalizing the tokenized words,

applying stop words removal, applying the suitable term

stemming and pruning methods as a feature reduction

techniques, and finally applying the suitable term weighting

scheme to enhance text document representation as feature

vector. We use the open source machine learning tool Rapid

Miner for text pre-processing.

In linguistics, morphology is the identification, analysis and

description of the structure of morphemes and other units of

meaning in a language like words, affixes, and parts of

speech. For Arabic Language, there are two different

morphological analysis techniques; stemming and light

stemming. Stemming is the process for reducing inflected (or

sometimes derived) words to their stem, base or root

form – generally a written word form. Stemming algorithm by

Khoja [25] is one of the well known Arabic stemmers. Light

stemming, in contrast, removes common affixes from words

without reducing them to their stems and keeps the words'

meanings unaffected [1, 2]. A light stemmer [26] is a standard

Arabic light stemmer.

The aim of term weighting is to enhance text document

representation as feature vector. Popular term weighting

schemes are Binary Term Occurrences (BTO), Term

Frequency (TF), Term Occurrences (TO), and Term

Frequency-Inverse Document Frequency (TF-IDF). BTO

indicates absence or presence of a word with Booleans 0 or 1

respectively. TF(t,d) is the number that the term t occurred in

the document d. TO is the number of occurrences of term t

in the document d. TF-IDF is a weight often used in

information retrieval and text mining. This weight is

a statistical measure used to evaluate how important a word is

to a document in a collection or corpus. Term frequency

tf(t, d) is the number that the term t occurred in the document

d. Document frequency df(t) is number of documents in which

the term t occur at least once. The inverse document

frequency can be calculated from document frequency using

the formula: log(num of Docs/num of Docs with word i).

A reasonable measure of term importance may then be

obtained by using the product of the term frequency and the

inverse document frequency (tf * idf) [1, 2, 27, 28, 29].

5. THE PROPOSED PARALLEL

CLASSIFIER
This section describes the proposed parallel classifier model

including the decomposition and mapping techniques and the

steps of the proposed parallel classifier.

The parallel classifier model is a way of structuring a parallel

classifier by selecting the most suitable decomposition and

mapping techniques and applying the appropriate strategy to

minimize interactions [17].

5.1 Decomposition Technique
The first step in developing a parallel algorithm is to

decompose the problem into tasks that can be executed

concurrently by identify the data on which computations are

performed, then partition this data across various tasks.

The task performs the computations with its part of the data.

In our classifier, the input training data partitioning is the

natural decomposition technique because the output (the

computed distances) is not clearly known a-priori.

5.2 Mapping Technique
Once a problem has been decomposed into concurrent tasks,

these must be mapped to processors (that can be executed on

a parallel platform). In this classifier, we use the static

mapping technique that distributes the tasks among processes

prior to the execution of the program. The scheme for this

static mapping is mapping based on data partitioning because

our data represented in a two-dimensional array. So, the most

suitable scheme used for distributing the two-dimensional

array among processes is the row-wise 1-D block array

distribution that distributes the array and assign uniform

contiguous portions of the array to different processes.

According to the previous selected decomposition and

mapping techniques, the suitable parallel model is the

master-slave model in which the master processor generates

the work and allocates it to the worker processors.

Since the most time consuming in the k-NN algorithm taken

by the calculation of the distance between the query-instance

and all the training samples, and the sorting of the distances to

determine nearest neighbors based on the k-th minimum

distance. This classifier takes into consideration these two

factors by partitioning the work of distances computation and

sorting among several worker processors. The pseudo code of

the proposed parallel classifier is shown in Algorithm 2.

n

i

ii yxYXd
1

2)(),(

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.3, August 2013

16

1

2

a

i

ii

viii

ix

x

b

iii

iv

v

vi

vii

Input: Training set D = {(x1 , y1), ….. , (xn, yn)}.

 x′ new document to be classified.

Output: predicted class label y′ for x′.

ALGORITHM

The master processor divides D equally among

worker processors and sends a one partition for

each of them.

While True:

 If processor = master:

 Load x′.

 Send x′ to the worker processors.

 Receive Dx′ from the worker

 processors and put it in TDx′.

 Order TDx′ from lowest to highest.

 Output y′ that is the most frequent

 class in TDx′.

 Else:

 Receive x′ from the master

 processor.

 FOR each labeled instance (xi, yi)

 calculate d(xi , x′) from (1).

 Order d(xi , x′) from lowest to

 highest, (i = 1, . . . , n).

 Select the k nearest instances to x′:

 Dx′.

 Send Dx′ to the master processor.

Algorithm 2. The proposed parallel classifier.

6. EXPERIMENTAL RESULTS AND

EVALUATION
This section gives the experimental results to provide

evidence that our parallel classifier design can improve both

the computational efficiency and the quality of classification.

The sequential k-NN algorithm has been implemented using

C++ programming language to serve as a baseline when it

compares with the proposed parallel classifier to give a fair

comparison. The proposed parallel classifier has been

implemented using C++ programming language and the MPI

library.

The target platform for the experiments is a cluster of

computers and their own exclusive memory connected

through fast local area network. The cluster consists of 14

node, all nodes have the same specifications; Intel(R)

Core(TM) i3-2120 CPU @ 3.30 GHz, 4.00 GB RAM, 320 GB

hard disk drive. The sequential k-NN algorithm and the

proposed parallel classifier have been implemented on

Windows 7 operating system, and we have used the parallel

message passing software MPICHI2 that offers small

latencies and high bandwidths.

6.1 The Corpus
We use the largest freely public Arabic corpus of text

documents which called OSAC from [30] to perform our

experimentations. The OSAC corpus is available publically at

[31].

The OSAC Arabic corpus collected from multiple websites as

presented in Table 1, the corpus includes 22,428 text

documents. Each text document belongs to 1 of 10 categories

(Economics, History, Entertainments, Education and Family,

Religious and Fatwas, Sports, Heath, Astronomy, Low,

Stories, and Cooking Recipes). The corpus contains about

18,183,511 (18M) words and 449,600 district keywords after

stop words removal. We generate all text representations for

OSAC corpus to evaluate the obtained classification results.

The generated text representations for OSAC corpus are:

(Light stemming, Stemming) and percentual Term pruning

(min threshold = 3%, max threshold = 30%) with (TF-IDF,

TF, TO, BTO).We have described these text representations

in more details in section 4.

Table 1. The OSAC corpus.

Category

Number of

text

documents

Sources

Economic 3102

bbcarabic.com –

cnnarabic.com –

aljazeera.net- khaleej.com –

banquecentrale.gov.sy

History 3233

 – www.hkam.net تاريخ انحكاو

moqatel.com – انتاريخ

altareekh.com – تاريخ الإسلاو

islamichistory.net

Education

and family
3608

نصائح – saaid.net صيد انفوائد

 – naseh.net نهسعادة الأسريت

 almurabbi.com انمربي

Religious

and

Fatwas

3171

CCA corpus – EASC corpus

– moqatel.com – شبكت انفتاوى

 – islamic-fatwa.com انشرعيت

 saaid.net صيد انفوائد

Sport 2419

bbcarabic.com –

cnnarabic.com –

khaleej.com

Health 2296

-dr انعيادة الانكترونيت

ashraf.com – CCA corpus –

EASC corpus – W corpus –

انعلاج – kids.jo صحت انطفم

 arabaltmed.com انبديم انعربي

Astronomy 557

 انفهك انعربي

arabstronomy.com – انكون نت

alkawn.net – بوابت انفهك انمغربيت

 bawabatalfalak.com –

 انفهك -موسوعت اننابهسي

nabulsi.com –

www.alkoon.alnomrosi.net

Low 944
 – lawoflibya.comانقانون انهيبي

 qnoun.com قانون كوو

Stories 726
CCA corpus – قصص الأطفال

kids.jo – صيد انفوائد said.net

Cooking

Recipes
2372 aklaat.com – fatafeat.com

Total 22,428

6.2 Discussion of the Parallel Classifier

Results
The largest text representation for OSAC corpus which is

(Light stemming + percentual term pruning (min threshold =

3%, max threshold = 30%) + TF-IDF), (22,428 documents

that are represented as records and 2114 words that are

represented as attributes) has been used to evaluate the

proposed parallel classifier using different performance

metrics for parallel systems such as execution time, parallel

overhead, speedup, and efficiency which determines the

scalability.

For evaluation purposes, the largest generated text

representation for OSAC corpus has been splitted into two

parts; 50% of the corpus for training (11214 documents) and

http://www.hkam.net/

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.3, August 2013

17

the remaining 50% for testing (11214 documents) using

stratified sampling which keep class distributions remains the

same after splitting.

We have executed the parallel classifier varying the number of

processors from 2 to 14; also we varied the number of tested

documents to observe the effects of different problem sizes on

the performance. Three sets were used with the number of

tested documents 2803, 5607, and 11214 documents.

Figure 1 shows the curves of execution time for the classifiers

on the OSAC corpus. The time curve decreases from 1

processor until using 14 processors.

Fig 1: The curves of execution time for the two classifiers.

Several observations can be made by analyzing the results in

Figure 1. First, the sequential k-NN algorithm spent a lot of

time classifying the text documents. Second, the proposed

parallel classifier clearly reduce the sequential time. Notice

that the sequential k-NN algorithm takes about 1 hour to

classify this collection, while the proposed parallel classifier

reduces this time to 6 minutes on 14 processors.

Also, the speedup which gained from this parallelization is

computed. Figure 2 demonstrates the relative speedup.

The speedup curves increase linearly in some cases. For

example, on the largest tested set (11214 documents), it

achieves the relative speedups of 1.87, 3.59, 6.33, and 9.00 on

2, 4, 8, and 14 processors, respectively. When it accesses to

a smaller set of tested documents, the speedup curves tend to

drop from the linear curve. The classifier achieves the relative

speedups of 1.83, 3.44, 6.08, and 8.60 on 2, 4, 8, and 14

processors, respectively. The smallest tested documents sizes

give the same trend. If we increase the number of processors

further, the speedup curves tend to significantly drop from the

linear curve. For a given problem instant, the relative

speedups saturates as the number of processors is increased

due to increased overheads. This is a normal situation when

the problem size is fixed as the number of processors

increases. However, it can be solved by scaling the problem

size. For example, in Figure 3, the speedups for three sets on 4

processors improve from 3.39 to 3.59, on 8 processors

improve from 5.85 to 6.33, and on 14 processors improve

from 8.12 to 9.00. It can be seen that the parallel classifier

yields better performance for the larger data sets.

Fig 2: The relative speedup of the proposed parallel

classifier.

From the speedup, the efficiency can be computed. Figure 3

illustrates the efficiency curves.

Fig 3: The efficiency curves of the proposed parallel

classifier.

As we note from Figure 3, the value of efficiency is between

zero and one, the efficiency decrease as the number of

processing elements is increased for a given problem size and

No. of Processors Vs Exection Time

0

400

800

1200

1600

2000

2400

2800

3200

3600

Ex
ec

ut
io

n
tim

e
(S

ec
.)

2803record 870.97 484.07 256.75 176.53 148.94 132.44 117.49 107.25

5607record 1755.41 960.99 510.75 344.50 288.69 252.34 222.18 204.22

11214record 3586.70 1914.20 997.95 679.53 566.34 496.38 435.61 398.64

1 2 4 6 8 10 12 14

No. of Processors Vs Speedup

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Sp
ee

du
p

2803record 1.80 3.39 4.93 5.85 6.58 7.41 8.12

5607record 1.83 3.44 5.10 6.08 6.96 7.90 8.60

11214record 1.87 3.59 5.28 6.33 7.23 8.23 9.00

Linear(Ideal) 2 4 6 8 10 12 14

2 4 6 8 10 12 14

No. of Processors Vs Effeciency

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Ef
fe

ci
en

cy

2803record 0.90 0.85 0.82 0.73 0.66 0.62 0.58

5607record 0.91 0.86 0.85 0.76 0.70 0.66 0.61

11214record 0.94 0.90 0.88 0.79 0.72 0.69 0.64

2 4 6 8 10 12 14

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.3, August 2013

18

this is common to all parallel programs due to increased

overheads.

Also, we note that the efficiency of the parallel classifier

increases if the problem size is increased (from 2803

documents to 11214 documents) while keeping the number of

processing elements constant.

It can be seen that the parallel classifier is a scalable parallel

system because the efficiency can be kept constant as the

number of processing elements is increased, provided that the

problem size is increased (from 2803 documents to 11214

documents).

Also, the parallel overhead can be computed. Figure 4

illustrates the parallel overhead curves.

As we note from Figure 4, the parallel overhead of the parallel

classifier increases as we increase the number of processing

elements for a given problem size. This is a normal situation

when the problem size is fixed as the number of processors

increases. However, it can be solved by scaling the problem

size. we note that the parallel classifier has a parallel overhead

that decreases as the data set increases (from 2803 documents

to 11214 documents). It can be seen that our parallel classifier

yields better performance for the larger data sets.

Fig 4: The parallel overhead of the proposed parallel

classifier.

6.3 Discussion of the Classification Results
To ensure that the classifier works well with the tested

documents, we also examined the quality of the classification.

we split all generated text representations of OSAC corpus

(we have described these text representations in section 6.1)

into two parts; 50% of the corpus for training (11214

documents) and the remaining 50% for testing (11214

documents) using stratified sampling which keep class

distributions remains the same after splitting. We split the

corpus in this way to achieve higher classification results.

For the purpose of evaluating the classification results, we use

confusion matrices that are the primary source of performance

measurement for the classification problem. We have

evaluated the obtained classification results using different

classification measures such as accuracy, precision, recall, and

F-measure which are generally accepted ways of measuring

systems' success in this field.

The average classification results are depicted in Figure 5.

The morphological analysis (stemming, light stemming), term

pruning and term weighting schemes (TF-IDF, TF, TO, BTO)

have obvious impact on the classifier performance as shown

in Figure 5. The Figure emphasizes that light stemming and

TF representation with k=10 has the best classification results,

this is because light stemming is more proper than stemming

from linguistics and semantic view point and keeps the words

meanings unaffected. The Figure also emphasizes that the

classifier is very sensitive to term weighting schemes because

it depends on distance function to determine the nearest

neighbors. For example, the BTO weighting scheme has the

worst classification results because the text representation is 0

or 1.

Fig 5: The classification results for OSAC text

representations.

Figure 6 shows the classification results for the best text

representation of OSAC corpus (light stemming + TF) in each

of the domain category. From Figure 6 we can see that the

best performance is recorded in Cooking Recipes domain that

because Cooking Recipes has limited space of words that are

limited and cleared comparing to other domains. Also, it

shows that Stories has lowest performance may be that also

because Stories have a large space domain.

Fig 6: The classification results for light stemming + TF.

No. of Processors Vs Overhead

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

O
ve

rh
ea

d

2803record 0.11 0.18 0.22 0.37 0.52 0.62 0.72

5607record 0.09 0.16 0.18 0.32 0.44 0.52 0.63

11214record 0.07 0.11 0.14 0.26 0.38 0.46 0.56

2 4 6 8 10 12 14

0

10

20

30

40

50

60

70

80

90

100

Accuracy Precision Recall F-Measure

A
v

e
r
a

g
e

 o
f
 M

e
a

s
u

r
m

e
n

t
s

light stemming+TF-IDF

light stemming+TF

light stemming+TO

light stemming+BTO

stemming+TF-IDF

stemming+TF

stemming+TO

stemming+BTO

0

10

20

30

40

50

60

70

80

90

100

Precision Recall F-Measure

A
v

e
r
a

g
e

 o
f
 M

e
a

s
u

r
m

e
n

t
s

Education and Family ُ

History

Stories

Sport

Low
Astronomy

Cooking Recipes

Religious and Fatwas

Health

Economic

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.3, August 2013

19

7. CONCLUSION AND FUTURE

WORKS
In this paper, a parallel classifier for large-scale Arabic text

has been introduced. The proposed parallel classifier is based

on the sequential k-NN algorithm. The parallel classifier has

been tested using the OSAC corpus. The parallel classifier has

been implemented on a multicomputer cluster that consists of

14 computers. The experimental results on the performance

indicate that the parallel classifier design has very good

speedup characteristics when the problem sizes are scaled up.

Also, classification results show that the proposed classifier

has achieved accuracy, precision, recall, and F-measure with

higher than 95%.

There are several directions for improvement and future

investigation. This work can be extended to cover larger

computer clusters and text corpora to assess the performance

of our parallel implementation. Additionally, we can apply

this parallel classifier to various application domains such as

weather data, internet traffic, log files, medical information,

among others to check its generalization. We will also extend

This work to cover a popular distributed programming

paradigms like MapReduce in a cloud environment. These

results are encouraging and show that managed code can

deliver high performance classifiers. In the future we will

investigate further algorithms and apply them to interesting

applications.

8. REFERENCES
[1] Feldman R., and Sanger J., The Text Mining Handbook:

Advanced Approaches in Analyzing Unstructured Data,

Cambridge University Press, 2007.

[2] Hill T., and Lewicki P., STATISTICS Methods and

Applications, 1st edition, StatSoft, Tulsa, OK, 2007.

[3] Sauban M., and Pfahringer B., “Text Categorization

Using Document Profiling,” The 7th European

Conference on Principles and Practice of Knowledge

Discovery in Databases (PKDD 2003) – Conference

Proceedings, Cavtat-Dubrovnik, Croatia, September

22-26, pp. 411-422, 2003.

[4] Sebastiani F.,“Machine learning in automated text

categorization,” Journal of ACM Computing Surveys

(CSUR), vol. 34 , no. 1, pp. 1-47, 2002.

[5] Yang Y., Slattery S., and Ghani R., “A Study of

approaches to hypertext Categorization,” Journal of

Intelligent Information Systems, vol. 18, no. 2-3,

pp. 219-241, 2002.

[6] Al-Shalabi R., Kannan G., and Gharaibeh H., “Arabic

text categorization using K-NN algorithm,” The 4th

International Multiconference on Computer and

Information Technology (CSIT 2006) – Conference

Proceedings, Amman, Jordan, 2006.

[7] El-Halees A., “A Comparative Study on Arabic Text

Classification,” Egyptian Computer Science Journal, vol.

30 , no. 2, 2008.

[8] Yang Y., “An Evaluation of Statistical Approaches to

Text Categorization,” Journal of Information Retrieval,

vol. 1 , no. 1-2, pp. 69-90, 1999.

[9] El-Kourdi M., Bensaid A., and Rachidi T., “Automatic

Arabic Document Categorization Based on the Naïve

Bayes Algorithm,” The 20th international conference on

Computational Linguistics – Conference Proceedings,

Geneva, August, 2004.

[10] Lewis D., “Naïve (Bayes) at forty: The Independent

Assumption in Information Retrieval,” The 10th

European Conference on Machine Learning (ECML

1998) – Conference Proceedings, Berlin, pp. 4–15, 1998.

[11] Feldman R., and Sanger J., The Text Mining Handbook:

Advanced Approaches in Analyzing Unstructured Data,

Cambridge University Press, 2007.

[12] Joachims T., “Text Categorization with Support Vector

Machines: Learning with Many Relevant Features,” The

10th European Conference on Machine Learning (ECML

1998) – Conference Proceedings, London, UK,

pp. 137-142, 1998.

[13] Apte C., Damerau F., and Weiss S., “Text mining with

decision rules and decision trees,” The Conference on

Automated Learning and Discovery (CONALD 1998)

– Conference Proceedings, Pittsburgh, USA, June, 1998.

[14] Saad M., and Ashour W., “Arabic Text Classification

Using Decision Trees,” The 12th international workshop

on computer science and information technologies (CSIT

2010) – Conference Proceedings, Moscow,

Saint-Petersburg, Russia, vol. 2, pp. 75-79, 2010.

[15] Lianga S., Liua Y., Wang C., and Jiana L., “CUKNN: A

parallel Implementation of k-Nearest Neighbor on

Cuda-Enabled GPU,” The 2009 IEEE Youth Conference

on Information, Computing and Telecommunication

(ICT2009) – Conference Proceedings, pp. 415-418,

2009.

[16] Manning D., Raghavan P., and Schütze H., An

introduction to information retrieval, Cambridge,

England: Cambridge University Press, 2006.

[17] Grama A., Gupta A., Karypis G., and Kumar V.,

Introduction to Parallel Computing, 2nd edition, Addison

Wesley, 2003.

[18] Duwairi R., Al-Refai M., Khasawneh N., “Feature

reduction techniques for Arabic text categorization,”

Journal of the American Society for Information Science,

vol. 60, no. 11, pp. 2347-2352, 2009.

[19] Guan J., and Zhou S., “Pruning training corpus to speed

up text classification,” The 13th International Conference

on Database and Expert Systems Applications (DEXA

2002) – Conference Proceedings, Aix-en-Provence,

France, September, vol. 2453, pp. 831-840, 2002.

[20] Buana P., Jannet S., and Putra l., “Combination of

K-Nearest Neighbor and K-Means based on Term

Re-weighting for Classify Indonesian News,”

International Journal of Computer Applications, vol. 50,

no. 11, pp. 37-42, 2012.

[21] Ruoming J., Yang G., and Agrawal G., “Shared memory

parallelization of data mining algorithms: Techniques,

programming interface and performance,” IEEE

Transactions on Knowledge and Data Engineering, vol.

17, no .1, pp. 71-89, 2005.

[22] Tekiner F., Tsuruoka Y., Tsujii J., and Ananiadou S.,

“Highly Scalable Text Mining – Parallel Tagging

Application,” The 5th International Conference on Soft

Computing, Computing with Words and Perceptions in

http://rd.springer.com/book/10.1007/b13634

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.3, August 2013

20

System Analysis, Decision and Control (ICSCCW 2009)

– Conference Proceedings, September, pp. 1-4, 2009.

[23] Han J., and Kamber M., Data Mining: Concepts and

Techniques, 2nd edition. The Morgan Kaufmann Series in

Data Management Systems, Jim Gray, Series Editor,

2006.

[24] Nishida K., “Learning and Detecting Concept Drift,”

Ph.D. Dissertation, Department of Information Science

and Technology, Hokkaido University, 2008.

[25] Khoja S., and Garside R., “Stemming Arabic text,”

Computer Science Department, Lancaster University,

Lancaster, UK, 1999.

[26] Larkey L., Ballesteros L., and Connell M., “Light

Stemming for Arabic Information Retrieval,” Arabic

Computational Morphology, book chapter, Springer,

2007.

[27] Jing L., Huang H., and Shi H., “Improved feature

selection approach TFIDF in text mining,” The 1st

International Conference of machine learning and

cybernetics – Conference Proceedings, Beijing, 2002.

[28] Said D., Wanas N., Darwish N., and Hegazy N.,

“A Study of Arabic Text preprocessing methods for Text

Categorization,” The 2nd International Conference of on

Arabic Language Resources and Tools – Conference

Proceedings, Cairo, Egypt, 2009.

[29] Salton G., and Buckley C., “A Study of Arabic Text

preprocessing methods for Text Categorization,” The

Conference of information processing & management

– Conference Proceedings, vol. 24, no. 5, pp. 513-523,

1998.

[30] Saad M., and Ashour W., “OSAC: Open Source Arabic

Corpus,” The 6th International Conference on Electrical

and Electronics Engineering and Computer Science

(EEECS 2010) – Conference Proceedings, European

University of Lefke, Cyprus, November 25-26, pp. 1-6,

2010.

[31] Saad M., “Open Source Arabic Language and Text

Mining Tools,” (2010, August), [Online], Available:

http://sourceforge.net/projects/ar-text-mining [10 August

2012], 2010.

AUTHORS PROFILE

Mohammed M. Abu Tair is a programmer at the college of

Science and Technology, KhanYounis, Palestine. He holds

M.Sc. degree in Information Technology in 2013 from the

Islamic University of Gaza, Palestine. He received his B.Sc.

degree in Information Technology Systems in 2005 from the

Islamic University of Gaza, Palestine. He holds different

technical certificates: MCSE, CCNA. His research activities

are in the area of Data and Text Mining, Natural Language

Processing, Distributed Data Mining, SOA and Web Services.

 Rebhi S. Baraka is an assistant professor of computer

science and vice dean of the Faculty of Information

Technology at the Islamic University of Gaza, Palestine. He

received his PhD degree in Computer Science in 2006 from

Johannes Kepler University, Austria, He received his M.Sc.

degree in Computer Science in 1996 from De La Salle

University, Philippines. He received his B.Sc. degree in

Electronics and Communications Engineering in 1991 from

University of the East, Philippines. His research activities are

in the area of Distributed Systems, Web Services Semantics,

Semantic-based Discovery of Web Services, Arabic Ontology
Building, and Semantic Web.

IJCATM : www.ijcaonline.org

http://sourceforge.net/projects/ar-text-mining

