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Abstract 

Text classification on large-scale real documents has become one of the most core 

problems in text mining. For English and other languages many text classification 

works have been done with high performance. However, Arabic language still needs 

more attention and research since it is highly rich and requires special processing. 

Existing Arabic text classification approaches use techniques such as feature 

selection, data representation, feature extraction and sequential algorithms. Few 

attempts were done to classify large-scale Arabic text document in a parallel manner. 

In our research, we propose a parallel classification approach based on the Naïve 

Bayes algorithm for large volume Arabic text using MapReduce with enhanced 

speedup and preserved accuracy.  

The experiments show that the parallel classification approach can process large 

volume of Arabic text efficiently on a MapReduce cluster and significantly improves 

speedup up to 12 times better than the sequential approach using the same 

classification algorithm. Also, classification results show that the proposed parallel 

classifier has preserved accuracy up to 97%. 

Keywords: Text Classification, Naïve Bayes algorithm, Parallel Classifier, MapReduce, 

and Hadoop. 
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 الملخص 

 MapReduce نموذج باستخدام واسع النطاق لنص العربياتصنيف 

واحدة من المشاكل الأساسٌة  (الحجم الكبٌراق الواسع )النطأصبح تصنٌف النصوص ذات 

لغة لالنصٌة تصنٌف الالعدٌد من أعمال  . وهناكٌةفً مجال التنقٌب فً البٌانات النص

فان تصنٌف  مع ذلك،لعملٌة التصنٌف.  أداء عالًحٌث نتجت عن  الانجلٌزٌة واللغات الأخرى

وٌتطلب معالجة خاصة نظرا  اللغة العربٌة بحاجة الى مزٌد من الاهتمام والبحثالنصوص فً 

تصنٌف النصوص الطرق الحالٌة لأغلب . فً التعبٌر والمعانً والنحو والصرف لأنها لغة غنٌة

 Data) ، تمثٌل البٌانات(Feature Selection) ستخدم تقنٌات مثل: اختٌار المزاٌاتالعربٌة 

Representation)استخلاص المزاٌا ، (Feature Extraction) والخوارزمٌات المتسلسلة 

(Sequential Algorithms). واسع  نص العربًاللتصنٌف  القلٌل من المحاولات تمت

 . المتوازٌة بالحوسبة النطاق

 الواسعالنطاق ذات  ف متوازي للنصوص العربٌةن  مُص طرٌقةفً هذا البحث قمنا باقتراح 

 نموذج الحوسبة المتوازٌة باستخدام (Naïve Bayesٌعتمد على خوارزمٌة التصنٌف )

MapReduce  مع تعزٌز( التسرٌعSpeedup )والأداء (Performance)  والحفاظ على

 وصعالج بكفاءة النصالمقترح ٌف المتوازي ن  أظهرت النتائج أن المُص .(Accuracy) الدقة

أظهرت و MapReduceنموذج على حٌث أجرٌت التجارب  .الحجم الكبٌر تالعربً ذا

أفضل من الطرٌقة التسلسلٌة لنفس  مرة 12تصل الى  نسبةبا كبٌرا على التسرٌع تحسنالنتائج 

أعلى من الى وصلت عالٌة  (Accuracy)تصنٌف دقة ج الاحتفاظ بنتائأٌضاً والمُصن ف 

79 .% 

 

المتوازي، خوارزمٌة ف ن  المُص: تصنٌف النصوص العربٌة،  مفتاحـيـــةالالكلمـــات 

Naïve Bayes،  MapReduce وHadoop. 
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1 Chapter 1 Introduction 

Text classification (TC – also known as text categorization) is the task of 

assigning text documents automatically into one or more categories predefined (or 

classes, or topics). This task, that falls at the crossroads of information retrieval (IR) 

and machine learning (ML), has witnessed increasing interest in the recent years from 

researchers and developers alike [1, 2]. Automatic text classification has several 

useful applications such as classifying text documents in electronic format [3, 4], 

spam filtering, improving search results of search engines [5], web-page content 

filtering, and opinion mining [6]. 

Building a text classification system involves three main phases: compilation of 

the training dataset, selection of the set of features to represent the defined classes, 

and training the chosen classification algorithm, followed by testing it using the 

corpus compiled in the first stage  as shown in Figure ‎1.1 [7]. 

 

Figure ‎1.1: Building Text Classification System Process 

Several methods have been used for text classification [8] such as: Support Vector 

Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks, Naïve 

Bayes (NB) Probabilistic Classifier, Random Forest, and Decision Trees. NB 

classifier is a statistical method for text classification and is widely applied by many 

researchers to classify Arabic text documents [9, 10]. It is fast and easy to 

implement, but it consumes much time when used in classifying large volume of text 

documents. NB classifier  assumes that each feature word is independent from other 

feature words in a document makes higher efficiency possible but also adversely 

affects the quality of its results because some of feature words are interrelated [11]. 
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The large amount of text documents with high dimensionality (i.e. the features or 

attributes are the words that occur in documents) and in Arabic language which has a 

rich nature and complex morphology requires a large amount of computational 

power for classification. To be more accurate, we mean by large-scale Arabic text; 

the large number of text documents that are represented as records (thousands of 

documents) and the large number of words that are represented as features or 

attributes in the vector space model after preprocessing the text (thousands of 

features) [12]. So, in order to preserve accuracy and decrease execution time, we 

need to resort to parallel programming models such as MapReduce to implement and 

execute classifications of large volume of Arabic text documents. 

MapReduce is a parallel programming model [13] for processing and generating 

large data sets. It is used to solve many problems, such as data distribution, job 

scheduling, fault tolerance, machine to machine communication. MapReduce allows 

developers to write programs that process large-scale of unstructured data in parallel 

across a distributed cluster of processors or stand-alone computers. It works by 

breaking the processing into two phases: map phase and reduce phase. Each phase 

has key-value pairs as input and output, and is specify by two functions: the map 

function and reduce function [14].  

In this research, we build a MapReduce-based parallel classification approach for 

large scale Arabic text based on Naïve Bayes algorithm that reduces time and 

preserved accuracy. 

 To build our approach, we collect a large volume of Arabic corpus and perform 

several preprocessing steps to prepare the corpus for the classification. Then we 

design the parallel MapReduce-based classification model. The core of the model is 

the Naïve Bayes classification algorithm. We designed and conducted several 

experiments to classify the documents in the collected corpus over the built 

MapReduce model using the parallelized Naïve Bayes algorithm. 

 

http://searchexchange.techtarget.com/definition/cluster
http://searchcio-midmarket.techtarget.com/definition/processor
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1.1 Problem Statement  

Current sequential text classification approaches applied to large-scale Arabic text 

documents generally require a large number of training inputs to accurately classify 

large volume of text documents leading to more processing time.  

The problem of this research is how to build a MapReduce–based parallel 

classification approach for large volume Arabic text that reduces the time and 

preserves the accuracy.  

1.2 Objectives  

1.2.1 Main Objective  

To build a MapReduce–based parallel classification approach for large volume of 

Arabic text based on Naïve Bayes algorithm that achieves the enhanced level of 

speedup and preserves the required accuracy.   

1.2.2  Specific Objectives 

The specific objectives of this research are: 

 Determining and collecting an Arabic corpus of text documents with various 

domains . 

  Applying the most suitable text preprocessing techniques such as stemming and 

term pruning methods and term weighting schemes. 

 Designing the suitable MapReduce computing model for parallel classification. 

 Implementing the parallel Naïve Bayes algorithm based on the designed 

MapReduce computing model. 

 Conducting the needed experiments on Naïve Bayes algorithm over MapReduce 

using the collected Arabic corpus. 

 Evaluating and comparing the speedup and accuracy of the proposed parallel 

classifier approach with existing parallel classifier approach using suitable 

metrics and measures.


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1.3 Significance of the Thesis 

The rapid increase of online Arabic content in the recent years has raised the need 

for more efficient Arabic text classification techniques. This work is a contribution in 

this direction.  

 The proposed parallel classifier approach is expected to be applied on multiple 

domains. 

 The approach can be used to efficiently and accurately classify a large volume of 

Arabic text documents with high  dimensionality (i.e. the features or attributes 

are the words that occur in documents) 

 It also overcomes the issue of low speed for the sequential Naïve Bayes 

algorithm due to the large amount of computational power.  

1.4 Scope and Limitations  

This research proposes a MapReduce–based parallel Naïve Bayes classifier 

approach for large volume Arabic text that achieves an enhanced speedup and 

preserved accuracy. The work is conducted with the following limitations and 

assumptions: 

1. The Arabic corpus will be based on multiple domains.  

2. We will apply text preprocessing techniques using RapidMiner and other text 

document classification tools. 

3. Naïve Bayes algorithm will be used for text classification. 

 We will use Apache Hadoop framework to build the cluster where the 

MapReduce tools will be realized.

5. We will conduct our experiments on a set of  processors and their own exclusive 

memory (multicomputer cluster).  

6. We will use 1, 2, 4, 8, 12 and 16 processors to measure the effects on the 

speedup and the accuracy of proposed approach. 
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1.5 Research Methodology  

In our research, we intend to achieve our specific research objectives using the 

following methodology shown in Figure 1.2. 

 Research and Survey: This includes reviewing the recent literature related to 

MapReduce-based parallel classification and Naïve Bayes classification. Based 

on the survey, we formulate the general MapReduce and parallel classifier 

approach.   

 Text Data Collection: We will collect largest freely public Arabic corpus of text 

documents with multiple domains having eight classes. 

 Text Preprocessing: Some preprocessing in the Arabic text corpus will be 

performed. It includes tokenizing strings to words, normalizing the tokenized 

words, applying stop words removal, applying the suitable term stemming and 

pruning methods as a feature reduction technique, and finally applying the 

suitable term weighting scheme to enhance text document representation as 

feature vector.  

 Design the Parallel Classifier Approach: We build the parallel Naïve Bayes  

classifier for large volume Arabic text based on MapReduce model. 

 Implement the Naïve Bayes Algorithm Using Mahout Library and Hadoop 

Platform as a realization for the MapReduce model: We will implement the 

proposed parallel classifier approach using Naïve Bayes algorithm using Mahout 

library and Hadoop platform with a multicomputer cluster on the largest freely 

public Arabic corpus of text documents. We will conduct several experiments to 

classifying Arabic corpus. 

 Evaluation: The proposed parallel classifier approach will be evaluated for 

speedup and accuracy using different performance metrics and classification 

measures such as precision, recall, and F-measure. In addition, it will be 

compared with a work implemented in [20] which is a parallel K-NN classifier 

based on Massage Passing Interface (MPI). 

 Results and Discussion: In this stage we will analyze the obtained results and 

justify the effectiveness of the proposed approach. 

 

 



Chapter 1 Introduction 

6 

 

 

Figure ‎1.2: The Research Methodology 

 

1.6 Research Format  

The research report is organized as follows: Chapter 2 discusses the state of the art 

and literature survey. Chapter 3 includes the theoretical foundation of the research. 

Chapter 4 presents the proposed parallel classification approach. Chapter 5 presents 

the experimental results and evaluation. Finally, Chapter 6 presents the conclusions 

and future work.  
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2 Chapter 2 Related Works  

In this chapter we review related works that address the problem of text 

classification and identify their limitations, their strengths and the aspects that may 

be important for our approach.  

2.1 Improving the Efficiency of  Arabic Text Classification. 

Al-Thubaity et al. [15] study the effect of combining five feature selection 

methods, on Arabic text classification accuracy, two approaches of combination were 

used, intersection (AND) and union (OR).  

They collected a corpus from the website of The Saudi Press Agency (SPA). The 

SPA consists of 6,300 texts comprising six classes of news, namely culture, 

economics, general, political, social and sport. The dataset contains more than one 

million words and the average text length is 172 words. They apply  Naïve Bayes 

(NB) classification  algorithm on the SPA dataset to study the effect of feature 

selection methods combinations on Arabic text classification accuracy. Also, they  

used feature representation schemas such as namely Boolean and Term Frequency 

Inverse Document Frequency (TF-IDF)  as a weighting scheme for feature selection. 

Results show that using Chi-squared (CHI) feature selection method and TF-IDF 

for feature representation increase the classification accuracy. CHI and Information 

Gain (IG) feature selection methods produce comparable accuracy and the highest 

accuracy is achieved when one of them is used, except for one case where relevancy 

score (RS) achieved the highest accuracy for TF-IDF. In all cases the TF-IDF feature 

representation performed better than Boolean. Also combining two feature selection 

methods showed insignificant improvement in classification accuracy, because the 

complications of using intersection (AND) will cause negative effect on the 

classification accuracy as the selected features are not enough to train the classifier, 

and using union (OR) approach cause a problem that is known as the curse of 

dimensionality. The feature selection methods and weighting schemes can decrease 

the computation complexity, reduce the dimensionality, and improve the accuracy 

rate of classification. However, this approach could not do well in the case of 

reducing computation complexity for text documents with high number of distinct
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 words. Also, this approach reduces the features but does not do well in the case of 

large volume of text documents with high number of features which increase the 

computation complexity. 

 

Al-Salemi et at. [16] implement three classifiers based on Bayesian theorem; 

Simple Naïve Bayes (NB), Multi-variant Bernoulli Naïve Bayes (MBNB) and 

Multinomial Naïve Bayes (MNB) models on Arabic Text. They applied text 

reprocessing methods like removing punctuation marks, diacritics and non-Arabic 

letters, eliminate the words with length less than three and stop word. They applied  

stemming as feature reduction technique, after that  they  used several feature 

selection methods; Mutual Information (MI), Chi-Square statistic (CHI), Odds Ratio 

(OR) and GSS-coefficient (GSS). They collected 3172 documents belonging to one 

of four categories (Arts, Economic, Politics and Sport). They split the corpus; 1732 

documents for training set and 440 documents for test set.  Results show that  feature 

selection and reduction strategies can decrease the computation complexity, reduce 

the dimensionality of feature space, and improve the performance of classification.  

Maybe, the size of the used corpus is small and this approach could not do well in 

the case of reducing computation complexity for large volume of  Arabic text 

documents with high number of features and in particular in the Arabic language 

which has a rich nature and very complex morphology. 

2.2 Improving the Efficiency of Sequential Classification Algorithms 

with Parallel Computing. 

Ding et al. [17] propose a parallel learning algorithm for text classification. It is 

based on the combined naïve Bayes text classifier (PC-NB) that relaxes the 

independence assumption without efficient reduction. They evaluated the parallel 

implementation on a cluster that consists of six computer, where each node has a 1.6 

GHz CPU, 256 MB physical memory and connected by the Ethernet, and MPI 

library as parallel programming environment. They evaluated the performance on 

Reuter's dataset with 9603 training documents and 9933  test documents. The 

experiment results show that the proposed classifier is accurate and powerful  while 

the attributes of an instance are strongly correlated. This approach supports our 
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proposed by using classifier based on  Naïve Bayes algorithm, although it is 

supposed that there will be an impact on the quality of the results because some of  

feature words are interrelated. 

   

Viegas et al. [18] propose a parallel learning algorithm called GPU-NB. It is 

based on  Naïve Bayes algorithm that uses graphics processing units (GPUs). GPUs 

are capable of providing a higher parallelism level than what can be obtained with 

CPUs, with a lower energy consumption. They evaluated GPU-based implementation 

using Compute Unified Device Architecture (CUDA), the great advantage of this 

technique is in the simplicity and compactness of the data structures used to represent 

the document. They evaluated the performance of GPU-NB using six real digital 

libraries. The collections referred to as Medline, Reuters, ACM, Acl bin, 

newsgroups20 and Webkb; which have 861,454 documents, 8,184 documents  

24,897 documents, 27,677 documents, 18,805 documents, and 8,277  documents 

respectively. The results show that GPU-NB can speedup the classification process 

in up 34 x when compared to a sequential CPU-based implementation, also GPU-NB 

is up to 11 x  faster than a CPU-based parallel implementation of Naïve Bayes 

running with 4 threads. 

 Moreover, assuming an optimistic behavior of the CPU parallelization, GPU-NB 

should outperform the CPU-based implementation with up to 32 cores, at a small 

fraction of the cost. They also show that the efficiency of the GPU-NB 

parallelization is impacted by features of the document collections, particularly the 

number of classes, although the density of the collection (average number of 

occurrences of terms per document) has a significant impact as well. 

 

Kruengkrai  et al [19]  propose a parallel algorithm for text classification task. The 

parallel algorithm is based on the Expectation Maximization (EM) algorithm and the 

NB classifier. One drawback of the NB classifier is that it requires a large set of the 

labeled training documents for learning accurately. The cost of labeling documents is 

expensive, while unlabeled documents are commonly available. By applying the EM 

algorithm, they can use the unlabeled documents to increase the available labeled 

documents in the training process. They parallelized the algorithm by using the idea 
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of data parallel computation. They evaluated the parallel implementation on a large 

Linux PC cluster called PIRUN Cluster consists of 72 nodes. They used the 20 

Newsgroups data set. It contains approximately 20,000 documents. The experimental 

results on the efficiency indicate that the parallel algorithm has good speed up 

characteristics when the problem sizes are scaled up.  

 

Abu Tair and Baraka [20] propose a parallel learning algorithm based on the k-

NN algorithm. They evaluated the parallel implementation on a multicomputer 

cluster that consists of 14 computers, using C++  programming language and the 

MPI library. They use the proposed parallel classifier to enhance the level of 

classification speedup, scalability, and accuracy of large-scale Arabic text. They used 

OSAC Arabic corpus collected from multiple websites, the corpus includes 22,428 

text documents. Each text document belongs to 1 of 10 categories (Economics, 

History, Entertainments, Education and Family, Religious and Fatwas, Sports, Heath, 

Astronomy, Low, Stories, and Cooking Recipes). The corpus contains about 

18,183,511 (18M) words. 

They applied suitable term stemming and pruning methods as feature reduction 

techniques, and finally apply suitable Term Frequency-Inverse Document Frequency 

(TF-IDF) weighting scheme to enhance text document representation as feature 

vectors. The experimental results on the performance indicate that the parallel 

classifier design has very good speedup characteristics when the problem sizes are 

scaled up. Also, classification results show that the proposed classifier has achieved 

accuracy, precision, recall, and F-measure with higher than 95%. This work supports 

our approach in terms of using cluster, but the volume of text documents used in 

corpus is small-scale compare to large volume of text documents with high number 

of features. We will compare our approach to this approach in term of classifying 

large-scale Arabic text classification.  

 

Chu et al. [21] Propose a parallel learning algorithm. The parallel algorithm based 

on Naïve Bayes using MapReduce model on Shared-memory system. They specify 

different sets of mappers to calculate them, and then the reducer sums up 

intermediate result to get the final result for the parameters. Their experiment was on 
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a 16 way Sun Enterprise 6000 running Solaris 10. They evaluated the average 

speedup on ten datasets from the UCI Machine Learning repository with different 

size (from 30000 to 2500000), which makes their report more convincing. The 

results showed that the speedup was [4 nodes, 4x], [8 nodes, 7.8x], [16 nodes, 13x]. 

 

Esmaeili et al. [22] use distance detection in vector space model  for classifying 

the News articles, to calculated distances between weighted frequency vectors of 

each category, and the News vector determine its category by finding minimum 

distance with weighted frequency vector of categories. They used MapReduce, as a 

distributed programming model, to implement and execute distributed classification 

of the news articles, in order to increase performance, calculation accuracy and 

decrease execution time. They use Hamshahri News dataset that contain the News 

about 12 years (1996-2007). The dataset include 314106 News files that its volume is 

about 1.2 GB. The News is categorized in 9 main categories and 26 different sub-

categories. They use 80 percent of the dataset for train phase and the remaining 20 

percent for test phase. 

 They implemented proposed distributed classifier, using four machines with 16 

cores AMID Opteron 800 MHz processor, 32 GB of RAM and 500 GB of storage 

volumes. There is LAN network with 100 Mbps that connect the four machines 

together. Also for building their cluster, they used 1.0.4 version of the Hadoop and 

Linux CentOS6.2 and Redis 2.6 for storing result.  The result show that For train and 

test dataset with 80-20 ratio, the average values of precision and recall are 29.66% 

and 53.88% in 35 (number of main categories plus sub-categories count) categories 

and these metrics are 52.67% and 63.75% for 9 main categories, and also, the 

processing time with 22 Map function and 100 Reduce function is about 1mins, 51 

sec while using those methods with non-distributed manner need some weeks and 

months according to the volume of data. This work supports our approach in terms of 

using cluster and MapReduce, a distributed programming model which is a viable 

and attractive programming model for processing large data sets with a parallel and 

distributed algorithm on a cluster. 
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Zhou et al. [23] propose model of  parallel classifying  algorithm, The parallel 

algorithm is based on Naïve Bayes algorithm with Map Reduce. They build a small 

cluster with 3 business machines (1 master and 2 slaves) on Linux, and each machine 

has two cores with 3.10 GHz, 4GB memory, and 500GB disk. They use the Hadoop 

version 0.20.2 and java version 1.6.0_26. They test efficiency and scalability of 

parallel Naïve Bayes algorithm proposed on seven datasets from the UCI Machine 

Learning repository with different size (from 178 KB to 1 MB ). 

The Naïve Bayes classifier implemented by the MapReduce trains the training 

data sets to generate the classification model, and then use the model to classify the 

removed category samples. The proposed model  improved algorithm performance 

when using with large data set; moreover the parallel algorithms can not only process 

large datasets, but also enhance the efficiency of the algorithm.  

This work supports our approach in terms of using cluster and MapReduce, a 

distributed programming model which is a viable and attractive programming model 

for processing large data sets with a parallel and distributed algorithm on a cluster. 

2.3 Summary  

In this chapter, we presented a review of existing works closely related to our 

research  and identified the drawbacks of existing approaches; we classified the 

methods of improving the efficiency of sequential classification algorithms into two 

categories: The first category includes approaches using the a combination of feature 

selection strategies that decrease the computation complexity, reduce the 

dimensionality, and improve the accuracy rate of classification. The second category 

includes approaches using the parallel computing of improving the efficiency of the 

sequential NB algorithm; their platform comprises a multiprocessor with shared 

memory that connects multiple processors to a single memory system. 

 In the next chapter, we present the theoretical foundation underlying our research. 
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3 Chapter 3 Theoretical Foundation 

In this chapter, the fundamental concepts which represent the basis for 

understanding our research are presented. First, text classifiers are introduced, 

followed by providing an overview to Naive Bayes classifier which is used in our 

proposed parallel classifier, and K-Nearest neighbor classifier which is used in the 

comparison with our proposed approach. Then Large-scale Arabic text, stemming 

method, and text representation are explained. Also MapReduce pattern, Apache 

Hadoop, Hadoop Distributed File System (HDFS), Massage Passing Interface (MPI), 

and Apache Mahout library are presented in detail. Finally we present an overview of  

used performance metrics and classification measures. 

3.1 Text  Classifiers 

Many of machine-learning algorithms have been successfully used in text 

classification such as Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), 

Artificial Neural Networks, Naïve Bayes (NB) probabilistic Classifier, Random 

Forest, Distance Detection and Decision Trees. The goal of classification is to build a 

set of models that can correctly classify the class of the different objects. The input to 

these methods is a set of objects (i.e., training data), the classes which these objects 

belong to (i.e., dependent variables), and a set of variables describing different 

characteristics of the objects (i.e., independent variables). Once such a predictive 

model is built, it can be used to predict the class of the objects for which class 

information is not known a priori. The key advantage of supervised learning methods 

over unsupervised methods is having an explicit knowledge of the classes [1, 24]. 

Naïve Bayes (NB) algorithm is used as classifier in our work, and K-Nearest 

Neighbors (K-NN) is used as comparison classifier in our proposed approach. In the 

next sections, we provide a brief  overview of NB and K-NN classifiers. 

3.1.1 Naïve Bayes (NB) Classifier 

Naïve Bayes classifier is a simple probabilistic classifier which works by applying 

the Bayes' theorem along with naïve assumptions about feature independence. It 

assumes that the effect of an attribute value on a given class is 
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independent of the values of the other attributes. This assumption is called class 

conditional independence [1, 24]. It classifies data in two steps [25]:  

a. Training Step: Using the training samples, the method estimates the 

parameters of a probability distribution, assuming features are conditionally 

independent in the given class. 

b. Prediction Step: For an unlabeled test sample, the method computes the 

posterior probability of that sample belonging to each class. The method 

then classifies the test sample according the largest posterior probability. 
 

 Derivation of Naïve Bayes Classifier 

Depending on the precise nature of the probability model, Naïve Bayes 

classifiers can be trained very efficiently in a supervised learning setting. In many 

practical applications, parameter estimation for Naïve Bayes models uses the 

method of maximum likelihood [23, 24, 26]. Naïve Bayes classification algorithm 

is described as follows [27]: 

 Let D be training set of tuples and their associated class labels. Each tuple 

is represented by a n-dimensional attribute vector, X= (x1, x2, … xn), n 

measurements made on the tuple from n attribute, respectively, A1, A2, …, 

An.  

 Suppose that there are m classes, c1, c2,…, cm. Given a tuple, X, the 

classifier will predict that X belongs to the class having the highest 

probability, conditioned on X. That is, the NB classifier predicts that tuple 

X belongs to the class     If and only if  

   (  | )   (  | )                 (3.1) 

 

Thus we maximize  (  | ). The class    for which  (  | )is the 

maximized is called the maximum posteriori hypothesis. By Bayes’ 

theorem (Equation 3.2). 

 

           (  | )   
 ( |  ) (  )

 ( )
                           (3.2) 

 As  ( ) is constant for all classes, only  ( |  ) (  ) need be 

maximized. If the class prior probabilities are not known, then it is 

commonly assumed that the classes are equal. 
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 Based on the assumption is that attributes are conditionally independent 

(no dependence relation between attributes),  ( |  ) is computed using 

Equation 3.3. 

 

                       ( |  )  ∏  (  |  )
 
                  (3.3) 

 

The probabilities   (  |  )  (  |  )    (  |  ) can be estimated 

from the training sample, where:  

a. If    is categorical, then  (  |  ) is the number of tuples    in D 

having value    for     divided by|    |, (number of tuples of    

in D).  

b. if    is continuous-valued,  (  |  ) is usually computed based on 

a Gaussian distribution with a mean μ and standard deviation   

and,  ( |  ) is: 

 

              ( |  )   (          )          (3.4) 

 

             (          )  
 

√   
 
(   ) 

                         (3.5) 

Where μ is the mean and    is the variance. If an attribute value 

doesn’t occur with every class value, the probability will be zero, and 

a posteriori probability will also be zero. 

 In order to classify an unknown sample X,  ( |  ) (  ) is evaluated for 

each class   . Sample X is then assigned to class    if and only if  

 

                   (  | )   (  | )                   (3.6) 

           Where  

                               ( |  )  ∏  (  |  )
 
                      (3.7) 

 

NB classifier has high computational efficiency as compared to other wrapper 

methods because it is inexpensive since it is considered linear time O(n) complexity 

classifier. Informally, this means that for large enough input sizes the running time 

increases linearly with the size of the input [28]. NB classifier is simple, accurate, 
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fast, low variance due to less searching, handles streaming data well, and easy to 

implement.  

It is based on a simplistic assumption in real world and is only valid to multiply 

probabilities when the events are independent. Despite this, NB often works much 

better in many complex real-word situations than one might expect [29]. It exhibits 

high accuracy and speed when applied to huge amounts of data [23]. Thus chosen to 

be the proposed classifier in our approach. 

3.1.2 K-Nearest Neighbors (K-NN) Classifier 

The K-NN algorithm [24] is one of the supervised learning algorithm, the purpose 

of this algorithm is to classify a new object based  on attributes and training samples. 

It is based on learning by analogy, that is, by comparing a given test tuple with 

training tuples that are similar to it. The training tuples are described by n attributes. 

Each tuple represents a point in an n-dimensional space. In this way, all training 

tuples are stored in an n-dimensional pattern space. When given an unknown tuple, a 

K-NN classifier searches the pattern space for the k training tuples that are closest to 

the unknown tuple. These k training tuples are the k nearest neighbors of the 

unknown tuple. Closeness is defined in terms of a distance metric, such as Euclidean 

distance.  

The Euclidean distance between two points or tuples, X1=(x11,x12,…,x1n) and 

X2=(x21,x22,…,x2n) ,  is  

   (      )   √∑ (       ) 
 
                (3.9) 

K-NN algorithm as described in [24, 27] can be summarized as : 

 Determine the parameter k i.e., the number of nearest neighbors 

beforehand. 

 Calculate the distance between the query-instance and all the training 

samples using Euclidean distance as in equation (3.9).  

 Distances for all the training samples are sorted and nearest neighbor 

based on the k-th minimum distance is determined. 

 Since the K-NN is supervised learning, get all the categories of your 

training data for the sorted value which fall under k. 

 The predicted value is measured using the majority of nearest neighbors. 
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K-NN works well even when there are some missing data. K-NN is good at 

specifying which predictions have low confidence and has some strong consistent 

results. K-NN algorithm has several disadvantages such as: the complexity of 

computation time needed to traverse all the training documents [30], and the 

difficulty to determine the value of k [31], where a series of experiments with 

different k values should be conducted to determine the best value of k. 

K-NN algorithm based classifier approach [20] (see Section 2.2) is used in our 

research as basis for comparison with our proposed approach. 

3.2 Large Scale Arabic Text Classification  

 Most of text classification algorithms have problems with computational 

complexity of training phase with large scale text documents. The huge amount of 

text documents with high dimensionality (i.e. the features or attributes and in our 

case they are the words that occur in documents) and in particular in Arabic language 

which is a rich and has complex morphology requires a large amount of 

computations for classification. Large-scale Arabic text means the large number of 

text documents that are represented as records (thousands of documents) and the 

large number of words that are represented as features or attributes in the vector 

space model after preprocessing the text (thousands of features). In order to 

overcome  the complexities of large scale Arabic text classification, researchers 

developed some techniques such as: feature selection, feature extraction and used 

distributed computing as platform for computations. 

 Feature selection is a basic approach for reducing feature vector size. Different 

feature selection methods are used in Arabic text classification such as: Term 

Frequency, Document Frequency, and Information Gain [32, 33, 34].  

 Feature extraction is a basic approach for high dimensional feature space to be 

transformed into low dimensional feature space. For Arabic text classification, 

words are treated as a feature using their orthographic form, stems which the 

suffix and prefix were removed from the orthographic form of the word,  and the 

word root, which is the primary lexical unit of a word [35, 36]. 

 Distributed computing is a basic computing model using different parallelization 

techniques such as: Massage Passing Interface (MPI), and MapReduce. In [20], 
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they proposed a K-NN parallel learning algorithm to classify large-scale Arabic 

text using MPI Model. In our research we will present new approach to classify 

large scale Arabic text documents using NB algorithm with MapReduce model. 

MapReduce model is introduce in Section 3.5. 

3.3 Stemming Methods 

 A stem is a natural group of words with equal (or very similar) meaning. 

Stemming algorithm is a computational process that gathers all words that share the 

same stem and has some semantic relation [37]. The main objective of the stemming 

process is to remove all possible affixes and thus reduce the word to its stem. After 

the stemming process, every word is represented by its stem [38].  Stemming is 

needed in many applications such as natural language processing, compression of 

data, and information retrieval systems. Many stemmers have been developed for 

English and other European languages. These stemmers mostly deal with the 

removal of suffixes as this is sufficient for most information retrieval purposes. Most 

Arabic language stemming approaches fall into three classes [39, 37]: 

 Root-Based stemmers use morphological analysis to extract the root of a given 

Arabic word. 

 Statistical stemmers attempt to group words variances using clustering 

techniques. 

 Light Stemming reduces Arabic words to their light stems by removing 

frequently used prefixes and suffixes in Arabic words. Light stemming is 

chosen because it allows remarkably good information retrieval without 

providing correct morphological analyses [40]. 

3.4 Text Representation  

Text documents should be represented in some way that enables the classifier to 

interpret them an indexing method is needed to transform text documents represented 

by strings of characters to another interpretable representation of the contents of the 

documents. The most popular approach for data representation is the vector space 

model. 
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3.4.1 Vector Space Model 

The Vector Space Model (VSM) represents documents as vectors in the space, 

each vector can be represented by the weights of terms in a document with respect to 

the dimension of the space. The number of dimensions equals the number of terms or 

keywords used, we can represent this as a two way matrix where the columns 

represent terms and rows represent documents in the set, the entries of the matrix are 

the weights of term i in document j. In the basic two dimensions Cartesian plane, a 

vector is represented by two points, each consists of the ordered pair x and y. To 

represent a vector of  N terms we need N dimensions [41]. 

Given a collection of documents, its feature vectors are represented by a word-by-

document matrix, where each entry represents the weight of a word in a document. 

The aim of term weighting schemes is to enhance text document representation as 

feature vector. There are several popular term weighting schemes such as:  

 Binary Term Occurrences (BTO): which indicates absence or presence of a 

word with booleans 0 or 1 respectively. 

 Term Occurrences (TO): the number of occurrences of term ti in the 

document dj. 

 Term Frequency-Inverse Document Frequency (TF-IDF): is a numerical 

statistic that is used to evaluate how important a word is to a document in a 

collection or corpus. It is often used as a weight factor in information retrieval 

and text mining. The TF-IDF value increases proportionally to the number of 

times a word appears in a document. TF-IDF undervalues terms that frequently 

appears in documents belonging to the same class and gives greater weight to 

terms that represent the characteristic of the documents in its class [36, 41]. 

 The calculation of  TF-IDF is defined as follows [42]: 

a. The term count in the given document is simply the number of times a 

given term appears in that document. For the term ti with the particular 

document dj , its term frequency (TF)  is define as follows: 

 

       
    

∑      
                          (3.8) 
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Where        is the number that the term ti occurred in document dj, and 

the denominator is the sum of occurrences of all terms in document dj. 

b. The inverse document frequency (IDF) can be calculated from document 

frequency as follows: 

          
| |

|*         +|
                         (3.9) 

Where |D| is the total number of documents in the corpus, and  *      

   + is the number of documents, where the term ti appears. The IDF of a 

term is low if it occurs in many documents and high if the term occurs in 

only few documents.  

c. The TF-IDF weight is the product of TF and IDF. The formula is defined 

as follows:  

(      )                          (3.10) 

3.5 MapReduce Overview 

MapReduce (MR) is a parallel programming model introduced by Google in 

2004, and is used in processing and generating large data sets implementation [43]. It 

is useful for tasks such as data mining, log file analysis, financial analysis and 

scientific simulations, filtering documents by tags, counting words in documents, and 

extracting links to related data [44, 45]. The advantages of  MapReduce is simple and 

easy to use, flexible does not have any dependency on data model and schema, 

basically independent from underlying storage layer, high scalability, and highly 

fault-tolerant because each node in the cluster is expected to report back periodically 

with completed work and status updates [46]. 

3.5.1 MapReduce Architecture 

The basic idea of MapReduce comes from divide and conquer algorithms which 

are used to partition a large problem into smaller subproblems [47]. Key-value pairs 

form the basic data structure in MapReduce. MR algorithm involves imposing key-

value structure on arbitrary datasets. The programmer defines a mapper and a reducer 

with the following signature: 

    (      )       ,(      )- 

       (        ,  -)   ,(      )- 

http://searchsqlserver.techtarget.com/definition/data-mining
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The mapper is applied to every input key-value pair (split across an arbitrary 

number of files) to generate an arbitrary number of intermediate key-value pairs. The 

reducer is applied to all values associated with the same intermediate key to generate 

output key-value pairs. Implicit between the map and reduce phase is a distribute 

"group by" operation on intermediate (shuffle phase). Intermediate data arrive at each 

reducer in order, sorted by the key. Output key-value pair from each reducer is 

written in r files on the distributed file system, where r is the number of reducer [48]. 

Figure 3.1 shows the overall flow of a MapReduce operation. When the user 

program calls the MapReduce function, the following sequence of actions occur: 

1. MapReduce in user program will divide the input files into N pieces with size 

varies from 16 MB to 64 MB. 

2. Then it will start many programs on a cluster of different machines. One is 

master program and the rest are workers, master can assign M map tasks and 

reduce tasks to an idle workers. 

3. If a worker is assigned a map task, it will parse the input data partition and 

output key/value pairs, then pass the pair to a user defined Map function. The 

intermediate key/value pairs are buffered in memory. 

 

Figure ‎3.1: MapReduce Operation [13] 
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4. Periodically, the buffered pairs are written to local disk. After that, the local 

machine will inform the master of the location of these pairs. 

5. If a worker is assigned a reduce task, it will read entire buffer by using remote 

procedure calls. After that, it will sort the temporary data based on the key. 

6. Then the reduce worker will deal with  all of intermediate data. For each key 

and according to set of values, the reducer passes key/value pairs to a user 

define reduce function. The output is the final output of this partition. 

7. After all of the mappers and reducers have finished their work, the master will 

return the result to user programs. The output is stored in F individual files. 

A simple example in [49] that is often used to explain how MapReduce works in 

practice. It consists in counting the occurrence of single words with in a text. An 

overview of how MapReduce works is shown in Figure 3.2. 

 

1. Input data (on a distributed file system).  

2. Input data are partitioned into smaller chunks of data.  

 

Figure ‎3.2: MapReduce Programming Model Example [50] 
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3. For each chunk of input data, a "map task" runs which applies the map 

function resulting output of each map task is a collection of key-value pairs.  

4. The output of all map tasks is shuffled for each distinct key in the map output; 

a collection is created containing all corresponding values from the map 

output.  

5. For each key-collection resulting from the shuffle phase, a “reduce task” runs 

which applies the reduce function to the collection of values. The resulting 

output is a single key-value pair.  

6. The collection of all key-value pairs resulting from the reduce step is the 

output of the MapReduce job. 

3.6 Hadoop  

Hadoop [50] is an open source framework for writing and running distributed 

processing of large-scale data sets on high performance cluster. Distributed 

computing is wide and varied field, but the key distinctions of Hadoop are: 

 Accessible: Hadoop runs on large clusters of commodity machines or on 

cloud computing services. 

 Robust: Because it is intended to run on commodity hardware, Hadoop is 

architected with the assumption of frequent hardware malfunctions. It can 

gracefully handle most such failures. 

 Scalable Hadoop scales linearly to handle larger data by adding more nodes to 

the cluster. 

 Simple: Hadoop allows users to quickly write efficient parallel code. 

Hadoop accessibility and simplicity give it an edge over writing and running large 

distributed programs. On the other hand robustness and scalability make it suitable 

for even the most demanding jobs. Figure ‎3.3 shows a Hadoop cluster with its 

distributed computing nodes connected through on Ethernet switch. 
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Figure ‎3.3: The Architecture of the Hadoop Cluster [51] 

 The cluster runs jobs controlled by the master node, which is known as the 

NameNode and it is responsible for chunking the data, cloning it, sending the data to 

the distributed computing nodes (DataNode), monitoring the cluster status, and 

collecting/aggregating the results. Hadoop focuses on moving code to data instead of 

vice versa. Hadoop is composed into two main subsystems: Hadoop Distributed File 

System (HDFS) is used for storing the data and MapReduce (MR) used to 

manipulate the data which is stored on the file system [14].  

In the next section we describe HDFS components while MapReduce is explained 

in Section 3.5. It offers reliable and scalable distributed computing [51]. It is applied 

in several areas such as text mining, website rating, opinion mining, users' 

recommendation in some social media, weather forecasting, data analysis, and many 

problems that require large scale processing [52].  

3.6.1 Small Number of Large Files vs Large Number of Small Files in Hadoop  

Hadoop [14] is designed to process very large files; "very large" in this context 

means files that are hundreds of megabytes, gigabytes, or terabytes in size. It works 

better with a small number of large files than a large number of small files. One 

reason for this is that HDFS generates splits in such a way that each split is all or part 

of a single file. If the file is very small ("small" means significantly smaller than an 
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HDFS block) and there are a lot of them, then each map task will process very little 

input, and there will be a lot of them (one per file), each of which imposes extra 

bookkeeping overhead. Compare a 1 GB file broken into sixteen 64 MB blocks, and 

10,000 or so 100 KB files. The 10,000 files use one map each, and the job time can 

be tens or hundreds of times slower than the equivalent one with a single input file 

and 16 map tasks.  

Hadoop becomes a bottleneck when handling massive small files because the 

name node use more memory to store the metadata of files and the data nodes 

consume more CPU times to process massive small files. In [54] it is shown that 

merge massive small files into single large file improve the performance of 

processing of small files. 

3.6.2 Hadoop Distributed File System 

Hadoop distributed file system (HDFS) [14, 54, 55] is a distributed file system 

designed for storing and supporting very large files with streaming data access 

pattern (write-once and read-many times) running on a cluster of low-cost hardware. 

HDFS is built around the idea that the most efficient data processing pattern is a 

write-once, read-many-times pattern. It uses replication of data stored on DataNode 

to provide reliability. Files in HDFS are divided into block size chunks (default size 

is 64MB), which lead to minimizing the time necessary for seeks, further blocks 

allow for an easy mechanism to provide fault tolerance and availability [56]. It 

provides fast, scalable access to the information which is stored in Hadoop [25]. The 

system architecture of HDFS as shown in Figure ‎3.4 has two types of nodes; a 

NameNode as master and a number of DataNode as workers [55]. 

 NameNode 

The master NameNode manages the file system namespace. It keeps the file 

system tree and metadata for files and directories in the tree, and determines the 

mapping of data blocks containing the file in data nodes. While storing/writing 

data to HDFS, NameNode chooses a group of nodes (by default three) to store the 

block replicas.  
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Figure ‎3.4: Hadoop Distributed File System Architecture [56] 

 

 DataNode 

The workers DataNodes are responsible for storing the blocks of files as 

determined by the NameNode. Also it is responsible for creating, deleting and 

replicating blocks of files after being instructed by the NameNode.  

3.7 Massage Passing Interface (MPI) 

MPI [57] is a widely-used message passing standard. Its basic functions are 

defined by the MPI standard and with implementations targeting  distributed memory 

architectures. One of the key objectives of the MPI standard is to provide portability 

between different parallel machines. MPI defines its own data types which are used 

for data transfers and mapped to specific machine-specific data types by the MPI 

library implementation. 

Unlike MapReduce, data in MPI architectures is shared arbitrarily between nodes 

for synchronization and this is not reliable because the overhead due to the network 

traffic could dramatically affect performance [58]. Other differences between the two 

paradigms are stated in Table ‎3.1. 
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Table ‎3.1: MPI and MapReduce Comparison [57] 

Items MPI MapReduce 

What they are 
General parallel programming 

paradigm 

A programming paradigm and 

its associated execution 

system 

Programming 

model 

Massage passing between 

nodes 

Restricted to MapReduce 

operation 

Data 

organization 
No assumptions Files can be shared 

Execution 

model 
Node are independent Map/Shuffle/Reduce 

Usability Difficult to debug 
Simple concept, could be hard 

to optimize 

Key selling 

point 

Flexible to accommodate 

various applications 

Flow through large amount of 

data with commodity 

hardware 

 

3.8 Apache Mahout Library 

Mahout [59] is a scalable machine learning library running on Apache Hadoop. It 

provides various machine learning techniques such as recommender engines 

(collaborative filtering), clustering, and classification. The core of clustering, 

classification, collaborative filtering algorithms realization is based on Map Reduce 

paradigm. Its machine learning algorithms are written in java and some portion are 

built upon Apache Hadoop distributed computation. It is designed to be highly 

scalable and with the increase of the number of records required to train a model, the 

time and memory required for training a Mahout algorithm may not increasing 

linearly, making scalable algorithms in Mahout widely useful [60].  

It aims to be the machine learning tool of choice when the collection of data to be 

processed is very large. All implemented algorithms run in a single machine and 

some of them are implemented in distributed mode using MapReduce paradigm. It 

includes a number of classification algorithms such as: Naïve Bayes, Neural 

Networks, Support Vector Machines, Logistic regression, K-Means, and Canopy 

Clustering. We choose Mahout’s Naïve Bayes algorithm as the classifier in our 
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research because it is a general framework for MapReduce machine learning 

algorithms and it can be deployed on top of Apache Hadoop leveraging the full 

scalability it provides. 

3.9 Performance Metrics and Classification Measures  

The performance metrics is a measure of a systems performance. There are 

several performance metrics such as: speedup, efficiency and scalability, and many 

classification measures like: accuracy, precision, recall, and F-measure using to 

evaluate the parallel classifier [61]. They will be used in later to evaluate the 

effectiveness of our proposed parallel classifier. 

3.9.1 Confusion Matrix  

The confusion matrix [24] is one of popular tools to evaluate the performance of a 

model in tasks of classification or prediction. The confusion matrix is represented by 

a matrix with each row representing the instances in a predicted class, while each 

column representing in an actual class as shown in Table ‎3.2. 

Table ‎3.2: Simple Confusion Matrix 
 

 
 

 True Positive (TP): refers to the number of positive instances that are 

correctly labeled by the classifier. 

 True Negative (TN): refers to number of negative instances that are correctly 

labeled by the classifier. 

 False Positive (FP): refers to the number of positive instances that are 

incorrectly labeled by the classifier. 

 False Negative (FN): refers to number of negative instances that are 

incorrectly labeled by the classifier. 
 
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3.9.2 Accuracy 

 refer the percentage of test set instances that are correctly classified by the 

classifier. 

                   
(     )

(           )
       (   ) 

3.9.3 Precision 

 refer to the percentage of predicted documents for the given topic that are 

correctly classified. 

           
  

(     )
                                                (   ) 

3.9.4 Recall 

 refers to the percentage of the total documents for the given topic that are 

correctly classified. 

         
  

(     )
                                                     (   ) 

3.9.5 F-measure 

 it is a standard statistical measure that is used to measure the performance of a 

classifier system. The F-measure is an average parameter based on precision and 

recall. 

           
                   

                
                (   ) 

3.9.6 Speedup 

A standard metric to measure the efficiency of a parallel algorithm is the speed up 

factor [62]. It is defined as the ratio of the time required to solve a specific problem 

on a single processor to the time required to solve the same problem on a parallel 

computers with N identical processing elements [63].  

It is defined as: Sn = ts / tp , where ts is the execution time using only one 

processor and  tp  is execution time using n processor. The maximum speed that can 

be reached is linear speedup.  
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3.10 Summary  

In this chapter, we presented an overview of the basic theoretical foundation 

related to our research. We present text classifiers, Naïve Bayes classifier, K-Nearest 

Neighbor classifier, text representation, large scale Arabic text classification, 

MapReduce, Hadoop platform, Hadoop distributed File System, Massage Passing 

Interface, and Apache Mahout library. Finally we described performance metrics and 

classification measures that are used to evaluate the effectiveness of a parallel 

classifier. 

In the next chapter, we provide a detailed description of the proposed parallel 

classifier approach. 
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4 Chapter 4 The Proposed Parallel Classifier Approach 

In this chapter we present the proposed parallel classifier approach. We describe 

all steps of the proposed parallel classifier using algorithms and diagrams. We use 

MapReduce model to solve the problem of processing a large scale Arabic text. First, 

we present the steps of collecting Arabic text documents and applying text 

preprocessing. Second, we describe the steps of splitting and distributing the 

documents of the collected corpus as MapReduce tasks. Third, we present the steps 

of calculating the term frequency (TF) and term frequency-inverse document 

frequency (TF-IDF) using MapReduce model. Finally, we present the Naïve Bayes 

text classification using MapReduce model. 

4.1 The Overall Classification Approach 

Figure ‎4.1 shows the workflow of the parallel classification process. It is roughly 

divided into four kinds of activities:  

1. Corpus collection and cleaning activities. The corpus is collected and 

divided into text documents, then text preprocessing is applied to remove non-

Arabic text, perform tokenization, remove Arabic stop word and perform light 

stemming.  

2. HDFS document uploading, splitting and configuration activities. An 

important step in developing a parallel algorithm is to split the problem into 

tasks that can be executed in parallel by identifying the data on which 

computations to be performed, and then partitioning this data across various 

tasks. A task performs the computations with its part of data. In our classifier, 

the input training data set (corpus) are transferred into a sequence of files then 

uploaded to HDFS in the MapReduce setting. HDFS splits corpus into 16 MB 

to 64 MB chunks each presented as a map task and then distribute them 

among workers with replication 3 times by default. Also, it assigns the 

parameter configuration such as: the documents number, the classes number 

and the documents number in each class of corpus. 

 



Chapter 4 The Proposed Parallel Classifier Approach 

32 

 

3. Term-specific MapReduce-based calculations activities.  Each MapReduce 

worker node receives its assigned data and calculates parameters such as: 

word frequency and word counts, then calculates the term frequency- inverse 

document frequency (TF-IDF) value to generate the vector space model.  

4. Naïve Bayes MapReduce computation activities. The result of the last step 

is divided into training set and testing set. The master node assigns workers to 

calculate probabilities of each class of training set using Naïve Bayes 

MapReduce classification. Finally, the master node assigns another 

MapReduce workers nodes to calculate conditional probabilities of each 

feature value in the testing to predicting the class for each new document.  

 

Figure ‎4.1: Workflow of the Proposed Approach 

Next we present the details of these classification activities comprising the 

proposed approach.  
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4.2 Corpus Collection   

One of the difficulties that encountered this work in the field of Arabic language 

processing is unavailable suitable large volume Arabic corpus for evaluating text 

categorization algorithms. 

 Different training data sets are available for text classification in English while 

few free Arabic training data sets are available to researcher. The most existing 

popular Arabic text corpus used in text mining field cannot meet our experiments 

data size for real large-scale Arabic text corpus. Therefore, we choose to collect real 

large-scale Arabic text corpus from Shamela library [64] which contains a huge 

collection of data in different Arabic fields. 

To build a text dataset which involves compiling and labeling text documents into 

corpus, we collect the documents from Shamela library using tools available in 

Shamela program. The process includes converting document files into text format 

with UTF-8 Encoding using Zilla a word to text converter by software informer as 

shown in Figure 4.2. 

 

Figure ‎4.2: Corpus Building Steps 

The collected Shamela corpus is categorized into eight main topics; Creed, Fiqh, 

Al-Hadith, History, Sirah, Tafsir, Trajem and Usual. This collection includes 

101,647 text documents that constitute 5,310 MB in size. 

4.3 The Parallel Classification as a MapReduce Model 

The process of building the parallel Naïve Bayes classifier constitutes the core of 

our approach. It includes three main phases: text preprocessing phase, training phase, 

and testing phase. These phases are shown in Figure 4.3.  
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Figure ‎4.3: The Proposed Parallel Classifier Approach 
 

As a MapReduce processing model, in the first phase two steps are conducted: (i) 

the dataset D is divided into m subsets {D1, D2,…, Dm}. (ii) the text preprocessing is 

performed using two MapReduce computations. One MapReduce for calculating the 

parameters required in the next MapReduce. The outputs of this step are <(term, 

docname), n)> pair, where n is the word count in document and <(term, docname), 

(n, N)> pair, where N is the frequency of word in documents which is the input of the 

next MapReduce. The second MapReduce computes Term Frequency- Inverse 

Document Frequency (TF-IDF) for each term and extracts terms to generate Vector 

Space Model (VSM), the output of this step is <docname, (term, tf*idf)> pair, where 

tf*idf is the weighting term value.  

The second phase (as shown in Figure 4.3) has one MapReduce computation for 

training Naïve Bayes classifier to build the classifier model, the input of  this process 

is the training set <(class, docname), (term, tf*idf)> pair resulted from the first phase 

and the output is <(classn, docnamen), (term: freqeuncy)> pair as classifier model.  

The third phase has one MapReduce computation for testing Naïve Bayes 

classifier, the input of this process is testing set and the classifier model resulting 

from second phase and the output is the classifying classes. 
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Next we present in details these three phases and their relationships based on the 

proposed approach as shown in Figure ‎4.3. 

4.3.1 Text preprocessing phase 

Text preprocessing is performed through two main steps: the first step includes 

removing non Arabic text, tokenizing string to words, stop words removal, and term 

stemming. We have written a specialized Java program to implement these steps in 

sequential manner because they are performed only once at the beginning of 

computation. The second step includes: pruning methods and terms weight 

processing using Mahout library in a distributed manner. Next we elaborate in these 

steps. 

Applying text classification techniques requires usually a preprocessing stage that 

would remove punctuation marks, function words and might return the remaining 

words to their stems or roots. Figure 4.4 shows these detailed steps, they include 

removing non-Arabic text, tokenizing string to words, stop words removal, term 

stemming and pruning methods as a feature reduction techniques, and finally 

applying the suitable term weighting scheme to enhance text document 

representation as feature vector. These steps are details as follows: 

 

Figure ‎4.4: Text Processing Details 

 All the non-Arabic texts such as the digits and punctuation marks, diacritics, 

numbers, non-Arabic letters, and removing kashida except in the term Allah 

were removed. 

 Tokenization consists of separating strings by word boundaries, the Arabic 

Tokenization uses White Space Tokenization because the space is the only 

way to separate words in Arabic language, i.e. dash and hyphen are not used 

to separate words in Arabic. 

 Arabic Stop word removal deletes tokens that are frequent, but generally not 

content-bearing. 
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 Term stemming (Section 3.3) is performed through light stemming because it 

allows remarkably good information retrieval without providing correct 

morphological analysis  

 Term weighting (Section 3.4.2) is reflect the relative importance of each term 

in a document. It performed by using TF and TF-IDF terms as feature vectors 

to generate text representations. 

4.3.1.1 Terms Weight Processing 

We divide the collected corpus into several directories of text documents 

(classes). The master node converts them into a sequence files format. A sequence 

file is a Hadoop class which allows writing a document data in terms binary < key, 

value> pairs. Each sequence file is represented as a record in the corpus. Then master 

node uploads the files to Hadoop Distributed File System (HDFS) and in turn, they 

are distributed to worker nodes. 

In order to better distinguish the documents from different categories, weight is 

assigned to every term (feature) for each document to formulate the terms weighting. 

We design two parallel MapReduce algorithms, one for calculating the parameter of 

terms and the other for calculating TF and TF-IDF of each term.  

More details about calculating TF and TF-IDF are found in Section 3.4.2. 

4.3.1.2 Parameters Computing  

The first MapReduce computation involves two jobs; job 1 for calculating word 

frequency and job 2 for calculating word counts. We define term t as a word and 

docname as document name. 

a. Word Frequency Calculation 

Word frequency is the number of times the word appears globally in all 

documents. The data flow of the frequency count as a MapReduce is shown in Figure 

4.5 and described in Algorithms 4.1 and 4.2. 

The input to mapper function Algorithms 4.1 is docname as the key and contents 

as the value. The output is (term, docname) as the key and 1 as the value.  
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The output is written to an intermediate files which will be processed by the 

reducer function. Then we calculate the number of occurrences of word in document 

directly in the reduce function Algorithms 4.2. 
 

 

Figure ‎4.5: Data Flow of Word Frequency of MapReduce Job1 

The output of reducer function is (term, docname) as the key and n as the value 

where n is the number of occurrences of the term (word) in docname.  

  Algorithm ‎4.1: Word Frequency Mapper-Job 1 
 

input: 

  key: docname;                        /* one text document for each map  

  value: content;                       /* all tokens 'word' of text document 

output: 

  key': (term, docname)         /* a text for each term;  

  value': an integer one. 

Begin 

  separate all the <term, docname > pairs from the input value;    

  for each <term, docname > pair; 

set  key'  as (term, docname); 

set value'  as 1; 

output(key', value');  /* each map data write in intermediate files  

 end for.                             /* data exchange between nodes in shuffle process 

End. 



Chapter 4 The Proposed Parallel Classifier Approach 

38 

 

     Algorithm ‎4.2: Word Frequency Reducer-Job 1 

input: 

  key: (term, docname);    /* intermediate data which is sort in same key   

  value: 1 ;      /* a vector of integer one with the length that the term occurs. 

output: 

   key' : (term, docname); /* the same with key 

  value': n;                    /* sum of integer one of  each term occurs in document 

Begin 

  initialize sum as zero;               

   for each integer v in value; 

       sum + = v ; 

  end for; 

  n =sum; 

  set key'  as (term, docname); 

  set  value'  as n;           /*  number of occurrences of the term in document                    

  output (key', value') ;  /* write the result in intermediate files 

End. 

 

b. Word Counts calculation  

Word counts are the total number of term (word) of each document. The data flow 

of the frequency count of MapReduce is shown Figure ‎4.6 and described in 

Algorithm ‎4.3 and 4.4.  

 

Figure ‎4.6: Data Flow of Word Counts MapReduce Job 2 

The input to this mapper function Algorithm 4.3 is (term, docname) as the 

key and n as the value. The output is docname as the key and (term, n) as the 

value. The output is written to an intermediate files which is processed by 

reducer function. The reducer function Algorithm ‎4.4 computes the total 
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number of frequencies of words in a document. The output of the reducer 

function is (term, docname) as the key and (n, N) as the value where n is the 

number of occurrences of the term (word) in docname and N is the total 

number of term (word) of each document.  

 

 

 

 

Algorithm ‎4.3: Word Counts Mapper-Job 2 

input:                                      /*  the output of term frequency – reducer task 

  key: (term, docname);      

  value: n;                     

output: 

  key' :(term, docname);  

  value': (n,1);                         /*  number of term 'word' of each document 

Begin 

    for each <(term, docname)> pair;      

       set  key'  as (term, docname); 

       set value'  as (n,1); 

      output (key', value') ; /* each map data write in intermediate files 

   end for.                             /* data exchange between nodes in shuffle process 

End. 

Algorithm ‎4.4: Word Counts Reducer-Job 2      

input: 

  key: (term, docname);    /* intermediate data which is sort in same key   

  value: (n,1); 

output: 

   key':  the same with key ; 

   value': sum of one (n,1) in value; 

Begin 

   initialize sum as zero;     

   for each integer v in value; 

       sum += v ; 

   end for; 

   N= sum; 

   set key 'as (term, docname); 

   set value' as (n, N);       /* the total number of word in each document 

   output (key', value'); /* write the result in intermediate files 

End. 
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4.3.1.3 Term Frequency Inverse Documents Frequency (TF-IDF) Computing: 

 The second MapReduce computation involves calculating the TF-IDF of each 

term. The data flow of TF-IDF MapReduce is shown in Figure ‎4.7 and described in. 

Algorithm 4.5 The input to this map function Algorithm 4.5 is the output of the first 

MapReduce (term, docname) as the key and (n, N) as the value. Then we calculate 

TF which is defined as (n/N) and IDF which is defined as (log D/m), where D is the 

total number of all documents and m is the sum of counts for words in the corpus. At 

last, we calculate the TF-IDF according the formula TF-IDF= n/N * log (D/m).  

 

Figure ‎4.7: Data Flow of TF-IDF MapReduce 

The output of the mapper function is the weight vector wt,d. There is no reducer 

function in this MapReduce job. Map output is directly written out.  

      Algorithm ‎4.5: TF-IDF Mapper 

Input:         /*  the output of word counts reducer tasks 

    Key: (term, docname);      

    value: (n, N);  

    D;   /* the number of documents 

    m;  /* the number of word frequency in the corpus 

Output: 

     Key': docname;      

    Value': (term, tf * idf );                     

Begin 

   for each (term, docname) value 

  tf =n/N;                                          /* term frequency  

idf=log(D/m)                                /* inverse document frequency 

set key'  as  docname; 

set  value'   as(term, tf*idf);       /* the weight vector wt,d. 
 Output(key', value');  /* write the result to intermediate files 

   end for. 

End. 
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4.3.2 Training Phase  

This phase has one MapReduce computation for the intensive run of the parallel 

Naïve Bayes classifier, which calculates the conditional probabilities. The data flow 

of the training MapReduce computation is shown in Figure ‎4.8 and described in 

Algorithm ‎4.6 and 4.7. 

 

Figure ‎4.8: Data Flow of Naïve Bayes Training MapReduce 

The input to the map function is the output file of the TF-IDF MapReduce 

computation using (term, docname) as the key and tf-idf as the value. In the training 

phase, the mapper function Algorithm ‎4.6 parsers the class and the value of each term 

(attribute). The output of the mapper function is a combination of (class, docname, 

term, tf*idf) as the key and 1 as the value. This output is written to intermediate files 

which is processed by the reducer function.  

Algorithm ‎4.6: Training Naïve Bayes-Mapper 

input:                               /* training dataset  

   key: (class, docname);      

   value: (term, tf*idf);  

output : 

   key': (class, docname, term, tf*idf); 

   value': the frequency                    /* the frequency of  term value 

Begin 

   for each  sample                           

parse the class and the value of each term 

key': class; 

value': 1; 

output:<key’, value’> pair;  /* count the frequency of each term in category 

for each (term, tf*idf)  value do  
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contract a string as  (class, docname , term, tf*idf); 

set key'  as sting; 

set  value'  as 1; 

output:<key’, value’> pair;   /* write the result to an intermediate files 

    end for. 

   end for. 

End. 

The reduce function Algorithm ‎4.7 counts the frequency of each key. The 

parameter of the Naïve Bayes classifier is calculated, including P(cj) and P(Ai|cj), 

where cj denotes the j-th category, Ai the i-th attribute (term). The reducer function 

aggregates the number of term and category values, and results in form of ((class, 

docname, term: count1), (class, docname, term: count2), … (class, docname, termn: 

countn). This output constitutes the training model.  

Algorithm ‎4.7: Training Naïve Bayes-Reducer 

input :                                   /* output by map function, respectively 

   key: (class, docname, term, tf*idf); 

   value: the frequency; 

output: 

    key': (class, docname, term, and  tf*idf); 

   value': is the result of frequency; 

Begin 

   initialize a counter sum as 0 to record the current statistical frequency of the key; 

   while(value .hasnext ()) 

sum+= value. next().get(); 

set key as  (class, docname, term, tf*idf); 

set value' as sum;                  /* no of document having the term value  

output:<key', value'> pair;   /* write the result to an intermediate files 

  end while. 

End. 

4.3.3 Testing Phase  

This phase has one MapReduce computation for testing the parallel Naïve Bayes 

classifier. The data flow of the testing MapReduce is shown in Figure ‎4.9 and 

described in Algorithm 4.8 and 4.9  

The mapper function Algorithm 4.8 indexes the key in the results produced by 

training phase and reads the corresponding probabilities. Then it calculates the 

probability of the test set belonging to each class. So the label can be predicted 
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according to the maximum posterior. The output of the mapper function are (label, 

correct) as the key and 1 as the value and (label, wrong) as the key and 1 as the 

value. This output is written to intermediate files which is processed by the reducer 

function. 

 

Figure ‎4.9: Data Flow of Naïve Bayes Testing MapReduce 

 

Algorithm ‎4.8: Testing Naïve Bayes-Mapper 

input:    the testing dataset and the output of  naïve Bayes training MapReduce is 

             " training model" 

output:  

    key': label                        /* label is class has set of documents with terms  

   value': the frequency 

Begin 

    parse the label and the value of each term; ;    

   initialize an array prob[ ] , the length is set as the size of the testing set; 

   for each label  in the testing set   

initialize prob[i] as 1.0;                /*  i is the index of the class in the testing set ; 

for each term  do 

   initialize a string as label  with term name and its value ; 

  index the string in the keys of the reduce result, record the corresponding value; 

  prob[i]*=value ; 

end for 

   end for 

   index the class with the maximum value of prob; 

   if the label  is the same to that docname  take "correct" as key' and 1 as value'; 

   output :<value', value' > pair; 

   else take "wrong" as key' and 1 as value'; 

   output :<key’, value’> pair; 

End. 
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The reduce function Algorithm 4.7 states the number of the correct or wrong 

predicted set. Therefore, the correct rate and error rate can be further calculated. The 

reducer function aggregates the number of correct label and wrong label of predict 

set, and results in form of ((label, (correct, frequency)), and ((label, (wrong,  

frequency)). This output constitutes the classifying classes.  

 

Algorithm ‎4.9: Testing Naïve Bayes-Reducer 

input : key, value (key', value' output by map function, respectively) 

output: 

key': label; 

value': the result of frequency for correct key and the result of frequency of wrong key; 

Begin 

   initialize a counter sum1 as 0 to record current  frequency of the correct key; 

   initialize a counter sum2 as 0 to record current  frequency of the wrong key; 

   while(value .hasnext ()) 

sum1+= value. next().get(); 

sum2+= value. next().get(); 

set key as  key'; 

set value' as sum1 and sum2;  

output:<key’, value’> pair;           /* the output of reduce is the  predict classes 

  end while. 

End. 

4.4 Summary 

In this chapter, we presented the proposed parallel classification approach based 

on MapReduce model. We used two parallel MapReduce algorithms to calculate the 

terms weighting; one for calculating the parameter of terms and the other for the  

term frequency (TF) and term frequency- inverse document frequency (TF-IDF) of 

each term. Also, we used  two  parallel MapReduce algorithms, one for training 

phase and the other for testing phase. 

In the next chapter, we present and discuss the experiments carried out to realize 

and  evaluate the proposed classifier. 
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5 Chapter 5 Experimental Results and Analysis  

In this chapter we present and analyze the experimental results to provide 

evidence that our parallel classification approach can enhance speedup, performance 

and preserve the accuracy of the classification. Parallel Naïve Bayes classifier (as 

described in Section 3.1.1) is used in our experiments which is provided as part of 

Mahout library (see Section 3.8). First, we present the corpus used in our 

experiments and give insight into the main characteristics of it. Then we explain the 

experimental environment and the implementation of the parallel MapReduce Naïve 

Bayes classifier using Mahout library. We calculate the different measure of speedup 

and accuracy. Finally we present and discuss the experimental results and make a 

comparison with the MPI based parallel K-NN classifier for large scale Arabic text 

[20] (see Section 2.2).   

5.1 The Corpus 

We used Shamela
1
 as the source of our corpus, where we collected as 101,647 text 

documents that constitute 5,310 MB in size, and 5,100 MB after stop words removal. 

Each text document belongs to 1 of 8 classes (Creed, Usual, Fiqh, Hadith, History, 

Seerah, Tafsir, and Trajem) as shown in Table 5.1. 

We perform all text preprocessing (Section 4.3.1.1) on the corpus. This includes 

non-Arabic text removal, tokenizing string to word, Arabic stop word removal, term 

stemming and term weighting. Specifically, the generated preprocessed corpus 

undergoes the following representations:  

 Light Stemming + TF-IDF 

 Light Stemming + TF 

 Stemming + TF-IDF 

 Stemming + TF  

These representations are needed for the classification experiments. More details 

about text representation are described in Section 3.4. 

                                                 
1
 http://shamela.ws 
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Table ‎5.1: The Shamela Corpus 

Category 
Number of 

Text Document 

Size of  Text 

Document(MB) 

Creed 6,776 373 

Usual 2,245 128 

Fiqh 22,405 1180 

Hadith 23,530 1200 

History 9,232 488 

Seerah 4,641 240 

Tafsir 18,048 973 

Trajem 14,722 784 

Total 101,647 5,310 MB 

5.2 Experimental Environment  

The experimental environment is built on a MapReduce cluster with 16 machines. 

One machine acts as NameNode and the other 15 machines act as DataNodes 

implemented as virtual machines. All the virtual machines have the same 

configuration; Intel Core2 Quad CPU at 2.5 GHz, 4.00 GB RAM, 320 GB hard disk 

drive and operating system is Ubuntu 12.4 Linux with Java JDK 1.6.0, and Hadoop 

version 1.2.0. The number of replicas is set to 3 and the HDFS block size is 64MB. 

All computers connected through local area network with speed of 10/100 Mbps.  

The proposed parallel classifier approach has been implemented on Hadoop 

cluster with Ubuntu 12.4 operating system and Naïve Bayes classifier available in 

Mahout framework, which is highly scalable with large scale data.  

5.3 Implementing the Parallel Naïve Bayes Classifier in Mahout  

The proposed parallel MapReduce NB classifier utilizes Hadoop distributed data 

processing platform, and parallelized NB classification utilizes Mahout library as a 

MapReduce realization of Arabic documents.  
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We follow the steps in [65] for building Hadoop cluster with Hadoop version 1.2. 

For the implementation of the parallel Naïve Bayes classifier using Mahout library, 

we follow the steps in [66, 67]. 

The process of realizing the overall classification approach involves the following 

steps: 
 

 

 Step 1: All text preprocessing ( see Section 4.3.1.1) is performed on Shamela 

corpus. It is saved as text files directories into NameNode then uploaded to 

HDFS. HDFS divides the input Arabic text files documents into data blocks of 

size 64 MB (i.e. by default). It stores the metadata of each block in the 

NameNode (Master Node) and all the data blocks in the DataNodes (Slave 

Nodes). 

 Step 2: the directories containing the text files are converted into Hadoop 

sequence files format. The Naïve Bayes algorithm does not work directly with 

the words and the raw text, but with the weighted vector associated to the original 

document.  

 As the last step in preprocessing phase the terms weight TF and TF-IDF are 

performed in parallel MapReduce based to form vectors files from the sequence 

files. 

 Step 3: Split the vector files into training set and testing set. In our experiment we 

randomly selected 50%, 30%, and 20% of vector files from the whole corpus as 

the testing sets and the remaining percentage of the file vectors as the training 

sets. 
 

 Step 4: the training phase is conducted a parallel NB classifier on the training set. 

The output of this step is Naïve Bayes classifier model in the form of binary files.  

 Finally step , the testing phase is conducted to test the Naïve Bayes Classifier 

model on the testing set has a small number of large files. The performance of the 

model with the testing set by Mahout’s command, which produces the confusion 

matrix shown in Figure 5.1. 
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Figure ‎5.1: The Result of Running Parallel Naive Bayes Classifier Using Mahout 

Figure 5.1 shows the classification accuracy value (97.5%) for a small large files, 

which indicates that  the classification is highly accurate. Also it shows the execution 

time takes for running parallel Naïve Bayes classifier.  

5.4 Experimental Results and Discussion  

This section presents the results of experiments that have been performed. 

5.4.1 The Parallel Classification and its Performance 

In the experiments, we use the collected corpus of 101,647 documents that are 

represented as records and 4096 words that are represented as attributes. We evaluate 

the performance of the parallel classifier with respect to the execution time and 

speedup (as described in Section 3.9.2). For evaluation purposes, we follow the steps 

described in Section 5.3 to split the largest generated text representation for the 

corpus into the training set and the testing set. 

To measure the speedup, we have executed the parallel classifier on a system of 

nodes varied from 2 to 16. Also we used different number of testing documents to 

observe the effects of different problem (documents) sizes on the performance. Three 

sets were used with the number of tested documents 20329, 30459, and 50329 

documents.  
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The parallel algorithm demonstrates essentially linear speedup. When running an 

algorithm with linear speedup, doubling the number of nodes doubles the speedup.  

Table ‎5.2: The Execution Times (sec.) of One Node and Multip-Node Parallel Classifier 

Problems Size  

 

No. of Nodes 

20329 

Documents 

30459 

Documents 

50823 

Documents 

Standalone 1-Node 277.56 367.20 629.64 

Parallel 

Classifier 

2- Nodes 146.88 176.04 259.20 

4- Nodes 136.08 153.36 221.40 

6-Nodes 72.36 89.64 143.64 

8-Nodes 46.44 58.32 88.45 

10-Nodes 44.28 55.08 86.40 

12-Nodes 43.20 52.92 79.92 

14-Nodes 42.12 48.60 70.20 

16-Nodes 38.56 44.60 52.92 

 

In particular, linear speedup is difficult to achieve because the communication 

cost increases as the number of documents increases. Table 5.2 shows the execution 

time in seconds for different documents sizes on various numbers of nodes. 

Table 5.2, shows the execution time of one node with MapReduce takes more 

time than the parallel version. In the parallel version, the execution time decreases 

when the number of processors increases. However, the parallel implementation 

achieves a good execution time compared to that of one node. In addition, the 

execution time increases when the number of documents increases. Figure 5.3 shows 

the curves of the execution time based on Table 5.2  

Several observations can be made on these results. First, the sequential NB 

algorithm is inappropriate for experiment, because the large scale of text document. 

Second, the parallel NB classifier clearly decreases the classification time than one 

node it takes 52.92 seconds on 16 nodes. Notes that the time of  one node with 

MapReduce takes about 10.49 minutes. 



Chapter 5 Experimental Results and Analysis 

 

50 

 

 

Figure ‎5.2: Execution Time for the two Classifiers 

Moreover, the time that the parallel NB classifier spends does not appear to have a 

linear relationship with nodes. This is due to the fact that when running Hadoop jobs, 

starting a cluster first take some time. So when the size of data set is small, the 

processing time is relatively longer. In addition the execution time of parallel 

classifier on 8 nodes to 16 nodes has a few changes.  

Also, we compute the speedup with the formula Sn=ts /tp , where ts is the execution 

time using only one node and tp is execution time using n node which is gained from 

this parallelization as described in Section 3.9.2. The speedup is recorded in Table 5.3 

and is illustrated in Figure 5.4. 
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Table ‎5.3: The Relative Speedup of the Proposed Parallel Classifier 

           Problems Size 

 

   No. of Nodes 

20329 

Documents 

30459 

Documents 

50823 

Documents 

2- Nodes 1.89 2.09 2.43 

4- Nodes 2.04 2.39 2.84 

6-Nodes 3.84 4.10 4.38 

8-Nodes 5.98 6.30 7.12 

10-Nodes 6.27 6.67 7.29 

12-Nodes 6.43 6.94 7.88 

14-Nodes 6.59 7.56 8.97 

16-Nodes 7.20 8.23 11.90 

These results show that the NB classifier has high speedup. Specifically, as the 

size of records increases, the speedup improves. Therefore, the parallel NB classifier 

can treat large scale Arabic text documents efficiently. 

The speedup improves in some cases. For example, on the largest tested set 

(50823 documents), it achieves the relative speedups of 2.43, 2.84, 7.12 and 11.90 on 

2, 4, 8, and 16 nodes, respectively. When a small set of tested documents are used, 

the speedup tend to drop from the linear to sub-linear. The classifier achieves the 

relative speedups of 1.89, 2.04, 5.98, and 7.20 on 2, 4, 8, and 16 nodes respectively. 

The smallest tested documents sizes give similar results. 

 If we increase the number of nodes further, the speedup gains tend to 

significantly drop. Figure 5.4 shows, the speedups for three documents sets. On 4 

nodes the speedup improves from 2.04 to 2.84, on 8 nodes it improve from 5.98 to 

7.12, and on 16 nodes it improves from 7.20 to 11.90. It can be shown that our 

parallel classifier gives better performance with larger volume Arabic text documents 

than with smaller volume Arabic text documents. 
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Figure ‎5.3: The Relative Speedup of the Proposed Parallel Classifier 

5.5 Evaluating Quality of the Classification  

To ensure that the classifier works well with the tested documents, we tested the 

quality of the classification. For the purpose of evaluating the classification results, 

we use confusion matrices (described in Section 3.9.1). We have evaluated the 

obtained classification results using different classification measures such as 

accuracy (Eq. 3.1), precision (Eq. 3.2), recall (Eq. 3.3), and F-measure (Eq. 3.4) 

which are generally common ways of measuring system performance in this field.  

We have conducted two experiments, one with a large number of small files and 

the other with a small number of large files. This is done to overcome the 

performance problem of HDFS caused by small files size  as described in Section 

3.6.1 

5.5.1 Text Classification Performance with a Large Number of Small Files 

In our experiment, we split all generated text representations of Shamela corpus 

into two parts; 50% of the corpus for training (50833 documents with 4K attributes 

for each document) and the remaining 50% for testing (50833 documents). We split 

the corpus in this way to achieve higher classification results. We computed the 
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accuracy, precision, recall, and F-measure for all generated text representations of 

the corpus and the results are recorded in Table 5.4. 

Table ‎5.4: Classification Results for all Text Representations of Small Files 

 Performance  

                         Measures 

        Text   

        Representations 

Accuracy Precision Recall F-measure 

Light Stemming + TF-IDF 84.86 78.8 81.1 79.4 

Light Stemming + TF 82.75 74.8 78.9 75.5 

Stemming +TF-IDF 83.21 78.5 80.8 79.1 

Stemming + TF 81.30 74.5 78.6 75.2 

 

 Figure 5.4 illustrates the classification results for all text representations of small 

files. 

 

Figure ‎5.4: Classification Results for all Text Representations of Small Files 

To summarize the average classification performance results in NB classifier, 

the morphological analysis (stemming, light stemming) and term weighting schemes 

(TF-IDF, TF) have obvious impact on the classifier performance.  

The difference in the accuracy and F-measure results is based on the highest and 

lowest values obtained. Accuracy: 84.86 % - 81.30% = 3.56%, F-measure: 79.4% - 
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75.2% = 4.2%. This emphasizes that the performance of the classifier greatly 

depends on the actual representation of the text to be classified. The result shows 

that, the highest average of accuracy is achieved using light stemming and TF-IDF 

(84.75%), while using stemming and TF (81.30%) give the lowest average of 

accuracy. 
 

5.5.2 Text Classification Performance with a Small Number of Large Files 

In this experiment, we split all generated text representations of the corpus into 

two parts; 50% of the corpus for training (440 documents with 512K attributes for 

each document) and the remaining 50% for testing (440 documents). We 

computed the accuracy, precision, recall, and F-measure for all generated text 

representations of the corpus and the results are recorded in Table 5.5.  

Table 5.5 shows that, the highest accuracy result (97.50%) is when using light 

stemming and TF-IDF text representations and the lowest accuracy result 

(89.86%) is when using stemming and TF text representations. 

Table ‎5.5: Classification Results for all Text Representations of Large Files 

    Performance 

                     Measures 
       Text 

         Representations 

Accuracy Precision Recall F-measure 

Light Stemming + TF-IDF 97.50 97.20 96.59 96.87 

Light Stemming + TF 96.87 96.38 97.91 97.10 

Stemming +TF-IDF 92.27 85.77 88.25 84.07 

Stemming + TF 89.86 86.71 83.59 83.54 

 

 Figure 5.5 illustrates that light stemming and TF-IDF representation has the 

best classification results and increases the classification accuracy. 
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Figure ‎5.5: Classification Results for all Text Representations of Large Files 

After conducting the two experiments, we can note that, there is a great 

difference in improvement of accuracy and F-measure results conducted on the 

two experiments. The accuracy result on large numbers of small files is 

84.86%, while on small numbers of large files was improved to 97.50% as 

shown in Figure 5.6.  

 

Figure ‎5.6: Accuracy of Small Files and Large Files Classification 
 

In addition, the execution times for the parallel NB classification in the two 

experiments are decreased with a small number of large files as shown in Table 5.6 

and Figure 5.7.  
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As the file size increases, the CPU time and MapReduce time are decrease. Also it 

confirms that, there is improvement in the performance of 48.4% and 71.2% of 

execution times of CPU and MapReduce respectively. 

Table ‎5.6: Execution Times of a Small Number of Large Files and a Large Number 

of Small Files 

Technique  

 

  File Size 

CPU  

Time in Millisecond 

MapReduce  

Time in Millisecond 

38KB 132400 162396 

4MB 46155 27270 

 

 

Figure ‎5.7: Execution Times of CPU and MapReudce with Small and Large Files 
 

The performance for each class of the corpus for the best text representation 

(light stemming + TF-IDF) that achieved the best classification results is shown in 

Table 5.7.  
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Table ‎5.7: Classification Results for Light Stemming and TF-IDF 
 

Performance 

 

    Category 
Precision Recall F-measure 

Creed 91.67 94.3 93.0 

Feiqh 97.80 93.7 95.7 

Hadith 93.81 100.0 96.8 

History 95.12 92.9 94.0 

Seerah 90.00 85.7 87.8 

Tafsir 100.00 97.2 98.6 

Tarajm 98.65 97.3 98.0 

Usual 81.82 100.0 90.0 

 

Figure 5.8, depicts the performance for the domains: Tafsir domain has the 

highest performance F-measures (98.6%), because Tafsir has a small size of 

words that are limited and are clearly compared to other domains. Also, it shows 

that Seerah domain has lowest performance F-measure (87.8%) and this is 

because Sirah has a large space domain. 

 

Figure ‎5.8: Classification Results for Light Stemming and TF-IDF 
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5.6 Comparison with Related Approaches 

To complete the evaluation of our Parallel Naïve Bayes classifier, we compare it 

with the MPI-based parallel approach [20] along nine criteria which are the most 

common criteria show in Table 5.8. The most important criteria in the comparison 

are the size of data, the parallel platform, the programming model, and the speed up 

which obviously is affected by these criteria. We mention this comparison to show 

that using the MapReduce model regardless the kind of classification algorithm can 

improve speedup significantly. 

M. AbuTair and R. Baraka in [20] (see Section 2.2), proposed a parallel classifier 

for large scale Arabic text documents. The parallel algorithm is based on the K-NN 

algorithm. They evaluated the parallel implementation on a multiprocessor cluster 

that consists of 14 computers with shared memory. They experimented with a 214 

MB dataset. The speedup results were relative up to 14 processors.  

The comparison between our approach and the MPI-based approach is 

summarized in Table 5.8.  

Table ‎5.8: The Comparison Between MapReduce Model Parallel Approach and MPI-Based 

Parallel Approach 

Criteria 
MapReduce Model Parallel 

Approach 

MPI-based Parallel 

Approach 

Language Mahout java project C++ 

Size of dataset 5138 MB 241 MB 

Type of dataset Shamela corpus OSAC Arabic corpus 

Number of nodes 2, 4, 8, 12, 14, 16 nodes 2, 4, 8, 12, 14 nodes 

Execution times (sec) 
259, 221.4, 88.4, and 52.9 

on 2, 4, 8, and 16 nodes 

1914, 997.9, 566, and 398.6 

 on 2, 4, 8, and 14 processors 

Speedup 
2.43, 2.84, 7.12, and 11.90 

on 2, 4, 8, and 16 nodes 

1.87, 3.59, 6.33, and 9.00 

on 2, 4, 8, and 14 processors 

Parallel platform Hadoop Cluster A multicomputer cluster 

programming model HDFS MPI 

The processor speed 2.5 GHZ 3.30 GHz 

The memory size 4GB 4GB 
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The comparison is done along ten criteria: the programming language, the size of 

the corpus, the type of corpus, the number of nodes, the execution times, the 

speedup, the parallel platform, the programming model, the processor speed, and the 

memory size. 

Our work is significantly different, because the corpus is 21.3x times larger, and 

the tested set (50833 documents *4096 attributes), is 6.4x times larger. Moreover the 

time spent for classification is 7.5x times smaller, and the parallel classifier achieved 

the relative speedup of 11.90 on 16 processors. Our approach is a scalable parallel 

system because the efficiency can be kept constant as the number of processing 

elements is increased provided that the problem size is increased (from 20329 

documents to 50833 documents). Our dataset contains 101,647 * 4069 values, the 

size of the dataset is 5138 MB. 

5.7 Summary  

This chapter presented and analyzed the experimental results. It presented the 

corpus characteristics, explained the machine environment, and implementation of 

the parallel NB classifier using Mahout Library. Also, it presented experimental 

results of parallel classification and its performance. The evaluation of the quality of  

the classification model during sets of experiments. Finally, we compared our 

parallel Naïve Bayes classifier approach with an MPI-based parallel approach. 
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6 Chapter 6 Conclusion and Future Work  

Text classification of large-scale text documents is an important research in text 

mining. Sequential Naïve Bayes classifier is a popular machine learning for text 

classification, widely applied, fast and easy to classify Arabic text documents. 

However, it takes more time when used in classifying large scale of text documents. 

We proposed a parallel Naïve Bayes classifier for large-scale Arabic text 

document based on MapReduce. It involves Arabic text documents collection, 

Arabic text preprocessing, design the suitable MapReduce computing model for 

parallel classification as a Hadoop platform, implementation the parallel Naïve Bayes 

algorithm using Mahout library over the designed MapReduce computing model.  

We tested the parallel classifier using a large scale Shamela-sourced corpus which 

is the largest Arabic corpus of text documents. The test is performed on Hadoop 

cluster  consisting of 16 nodes as a MapReduce model. 

For evaluation purposes, we use accuracy, precision, recall, and F-measure to 

evaluate the classification of our approach and speedup to evaluate its performance. 

The results show that the proposed parallel NB classifier approach can 

significantly improves speedup up to 12x times better than the sequential approach 

using the same classification algorithm and preserve accuracy up to 97%. 

  Also we compare our approach with  MPI-based approach [20]. The result shows 

that our proposed parallel NB classifier approach is 7.5x times faster, and processes 

large scale of Arabic text documents is 21.3x times larger on commodity hardware 

effectively. 

The proposed approach can be used efficiently and accurately to classify a large 

scale of Arabic text with high dimensionality and solved the problem of low speed, 

and preserve high accuracy for the sequential NB algorithm.  

There are many directions for improvements and future investigations. Our work 

can be extended to cover larger computer clusters with larger volume of Arabic text 

documents that constitute more than one terabytes in size. Also, other parallel 
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classification algorithms can be applied with our approach to investigate their 

effectiveness and performance with large scale Arabic text. Additionally, our 

approach can be applied to other domains such as medical information, weather data, 

and social media among others to check its generalization. It can also be used as 

online classification approach with web data. Finally, the work can be applied with 

other cloud-based technologies such as big data analytics, where data mining 

algorithms can be used with big data techniques over MapReduce model to speed up 

the process and give accurate results. 
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