

 Islamic University – Gaza

Deanery of Post Graduate Studies

Faculty of Information Technology

Information Technology Program

Large-Scale Arabic Text Classification

Using MapReduce

Submitted by:

Maher M. Abushab

Dr. Rebhi S. Baraka
Supervisor

 A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master in Information Technology

Jumada Al-Awwal 1436H - February 2015

I

II

Abstract

Text classification on large-scale real documents has become one of the most core

problems in text mining. For English and other languages many text classification

works have been done with high performance. However, Arabic language still needs

more attention and research since it is highly rich and requires special processing.

Existing Arabic text classification approaches use techniques such as feature

selection, data representation, feature extraction and sequential algorithms. Few

attempts were done to classify large-scale Arabic text document in a parallel manner.

In our research, we propose a parallel classification approach based on the Naïve

Bayes algorithm for large volume Arabic text using MapReduce with enhanced

speedup and preserved accuracy.

The experiments show that the parallel classification approach can process large

volume of Arabic text efficiently on a MapReduce cluster and significantly improves

speedup up to 12 times better than the sequential approach using the same

classification algorithm. Also, classification results show that the proposed parallel

classifier has preserved accuracy up to 97%.

Keywords: Text Classification, Naïve Bayes algorithm, Parallel Classifier, MapReduce,

and Hadoop.

III

 الملخص

 MapReduce نموذج باستخدام واسع النطاق لنص العربياتصنيف

واحدة من المشاكل الأساسٌة (الحجم الكبٌراق الواسع)النطأصبح تصنٌف النصوص ذات

لغة لالنصٌة تصنٌف الالعدٌد من أعمال . وهناكٌةفً مجال التنقٌب فً البٌانات النص

فان تصنٌف مع ذلك،لعملٌة التصنٌف. أداء عالًحٌث نتجت عن الانجلٌزٌة واللغات الأخرى

وٌتطلب معالجة خاصة نظرا اللغة العربٌة بحاجة الى مزٌد من الاهتمام والبحثالنصوص فً

تصنٌف النصوص الطرق الحالٌة لأغلب . فً التعبٌر والمعانً والنحو والصرف لأنها لغة غنٌة

 Data) ، تمثٌل البٌانات(Feature Selection) ستخدم تقنٌات مثل: اختٌار المزاٌاتالعربٌة

Representation)استخلاص المزاٌا ، (Feature Extraction) والخوارزمٌات المتسلسلة

(Sequential Algorithms). واسع نص العربًاللتصنٌف القلٌل من المحاولات تمت

 . المتوازٌة بالحوسبة النطاق

 الواسعالنطاق ذات ف متوازي للنصوص العربٌةن مُص طرٌقةفً هذا البحث قمنا باقتراح

 نموذج الحوسبة المتوازٌة باستخدام (Naïve Bayesٌعتمد على خوارزمٌة التصنٌف)

MapReduce مع تعزٌز(التسرٌعSpeedup)والأداء (Performance) والحفاظ على

 وصعالج بكفاءة النصالمقترح ٌف المتوازي ن أظهرت النتائج أن المُص .(Accuracy) الدقة

أظهرت و MapReduceنموذج على حٌث أجرٌت التجارب .الحجم الكبٌر تالعربً ذا

أفضل من الطرٌقة التسلسلٌة لنفس مرة 12تصل الى نسبةبا كبٌرا على التسرٌع تحسنالنتائج

أعلى من الى وصلت عالٌة (Accuracy)تصنٌف دقة ج الاحتفاظ بنتائأٌضاً والمُصن ف

79 .%

المتوازي، خوارزمٌة ف ن المُص: تصنٌف النصوص العربٌة، مفتاحـيـــةالالكلمـــات

Naïve Bayes، MapReduce وHadoop.

IV

Dedication

To the memory of my mother …

To my beloved father …

To my wife and children …

To my sisters and brothers…

To my best friends …

V

Acknowledgements

Thanks to Allah for giving me the power and help to accomplish this research.

Without the grace of Allah, I was not able to accomplish this work.

Many thanks and sincere gratefulness goes to my supervisor Eng. Dr. Rebhi S.

Baraka, without his help, guidance, and continuous follow-up; this research would

never have been.

In addition, I would like to extend my thanks to the academic staff of the Faculty

of Information Technology who helped me during my master’s study and taught me

different courses.

VI

Table of contents

Abstract .. II

 III……………………………………………………………………………… الملخص

Dedication .. IV

Acknowledgements ... V

Table of contents .. VI

List of Figures .. IX

List of Algorithms ... X

List of Table ... XI

List of Abbreviations ... XII

Chapter 1 Introduction ... 1

1.1 Problem Statement ... 3

1.2 Objectives... 3

1.2.1 Main Objective .. 3

1.2.2 Specific Objectives .. 3

1.3 Significance of the Thesis .. 4

1.4 Scope and Limitations .. 4

1.5 Research Methodology .. 5

1.6 Research Format .. 6

Chapter 2 Related Works ... 7

2.1 Improving the Efficiency of Arabic Text classification. 7

2.2 Improving the Efficiency of Sequential Classification Algorithms with

Parallel Computing. .. 8

2.3 Summary .. 12

Chapter 3 Theoretical Foundation ... 13

3.1 Text Classifiers ... 13

3.1.1 Naïve Bayes (NB) Classifier ... 13

3.1.2 K-Nearest Neighbors (K-NN) Classifier ... 16

3.2 Large Scale Arabic Text Classification ... 17

3.3 Stemming Methods .. 18

VII

3.4 Text Representation ... 18

3.4.1 Vector Space Model .. 19

3.5 MapReduce Overview.. 20

3.5.1 MapReduce Architecture ... 20

3.6 Hadoop ... 23

3.6.1 Small Number of Large Files vs Large Number of Small Files in Hadoop 24

3.6.2 Hadoop Distributed File System .. 25

3.7 Massage Passing Interface (MPI) .. 26

3.8 Apache Mahout Library ... 27

3.9 Performance Metrics and Classification Measures .. 28

3.9.1 Confusion Matrix ... 28

3.9.2 Accuracy .. 29

3.9.3 Precision .. 29

3.9.4 Recall ... 29

3.9.5 F-measure .. 29

3.9.6 Speedup ... 29

3.10 Summary ... 30

Chapter 4 The Proposed Parallel Classifier Approach .. 31

4.1 The Overall Classification Approach ... 31

4.2 Corpus Collection .. 33

4.3 The Parallel Classification as a MapReduce Model .. 33

4.3.1 Text preprocessing phase... 35

4.3.2 Training Phase ... 41

4.3.3 Testing Phase ... 42

4.4 Summary .. 44

Chapter 5 Experimental Results and Analysis ... 45

5.1 The Corpus ... 45

5.2 Experimental Environment .. 46

5.3 Implementing the Parallel Naïve Bayes Classifier in Mahout 46

5.4 Experimental Results and Discussion .. 48

5.4.1 The Parallel Classification and its Performance .. 48

VIII

5.5 Evaluating Quality of the Classification .. 52

5.5.1 Text Classification Performance with a Large Number of Small Files 52

5.5.2 Text Classification Performance with a Small Number of Large Files 54

5.6 Comparison with Related Approaches ... 58

5.7 Summary .. 59

Chapter 6 Conclusion and Future Work .. 60

References .. 62

IX

List of Figures

Figure ‎1.1: Building Text Classification System Process .. 1

Figure ‎1.2: The Research Methodology ... 6

Figure ‎3.1: MapReduce Operation [13] ... 21

Figure ‎3.2: MapReduce Programming Model Example [50] ... 22

Figure ‎3.3: The Architecture of the Hadoop Cluster [51] .. 24

Figure ‎3.4: Hadoop Distributed File System Architecture [56] ... 26

Figure ‎4.1: Workflow of the Proposed Approach .. 32

Figure ‎4.2: Corpus Building Steps ... 33

Figure ‎4.3: The Proposed Parallel Classifier Approach ... 34

Figure ‎4.4: Text Processing Details ... 35

Figure ‎4.5: Data Flow of Word Frequency of MapReduce Job1 ... 37

Figure ‎4.6: Data Flow of Word Counts MapReduce Job 2 .. 38

Figure ‎4.7: Data Flow of TF-IDF MapReduce .. 40

Figure ‎4.8: Data Flow of Naïve Bayes Training MapReduce .. 41

Figure ‎4.9: Data Flow of Naïve Bayes Testing MapReduce .. 43

Figure ‎5.1: The Result of Running Parallel Naive Bayes Classifier Using Mahout 48

Figure ‎5.2: Execution Time for the two Classifiers ... 50

Figure ‎5.3: The Relative Speedup of the Proposed Parallel Classifier 52

Figure ‎5.4: Classification Results for all Text Representations of Small Files 53

Figure ‎5.5: Classification Results for all Text Representations of Large Files 55

Figure ‎5.6: Accuracy of Small Files and Large Files Classification 55

Figure ‎5.7: Execution Times of CPU and MapReudce with Small and Large Files 56

Figure ‎5.8: Classification Results for Light Stemming and TF-IDF 57

X

List of Algorithms

Algorithm ‎4.1: Word Frequency Mapper-Job 1 ... 37

Algorithm ‎4.2: Word Frequency Reducer-Job 1 .. 38

Algorithm ‎4.3: Word Counts Mapper-Job 2 .. 39

Algorithm ‎4.4: Word Counts Reducer-Job 2 ... 39

Algorithm ‎4.5: TF-IDF Mapper ... 40

Algorithm ‎4.6: Training Naïve Bayes-Mapper .. 41

Algorithm ‎4.7: Training Naïve Bayes-Reducer ... 42

Algorithm ‎4.8: Testing Naïve Bayes-Mapper .. 43

Algorithm ‎4.9: Testing Naïve Bayes-Reducer ... 44

XI

List of Table

Table ‎3.1: MPI and MapReduce Comparison .. 27

Table ‎3.2: Simple Confusion Matrix .. 28

Table ‎5.1: The Shamela Corpus ... 46

Table ‎5.2: The Execution Times (sec.) of One Node and Multip-Node Parallel Classifier ... 49

Table ‎5.3: The Relative Speedup of the Proposed Parallel Classifier 51

Table ‎5.4: Classification Results for all Text Representations of Small Files 53

Table ‎5.5: Classification Results for all Text Representations of Large Files 54

Table ‎5.6: Execution Times of a Small Number of Large Files and a Large Number of Small

Files .. 56

Table ‎5.7: Classification Results for Light Stemming and TF-IDF 57

Table ‎5.8: The Comparison Between MapReduce Model Parallel Approach and MPI-Based

Parallel Approach ... 58

XII

List of Abbreviations

FN False Negative

FP False Positive

HDFS Hadoop Distribute File System

IR Information Retrieval

K-NN K-Nearest Neighbors

MPI Message Passing Interface

MR MapReduce

NB Naïve Bayes

PNB Parallel Naïve Bayes

TC Text Classification / Text Categorization

TF Term Frequency

TF-IDF Term Frequency - Inverse Document Frequency

TM Text Mining

TN True Negative

TP True Positive

VSM Vector Space Model

1

1 Chapter 1 Introduction

Text classification (TC – also known as text categorization) is the task of

assigning text documents automatically into one or more categories predefined (or

classes, or topics). This task, that falls at the crossroads of information retrieval (IR)

and machine learning (ML), has witnessed increasing interest in the recent years from

researchers and developers alike [1, 2]. Automatic text classification has several

useful applications such as classifying text documents in electronic format [3, 4],

spam filtering, improving search results of search engines [5], web-page content

filtering, and opinion mining [6].

Building a text classification system involves three main phases: compilation of

the training dataset, selection of the set of features to represent the defined classes,

and training the chosen classification algorithm, followed by testing it using the

corpus compiled in the first stage as shown in Figure ‎1.1 [7].

Figure ‎1.1: Building Text Classification System Process

Several methods have been used for text classification [8] such as: Support Vector

Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks, Naïve

Bayes (NB) Probabilistic Classifier, Random Forest, and Decision Trees. NB

classifier is a statistical method for text classification and is widely applied by many

researchers to classify Arabic text documents [9, 10]. It is fast and easy to

implement, but it consumes much time when used in classifying large volume of text

documents. NB classifier assumes that each feature word is independent from other

feature words in a document makes higher efficiency possible but also adversely

affects the quality of its results because some of feature words are interrelated [11].

Chapter 1 Introduction

2

The large amount of text documents with high dimensionality (i.e. the features or

attributes are the words that occur in documents) and in Arabic language which has a

rich nature and complex morphology requires a large amount of computational

power for classification. To be more accurate, we mean by large-scale Arabic text;

the large number of text documents that are represented as records (thousands of

documents) and the large number of words that are represented as features or

attributes in the vector space model after preprocessing the text (thousands of

features) [12]. So, in order to preserve accuracy and decrease execution time, we

need to resort to parallel programming models such as MapReduce to implement and

execute classifications of large volume of Arabic text documents.

MapReduce is a parallel programming model [13] for processing and generating

large data sets. It is used to solve many problems, such as data distribution, job

scheduling, fault tolerance, machine to machine communication. MapReduce allows

developers to write programs that process large-scale of unstructured data in parallel

across a distributed cluster of processors or stand-alone computers. It works by

breaking the processing into two phases: map phase and reduce phase. Each phase

has key-value pairs as input and output, and is specify by two functions: the map

function and reduce function [14].

In this research, we build a MapReduce-based parallel classification approach for

large scale Arabic text based on Naïve Bayes algorithm that reduces time and

preserved accuracy.

 To build our approach, we collect a large volume of Arabic corpus and perform

several preprocessing steps to prepare the corpus for the classification. Then we

design the parallel MapReduce-based classification model. The core of the model is

the Naïve Bayes classification algorithm. We designed and conducted several

experiments to classify the documents in the collected corpus over the built

MapReduce model using the parallelized Naïve Bayes algorithm.

http://searchexchange.techtarget.com/definition/cluster
http://searchcio-midmarket.techtarget.com/definition/processor

Chapter 1 Introduction

3

1.1 Problem Statement

Current sequential text classification approaches applied to large-scale Arabic text

documents generally require a large number of training inputs to accurately classify

large volume of text documents leading to more processing time.

The problem of this research is how to build a MapReduce–based parallel

classification approach for large volume Arabic text that reduces the time and

preserves the accuracy.

1.2 Objectives

1.2.1 Main Objective

To build a MapReduce–based parallel classification approach for large volume of

Arabic text based on Naïve Bayes algorithm that achieves the enhanced level of

speedup and preserves the required accuracy.

1.2.2 Specific Objectives

The specific objectives of this research are:

 Determining and collecting an Arabic corpus of text documents with various

domains .

 Applying the most suitable text preprocessing techniques such as stemming and

term pruning methods and term weighting schemes.

 Designing the suitable MapReduce computing model for parallel classification.

 Implementing the parallel Naïve Bayes algorithm based on the designed

MapReduce computing model.

 Conducting the needed experiments on Naïve Bayes algorithm over MapReduce

using the collected Arabic corpus.

 Evaluating and comparing the speedup and accuracy of the proposed parallel

classifier approach with existing parallel classifier approach using suitable

metrics and measures.



Chapter 1 Introduction

4

1.3 Significance of the Thesis

The rapid increase of online Arabic content in the recent years has raised the need

for more efficient Arabic text classification techniques. This work is a contribution in

this direction.

 The proposed parallel classifier approach is expected to be applied on multiple

domains.

 The approach can be used to efficiently and accurately classify a large volume of

Arabic text documents with high dimensionality (i.e. the features or attributes

are the words that occur in documents)

 It also overcomes the issue of low speed for the sequential Naïve Bayes

algorithm due to the large amount of computational power.

1.4 Scope and Limitations

This research proposes a MapReduce–based parallel Naïve Bayes classifier

approach for large volume Arabic text that achieves an enhanced speedup and

preserved accuracy. The work is conducted with the following limitations and

assumptions:

1. The Arabic corpus will be based on multiple domains.

2. We will apply text preprocessing techniques using RapidMiner and other text

document classification tools.

3. Naïve Bayes algorithm will be used for text classification.

 We will use Apache Hadoop framework to build the cluster where the

MapReduce tools will be realized.

5. We will conduct our experiments on a set of processors and their own exclusive

memory (multicomputer cluster).

6. We will use 1, 2, 4, 8, 12 and 16 processors to measure the effects on the

speedup and the accuracy of proposed approach.

Chapter 1 Introduction

5

1.5 Research Methodology

In our research, we intend to achieve our specific research objectives using the

following methodology shown in Figure 1.2.

 Research and Survey: This includes reviewing the recent literature related to

MapReduce-based parallel classification and Naïve Bayes classification. Based

on the survey, we formulate the general MapReduce and parallel classifier

approach.

 Text Data Collection: We will collect largest freely public Arabic corpus of text

documents with multiple domains having eight classes.

 Text Preprocessing: Some preprocessing in the Arabic text corpus will be

performed. It includes tokenizing strings to words, normalizing the tokenized

words, applying stop words removal, applying the suitable term stemming and

pruning methods as a feature reduction technique, and finally applying the

suitable term weighting scheme to enhance text document representation as

feature vector.

 Design the Parallel Classifier Approach: We build the parallel Naïve Bayes

classifier for large volume Arabic text based on MapReduce model.

 Implement the Naïve Bayes Algorithm Using Mahout Library and Hadoop

Platform as a realization for the MapReduce model: We will implement the

proposed parallel classifier approach using Naïve Bayes algorithm using Mahout

library and Hadoop platform with a multicomputer cluster on the largest freely

public Arabic corpus of text documents. We will conduct several experiments to

classifying Arabic corpus.

 Evaluation: The proposed parallel classifier approach will be evaluated for

speedup and accuracy using different performance metrics and classification

measures such as precision, recall, and F-measure. In addition, it will be

compared with a work implemented in [20] which is a parallel K-NN classifier

based on Massage Passing Interface (MPI).

 Results and Discussion: In this stage we will analyze the obtained results and

justify the effectiveness of the proposed approach.

Chapter 1 Introduction

6

Figure ‎1.2: The Research Methodology

1.6 Research Format

The research report is organized as follows: Chapter 2 discusses the state of the art

and literature survey. Chapter 3 includes the theoretical foundation of the research.

Chapter 4 presents the proposed parallel classification approach. Chapter 5 presents

the experimental results and evaluation. Finally, Chapter 6 presents the conclusions

and future work.

7

2 Chapter 2 Related Works

In this chapter we review related works that address the problem of text

classification and identify their limitations, their strengths and the aspects that may

be important for our approach.

2.1 Improving the Efficiency of Arabic Text Classification.

Al-Thubaity et al. [15] study the effect of combining five feature selection

methods, on Arabic text classification accuracy, two approaches of combination were

used, intersection (AND) and union (OR).

They collected a corpus from the website of The Saudi Press Agency (SPA). The

SPA consists of 6,300 texts comprising six classes of news, namely culture,

economics, general, political, social and sport. The dataset contains more than one

million words and the average text length is 172 words. They apply Naïve Bayes

(NB) classification algorithm on the SPA dataset to study the effect of feature

selection methods combinations on Arabic text classification accuracy. Also, they

used feature representation schemas such as namely Boolean and Term Frequency

Inverse Document Frequency (TF-IDF) as a weighting scheme for feature selection.

Results show that using Chi-squared (CHI) feature selection method and TF-IDF

for feature representation increase the classification accuracy. CHI and Information

Gain (IG) feature selection methods produce comparable accuracy and the highest

accuracy is achieved when one of them is used, except for one case where relevancy

score (RS) achieved the highest accuracy for TF-IDF. In all cases the TF-IDF feature

representation performed better than Boolean. Also combining two feature selection

methods showed insignificant improvement in classification accuracy, because the

complications of using intersection (AND) will cause negative effect on the

classification accuracy as the selected features are not enough to train the classifier,

and using union (OR) approach cause a problem that is known as the curse of

dimensionality. The feature selection methods and weighting schemes can decrease

the computation complexity, reduce the dimensionality, and improve the accuracy

rate of classification. However, this approach could not do well in the case of

reducing computation complexity for text documents with high number of distinct

Chapter 2 Related Works

8

 words. Also, this approach reduces the features but does not do well in the case of

large volume of text documents with high number of features which increase the

computation complexity.

Al-Salemi et at. [16] implement three classifiers based on Bayesian theorem;

Simple Naïve Bayes (NB), Multi-variant Bernoulli Naïve Bayes (MBNB) and

Multinomial Naïve Bayes (MNB) models on Arabic Text. They applied text

reprocessing methods like removing punctuation marks, diacritics and non-Arabic

letters, eliminate the words with length less than three and stop word. They applied

stemming as feature reduction technique, after that they used several feature

selection methods; Mutual Information (MI), Chi-Square statistic (CHI), Odds Ratio

(OR) and GSS-coefficient (GSS). They collected 3172 documents belonging to one

of four categories (Arts, Economic, Politics and Sport). They split the corpus; 1732

documents for training set and 440 documents for test set. Results show that feature

selection and reduction strategies can decrease the computation complexity, reduce

the dimensionality of feature space, and improve the performance of classification.

Maybe, the size of the used corpus is small and this approach could not do well in

the case of reducing computation complexity for large volume of Arabic text

documents with high number of features and in particular in the Arabic language

which has a rich nature and very complex morphology.

2.2 Improving the Efficiency of Sequential Classification Algorithms

with Parallel Computing.

Ding et al. [17] propose a parallel learning algorithm for text classification. It is

based on the combined naïve Bayes text classifier (PC-NB) that relaxes the

independence assumption without efficient reduction. They evaluated the parallel

implementation on a cluster that consists of six computer, where each node has a 1.6

GHz CPU, 256 MB physical memory and connected by the Ethernet, and MPI

library as parallel programming environment. They evaluated the performance on

Reuter's dataset with 9603 training documents and 9933 test documents. The

experiment results show that the proposed classifier is accurate and powerful while

the attributes of an instance are strongly correlated. This approach supports our

Chapter 2 Related Works

9

proposed by using classifier based on Naïve Bayes algorithm, although it is

supposed that there will be an impact on the quality of the results because some of

feature words are interrelated.

Viegas et al. [18] propose a parallel learning algorithm called GPU-NB. It is

based on Naïve Bayes algorithm that uses graphics processing units (GPUs). GPUs

are capable of providing a higher parallelism level than what can be obtained with

CPUs, with a lower energy consumption. They evaluated GPU-based implementation

using Compute Unified Device Architecture (CUDA), the great advantage of this

technique is in the simplicity and compactness of the data structures used to represent

the document. They evaluated the performance of GPU-NB using six real digital

libraries. The collections referred to as Medline, Reuters, ACM, Acl bin,

newsgroups20 and Webkb; which have 861,454 documents, 8,184 documents

24,897 documents, 27,677 documents, 18,805 documents, and 8,277 documents

respectively. The results show that GPU-NB can speedup the classification process

in up 34 x when compared to a sequential CPU-based implementation, also GPU-NB

is up to 11 x faster than a CPU-based parallel implementation of Naïve Bayes

running with 4 threads.

 Moreover, assuming an optimistic behavior of the CPU parallelization, GPU-NB

should outperform the CPU-based implementation with up to 32 cores, at a small

fraction of the cost. They also show that the efficiency of the GPU-NB

parallelization is impacted by features of the document collections, particularly the

number of classes, although the density of the collection (average number of

occurrences of terms per document) has a significant impact as well.

Kruengkrai et al [19] propose a parallel algorithm for text classification task. The

parallel algorithm is based on the Expectation Maximization (EM) algorithm and the

NB classifier. One drawback of the NB classifier is that it requires a large set of the

labeled training documents for learning accurately. The cost of labeling documents is

expensive, while unlabeled documents are commonly available. By applying the EM

algorithm, they can use the unlabeled documents to increase the available labeled

documents in the training process. They parallelized the algorithm by using the idea

Chapter 2 Related Works

10

of data parallel computation. They evaluated the parallel implementation on a large

Linux PC cluster called PIRUN Cluster consists of 72 nodes. They used the 20

Newsgroups data set. It contains approximately 20,000 documents. The experimental

results on the efficiency indicate that the parallel algorithm has good speed up

characteristics when the problem sizes are scaled up.

Abu Tair and Baraka [20] propose a parallel learning algorithm based on the k-

NN algorithm. They evaluated the parallel implementation on a multicomputer

cluster that consists of 14 computers, using C++ programming language and the

MPI library. They use the proposed parallel classifier to enhance the level of

classification speedup, scalability, and accuracy of large-scale Arabic text. They used

OSAC Arabic corpus collected from multiple websites, the corpus includes 22,428

text documents. Each text document belongs to 1 of 10 categories (Economics,

History, Entertainments, Education and Family, Religious and Fatwas, Sports, Heath,

Astronomy, Low, Stories, and Cooking Recipes). The corpus contains about

18,183,511 (18M) words.

They applied suitable term stemming and pruning methods as feature reduction

techniques, and finally apply suitable Term Frequency-Inverse Document Frequency

(TF-IDF) weighting scheme to enhance text document representation as feature

vectors. The experimental results on the performance indicate that the parallel

classifier design has very good speedup characteristics when the problem sizes are

scaled up. Also, classification results show that the proposed classifier has achieved

accuracy, precision, recall, and F-measure with higher than 95%. This work supports

our approach in terms of using cluster, but the volume of text documents used in

corpus is small-scale compare to large volume of text documents with high number

of features. We will compare our approach to this approach in term of classifying

large-scale Arabic text classification.

Chu et al. [21] Propose a parallel learning algorithm. The parallel algorithm based

on Naïve Bayes using MapReduce model on Shared-memory system. They specify

different sets of mappers to calculate them, and then the reducer sums up

intermediate result to get the final result for the parameters. Their experiment was on

Chapter 2 Related Works

11

a 16 way Sun Enterprise 6000 running Solaris 10. They evaluated the average

speedup on ten datasets from the UCI Machine Learning repository with different

size (from 30000 to 2500000), which makes their report more convincing. The

results showed that the speedup was [4 nodes, 4x], [8 nodes, 7.8x], [16 nodes, 13x].

Esmaeili et al. [22] use distance detection in vector space model for classifying

the News articles, to calculated distances between weighted frequency vectors of

each category, and the News vector determine its category by finding minimum

distance with weighted frequency vector of categories. They used MapReduce, as a

distributed programming model, to implement and execute distributed classification

of the news articles, in order to increase performance, calculation accuracy and

decrease execution time. They use Hamshahri News dataset that contain the News

about 12 years (1996-2007). The dataset include 314106 News files that its volume is

about 1.2 GB. The News is categorized in 9 main categories and 26 different sub-

categories. They use 80 percent of the dataset for train phase and the remaining 20

percent for test phase.

 They implemented proposed distributed classifier, using four machines with 16

cores AMID Opteron 800 MHz processor, 32 GB of RAM and 500 GB of storage

volumes. There is LAN network with 100 Mbps that connect the four machines

together. Also for building their cluster, they used 1.0.4 version of the Hadoop and

Linux CentOS6.2 and Redis 2.6 for storing result. The result show that For train and

test dataset with 80-20 ratio, the average values of precision and recall are 29.66%

and 53.88% in 35 (number of main categories plus sub-categories count) categories

and these metrics are 52.67% and 63.75% for 9 main categories, and also, the

processing time with 22 Map function and 100 Reduce function is about 1mins, 51

sec while using those methods with non-distributed manner need some weeks and

months according to the volume of data. This work supports our approach in terms of

using cluster and MapReduce, a distributed programming model which is a viable

and attractive programming model for processing large data sets with a parallel and

distributed algorithm on a cluster.

Chapter 2 Related Works

12

Zhou et al. [23] propose model of parallel classifying algorithm, The parallel

algorithm is based on Naïve Bayes algorithm with Map Reduce. They build a small

cluster with 3 business machines (1 master and 2 slaves) on Linux, and each machine

has two cores with 3.10 GHz, 4GB memory, and 500GB disk. They use the Hadoop

version 0.20.2 and java version 1.6.0_26. They test efficiency and scalability of

parallel Naïve Bayes algorithm proposed on seven datasets from the UCI Machine

Learning repository with different size (from 178 KB to 1 MB).

The Naïve Bayes classifier implemented by the MapReduce trains the training

data sets to generate the classification model, and then use the model to classify the

removed category samples. The proposed model improved algorithm performance

when using with large data set; moreover the parallel algorithms can not only process

large datasets, but also enhance the efficiency of the algorithm.

This work supports our approach in terms of using cluster and MapReduce, a

distributed programming model which is a viable and attractive programming model

for processing large data sets with a parallel and distributed algorithm on a cluster.

2.3 Summary

In this chapter, we presented a review of existing works closely related to our

research and identified the drawbacks of existing approaches; we classified the

methods of improving the efficiency of sequential classification algorithms into two

categories: The first category includes approaches using the a combination of feature

selection strategies that decrease the computation complexity, reduce the

dimensionality, and improve the accuracy rate of classification. The second category

includes approaches using the parallel computing of improving the efficiency of the

sequential NB algorithm; their platform comprises a multiprocessor with shared

memory that connects multiple processors to a single memory system.

 In the next chapter, we present the theoretical foundation underlying our research.

13

3 Chapter 3 Theoretical Foundation

In this chapter, the fundamental concepts which represent the basis for

understanding our research are presented. First, text classifiers are introduced,

followed by providing an overview to Naive Bayes classifier which is used in our

proposed parallel classifier, and K-Nearest neighbor classifier which is used in the

comparison with our proposed approach. Then Large-scale Arabic text, stemming

method, and text representation are explained. Also MapReduce pattern, Apache

Hadoop, Hadoop Distributed File System (HDFS), Massage Passing Interface (MPI),

and Apache Mahout library are presented in detail. Finally we present an overview of

used performance metrics and classification measures.

3.1 Text Classifiers

Many of machine-learning algorithms have been successfully used in text

classification such as Support Vector Machine (SVM), K-Nearest Neighbor (K-NN),

Artificial Neural Networks, Naïve Bayes (NB) probabilistic Classifier, Random

Forest, Distance Detection and Decision Trees. The goal of classification is to build a

set of models that can correctly classify the class of the different objects. The input to

these methods is a set of objects (i.e., training data), the classes which these objects

belong to (i.e., dependent variables), and a set of variables describing different

characteristics of the objects (i.e., independent variables). Once such a predictive

model is built, it can be used to predict the class of the objects for which class

information is not known a priori. The key advantage of supervised learning methods

over unsupervised methods is having an explicit knowledge of the classes [1, 24].

Naïve Bayes (NB) algorithm is used as classifier in our work, and K-Nearest

Neighbors (K-NN) is used as comparison classifier in our proposed approach. In the

next sections, we provide a brief overview of NB and K-NN classifiers.

3.1.1 Naïve Bayes (NB) Classifier

Naïve Bayes classifier is a simple probabilistic classifier which works by applying

the Bayes' theorem along with naïve assumptions about feature independence. It

assumes that the effect of an attribute value on a given class is

Chapter 3 Theoretical Foundation

14

independent of the values of the other attributes. This assumption is called class

conditional independence [1, 24]. It classifies data in two steps [25]:

a. Training Step: Using the training samples, the method estimates the

parameters of a probability distribution, assuming features are conditionally

independent in the given class.

b. Prediction Step: For an unlabeled test sample, the method computes the

posterior probability of that sample belonging to each class. The method

then classifies the test sample according the largest posterior probability.

 Derivation of Naïve Bayes Classifier

Depending on the precise nature of the probability model, Naïve Bayes

classifiers can be trained very efficiently in a supervised learning setting. In many

practical applications, parameter estimation for Naïve Bayes models uses the

method of maximum likelihood [23, 24, 26]. Naïve Bayes classification algorithm

is described as follows [27]:

 Let D be training set of tuples and their associated class labels. Each tuple

is represented by a n-dimensional attribute vector, X= (x1, x2, … xn), n

measurements made on the tuple from n attribute, respectively, A1, A2, …,

An.

 Suppose that there are m classes, c1, c2,…, cm. Given a tuple, X, the

classifier will predict that X belongs to the class having the highest

probability, conditioned on X. That is, the NB classifier predicts that tuple

X belongs to the class If and only if

 (|) (|) (3.1)

Thus we maximize (|). The class for which (|)is the

maximized is called the maximum posteriori hypothesis. By Bayes’

theorem (Equation 3.2).

 (|)
 (|) ()

 ()
 (3.2)

 As () is constant for all classes, only (|) () need be

maximized. If the class prior probabilities are not known, then it is

commonly assumed that the classes are equal.

Chapter 3 Theoretical Foundation

15

 Based on the assumption is that attributes are conditionally independent

(no dependence relation between attributes), (|) is computed using

Equation 3.3.

 (|) ∏ (|)

 (3.3)

The probabilities (|) (|) (|) can be estimated

from the training sample, where:

a. If is categorical, then (|) is the number of tuples in D

having value for divided by| |, (number of tuples of

in D).

b. if is continuous-valued, (|) is usually computed based on

a Gaussian distribution with a mean μ and standard deviation

and, (|) is:

 (|) () (3.4)

 ()

√

()

 (3.5)

Where μ is the mean and is the variance. If an attribute value

doesn’t occur with every class value, the probability will be zero, and

a posteriori probability will also be zero.

 In order to classify an unknown sample X, (|) () is evaluated for

each class . Sample X is then assigned to class if and only if

 (|) (|) (3.6)

 Where

 (|) ∏ (|)

 (3.7)

NB classifier has high computational efficiency as compared to other wrapper

methods because it is inexpensive since it is considered linear time O(n) complexity

classifier. Informally, this means that for large enough input sizes the running time

increases linearly with the size of the input [28]. NB classifier is simple, accurate,

Chapter 3 Theoretical Foundation

16

fast, low variance due to less searching, handles streaming data well, and easy to

implement.

It is based on a simplistic assumption in real world and is only valid to multiply

probabilities when the events are independent. Despite this, NB often works much

better in many complex real-word situations than one might expect [29]. It exhibits

high accuracy and speed when applied to huge amounts of data [23]. Thus chosen to

be the proposed classifier in our approach.

3.1.2 K-Nearest Neighbors (K-NN) Classifier

The K-NN algorithm [24] is one of the supervised learning algorithm, the purpose

of this algorithm is to classify a new object based on attributes and training samples.

It is based on learning by analogy, that is, by comparing a given test tuple with

training tuples that are similar to it. The training tuples are described by n attributes.

Each tuple represents a point in an n-dimensional space. In this way, all training

tuples are stored in an n-dimensional pattern space. When given an unknown tuple, a

K-NN classifier searches the pattern space for the k training tuples that are closest to

the unknown tuple. These k training tuples are the k nearest neighbors of the

unknown tuple. Closeness is defined in terms of a distance metric, such as Euclidean

distance.

The Euclidean distance between two points or tuples, X1=(x11,x12,…,x1n) and

X2=(x21,x22,…,x2n) , is

 () √∑ ()

 (3.9)

K-NN algorithm as described in [24, 27] can be summarized as :

 Determine the parameter k i.e., the number of nearest neighbors

beforehand.

 Calculate the distance between the query-instance and all the training

samples using Euclidean distance as in equation (3.9).

 Distances for all the training samples are sorted and nearest neighbor

based on the k-th minimum distance is determined.

 Since the K-NN is supervised learning, get all the categories of your

training data for the sorted value which fall under k.

 The predicted value is measured using the majority of nearest neighbors.

Chapter 3 Theoretical Foundation

17

K-NN works well even when there are some missing data. K-NN is good at

specifying which predictions have low confidence and has some strong consistent

results. K-NN algorithm has several disadvantages such as: the complexity of

computation time needed to traverse all the training documents [30], and the

difficulty to determine the value of k [31], where a series of experiments with

different k values should be conducted to determine the best value of k.

K-NN algorithm based classifier approach [20] (see Section 2.2) is used in our

research as basis for comparison with our proposed approach.

3.2 Large Scale Arabic Text Classification

 Most of text classification algorithms have problems with computational

complexity of training phase with large scale text documents. The huge amount of

text documents with high dimensionality (i.e. the features or attributes and in our

case they are the words that occur in documents) and in particular in Arabic language

which is a rich and has complex morphology requires a large amount of

computations for classification. Large-scale Arabic text means the large number of

text documents that are represented as records (thousands of documents) and the

large number of words that are represented as features or attributes in the vector

space model after preprocessing the text (thousands of features). In order to

overcome the complexities of large scale Arabic text classification, researchers

developed some techniques such as: feature selection, feature extraction and used

distributed computing as platform for computations.

 Feature selection is a basic approach for reducing feature vector size. Different

feature selection methods are used in Arabic text classification such as: Term

Frequency, Document Frequency, and Information Gain [32, 33, 34].

 Feature extraction is a basic approach for high dimensional feature space to be

transformed into low dimensional feature space. For Arabic text classification,

words are treated as a feature using their orthographic form, stems which the

suffix and prefix were removed from the orthographic form of the word, and the

word root, which is the primary lexical unit of a word [35, 36].

 Distributed computing is a basic computing model using different parallelization

techniques such as: Massage Passing Interface (MPI), and MapReduce. In [20],

Chapter 3 Theoretical Foundation

18

they proposed a K-NN parallel learning algorithm to classify large-scale Arabic

text using MPI Model. In our research we will present new approach to classify

large scale Arabic text documents using NB algorithm with MapReduce model.

MapReduce model is introduce in Section 3.5.

3.3 Stemming Methods

 A stem is a natural group of words with equal (or very similar) meaning.

Stemming algorithm is a computational process that gathers all words that share the

same stem and has some semantic relation [37]. The main objective of the stemming

process is to remove all possible affixes and thus reduce the word to its stem. After

the stemming process, every word is represented by its stem [38]. Stemming is

needed in many applications such as natural language processing, compression of

data, and information retrieval systems. Many stemmers have been developed for

English and other European languages. These stemmers mostly deal with the

removal of suffixes as this is sufficient for most information retrieval purposes. Most

Arabic language stemming approaches fall into three classes [39, 37]:

 Root-Based stemmers use morphological analysis to extract the root of a given

Arabic word.

 Statistical stemmers attempt to group words variances using clustering

techniques.

 Light Stemming reduces Arabic words to their light stems by removing

frequently used prefixes and suffixes in Arabic words. Light stemming is

chosen because it allows remarkably good information retrieval without

providing correct morphological analyses [40].

3.4 Text Representation

Text documents should be represented in some way that enables the classifier to

interpret them an indexing method is needed to transform text documents represented

by strings of characters to another interpretable representation of the contents of the

documents. The most popular approach for data representation is the vector space

model.

Chapter 3 Theoretical Foundation

19

3.4.1 Vector Space Model

The Vector Space Model (VSM) represents documents as vectors in the space,

each vector can be represented by the weights of terms in a document with respect to

the dimension of the space. The number of dimensions equals the number of terms or

keywords used, we can represent this as a two way matrix where the columns

represent terms and rows represent documents in the set, the entries of the matrix are

the weights of term i in document j. In the basic two dimensions Cartesian plane, a

vector is represented by two points, each consists of the ordered pair x and y. To

represent a vector of N terms we need N dimensions [41].

Given a collection of documents, its feature vectors are represented by a word-by-

document matrix, where each entry represents the weight of a word in a document.

The aim of term weighting schemes is to enhance text document representation as

feature vector. There are several popular term weighting schemes such as:

 Binary Term Occurrences (BTO): which indicates absence or presence of a

word with booleans 0 or 1 respectively.

 Term Occurrences (TO): the number of occurrences of term ti in the

document dj.

 Term Frequency-Inverse Document Frequency (TF-IDF): is a numerical

statistic that is used to evaluate how important a word is to a document in a

collection or corpus. It is often used as a weight factor in information retrieval

and text mining. The TF-IDF value increases proportionally to the number of

times a word appears in a document. TF-IDF undervalues terms that frequently

appears in documents belonging to the same class and gives greater weight to

terms that represent the characteristic of the documents in its class [36, 41].

 The calculation of TF-IDF is defined as follows [42]:

a. The term count in the given document is simply the number of times a

given term appears in that document. For the term ti with the particular

document dj , its term frequency (TF) is define as follows:

∑
 (3.8)

Chapter 3 Theoretical Foundation

20

Where is the number that the term ti occurred in document dj, and

the denominator is the sum of occurrences of all terms in document dj.

b. The inverse document frequency (IDF) can be calculated from document

frequency as follows:

| |

|* +|
 (3.9)

Where |D| is the total number of documents in the corpus, and *

 + is the number of documents, where the term ti appears. The IDF of a

term is low if it occurs in many documents and high if the term occurs in

only few documents.

c. The TF-IDF weight is the product of TF and IDF. The formula is defined

as follows:

() (3.10)

3.5 MapReduce Overview

MapReduce (MR) is a parallel programming model introduced by Google in

2004, and is used in processing and generating large data sets implementation [43]. It

is useful for tasks such as data mining, log file analysis, financial analysis and

scientific simulations, filtering documents by tags, counting words in documents, and

extracting links to related data [44, 45]. The advantages of MapReduce is simple and

easy to use, flexible does not have any dependency on data model and schema,

basically independent from underlying storage layer, high scalability, and highly

fault-tolerant because each node in the cluster is expected to report back periodically

with completed work and status updates [46].

3.5.1 MapReduce Architecture

The basic idea of MapReduce comes from divide and conquer algorithms which

are used to partition a large problem into smaller subproblems [47]. Key-value pairs

form the basic data structure in MapReduce. MR algorithm involves imposing key-

value structure on arbitrary datasets. The programmer defines a mapper and a reducer

with the following signature:

 () ,()-

 (, -) ,()-

http://searchsqlserver.techtarget.com/definition/data-mining

Chapter 3 Theoretical Foundation

21

The mapper is applied to every input key-value pair (split across an arbitrary

number of files) to generate an arbitrary number of intermediate key-value pairs. The

reducer is applied to all values associated with the same intermediate key to generate

output key-value pairs. Implicit between the map and reduce phase is a distribute

"group by" operation on intermediate (shuffle phase). Intermediate data arrive at each

reducer in order, sorted by the key. Output key-value pair from each reducer is

written in r files on the distributed file system, where r is the number of reducer [48].

Figure 3.1 shows the overall flow of a MapReduce operation. When the user

program calls the MapReduce function, the following sequence of actions occur:

1. MapReduce in user program will divide the input files into N pieces with size

varies from 16 MB to 64 MB.

2. Then it will start many programs on a cluster of different machines. One is

master program and the rest are workers, master can assign M map tasks and

reduce tasks to an idle workers.

3. If a worker is assigned a map task, it will parse the input data partition and

output key/value pairs, then pass the pair to a user defined Map function. The

intermediate key/value pairs are buffered in memory.

Figure ‎3.1: MapReduce Operation [13]

Chapter 3 Theoretical Foundation

22

4. Periodically, the buffered pairs are written to local disk. After that, the local

machine will inform the master of the location of these pairs.

5. If a worker is assigned a reduce task, it will read entire buffer by using remote

procedure calls. After that, it will sort the temporary data based on the key.

6. Then the reduce worker will deal with all of intermediate data. For each key

and according to set of values, the reducer passes key/value pairs to a user

define reduce function. The output is the final output of this partition.

7. After all of the mappers and reducers have finished their work, the master will

return the result to user programs. The output is stored in F individual files.

A simple example in [49] that is often used to explain how MapReduce works in

practice. It consists in counting the occurrence of single words with in a text. An

overview of how MapReduce works is shown in Figure 3.2.

1. Input data (on a distributed file system).

2. Input data are partitioned into smaller chunks of data.

Figure ‎3.2: MapReduce Programming Model Example [50]

Chapter 3 Theoretical Foundation

23

3. For each chunk of input data, a "map task" runs which applies the map

function resulting output of each map task is a collection of key-value pairs.

4. The output of all map tasks is shuffled for each distinct key in the map output;

a collection is created containing all corresponding values from the map

output.

5. For each key-collection resulting from the shuffle phase, a “reduce task” runs

which applies the reduce function to the collection of values. The resulting

output is a single key-value pair.

6. The collection of all key-value pairs resulting from the reduce step is the

output of the MapReduce job.

3.6 Hadoop

Hadoop [50] is an open source framework for writing and running distributed

processing of large-scale data sets on high performance cluster. Distributed

computing is wide and varied field, but the key distinctions of Hadoop are:

 Accessible: Hadoop runs on large clusters of commodity machines or on

cloud computing services.

 Robust: Because it is intended to run on commodity hardware, Hadoop is

architected with the assumption of frequent hardware malfunctions. It can

gracefully handle most such failures.

 Scalable Hadoop scales linearly to handle larger data by adding more nodes to

the cluster.

 Simple: Hadoop allows users to quickly write efficient parallel code.

Hadoop accessibility and simplicity give it an edge over writing and running large

distributed programs. On the other hand robustness and scalability make it suitable

for even the most demanding jobs. Figure ‎3.3 shows a Hadoop cluster with its

distributed computing nodes connected through on Ethernet switch.

Chapter 3 Theoretical Foundation

24

Figure ‎3.3: The Architecture of the Hadoop Cluster [51]

 The cluster runs jobs controlled by the master node, which is known as the

NameNode and it is responsible for chunking the data, cloning it, sending the data to

the distributed computing nodes (DataNode), monitoring the cluster status, and

collecting/aggregating the results. Hadoop focuses on moving code to data instead of

vice versa. Hadoop is composed into two main subsystems: Hadoop Distributed File

System (HDFS) is used for storing the data and MapReduce (MR) used to

manipulate the data which is stored on the file system [14].

In the next section we describe HDFS components while MapReduce is explained

in Section 3.5. It offers reliable and scalable distributed computing [51]. It is applied

in several areas such as text mining, website rating, opinion mining, users'

recommendation in some social media, weather forecasting, data analysis, and many

problems that require large scale processing [52].

3.6.1 Small Number of Large Files vs Large Number of Small Files in Hadoop

Hadoop [14] is designed to process very large files; "very large" in this context

means files that are hundreds of megabytes, gigabytes, or terabytes in size. It works

better with a small number of large files than a large number of small files. One

reason for this is that HDFS generates splits in such a way that each split is all or part

of a single file. If the file is very small ("small" means significantly smaller than an

Chapter 3 Theoretical Foundation

25

HDFS block) and there are a lot of them, then each map task will process very little

input, and there will be a lot of them (one per file), each of which imposes extra

bookkeeping overhead. Compare a 1 GB file broken into sixteen 64 MB blocks, and

10,000 or so 100 KB files. The 10,000 files use one map each, and the job time can

be tens or hundreds of times slower than the equivalent one with a single input file

and 16 map tasks.

Hadoop becomes a bottleneck when handling massive small files because the

name node use more memory to store the metadata of files and the data nodes

consume more CPU times to process massive small files. In [54] it is shown that

merge massive small files into single large file improve the performance of

processing of small files.

3.6.2 Hadoop Distributed File System

Hadoop distributed file system (HDFS) [14, 54, 55] is a distributed file system

designed for storing and supporting very large files with streaming data access

pattern (write-once and read-many times) running on a cluster of low-cost hardware.

HDFS is built around the idea that the most efficient data processing pattern is a

write-once, read-many-times pattern. It uses replication of data stored on DataNode

to provide reliability. Files in HDFS are divided into block size chunks (default size

is 64MB), which lead to minimizing the time necessary for seeks, further blocks

allow for an easy mechanism to provide fault tolerance and availability [56]. It

provides fast, scalable access to the information which is stored in Hadoop [25]. The

system architecture of HDFS as shown in Figure ‎3.4 has two types of nodes; a

NameNode as master and a number of DataNode as workers [55].

 NameNode

The master NameNode manages the file system namespace. It keeps the file

system tree and metadata for files and directories in the tree, and determines the

mapping of data blocks containing the file in data nodes. While storing/writing

data to HDFS, NameNode chooses a group of nodes (by default three) to store the

block replicas.

Chapter 3 Theoretical Foundation

26

Figure ‎3.4: Hadoop Distributed File System Architecture [56]

 DataNode

The workers DataNodes are responsible for storing the blocks of files as

determined by the NameNode. Also it is responsible for creating, deleting and

replicating blocks of files after being instructed by the NameNode.

3.7 Massage Passing Interface (MPI)

MPI [57] is a widely-used message passing standard. Its basic functions are

defined by the MPI standard and with implementations targeting distributed memory

architectures. One of the key objectives of the MPI standard is to provide portability

between different parallel machines. MPI defines its own data types which are used

for data transfers and mapped to specific machine-specific data types by the MPI

library implementation.

Unlike MapReduce, data in MPI architectures is shared arbitrarily between nodes

for synchronization and this is not reliable because the overhead due to the network

traffic could dramatically affect performance [58]. Other differences between the two

paradigms are stated in Table ‎3.1.

Chapter 3 Theoretical Foundation

27

Table ‎3.1: MPI and MapReduce Comparison [57]

Items MPI MapReduce

What they are
General parallel programming

paradigm

A programming paradigm and

its associated execution

system

Programming

model

Massage passing between

nodes

Restricted to MapReduce

operation

Data

organization
No assumptions Files can be shared

Execution

model
Node are independent Map/Shuffle/Reduce

Usability Difficult to debug
Simple concept, could be hard

to optimize

Key selling

point

Flexible to accommodate

various applications

Flow through large amount of

data with commodity

hardware

3.8 Apache Mahout Library

Mahout [59] is a scalable machine learning library running on Apache Hadoop. It

provides various machine learning techniques such as recommender engines

(collaborative filtering), clustering, and classification. The core of clustering,

classification, collaborative filtering algorithms realization is based on Map Reduce

paradigm. Its machine learning algorithms are written in java and some portion are

built upon Apache Hadoop distributed computation. It is designed to be highly

scalable and with the increase of the number of records required to train a model, the

time and memory required for training a Mahout algorithm may not increasing

linearly, making scalable algorithms in Mahout widely useful [60].

It aims to be the machine learning tool of choice when the collection of data to be

processed is very large. All implemented algorithms run in a single machine and

some of them are implemented in distributed mode using MapReduce paradigm. It

includes a number of classification algorithms such as: Naïve Bayes, Neural

Networks, Support Vector Machines, Logistic regression, K-Means, and Canopy

Clustering. We choose Mahout’s Naïve Bayes algorithm as the classifier in our

Chapter 3 Theoretical Foundation

28

research because it is a general framework for MapReduce machine learning

algorithms and it can be deployed on top of Apache Hadoop leveraging the full

scalability it provides.

3.9 Performance Metrics and Classification Measures

The performance metrics is a measure of a systems performance. There are

several performance metrics such as: speedup, efficiency and scalability, and many

classification measures like: accuracy, precision, recall, and F-measure using to

evaluate the parallel classifier [61]. They will be used in later to evaluate the

effectiveness of our proposed parallel classifier.

3.9.1 Confusion Matrix

The confusion matrix [24] is one of popular tools to evaluate the performance of a

model in tasks of classification or prediction. The confusion matrix is represented by

a matrix with each row representing the instances in a predicted class, while each

column representing in an actual class as shown in Table ‎3.2.

Table ‎3.2: Simple Confusion Matrix

 True Positive (TP): refers to the number of positive instances that are

correctly labeled by the classifier.

 True Negative (TN): refers to number of negative instances that are correctly

labeled by the classifier.

 False Positive (FP): refers to the number of positive instances that are

incorrectly labeled by the classifier.

 False Negative (FN): refers to number of negative instances that are

incorrectly labeled by the classifier.


Chapter 3 Theoretical Foundation

29

3.9.2 Accuracy

 refer the percentage of test set instances that are correctly classified by the

classifier.

()

()
 ()

3.9.3 Precision

 refer to the percentage of predicted documents for the given topic that are

correctly classified.

()
 ()

3.9.4 Recall

 refers to the percentage of the total documents for the given topic that are

correctly classified.

()
 ()

3.9.5 F-measure

 it is a standard statistical measure that is used to measure the performance of a

classifier system. The F-measure is an average parameter based on precision and

recall.

 

 ()

3.9.6 Speedup

A standard metric to measure the efficiency of a parallel algorithm is the speed up

factor [62]. It is defined as the ratio of the time required to solve a specific problem

on a single processor to the time required to solve the same problem on a parallel

computers with N identical processing elements [63].

It is defined as: Sn = ts / tp , where ts is the execution time using only one

processor and tp is execution time using n processor. The maximum speed that can

be reached is linear speedup.

Chapter 3 Theoretical Foundation

30

3.10 Summary

In this chapter, we presented an overview of the basic theoretical foundation

related to our research. We present text classifiers, Naïve Bayes classifier, K-Nearest

Neighbor classifier, text representation, large scale Arabic text classification,

MapReduce, Hadoop platform, Hadoop distributed File System, Massage Passing

Interface, and Apache Mahout library. Finally we described performance metrics and

classification measures that are used to evaluate the effectiveness of a parallel

classifier.

In the next chapter, we provide a detailed description of the proposed parallel

classifier approach.

31

4 Chapter 4 The Proposed Parallel Classifier Approach

In this chapter we present the proposed parallel classifier approach. We describe

all steps of the proposed parallel classifier using algorithms and diagrams. We use

MapReduce model to solve the problem of processing a large scale Arabic text. First,

we present the steps of collecting Arabic text documents and applying text

preprocessing. Second, we describe the steps of splitting and distributing the

documents of the collected corpus as MapReduce tasks. Third, we present the steps

of calculating the term frequency (TF) and term frequency-inverse document

frequency (TF-IDF) using MapReduce model. Finally, we present the Naïve Bayes

text classification using MapReduce model.

4.1 The Overall Classification Approach

Figure ‎4.1 shows the workflow of the parallel classification process. It is roughly

divided into four kinds of activities:

1. Corpus collection and cleaning activities. The corpus is collected and

divided into text documents, then text preprocessing is applied to remove non-

Arabic text, perform tokenization, remove Arabic stop word and perform light

stemming.

2. HDFS document uploading, splitting and configuration activities. An

important step in developing a parallel algorithm is to split the problem into

tasks that can be executed in parallel by identifying the data on which

computations to be performed, and then partitioning this data across various

tasks. A task performs the computations with its part of data. In our classifier,

the input training data set (corpus) are transferred into a sequence of files then

uploaded to HDFS in the MapReduce setting. HDFS splits corpus into 16 MB

to 64 MB chunks each presented as a map task and then distribute them

among workers with replication 3 times by default. Also, it assigns the

parameter configuration such as: the documents number, the classes number

and the documents number in each class of corpus.

Chapter 4 The Proposed Parallel Classifier Approach

32

3. Term-specific MapReduce-based calculations activities. Each MapReduce

worker node receives its assigned data and calculates parameters such as:

word frequency and word counts, then calculates the term frequency- inverse

document frequency (TF-IDF) value to generate the vector space model.

4. Naïve Bayes MapReduce computation activities. The result of the last step

is divided into training set and testing set. The master node assigns workers to

calculate probabilities of each class of training set using Naïve Bayes

MapReduce classification. Finally, the master node assigns another

MapReduce workers nodes to calculate conditional probabilities of each

feature value in the testing to predicting the class for each new document.

Figure ‎4.1: Workflow of the Proposed Approach

Next we present the details of these classification activities comprising the

proposed approach.

Chapter 4 The Proposed Parallel Classifier Approach

33

4.2 Corpus Collection

One of the difficulties that encountered this work in the field of Arabic language

processing is unavailable suitable large volume Arabic corpus for evaluating text

categorization algorithms.

 Different training data sets are available for text classification in English while

few free Arabic training data sets are available to researcher. The most existing

popular Arabic text corpus used in text mining field cannot meet our experiments

data size for real large-scale Arabic text corpus. Therefore, we choose to collect real

large-scale Arabic text corpus from Shamela library [64] which contains a huge

collection of data in different Arabic fields.

To build a text dataset which involves compiling and labeling text documents into

corpus, we collect the documents from Shamela library using tools available in

Shamela program. The process includes converting document files into text format

with UTF-8 Encoding using Zilla a word to text converter by software informer as

shown in Figure 4.2.

Figure ‎4.2: Corpus Building Steps

The collected Shamela corpus is categorized into eight main topics; Creed, Fiqh,

Al-Hadith, History, Sirah, Tafsir, Trajem and Usual. This collection includes

101,647 text documents that constitute 5,310 MB in size.

4.3 The Parallel Classification as a MapReduce Model

The process of building the parallel Naïve Bayes classifier constitutes the core of

our approach. It includes three main phases: text preprocessing phase, training phase,

and testing phase. These phases are shown in Figure 4.3.

Chapter 4 The Proposed Parallel Classifier Approach

34

Figure ‎4.3: The Proposed Parallel Classifier Approach

As a MapReduce processing model, in the first phase two steps are conducted: (i)

the dataset D is divided into m subsets {D1, D2,…, Dm}. (ii) the text preprocessing is

performed using two MapReduce computations. One MapReduce for calculating the

parameters required in the next MapReduce. The outputs of this step are <(term,

docname), n)> pair, where n is the word count in document and <(term, docname),

(n, N)> pair, where N is the frequency of word in documents which is the input of the

next MapReduce. The second MapReduce computes Term Frequency- Inverse

Document Frequency (TF-IDF) for each term and extracts terms to generate Vector

Space Model (VSM), the output of this step is <docname, (term, tf*idf)> pair, where

tf*idf is the weighting term value.

The second phase (as shown in Figure 4.3) has one MapReduce computation for

training Naïve Bayes classifier to build the classifier model, the input of this process

is the training set <(class, docname), (term, tf*idf)> pair resulted from the first phase

and the output is <(classn, docnamen), (term: freqeuncy)> pair as classifier model.

The third phase has one MapReduce computation for testing Naïve Bayes

classifier, the input of this process is testing set and the classifier model resulting

from second phase and the output is the classifying classes.

Chapter 4 The Proposed Parallel Classifier Approach

35

Next we present in details these three phases and their relationships based on the

proposed approach as shown in Figure ‎4.3.

4.3.1 Text preprocessing phase

Text preprocessing is performed through two main steps: the first step includes

removing non Arabic text, tokenizing string to words, stop words removal, and term

stemming. We have written a specialized Java program to implement these steps in

sequential manner because they are performed only once at the beginning of

computation. The second step includes: pruning methods and terms weight

processing using Mahout library in a distributed manner. Next we elaborate in these

steps.

Applying text classification techniques requires usually a preprocessing stage that

would remove punctuation marks, function words and might return the remaining

words to their stems or roots. Figure 4.4 shows these detailed steps, they include

removing non-Arabic text, tokenizing string to words, stop words removal, term

stemming and pruning methods as a feature reduction techniques, and finally

applying the suitable term weighting scheme to enhance text document

representation as feature vector. These steps are details as follows:

Figure ‎4.4: Text Processing Details

 All the non-Arabic texts such as the digits and punctuation marks, diacritics,

numbers, non-Arabic letters, and removing kashida except in the term Allah

were removed.

 Tokenization consists of separating strings by word boundaries, the Arabic

Tokenization uses White Space Tokenization because the space is the only

way to separate words in Arabic language, i.e. dash and hyphen are not used

to separate words in Arabic.

 Arabic Stop word removal deletes tokens that are frequent, but generally not

content-bearing.

Chapter 4 The Proposed Parallel Classifier Approach

36

 Term stemming (Section 3.3) is performed through light stemming because it

allows remarkably good information retrieval without providing correct

morphological analysis

 Term weighting (Section 3.4.2) is reflect the relative importance of each term

in a document. It performed by using TF and TF-IDF terms as feature vectors

to generate text representations.

4.3.1.1 Terms Weight Processing

We divide the collected corpus into several directories of text documents

(classes). The master node converts them into a sequence files format. A sequence

file is a Hadoop class which allows writing a document data in terms binary < key,

value> pairs. Each sequence file is represented as a record in the corpus. Then master

node uploads the files to Hadoop Distributed File System (HDFS) and in turn, they

are distributed to worker nodes.

In order to better distinguish the documents from different categories, weight is

assigned to every term (feature) for each document to formulate the terms weighting.

We design two parallel MapReduce algorithms, one for calculating the parameter of

terms and the other for calculating TF and TF-IDF of each term.

More details about calculating TF and TF-IDF are found in Section 3.4.2.

4.3.1.2 Parameters Computing

The first MapReduce computation involves two jobs; job 1 for calculating word

frequency and job 2 for calculating word counts. We define term t as a word and

docname as document name.

a. Word Frequency Calculation

Word frequency is the number of times the word appears globally in all

documents. The data flow of the frequency count as a MapReduce is shown in Figure

4.5 and described in Algorithms 4.1 and 4.2.

The input to mapper function Algorithms 4.1 is docname as the key and contents

as the value. The output is (term, docname) as the key and 1 as the value.

Chapter 4 The Proposed Parallel Classifier Approach

37

The output is written to an intermediate files which will be processed by the

reducer function. Then we calculate the number of occurrences of word in document

directly in the reduce function Algorithms 4.2.

Figure ‎4.5: Data Flow of Word Frequency of MapReduce Job1

The output of reducer function is (term, docname) as the key and n as the value

where n is the number of occurrences of the term (word) in docname.

 Algorithm ‎4.1: Word Frequency Mapper-Job 1

input:

 key: docname; /* one text document for each map

 value: content; /* all tokens 'word' of text document

output:

 key': (term, docname) /* a text for each term;

 value': an integer one.

Begin

 separate all the <term, docname > pairs from the input value;

 for each <term, docname > pair;

set key' as (term, docname);

set value' as 1;

output(key', value'); /* each map data write in intermediate files

 end for. /* data exchange between nodes in shuffle process

End.

Chapter 4 The Proposed Parallel Classifier Approach

38

 Algorithm ‎4.2: Word Frequency Reducer-Job 1

input:

 key: (term, docname); /* intermediate data which is sort in same key

 value: 1 ; /* a vector of integer one with the length that the term occurs.

output:

 key' : (term, docname); /* the same with key

 value': n; /* sum of integer one of each term occurs in document

Begin

 initialize sum as zero;

 for each integer v in value;

 sum + = v ;

 end for;

 n =sum;

 set key' as (term, docname);

 set value' as n; /* number of occurrences of the term in document

 output (key', value') ; /* write the result in intermediate files

End.

b. Word Counts calculation

Word counts are the total number of term (word) of each document. The data flow

of the frequency count of MapReduce is shown Figure ‎4.6 and described in

Algorithm ‎4.3 and 4.4.

Figure ‎4.6: Data Flow of Word Counts MapReduce Job 2

The input to this mapper function Algorithm 4.3 is (term, docname) as the

key and n as the value. The output is docname as the key and (term, n) as the

value. The output is written to an intermediate files which is processed by

reducer function. The reducer function Algorithm ‎4.4 computes the total

Chapter 4 The Proposed Parallel Classifier Approach

39

number of frequencies of words in a document. The output of the reducer

function is (term, docname) as the key and (n, N) as the value where n is the

number of occurrences of the term (word) in docname and N is the total

number of term (word) of each document.

Algorithm ‎4.3: Word Counts Mapper-Job 2

input: /* the output of term frequency – reducer task

 key: (term, docname);

 value: n;

output:

 key' :(term, docname);

 value': (n,1); /* number of term 'word' of each document

Begin

 for each <(term, docname)> pair;

 set key' as (term, docname);

 set value' as (n,1);

 output (key', value') ; /* each map data write in intermediate files

 end for. /* data exchange between nodes in shuffle process

End.

Algorithm ‎4.4: Word Counts Reducer-Job 2

input:

 key: (term, docname); /* intermediate data which is sort in same key

 value: (n,1);

output:

 key': the same with key ;

 value': sum of one (n,1) in value;

Begin

 initialize sum as zero;

 for each integer v in value;

 sum += v ;

 end for;

 N= sum;

 set key 'as (term, docname);

 set value' as (n, N); /* the total number of word in each document

 output (key', value'); /* write the result in intermediate files

End.

Chapter 4 The Proposed Parallel Classifier Approach

40

4.3.1.3 Term Frequency Inverse Documents Frequency (TF-IDF) Computing:

 The second MapReduce computation involves calculating the TF-IDF of each

term. The data flow of TF-IDF MapReduce is shown in Figure ‎4.7 and described in.

Algorithm 4.5 The input to this map function Algorithm 4.5 is the output of the first

MapReduce (term, docname) as the key and (n, N) as the value. Then we calculate

TF which is defined as (n/N) and IDF which is defined as (log D/m), where D is the

total number of all documents and m is the sum of counts for words in the corpus. At

last, we calculate the TF-IDF according the formula TF-IDF= n/N * log (D/m).

Figure ‎4.7: Data Flow of TF-IDF MapReduce

The output of the mapper function is the weight vector wt,d. There is no reducer

function in this MapReduce job. Map output is directly written out.

 Algorithm ‎4.5: TF-IDF Mapper

Input: /* the output of word counts reducer tasks

 Key: (term, docname);

 value: (n, N);

 D; /* the number of documents

 m; /* the number of word frequency in the corpus

Output:

 Key': docname;

 Value': (term, tf * idf);

Begin

 for each (term, docname) value

 tf =n/N; /* term frequency

idf=log(D/m) /* inverse document frequency

set key' as docname;

set value' as(term, tf*idf); /* the weight vector wt,d.
 Output(key', value'); /* write the result to intermediate files

 end for.

End.

Chapter 4 The Proposed Parallel Classifier Approach

41

4.3.2 Training Phase

This phase has one MapReduce computation for the intensive run of the parallel

Naïve Bayes classifier, which calculates the conditional probabilities. The data flow

of the training MapReduce computation is shown in Figure ‎4.8 and described in

Algorithm ‎4.6 and 4.7.

Figure ‎4.8: Data Flow of Naïve Bayes Training MapReduce

The input to the map function is the output file of the TF-IDF MapReduce

computation using (term, docname) as the key and tf-idf as the value. In the training

phase, the mapper function Algorithm ‎4.6 parsers the class and the value of each term

(attribute). The output of the mapper function is a combination of (class, docname,

term, tf*idf) as the key and 1 as the value. This output is written to intermediate files

which is processed by the reducer function.

Algorithm ‎4.6: Training Naïve Bayes-Mapper

input: /* training dataset

 key: (class, docname);

 value: (term, tf*idf);

output :

 key': (class, docname, term, tf*idf);

 value': the frequency /* the frequency of term value

Begin

 for each sample

parse the class and the value of each term

key': class;

value': 1;

output:<key’, value’> pair; /* count the frequency of each term in category

for each (term, tf*idf) value do

Chapter 4 The Proposed Parallel Classifier Approach

42

contract a string as (class, docname , term, tf*idf);

set key' as sting;

set value' as 1;

output:<key’, value’> pair; /* write the result to an intermediate files

 end for.

 end for.

End.

The reduce function Algorithm ‎4.7 counts the frequency of each key. The

parameter of the Naïve Bayes classifier is calculated, including P(cj) and P(Ai|cj),

where cj denotes the j-th category, Ai the i-th attribute (term). The reducer function

aggregates the number of term and category values, and results in form of ((class,

docname, term: count1), (class, docname, term: count2), … (class, docname, termn:

countn). This output constitutes the training model.

Algorithm ‎4.7: Training Naïve Bayes-Reducer

input : /* output by map function, respectively

 key: (class, docname, term, tf*idf);

 value: the frequency;

output:

 key': (class, docname, term, and tf*idf);

 value': is the result of frequency;

Begin

 initialize a counter sum as 0 to record the current statistical frequency of the key;

 while(value .hasnext ())

sum+= value. next().get();

set key as (class, docname, term, tf*idf);

set value' as sum; /* no of document having the term value

output:<key', value'> pair; /* write the result to an intermediate files

 end while.

End.

4.3.3 Testing Phase

This phase has one MapReduce computation for testing the parallel Naïve Bayes

classifier. The data flow of the testing MapReduce is shown in Figure ‎4.9 and

described in Algorithm 4.8 and 4.9

The mapper function Algorithm 4.8 indexes the key in the results produced by

training phase and reads the corresponding probabilities. Then it calculates the

probability of the test set belonging to each class. So the label can be predicted

Chapter 4 The Proposed Parallel Classifier Approach

43

according to the maximum posterior. The output of the mapper function are (label,

correct) as the key and 1 as the value and (label, wrong) as the key and 1 as the

value. This output is written to intermediate files which is processed by the reducer

function.

Figure ‎4.9: Data Flow of Naïve Bayes Testing MapReduce

Algorithm ‎4.8: Testing Naïve Bayes-Mapper

input: the testing dataset and the output of naïve Bayes training MapReduce is

 " training model"

output:

 key': label /* label is class has set of documents with terms

 value': the frequency

Begin

 parse the label and the value of each term; ;

 initialize an array prob[] , the length is set as the size of the testing set;

 for each label in the testing set

initialize prob[i] as 1.0; /* i is the index of the class in the testing set ;

for each term do

 initialize a string as label with term name and its value ;

 index the string in the keys of the reduce result, record the corresponding value;

 prob[i]*=value ;

end for

 end for

 index the class with the maximum value of prob;

 if the label is the same to that docname take "correct" as key' and 1 as value';

 output :<value', value' > pair;

 else take "wrong" as key' and 1 as value';

 output :<key’, value’> pair;

End.

Chapter 4 The Proposed Parallel Classifier Approach

44

The reduce function Algorithm 4.7 states the number of the correct or wrong

predicted set. Therefore, the correct rate and error rate can be further calculated. The

reducer function aggregates the number of correct label and wrong label of predict

set, and results in form of ((label, (correct, frequency)), and ((label, (wrong,

frequency)). This output constitutes the classifying classes.

Algorithm ‎4.9: Testing Naïve Bayes-Reducer

input : key, value (key', value' output by map function, respectively)

output:

key': label;

value': the result of frequency for correct key and the result of frequency of wrong key;

Begin

 initialize a counter sum1 as 0 to record current frequency of the correct key;

 initialize a counter sum2 as 0 to record current frequency of the wrong key;

 while(value .hasnext ())

sum1+= value. next().get();

sum2+= value. next().get();

set key as key';

set value' as sum1 and sum2;

output:<key’, value’> pair; /* the output of reduce is the predict classes

 end while.

End.

4.4 Summary

In this chapter, we presented the proposed parallel classification approach based

on MapReduce model. We used two parallel MapReduce algorithms to calculate the

terms weighting; one for calculating the parameter of terms and the other for the

term frequency (TF) and term frequency- inverse document frequency (TF-IDF) of

each term. Also, we used two parallel MapReduce algorithms, one for training

phase and the other for testing phase.

In the next chapter, we present and discuss the experiments carried out to realize

and evaluate the proposed classifier.

45

5 Chapter 5 Experimental Results and Analysis

In this chapter we present and analyze the experimental results to provide

evidence that our parallel classification approach can enhance speedup, performance

and preserve the accuracy of the classification. Parallel Naïve Bayes classifier (as

described in Section 3.1.1) is used in our experiments which is provided as part of

Mahout library (see Section 3.8). First, we present the corpus used in our

experiments and give insight into the main characteristics of it. Then we explain the

experimental environment and the implementation of the parallel MapReduce Naïve

Bayes classifier using Mahout library. We calculate the different measure of speedup

and accuracy. Finally we present and discuss the experimental results and make a

comparison with the MPI based parallel K-NN classifier for large scale Arabic text

[20] (see Section 2.2).

5.1 The Corpus

We used Shamela
1
 as the source of our corpus, where we collected as 101,647 text

documents that constitute 5,310 MB in size, and 5,100 MB after stop words removal.

Each text document belongs to 1 of 8 classes (Creed, Usual, Fiqh, Hadith, History,

Seerah, Tafsir, and Trajem) as shown in Table 5.1.

We perform all text preprocessing (Section 4.3.1.1) on the corpus. This includes

non-Arabic text removal, tokenizing string to word, Arabic stop word removal, term

stemming and term weighting. Specifically, the generated preprocessed corpus

undergoes the following representations:

 Light Stemming + TF-IDF

 Light Stemming + TF

 Stemming + TF-IDF

 Stemming + TF

These representations are needed for the classification experiments. More details

about text representation are described in Section 3.4.

1
 http://shamela.ws

Chapter 5 Experimental Results and Analysis

46

Table ‎5.1: The Shamela Corpus

Category
Number of

Text Document

Size of Text

Document(MB)

Creed 6,776 373

Usual 2,245 128

Fiqh 22,405 1180

Hadith 23,530 1200

History 9,232 488

Seerah 4,641 240

Tafsir 18,048 973

Trajem 14,722 784

Total 101,647 5,310 MB

5.2 Experimental Environment

The experimental environment is built on a MapReduce cluster with 16 machines.

One machine acts as NameNode and the other 15 machines act as DataNodes

implemented as virtual machines. All the virtual machines have the same

configuration; Intel Core2 Quad CPU at 2.5 GHz, 4.00 GB RAM, 320 GB hard disk

drive and operating system is Ubuntu 12.4 Linux with Java JDK 1.6.0, and Hadoop

version 1.2.0. The number of replicas is set to 3 and the HDFS block size is 64MB.

All computers connected through local area network with speed of 10/100 Mbps.

The proposed parallel classifier approach has been implemented on Hadoop

cluster with Ubuntu 12.4 operating system and Naïve Bayes classifier available in

Mahout framework, which is highly scalable with large scale data.

5.3 Implementing the Parallel Naïve Bayes Classifier in Mahout

The proposed parallel MapReduce NB classifier utilizes Hadoop distributed data

processing platform, and parallelized NB classification utilizes Mahout library as a

MapReduce realization of Arabic documents.

Chapter 5 Experimental Results and Analysis

47

We follow the steps in [65] for building Hadoop cluster with Hadoop version 1.2.

For the implementation of the parallel Naïve Bayes classifier using Mahout library,

we follow the steps in [66, 67].

The process of realizing the overall classification approach involves the following

steps:

 Step 1: All text preprocessing (see Section 4.3.1.1) is performed on Shamela

corpus. It is saved as text files directories into NameNode then uploaded to

HDFS. HDFS divides the input Arabic text files documents into data blocks of

size 64 MB (i.e. by default). It stores the metadata of each block in the

NameNode (Master Node) and all the data blocks in the DataNodes (Slave

Nodes).

 Step 2: the directories containing the text files are converted into Hadoop

sequence files format. The Naïve Bayes algorithm does not work directly with

the words and the raw text, but with the weighted vector associated to the original

document.

 As the last step in preprocessing phase the terms weight TF and TF-IDF are

performed in parallel MapReduce based to form vectors files from the sequence

files.

 Step 3: Split the vector files into training set and testing set. In our experiment we

randomly selected 50%, 30%, and 20% of vector files from the whole corpus as

the testing sets and the remaining percentage of the file vectors as the training

sets.

 Step 4: the training phase is conducted a parallel NB classifier on the training set.

The output of this step is Naïve Bayes classifier model in the form of binary files.

 Finally step , the testing phase is conducted to test the Naïve Bayes Classifier

model on the testing set has a small number of large files. The performance of the

model with the testing set by Mahout’s command, which produces the confusion

matrix shown in Figure 5.1.

Chapter 5 Experimental Results and Analysis

48

Figure ‎5.1: The Result of Running Parallel Naive Bayes Classifier Using Mahout

Figure 5.1 shows the classification accuracy value (97.5%) for a small large files,

which indicates that the classification is highly accurate. Also it shows the execution

time takes for running parallel Naïve Bayes classifier.

5.4 Experimental Results and Discussion

This section presents the results of experiments that have been performed.

5.4.1 The Parallel Classification and its Performance

In the experiments, we use the collected corpus of 101,647 documents that are

represented as records and 4096 words that are represented as attributes. We evaluate

the performance of the parallel classifier with respect to the execution time and

speedup (as described in Section 3.9.2). For evaluation purposes, we follow the steps

described in Section 5.3 to split the largest generated text representation for the

corpus into the training set and the testing set.

To measure the speedup, we have executed the parallel classifier on a system of

nodes varied from 2 to 16. Also we used different number of testing documents to

observe the effects of different problem (documents) sizes on the performance. Three

sets were used with the number of tested documents 20329, 30459, and 50329

documents.

Chapter 5 Experimental Results and Analysis

49

The parallel algorithm demonstrates essentially linear speedup. When running an

algorithm with linear speedup, doubling the number of nodes doubles the speedup.

Table ‎5.2: The Execution Times (sec.) of One Node and Multip-Node Parallel Classifier

Problems Size

No. of Nodes

20329

Documents

30459

Documents

50823

Documents

Standalone 1-Node 277.56 367.20 629.64

Parallel

Classifier

2- Nodes 146.88 176.04 259.20

4- Nodes 136.08 153.36 221.40

6-Nodes 72.36 89.64 143.64

8-Nodes 46.44 58.32 88.45

10-Nodes 44.28 55.08 86.40

12-Nodes 43.20 52.92 79.92

14-Nodes 42.12 48.60 70.20

16-Nodes 38.56 44.60 52.92

In particular, linear speedup is difficult to achieve because the communication

cost increases as the number of documents increases. Table 5.2 shows the execution

time in seconds for different documents sizes on various numbers of nodes.

Table 5.2, shows the execution time of one node with MapReduce takes more

time than the parallel version. In the parallel version, the execution time decreases

when the number of processors increases. However, the parallel implementation

achieves a good execution time compared to that of one node. In addition, the

execution time increases when the number of documents increases. Figure 5.3 shows

the curves of the execution time based on Table 5.2

Several observations can be made on these results. First, the sequential NB

algorithm is inappropriate for experiment, because the large scale of text document.

Second, the parallel NB classifier clearly decreases the classification time than one

node it takes 52.92 seconds on 16 nodes. Notes that the time of one node with

MapReduce takes about 10.49 minutes.

Chapter 5 Experimental Results and Analysis

50

Figure ‎5.2: Execution Time for the two Classifiers

Moreover, the time that the parallel NB classifier spends does not appear to have a

linear relationship with nodes. This is due to the fact that when running Hadoop jobs,

starting a cluster first take some time. So when the size of data set is small, the

processing time is relatively longer. In addition the execution time of parallel

classifier on 8 nodes to 16 nodes has a few changes.

Also, we compute the speedup with the formula Sn=ts /tp , where ts is the execution

time using only one node and tp is execution time using n node which is gained from

this parallelization as described in Section 3.9.2. The speedup is recorded in Table 5.3

and is illustrated in Figure 5.4.

Chapter 5 Experimental Results and Analysis

51

Table ‎5.3: The Relative Speedup of the Proposed Parallel Classifier

 Problems Size

 No. of Nodes

20329

Documents

30459

Documents

50823

Documents

2- Nodes 1.89 2.09 2.43

4- Nodes 2.04 2.39 2.84

6-Nodes 3.84 4.10 4.38

8-Nodes 5.98 6.30 7.12

10-Nodes 6.27 6.67 7.29

12-Nodes 6.43 6.94 7.88

14-Nodes 6.59 7.56 8.97

16-Nodes 7.20 8.23 11.90

These results show that the NB classifier has high speedup. Specifically, as the

size of records increases, the speedup improves. Therefore, the parallel NB classifier

can treat large scale Arabic text documents efficiently.

The speedup improves in some cases. For example, on the largest tested set

(50823 documents), it achieves the relative speedups of 2.43, 2.84, 7.12 and 11.90 on

2, 4, 8, and 16 nodes, respectively. When a small set of tested documents are used,

the speedup tend to drop from the linear to sub-linear. The classifier achieves the

relative speedups of 1.89, 2.04, 5.98, and 7.20 on 2, 4, 8, and 16 nodes respectively.

The smallest tested documents sizes give similar results.

 If we increase the number of nodes further, the speedup gains tend to

significantly drop. Figure 5.4 shows, the speedups for three documents sets. On 4

nodes the speedup improves from 2.04 to 2.84, on 8 nodes it improve from 5.98 to

7.12, and on 16 nodes it improves from 7.20 to 11.90. It can be shown that our

parallel classifier gives better performance with larger volume Arabic text documents

than with smaller volume Arabic text documents.

Chapter 5 Experimental Results and Analysis

52

Figure ‎5.3: The Relative Speedup of the Proposed Parallel Classifier

5.5 Evaluating Quality of the Classification

To ensure that the classifier works well with the tested documents, we tested the

quality of the classification. For the purpose of evaluating the classification results,

we use confusion matrices (described in Section 3.9.1). We have evaluated the

obtained classification results using different classification measures such as

accuracy (Eq. 3.1), precision (Eq. 3.2), recall (Eq. 3.3), and F-measure (Eq. 3.4)

which are generally common ways of measuring system performance in this field.

We have conducted two experiments, one with a large number of small files and

the other with a small number of large files. This is done to overcome the

performance problem of HDFS caused by small files size as described in Section

3.6.1

5.5.1 Text Classification Performance with a Large Number of Small Files

In our experiment, we split all generated text representations of Shamela corpus

into two parts; 50% of the corpus for training (50833 documents with 4K attributes

for each document) and the remaining 50% for testing (50833 documents). We split

the corpus in this way to achieve higher classification results. We computed the

Chapter 5 Experimental Results and Analysis

53

accuracy, precision, recall, and F-measure for all generated text representations of

the corpus and the results are recorded in Table 5.4.

Table ‎5.4: Classification Results for all Text Representations of Small Files

 Performance

 Measures

 Text

 Representations

Accuracy Precision Recall F-measure

Light Stemming + TF-IDF 84.86 78.8 81.1 79.4

Light Stemming + TF 82.75 74.8 78.9 75.5

Stemming +TF-IDF 83.21 78.5 80.8 79.1

Stemming + TF 81.30 74.5 78.6 75.2

 Figure 5.4 illustrates the classification results for all text representations of small

files.

Figure ‎5.4: Classification Results for all Text Representations of Small Files

To summarize the average classification performance results in NB classifier,

the morphological analysis (stemming, light stemming) and term weighting schemes

(TF-IDF, TF) have obvious impact on the classifier performance.

The difference in the accuracy and F-measure results is based on the highest and

lowest values obtained. Accuracy: 84.86 % - 81.30% = 3.56%, F-measure: 79.4% -

Chapter 5 Experimental Results and Analysis

54

75.2% = 4.2%. This emphasizes that the performance of the classifier greatly

depends on the actual representation of the text to be classified. The result shows

that, the highest average of accuracy is achieved using light stemming and TF-IDF

(84.75%), while using stemming and TF (81.30%) give the lowest average of

accuracy.

5.5.2 Text Classification Performance with a Small Number of Large Files

In this experiment, we split all generated text representations of the corpus into

two parts; 50% of the corpus for training (440 documents with 512K attributes for

each document) and the remaining 50% for testing (440 documents). We

computed the accuracy, precision, recall, and F-measure for all generated text

representations of the corpus and the results are recorded in Table 5.5.

Table 5.5 shows that, the highest accuracy result (97.50%) is when using light

stemming and TF-IDF text representations and the lowest accuracy result

(89.86%) is when using stemming and TF text representations.

Table ‎5.5: Classification Results for all Text Representations of Large Files

 Performance

 Measures
 Text

 Representations

Accuracy Precision Recall F-measure

Light Stemming + TF-IDF 97.50 97.20 96.59 96.87

Light Stemming + TF 96.87 96.38 97.91 97.10

Stemming +TF-IDF 92.27 85.77 88.25 84.07

Stemming + TF 89.86 86.71 83.59 83.54

 Figure 5.5 illustrates that light stemming and TF-IDF representation has the

best classification results and increases the classification accuracy.

Chapter 5 Experimental Results and Analysis

55

Figure ‎5.5: Classification Results for all Text Representations of Large Files

After conducting the two experiments, we can note that, there is a great

difference in improvement of accuracy and F-measure results conducted on the

two experiments. The accuracy result on large numbers of small files is

84.86%, while on small numbers of large files was improved to 97.50% as

shown in Figure 5.6.

Figure ‎5.6: Accuracy of Small Files and Large Files Classification

In addition, the execution times for the parallel NB classification in the two

experiments are decreased with a small number of large files as shown in Table 5.6

and Figure 5.7.

Chapter 5 Experimental Results and Analysis

56

As the file size increases, the CPU time and MapReduce time are decrease. Also it

confirms that, there is improvement in the performance of 48.4% and 71.2% of

execution times of CPU and MapReduce respectively.

Table ‎5.6: Execution Times of a Small Number of Large Files and a Large Number

of Small Files

Technique

 File Size

CPU

Time in Millisecond

MapReduce

Time in Millisecond

38KB 132400 162396

4MB 46155 27270

Figure ‎5.7: Execution Times of CPU and MapReudce with Small and Large Files

The performance for each class of the corpus for the best text representation

(light stemming + TF-IDF) that achieved the best classification results is shown in

Table 5.7.

Chapter 5 Experimental Results and Analysis

57

Table ‎5.7: Classification Results for Light Stemming and TF-IDF

Performance

 Category
Precision Recall F-measure

Creed 91.67 94.3 93.0

Feiqh 97.80 93.7 95.7

Hadith 93.81 100.0 96.8

History 95.12 92.9 94.0

Seerah 90.00 85.7 87.8

Tafsir 100.00 97.2 98.6

Tarajm 98.65 97.3 98.0

Usual 81.82 100.0 90.0

Figure 5.8, depicts the performance for the domains: Tafsir domain has the

highest performance F-measures (98.6%), because Tafsir has a small size of

words that are limited and are clearly compared to other domains. Also, it shows

that Seerah domain has lowest performance F-measure (87.8%) and this is

because Sirah has a large space domain.

Figure ‎5.8: Classification Results for Light Stemming and TF-IDF

Chapter 5 Experimental Results and Analysis

58

5.6 Comparison with Related Approaches

To complete the evaluation of our Parallel Naïve Bayes classifier, we compare it

with the MPI-based parallel approach [20] along nine criteria which are the most

common criteria show in Table 5.8. The most important criteria in the comparison

are the size of data, the parallel platform, the programming model, and the speed up

which obviously is affected by these criteria. We mention this comparison to show

that using the MapReduce model regardless the kind of classification algorithm can

improve speedup significantly.

M. AbuTair and R. Baraka in [20] (see Section 2.2), proposed a parallel classifier

for large scale Arabic text documents. The parallel algorithm is based on the K-NN

algorithm. They evaluated the parallel implementation on a multiprocessor cluster

that consists of 14 computers with shared memory. They experimented with a 214

MB dataset. The speedup results were relative up to 14 processors.

The comparison between our approach and the MPI-based approach is

summarized in Table 5.8.

Table ‎5.8: The Comparison Between MapReduce Model Parallel Approach and MPI-Based

Parallel Approach

Criteria
MapReduce Model Parallel

Approach

MPI-based Parallel

Approach

Language Mahout java project C++

Size of dataset 5138 MB 241 MB

Type of dataset Shamela corpus OSAC Arabic corpus

Number of nodes 2, 4, 8, 12, 14, 16 nodes 2, 4, 8, 12, 14 nodes

Execution times (sec)
259, 221.4, 88.4, and 52.9

on 2, 4, 8, and 16 nodes

1914, 997.9, 566, and 398.6

 on 2, 4, 8, and 14 processors

Speedup
2.43, 2.84, 7.12, and 11.90

on 2, 4, 8, and 16 nodes

1.87, 3.59, 6.33, and 9.00

on 2, 4, 8, and 14 processors

Parallel platform Hadoop Cluster A multicomputer cluster

programming model HDFS MPI

The processor speed 2.5 GHZ 3.30 GHz

The memory size 4GB 4GB

Chapter 5 Experimental Results and Analysis

59

The comparison is done along ten criteria: the programming language, the size of

the corpus, the type of corpus, the number of nodes, the execution times, the

speedup, the parallel platform, the programming model, the processor speed, and the

memory size.

Our work is significantly different, because the corpus is 21.3x times larger, and

the tested set (50833 documents *4096 attributes), is 6.4x times larger. Moreover the

time spent for classification is 7.5x times smaller, and the parallel classifier achieved

the relative speedup of 11.90 on 16 processors. Our approach is a scalable parallel

system because the efficiency can be kept constant as the number of processing

elements is increased provided that the problem size is increased (from 20329

documents to 50833 documents). Our dataset contains 101,647 * 4069 values, the

size of the dataset is 5138 MB.

5.7 Summary

This chapter presented and analyzed the experimental results. It presented the

corpus characteristics, explained the machine environment, and implementation of

the parallel NB classifier using Mahout Library. Also, it presented experimental

results of parallel classification and its performance. The evaluation of the quality of

the classification model during sets of experiments. Finally, we compared our

parallel Naïve Bayes classifier approach with an MPI-based parallel approach.

60

6 Chapter 6 Conclusion and Future Work

Text classification of large-scale text documents is an important research in text

mining. Sequential Naïve Bayes classifier is a popular machine learning for text

classification, widely applied, fast and easy to classify Arabic text documents.

However, it takes more time when used in classifying large scale of text documents.

We proposed a parallel Naïve Bayes classifier for large-scale Arabic text

document based on MapReduce. It involves Arabic text documents collection,

Arabic text preprocessing, design the suitable MapReduce computing model for

parallel classification as a Hadoop platform, implementation the parallel Naïve Bayes

algorithm using Mahout library over the designed MapReduce computing model.

We tested the parallel classifier using a large scale Shamela-sourced corpus which

is the largest Arabic corpus of text documents. The test is performed on Hadoop

cluster consisting of 16 nodes as a MapReduce model.

For evaluation purposes, we use accuracy, precision, recall, and F-measure to

evaluate the classification of our approach and speedup to evaluate its performance.

The results show that the proposed parallel NB classifier approach can

significantly improves speedup up to 12x times better than the sequential approach

using the same classification algorithm and preserve accuracy up to 97%.

 Also we compare our approach with MPI-based approach [20]. The result shows

that our proposed parallel NB classifier approach is 7.5x times faster, and processes

large scale of Arabic text documents is 21.3x times larger on commodity hardware

effectively.

The proposed approach can be used efficiently and accurately to classify a large

scale of Arabic text with high dimensionality and solved the problem of low speed,

and preserve high accuracy for the sequential NB algorithm.

There are many directions for improvements and future investigations. Our work

can be extended to cover larger computer clusters with larger volume of Arabic text

documents that constitute more than one terabytes in size. Also, other parallel

61

classification algorithms can be applied with our approach to investigate their

effectiveness and performance with large scale Arabic text. Additionally, our

approach can be applied to other domains such as medical information, weather data,

and social media among others to check its generalization. It can also be used as

online classification approach with web data. Finally, the work can be applied with

other cloud-based technologies such as big data analytics, where data mining

algorithms can be used with big data techniques over MapReduce model to speed up

the process and give accurate results.

62

7 References

[1] R. Feldman and J. Sanger, 'The Text Mining Handbook Advanced Approaches in

Analyzing Unstructured Data'. Cambridge; New York: Cambridge University Press,

2007.

[2] J. Han and M. Kamber, 'Data Mining Concepts and Techniques'. Amsterdam; Boston;

San Francisco, CA: Elsevier ; Morgan Kaufmann, 2006.

[3] S. Kim, K. Han, H. Rim, and S. Myaeng, 'Some Effective Techniques for Naïve Bayes

Text Classification', IEEE Trans. Knowl. Data Eng., vol. 18, no. 11, pp. 1457–1466,

Nov. 2006.

[4] T. Liu, Z. Chen, B. Zhang, and G. Wu, 'Improving Text Classification Using Local

Latent Semantic Indexing', in Fourth IEEE International Conference on Data Mining,

2004. ICDM ’04, pp. 162–169, 2004.

[5] M. Missen and M. Boughanem, 'Using WordNet’s Semantic Relations for Opinion

Detection in Blogs', in Advances in Information Retrieval, Soule-Dupuy, Eds. Springer

Berlin Heidelberg, pp. 729–733, 2009.

[6] A. Balahur and A. Montoyo, 'A Feature Dependent Method for Opinion Mining And

Classification', in International Conference on Natural Language Processing and

Knowledge Engineering, NLP-KE ’08, pp. 1–7, 2008.

[7] M. S. Khorsheed and A. Al-Thubaity, 'Comparative Evaluation of Text Classification

Techniques Using A large Diverse Arabic Dataset', Lang. Resour. Eval., vol. 47, no. 2,

pp. 513–538, Mar. 2013.

[8] F. Sebastiani, 'Machine Learning in Automated Text Categorization', ACM Comput

Surv, vol. 34, no. 1, pp. 1–47, Mar. 2002.

[9] S. Alsaleem, 'Automated Arabic Text Categorization Using SVM and NB', Int Arab J

E-Technol, vol. 2, no. 2, pp. 124–128, 2011.

[10] M. Elkourdi, A. Bensaid, and T. Rachidi, 'Automatic Arabic Document Categorization

Based on the Naïve Bayes Algorithm', in Proceedings of the Workshop on

Computational Approaches to Arabic Script-based Languages, pp. 51–58, 2004.

[11] B. Wang and S. Zhang, 'A Novel Text Classification Algorithm Based on Naïve Bayes

and KL-Divergence', in Sixth International Conference on Parallel and Distributed

Computing, Applications and Technologies, 2005. PDCAT 2005, pp. 913–915, 2005.

[12] S. Liang, Y. Liu, C. Wang, and L. Jian, 'A CUDA-Based Parallel Implementation of K-

Nearest Neighbor Algorithm', in Cyber-Enabled Distributed Computing and

Knowledge Discovery,2009. CyberC’09. International Conference on, pp. 291–296,

2009.

[13] J. Dean and S. Ghemawat, 'MapReduce: Simplified Data Processing on Large

Clusters', Commun ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[14] T. White, 'Hadoop: The Definitive Guide', 3rd Edition, Storage and Analysis at Internet

Scale. O'Reilly Media /Yahoo Press, 2012.

[15] A. Al-Thubaity, N. Abanumay, S. Al-Jerayyed, and Z. Mannaa, 'The Effect of

Combining Different Feature Selection Methods on Arabic Text Classification', in

(SPND), 2013 14th ACSI International Conference pp. 211–216, 2013.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6598367
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6598367

63

[16] B. Al-Salemi and M. Ab Aziz, 'Statistical Bayesian Learning for Automatic Arabic

Text Categorization', J. Comput. Sci., vol. 7, no. 1, 2011.

[17] W. Ding, Q. Wang, and Q. Guo, 'A Novel Naive Bayesian Text Classifier', in 2008

International Symposiums on Information Processing (ISIP), pp. 78–82, 2008.

[18] F. Viegas, G. Andrade, J. Almeida, and L. Rocha, 'GPU-NB: A Fast CUDA-Based

Implementation of Naïve Bayes', in 2013 25th International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD), pp. 168–175, 2013.

[19] C. Kruengkrai and C. Jaruskulchai, 'A Parallel Learning Algorithm for Text

Classification', in Proceedings of the eighth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 201–206, 2002.

[20] M. AbuTair and R. Baraka, 'Design and Evaluation of a Parallel Classifier for Large-

Scale Arabic Text', Int. J. Comput. Appl., vol. 75, 2013.

[21] C. Chu, S. Kim, G. Bradski, and K. Olukotun, 'Map-Reduce for Machine Learning on

Multicore', in NIPS, vol. 6, pp. 281–288, 2006.

[22] L. Esmaeili, M. Akbari, V. Amiry, and S. Sharifian, 'Distributed Classification of

Persian News (Case Study: Hamshahri News Dataset)', in 2013 3th International

Econference on Computer and Knowledge Engineering (ICCKE), pp. 46–51, 2013.

[23] L. Zhou, H. Wang, and W. Wang, 'Parallel Implementation of Classification

Algorithms Based on Cloud Computing Environment', Itkomnika Indones. J. Electr.

Eng., vol. 10, no. 5, pp. 1087–1092, 2012.

[24] J. Han and M. Kamber, 'Data Mining Concepts and Techniques'. Amsterdam; Boston;

San Francisco, CA: Elsevier ; Morgan Kaufmann, 2006.

[25] L. Zhou, H. Wang, and W. Wang, 'Research on Parallel Classification Algorithms for

Large-scale Data', J. Converge. Inf. Technol., vol. 7, no. 21, pp. 333–340, Nov. 2012.

[26] I. Witten, E. Frank, and M. Hall, 'Data Mining: Practical Machine Learning Tools and

Techniques'. Burlington, MA: Morgan Kaufmann, 2011.

[27] R. Duba, P. Hart, and D. Strok, 'Pattern Classification'. Burlington, MA: Johen Wiley

& Sons, Inc., 2001.

[28] Y. Yang and G. Webb, 'Discretization for Naive-Bayes Learning: Managing

Discretization Bias and Variance', Mach. Learn., vol. 74, no. 1, pp. 39–74, Jan. 2009.

[29] M. Martinez-Arroyo and L. Sucar, 'Learning an Optimal Naive Bayes Classifier', in

18th International Conference on Pattern Recognition, 2006. ICPR 2006, vol. 3, pp.

1236–1239, 2006.

[30] G. Guo, H. Wang, D. Bell, and K. Greer, 'An K-NN Model-Based Approach and its

Application in Text Categorization', in Computational Linguistics and Intelligent Text

Processing, Springer, pp. 559–570, 2004.

[31] A. He, A. Tan, and C. Tan, 'A Comparative Study on Chinese Text Categorization

Methods,' in Proceedings of PRICAI’, 2000 International Workshop on Text and Web

Mining, pp. 24–35, 2000.

[32] M. Syiam, Z. Fayed, and M. Habib, 'An Intelligent System for Arabic Text

Categorization', Int. J. Intell. Comput. Inf. Sci., vol. 6, no. 1, pp. 1–19, 2006.

[33] M. Aghdam, N. Ghasem-Aghaee, and M. Basiri, 'Text Feature Selection Using Ant

Colony Optimization', Expert Syst. Appl., vol. 36, no. 3, Part 2, pp. 6843–6853, Apr.

2009.

64

[34] A. El-Halees, 'A Comparative Study on Arabic Text Classification'. Egypt. Comput.

Sci. J., vol. 30, no. 2, 2008.

[35] F. Thabtah, W. Hadi, G. Al-shammare, 'VSMs with K-Nearest Neighbour to Categories

Arabic Text Data'. Hong Kong: IAENG International Association of Engineers, 2008.

[36] D. Said, N. Wanas, N. Darwish, and N. Hegazy, 'A Study of Text Preprocessing Tools

for Arabic Text Categorization'. in The Second International Conference on Arabic

Language, pp. 230–236, 2009.

[37] C. Paice, 'An Evaluation Method for Stemming Algorithms', in Proceedings of the 17th

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, New York, NY, USA, pp. 42–50, 1994

[38] A. Hotho, A. Nürnberger, and G. Paaß, 'A Brief Survey of Text Mining', LDV Forum -

GLDV J. Comput. Linguist. Lang. Technol., 2005.

[39] J. Lovins, 'Development of a Stemming Algorithm', MIT Information Processing

Group, Electronic Systems Laboratory, 1968.

[40] M. Aljlayl and O. Frieder, 'On Arabic Search: Improving the Retrieval Effectiveness

Via a Light Stemming Approach', presented at the Proceedings of the eleventh

International Conference on Information and Knowledge Management, pp. 340–347,

2002.

[41] R. Cummins and C. O’Riordan, 'Determining General Term Weighting Schemes for

the Vector Space Model of Information Retrieval Using Genetic Programming', in 15th

Artificial Intelligence and Cognitive Science Conference (AICS 2004), 2004.

[42] L. Jing, H. Huang, H. Shi, 'Improved Feature Selection Approach TFIDF in Text

Mining', Proc 1st Int Conf Mach. Learn. Cybern. Beijing, 2002.

[43] J. Dean and S. Ghemawat, 'MapReduce: Simplified Data Processing on Large

Clusters', Commun ACM, vol. 51, no. 1, pp. 107–113, 2008.

[44] 'What is MapReduce?' - Definition from WhatIs.com, [Online], Available:

http://searchcloudcomputing.techtarget.com/definition/MapReduce. [21-Sep-2014].

[45] M. Zaharia and D. Borthakur, 'Delay Scheduling: A Simple Technique for Achieving

Locality and Fairness in Cluster Scheduling', in Proceedings of the 5th European

Conference on Computer systems, pp. 265–278, 2010.

[46] K. Lee, Y. Lee, H. Choi, Y. Chung, and B. Moon, 'Parallel Data Processing with

MapReduce: A Survey', AcM SIGMoD Rec., vol. 40, no. 4, pp. 11–20, 2012.

[47] J. Lin and C. Dyer, 'Data-Intensive Text Processing with MapReduce', Synth. Lect.

Hum. Lang. Technol., vol. 3, no. 1, pp. 1–177, 2010.

[48] P. Zhou, J. Lei, and W. Ye, 'Large-Scale Data Sets Clustering Based on MapReduce

and Hadoop', J. Comput. Inf. Syst., vol. 7, no. 16, pp. 5956–5963, 2011.

[49] T. Ruiter, 'A Workload Model for MapReduce', Thesis Comput. Sci. Parallel Distrib.

Syst. Group Fac. Electr. Eng. Math. Comput. Sci., vol. Delft University of Technology,

Jun. 2012.

[50] C. Lam, 'Hadoop in Action', 1st edition. Greenwich, Conn: Manning Publications,

2010.

[51] 'Apache Hadoop' - Wikipedia, the free encyclopedia. [Online], Available:

http://en.wikipedia.org/w/index.php?title=Apache_Hadoop&oldid=625239666. [14-

Sep-2014].

65

[52] A. Alam and J. Ahmed, 'Hadoop Architecture and its Issues', in 2014 International

Conference on Computational Science and Computational Intelligence (CSCI), vol. 2,

pp. 288–291, 2014.

[53] G. Prasad, H. R. Nagesh, and M. Deepthi, 'Improving the Performance of Processing

for Small Files in Hadoop: A Case Study of Weather Data Analytics', Int. J. Comput.

Sci. Inf. Technol., vol. 5, no. 5, 2014.

[54] 'Apache Hadoop. Welcome to Apache Hadoop'. [Online], Available:

http://hadoop.apache.org/. [23-Sep-2014].

[55] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, 'The Hadoop Distributed File

System', in Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on, pp. 1–10, 2010.

[56] O. Joldzic, 'Applying MapReduce Algorithm to Performance Testing in Lexical

Analysis on HDFS', in Telecommunications Forum (TELFOR), 2013 21st, pp. 841–

844, 2013.

[57] 'Fault tolerance for parallel MPI jobs'. [Online].Available: http://www.open-mpi.org/

faq/?category=ft. [10-Nov-2014].

[58] 'Hadoop Distributed File System Architecture'. [Online], Available:

http://hadoop.apache.org/docs/stable1/hdfs_design.html. [23-Sep-2014].

[59] 'Apache Mahout'. [Online], Available: http://en.wikipedia.org/wiki/Apache_Mahout.

[12-Nov-2014].

[60] S. Owen, R. Anil, T. Dunning, and E. Friedman, 'Mahout in Action'. Greenwich, CT,

USA: Manning Publications Co., 2011.

[61] A. Borisenko, 'Performance Evaluation in Parallel Systems', ACM Sigplan Notes, vol.

17, no. 6, pp. 150–155, 2010.

[62] M. Abd-El-Barr and H. El-Rewini, 'Fundamentals of Computer Organization and

Architecture'. Hoboken, N.J.: Wiley, 2005.

[63] A. Grama, 'Introduction to Parallel Computing'. Harlow, England; New York:

Addison-Wesley, 2003.

[64] 'Shamela Library', http://shamela.ws.

[65] 'Running Hadoop on Ubuntu Linux (Single-Node Cluster) - Michael G. Noll'. [Online].

Available:http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-

single-node-cluster/#installation. [01-Nov-2014].

[66] 'Install Mahout in Ubuntu for Beginners | Chameera wijebandara’s Blog'. [Online].

Available:http://chameerawijebandara.wordpress.com/2014/01/03/install-mahout-in-

ubuntu-for-beginners/. [01-Nov-2014].

[67] S. Perera and T. Gunarathne, 'Hadoop MapReduce Cookbook Recipes for Analyzing

Large and Complex Datasets with Hadoop MapReduce'. Birmingham: Packt Pub.,

2013.

http://www.open-mpi.org/

